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Langmuir turbulence consists of Langmuir circulation (LC) generated at the surface of rivers, lakes, bays, and
oceans by the interaction between the wind-driven shear and surface gravity waves. In homogeneous shallow
water, LC can extend to the bottom of the water column and interact with the bottom boundary layer. Large-eddy
simulation (LES) of LC in shallow water was performed with the finite volume method and various forms of
subgrid-scale (SGS) model characterized by different near-wall treatments of the SGS eddy viscosity. The wave
forcing relative to wind forcing in the LES was set following the field measurements of full-depth LC during the
presence of LC engulfing a water column 15 m in depth in the coastal ocean, reported in the literature. It is found
that the SGS model can greatly impact the structure of LC in the lower half of the water column. Results are
evaluated in terms of (1) the Langmuir turbulence velocity statistics and (2) the lateral (crosswind) length scale
and overall cell structure of LC. LES with an eddy viscosity with velocity scale in terms of S and Q (where S is the
norm of the strain rate tensor and Q is the norm of the vorticity tensor) and a Van Driest wall damping function
(referred to as the S-Omega model) is found to provide best agreement with pseudo-spectral LES in terms of the
lateral length scale and overall cell structure of LC. Two other SGS models, namely the dynamic Smagorinsky
model and the wall-adapting local-eddy viscosity model are found to provide less agreement with pseudo-
spectral LES, for example, as they lead to less coherent bottom convergence of the cells and weaker associ-
ated upward transport of slow downwind moving fluid. Finally, LES with the S-Omega SGS model is also found to
lead to good agreement with physical measurements of LC in the coastal ocean in terms of Langmuir turbulence
decay during periods of surface heating.

1. Introduction

Turbulence at the surface of oceans, lakes, bays, and rivers is
generated by a combination of surface winds, surface wave breaking,
wave-current interaction and surface heat fluxes. Wave-current inter-
action gives rise to Langmuir turbulence, characterized by a wide range
of Langmuir circulation (LC) scales, parallel counter-rotating vortices or
cells roughly aligned in the direction of the wind (Fig. 1a). Wind speeds
greater than approximately 3 m s™! and winds roughly parallel to waves
provide favorable conditions for the generation of Langmuir turbulence.
Generated at the surface at centimeter scales, the cells grow in depth and
width up to tens of meters, typically engulfing the mixed layer in the
upper ocean [1] or the entire water column in homogenous shallow
water [2] on the order of tens of minutes. The more permanent, larger LC
scales manifest by accumulating bubbles, particulate matter and flotsam
along their surface convergence zones, forming what are often referred
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to as “windrows” (Fig. 1).

A common sketch of LC vortex pairs is shown in Fig. 1. The surface
convergence of each cell leads to a downwelling region characterized by
negative vertical velocity fluctuations (w'), while the bottom conver-
gence leads to an upwelling region characterized by positive w'. These
upwelling and downwelling limbs of LC induce non-local vertical
transport of momentum, turbulent kinetic energy (TKE), and scalars,
ultimately leading to enhanced levels of vertical mixing [3]. A key
characteristic of LC is that its downwelling limbs coincide with regions
of positive downwind velocity fluctuations, as the cells entrain
high-speed downwind moving fluid into the water column. Thus, the
cells lead to an enhanced downwind mean current coinciding with the
downwelling limbs (Fig. 1). Analogously, the upwelling limbs of the cell
transport slow downwind moving fluid towards the surface.

Historically, Langmuir cells have been measured within the upper
ocean surface mixed layer in deep water. However, there have been
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various field measurements of Langmuir cells in shallow coastal shelf
environments, where under neutrally or weakly stratified conditions the
cells reach the bottom of the water column and interact with the bottom
boundary layer. Gargett et al. [2] and Gargett and Wells [4] reported
measurements of Langmuir cells engulfing an entire water column 15 m
in depth on the inner shelf off the coast of southern New Jersey, un-
dergoing strong wind and wave forcing during the passage of a storm.
These supercells persisted for over 18 h. Full-depth Langmuir cells have
also been measured at a deeper site of approximately 26 m depth on
mid-shelf off the coast of Georgia [5-7]. Kukulka et al. [8,9] highlighted
coastal Langmuir cells in a weakly stratified water column 16 m in depth
measured during the Coupled Boundary Layers and Air-Sea Transfer
Experiment in Low Winds (CBLAST-Low) off the coast of Massachusetts
[10,11].

Gargett et al. [2] denoted their observed full-depth cells as Langmuir
supercells (LS) due to their significant impact on the turbulence dy-
namics throughout the entire water column and the cells’ distinct
structure compared to the more common LC in the upper ocean mixed
layer. The full-depth cells lead to a Langmuir turbulence regime with
characteristics vastly different than classical shear-driven turbulence.
Furthermore, Gargett et al. [2] and Gargett and Wells [4] established LS
as an important mechanism in the resuspension and subsequent hori-
zontal transport of sediment and bioactive material on shallow shelves.

Although large-eddy simulations (LES) of full-depth LC in inner
coastal shelves following the previously discussed field measurements
have proven successful, these simulations have been limited to pseudo-
spectral solvers employing highly accurate spectral discretizations in the
horizontal directions (e.g. see Deng et al. [12,13], Tejada-Martinez and
Grosch [14], Kukulka et al. [8,9] and Shrestha et al.[15,16]). To allow
for simulations of LC affected by lateral boundaries typical of coastal,
lake and estuarine zones, it would be beneficial to extend LC-resolving
simulations to non-spectral discretizations capable of handling com-
plex geometry. As an initial step towards that end, in this manuscript, a
second-order accurate finite volume discretization is employed to
perform LES of full-depth LC with different subgrid-scale (SGS) models.

While immersed boundary methods offer an effective approach for
incorporating complex boundaries into spectral simulations, our focus
on the finite volume method (FVM) is driven by its widespread appli-
cation and the availability of well-developed FVM-based solvers, such as
Fluent and openFoam (Fluent [17]; Weller et al. [18]). This choice is
further substantiated by our specific interest in evaluating the SGS
models’ performance, particularly in the context of eddy viscosity
modifications near the wall, which have been well-established within
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the conventional FVM approach [19].

The pseudo-spectral LES of Tejada-Martinez and Grosch [14] showed
that the full-depth Langmuir cells can contribute between 50 and 80 %
of the TKE throughout the water column. Furthermore, the cells can
increase the peak TKE value by about 70 % in the bottom boundary
layer. This is due to the bottom convergences of the cells which induce
elevated values of crosswind velocity variance and due to the dowelling
limbs of the cells which induce elevated values of the downwind velocity
variance. As the downwelling limbs of the cells impinge on the bottom
they cause a thinning of the bottom boundary layer. This thinning in-
duces elevated values of the downwind velocity variance (i.e. elevated
shear turbulence). Thus, careful consideration must be given to the
extension of LES of full-depth LC to a less accurate method such as finite
volumes and to the SGS model in their representation of this magnified
turbulence regime relative to classical shear turbulence.

The principal goal of this study is to assess the performance of
various SGS models in LES of full-depth LC with the FVM on a fixed mesh
commensurate of wall modeled LES [20-22]. Considering the influence
of full-depth LC on the bottom boundary layer, focus is placed on the
SGS models and their different near-wall treatments of the eddy vis-
cosity. The assessment is made with respect to pseudo-spectral LES, in
terms of the resolved full-depth LC structure and turbulence diagnostics
such as resolved mean velocity and velocity variances. The
pseudo-spectral LES has been found to provide results consistent with
field measurements of L.C [2,4,14,23].

The progression of the manuscript is as follows. First in Section 2, the
filtered Navier-Stokes equations with the Craik-Leibovich (C-L) vortex
force [24] are presented. The C-L vortex force accounts for the
wave-current interaction mechanism that generates LC. In Section 3, the
SGS models tested are presented and in Section 4 the computational
domain, boundary conditions and grids employed for the LES are
described. Section 5 presents results of the finite volume LES obtained
with the different SGS models and compares them to pseudo-spectral
LES results. In this section, LES with the S-Omega SGS model is identi-
fied as performing in closest agreement with the pseudo-spectral LES in
terms of (1) the Langmuir turbulence velocity statistics and (2) the
lateral (crosswind) length scale and overall cell structure of LC.

Recent LES and field measurements have begun to shed light on the
influence of other coastal ocean processes on full-depth LC such as tidal
forcing [8,15] and surface heat fluxes [25]. In Section 5, an additional
test of finite volume LES with the S-Omega SGS model is presented
consisting of full-depth LC under the influence of surface heat fluxes.
Good agreement with the physical measurements of LC of Gargett [25] is

Fig. 1. Sketch of LC (left) and photograph of windrows along the surface convergence of LC in Ochlockonee Bay, Florida (right). Note the lateral meandering and y-
junctioning exhibited by the windrows in the field. Photograph source: ldeo.columbia.edu/~ant/Langmuir.
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found in terms of Langmuir turbulence decay during periods of surface
heating.

Finally, Section 6 presents a summary of the results and discusses
future research.

2. Navier-Stokes equations and the Craik-Leibovich vortex force

Phase-averaging of surface gravity waves gives rise to the C-L vortex
force [24] in the Navier-Stokes equations. These equations admit LC
without the need to resolve surface deformation due to waves as the
wave-current interaction that generates LC is accounted for though the
C-L vortex force. The incompressible spatially filtered continuity equa-
tion, the Navier-Stokes equations under the Boussinesq approximation
augmented with the C-L vortex force, and the energy or temperature
equations are
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respectively, where the over-bar denotes application of the filter, z; is
the filtered velocity, T is the filtered temperature, IT is a filtered modified
pressure, 7y is the deviatoric portion of the subgrid-scale (SGS) stress
generated by the spatial filtering [26] (with the isotropic part lumped
into the pressure (not shown)), and 4; is the SGS heat flux. Furthermore,
po is the fluid density and v its kinematic viscosity, Ty is a reference
temperature, f is the coefficient of thermal expansion and « is diffusivity.
Egs. (1) and (2) are defined in a Cartesian coordinate system con-
sisting of streamwise (or downwind) (x;), spanwise (or crosswind) (x2),
and vertical (or wall-normal) (x3) directions. In (2), the gravitational
acceleration is g with the gravity vector pointing in the —x3 direction.
The last term in (2) is the C-L vortex force consisting of the cross
product between the Stokes drift velocity U}, induced by the surface
gravity waves, and the filtered vorticity @x. In this term, e is the Levi-
Civita epsilon. The modified filtered pressure in (2) is defined as

ﬁ:§+%[U§Uf+2uiUﬂ 4

where p is the filtered pressure under the Boussinesq approximation. In
this study, the Stokes drift velocity is taken to be aligned in the direction
of the wind, therefore, the crosswind and vertical components of the
Stokes drift are zero (US = US3 = 0). The downwind component is taken
as

U — okg?SOSN(2kxs) (5)
2sinh” (kH)

defined by Phillips. In (5) H is the depth of the water column, ¢ is the
dominant frequency, k is the dominant wavenumber and a is the
dominant amplitude of the waves generating LC. The wavenumber and
the frequency can be related through the surface gravity wave dispersion
relation. Furthermore, the dominant wavelength and period of the
waves can be obtained through 1 = 2z/k and T = 27 /o, respectively.

3. SGS stress models

The performance of various SGS stress models will be investigated in
LES of shallow water wind-driven shear flow in which the turbulence is
characterized by full-depth LC. In this setting, the LC is generated at the
surface growing in time over crosswind and depth extents, eventually
reaching the bottom of the water column and remaining in equilibrium
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for the rest of the simulation. As such, the LES SGS stress model should
not cause excessive damping of resolved scales which could lead to
inaccurate equilibrium turbulence dynamics and final crosswind width
of the cells. However, it is well known that classical SGS stress models,
such as the Smagorinsky model, can cause excessive turbulence damp-
ing. Thus, various forms of the Smagorinsky model will be tested,
characterized by different near wall treatments.

Following the Boussinesq hypothesis, the deviatoric portion of the
SGS stress in Eq. (1) is expressed in terms of the eddy viscosity v,

Tj = l/[gij (6)

where the filtered symmetric part of the velocity gradient or the filtered
strain rate tensor is defined as

— 1 /0w oy
5123 (3 ") @
The SGS heat flux, 4;, in Eq. (3) is modeled via an eddy diffusivity

taken as v,/Pr, times the filtered temperate gradient, dT/dx;, where the
turbulent Prandtl number is set as Pr; = 0.85.

3.1. Wall adapting Smagorinsky model

The simplest model that could be considered is the Smagorinsky
model in which the Smagorinsky length scale is integrated within a
spatially varying mixing length scale as follows:

v, = L2 (8)

where [S| =(25;5;)"/? is the norm or absolute value of the filtered strain
rate and L, is the spatially varying mixing length scale computed as

L, = min(kd,n, CsA) (C)]

In the previous expression d,,, is the wall distance normal to the wall,
A is the local grid scale given as the cube root of the cell volume, x =
0.41 is the von Karman constant, and Cs = 0.1 is the Smagorinsky
constant. Away from a wall, L,, is determined through the length scale
CsA. Near the wall, L,, is dominated by d,,, as in this region the energetic
eddies of the turbulence scale with d,,,. This near-wall behavior follows
the Reynolds-averaged Prandtl’s mixing-length theory.

Shur et al. [19] showed that the Smagorinsky model above can result
in excessive dissipation in the outer layer of turbulent channel flow and
proposed a mixing length scale, L, accounting for grid anisotropy and
modified by a van Driest wall damping function [27]:

Vi = min [(deall)27 (CsmagA)z] |§| {] — exp[ — (y+/25)3] } (10)

where the wall damping function is defined in terms of y*, the wall
distance normal to the wall in plus (or wall) units. The latter is defined as
¥yt = u.dyq/v where u, is the wall friction velocity. The mixing length
scale, L, is modified through the local grid scale as follows:

A = min(max(Cwau dwatt; Cwait Amaxs hwn),-hmrvr> an

where C,q; = 0.15, hy,, is the grid cell size in the wall-normal direction,
and hyqy is the maximum local grid spacing (i.e., the maximum edge
length of the cell). Note that the outer layer is the region extending from
the edge of the inner layer (or logarithmic layer) to the outer edge of the
boundary layer itself, where the flow velocity approaches the free
stream velocity.

3.2. Wall adapting S-Omega model

A drawback of the wall adapting Smagorinsky model is that it yields
non-zero eddy viscosity in regions of constant shear. Consequently, the
model results in excessive values of the eddy viscosity in flows charac-
terized by transition to turbulence. The model can also result in exces-



S. Zeidi et al.

sively high eddy viscosity in flows with separated shear layers. To
alleviate these inaccuracies, the norm or the magnitude of the filtered
strain rate tensor can be replaced by the absolute value of the norm of
the filtered strain rate tensor minus the norm of the filtered vorticity
tensor as proposed in [17]:

¥, = min [(deau)z, (CSmagA)z} abs(|S| - |§\){1 - exp{ v /25)3] }

(12)
where A is given in (11), |Q] E(Zﬁijﬁg)l/z and
_ 1/m o
YR w

is the anti-symmetric part of the resolved velocity gradient or the
resolved vorticity tensor.

3.3. Dynamic Smagorinsky model

A third model tested is the dynamic Smagorinsky model [28] in
which the eddy viscosity is taken as

v, = (CsA)?|S] a4

where the Smagorinsky coefficient is calculated dynamically as a func-
tion of space and time. The dynamic computation of the coefficient relies
on the resolved Leonard tensor defined as

Ly = wu; — (15)

=
2D

i

where the over-hat notation denotes application of a spatial filter, often
referred to as the test filter.

Note that the Leonard tensor L; may computed exactly via the
resolved velocity @; in (15) and can also be approximated via the Sma-
gorinsky model and minimization of the difference between this
approximation and the definition in (15) leads to the dynamic expres-
sion for the Smagorinsky coefficient:

((Lj — L 65/3)My)

G = (16)
s (M;M;;)

where §j is the Kronecker delta and

My = —2(87[s[5, - 22 3] 5,) a7

In the above equation, A is the width of the primary filter applied to
obtain the filtered Navier-Stokes equations in (2) and A is the width of
the filter resulting from sequential application of the primary filter and
the test filter. In implicit LES, A is taken as the local grid scale (i.e. the
cube root of the cell volume) with A = 2A. Finally, the brackets in the
numerator and denominator in the expression for C% denote local
averaging performed for stability.

3.4. Wall adapting local eddy viscosity (WALE) model

As the distance to a wall (dy,) approaches zero, the norm of the
filtered strain rate, |S|, is O(1) and thus in this limit the eddy viscosity in
Eq. (14) is vy ~ O(1); however, the proper wall scaling is v; ~ O(dfm)

[29]. To obtain this scaling, Nicoud and Ducros [29] proposed the WALE
model based on the square of the gradient of velocity tensor:

v =1L% (18)

where
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Ly, = min(kdyn, C,A) (19)
and

1,

=5 (8+8) 20)
withg; = o/ 0x;, g§ = gx8i, WALE model constant C,, = 0.325, and A,

the local grid scale, taken as the cube root of the cell volume. Nicoud and
Ducros [29] show that .7";.%; may be expressed as

1 2
TSy =g (S°8*+Q%Q%) + 55292 + 2Vsa 21
where

$2 =558y, Q= QyQy, Vo = SuSaiQu (22)

with ﬁij the vorticity tensor defined in (13). Thus, as noted by Nicoud
and Ducros [29], this model is expected to detect turbulence structures
with either (large) strain rate, rotation rate or both.

4. Computational setup
4.1. Laboratory-scale simulations

4.1.1. Reynolds number

LES of laboratory-scale full-depth LC with a finite volume (FV) nu-
merical scheme at Reynolds number (Re;) of 395 based on wind stress
friction velocity, u,, and water column half-depth, § = H/2 following
the pseudo-spectral LES of Tejada-Martinez and Grosch [14] which were
performed with this same Reynolds number. In these simulations, under
statistical equilibrium, the wind stress is balanced by the mean wall
shear stress, resulting in the bottom mean friction velocity (u.) being
equal to u,. This latter condition was approximately satisfied during the
field measurements of Gargett et al. [2] and Gargett and Wells [4].
Furthermore, no temperature effects were considered, thus the buoy-
ancy term was excluded from Eq. (2), also based on the field measure-
ments of Gargett et al. [2].

Solving the dimensionless Navier-Stokes equations, non-
dimensionalized with u, and &, at a specified Reynolds number, say,
Re, = 395, gives rise to the non-dimensional velocity ﬂ;“i = U;/u, where
u; is the dimensional velocity. Tejada-Martinez et al. [23] showed that
the resolved non-dimensional velocity fluctuations obtained from
pseudo-spectral LES at Re, = 395 dimensionalized by multiplying by the
wind stress friction velocity measured in the field by Gargett et al. [2]
during the presence of full-depth Langmuir cells (u, = 0.01 m/s corre-
sponding to a wind stress of 0.1 Pascals) are in good agreement with the
velocity fluctuations measured in the field. This agreement was attrib-
uted to a Reynolds number-independence of the flow which is likely
because the resolved full-depth cells are efficient at mixing momentum
vertically throughout the water column regardless of the value of the
Reynolds number. This mixing leads to a near-zero vertical gradient of
the mean downwind velocity and thus a near-zero vertical shear
throughout the bulk of the water column. Thus, the dynamics of the
full-depth Langmuir cells are nearly inviscid throughout the bulk of the
water column regardless of the value of Re; in the simulation. Hence-
forth, the computational setup will be described in both units of § and in
scale-up dimensional units. Results will also be presented in scale-up
dimensional units.

4.1.2. Domain and boundary conditions

The computational domain consists of a 3-D channel (see Fig. 2) with
a wind sheared rigid lid surface and periodicity in the downwind (x; or
x) and crosswind (xz or y) directions. Standard wall functions [30] were
used to calculate the bottom wall shear stress based on the velocities at
the first grid cell centers above the wall. Grid cell sizes are given further
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Fig. 2. Schematic of computational domain. Red arrows denote the wind stress.

below.

The channel height (along x5 or z) is H = 15 m, corresponding to the
depth of the water column in the coastal ocean observations of full-depth
LC of Gargett et al. [2] and Gargett and Wells [4]. The downwind length
of the domain is L, = 4076 = 942.5 m and the crosswind length is L,
= (16 /3)7é = 125.7 m, where 6 = H/2 = 7.5 m. Note that these
lengths are greater than the lengths used in the original pseudo-spectral
LES of this flow by Tejada-Martinez and Grosch [14] (Ly = 4#6, L, =
(8/3)x &) in order to allow for the full spatiotemporal development of
the large scale LC (starting from rest condition), characterized by
so-called y-junctions and overall length scales consistent with the field
observations. The earlier simulations of Tejada-Martinez and Grosch
[14] did not evolve from rest but rather from a Couette flow where the
large scales of the turbulence consisted of Couette cells.

Using the domain lengths L, = 476 and L, = (8 /3)x §, the Tejada-
Martinez and Grosch [14] LES captured a single LC pair with cross-
wind width consistent with the field measurements of Gargett et al. [2]
and Gargett and Wells [4]. They also showed that a second simulation
with Ly =4x56 but with double the crosswind domain width
(Ly = (16 /3)z 6) yielded two LC pairs, demonstrating that the width of
the LC obtained was not an artifact of the finite domain size. Thus, it is
expected that the new simulations in the present study with L,
= (16 /3)x 6 should capture 2 LC pairs.

For the current study, preliminary simulations with the pseudo-
spectral LES code of Tejada-Martinez and Grosch [14] initiated from
rest led to the determination of the domain length as L, = 40z5 long in
the downwind direction in order to allow for the development of the
expected two LC pairs of width consistent with the field measurements.
Smaller values of L, were observed to hinder this development leading
to cells of smaller crosswind width. Note that this temporal evolution of
full-depth LC from rest (to be further described below in the Results
section) is important to represent for future studies investigating, for
example, the behavior of LC under the time-varying wind and wave
forcing conditions occurring in the field.

4.1.3. Grid resolution

In wall-resolved LES of plane channel flows (assuming a structured
grid), the wall distance to the center of the cells adjacent to the wall
measured in “plus” or wall units is usually taken as z{ = 1, where wall
units are defined as x{" = x; u./v. Thus, with 2; <5, the grid resolves
down to the Law of the Wall viscous sublayer. Furthermore, the
streamwise (downwind) and spanwise (crosswind) cell sizes are taken to
be in the approximate ranges of Ax™ =~ 50-150 and Ay" =~ 15-40 [21].
In wall-modeled LES or WMLES, outer layer structures (outside of the
Law of the Wall log-layer) are assumed to interact weakly with the inner
layer, thus a coarser mesh is permitted resolving down only to the
log-layer and thus z; is set to lie within this layer. Furthermore, Ax™ =
100-600 and Ay" = 100-300 [21].

In the present simulations, a uniform grid in the downwind, cross-
wind, and vertical directions was employed consisting of 300 cells along
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X, 120 cells along y, and 64 cells along 2, respectively. This grid is more
commensurate with WMLES than wall-resolved LES. Note that the first
cell center is at a distance of 2 = 6.2 from the wall, which is within the
Law of the Wall buffer layer above the viscous sublayer. This resolution
reaches below the log-layer based on the reported interaction that oc-
curs between full-depth LC and the log-layer. Tejada-Martinez et al. [31]
showed that full-depth LC can give rise to a deviation away from the
log-law in the mean velocity, suggesting that the mesh should have good
resolution of the log-layer region. Although the log-law deviation was
also observed by Deng et al. [12,13], they found that the deviation was
more pronounced at Re ; = 395, compared to Re, = 1000. However,
Tejada-Martinez et al. [31] also reported that the downwelling limbs of
full-depth LC impinge on the bottom boundary layer within the log layer
region, thereby thinning the overall bottom boundary layer, while the
upwelling limbs cause the opposite effect. Thus, within the individual
limbs of the LC, the deviation away from the log law may still be sig-
nificant, even at high Reynolds numbers. As such, the present LES were
performed with 2z = 6.2 (corresponding to resolution extending below
the log-layer).

Finally, the grid spacing in the downwind and crosswind directions is
AxT =u; Axy/v=165.5and Axj = u, Axs/v =55, respectively, which
are on the finer end of the approximate range specified for WMLES by
Piomelli [21] (see further above). The potential impact of a coarser mesh
on results will be discussed further below.

Results from the finite volume laboratory-scale LES with the different
forms of SGS models described earlier will be compared with results
obtained from the pseudo-spectral LES code of Tejada-Martinez and
Grosch [14]. The pseudo-spectral LES was performed with the domain
lengths specified earlier, Ly = 4076, L, = (16 /3)n5, where 6 = H/2 is
the channel half-height. The number of grid cells were 320 along x, 128
along y, and 96 along z. The grid was stretched in the vertical such that
the z-distance in plus units from the wall to the first grid point above the
wall is 27 = 1. The latter ensures resolution down to the viscous sub-
layer. The z-distance in plus units from the surface to the first grid point
below the surface is also z; = 1.

4.1.4. Wind and wave forcing conditions

Simulations started from rest with sudden imposition of the wind
stress (such that Re; = u,6/v = 395) and the C-L vortex force. The
characteristic Stokes drift velocity, cka?, appearing in (4) and ultimately
in the vortex force in (2), when non-dimensionalized by the wind stress
friction velocity, u,, gives rise to the turbulent Langmuir number,
defined as La; = /u;/(cka?) . The latter is representative of wave
forcing relative wind forcing. A wind stress of 0.1 N m™2, a wave period
of 8 s, a wavelength of 90 m and an amplitude of 0.6 m, measured during
the full-depth LC field measurements of Gargett et al. [2], gives rise to
La; = 0.7 (using the wave dispersion relation). Accordingly, the C-L
vortex force was set to give rise to this same value of La, in the LES
ensuring that the wind forcing relative to wave forcing in the lab-scale
simulations was the same as in the field. Furthermore, the wavelength
in the sinh and cosh functions in (4), appearing through the wave-
number k = 2z/4 with 1 being the wavelength, was set to 1 = 6H = 125
in the simulations. This is consistent with the wavelength of 90 m and
water column depth of 15 m registered in the field measurements.

4.2. Field-scale simulation

Field-scale LES of full-depth LC under a time varying surface heat
flux was performed following field measurements of Gargett et al. [25].
These simulations were performed at the field-scale Reynolds number
primarily to avoid having to scale down the surface heat flux to
lab-scale. Note that non-dimensionalizing the buoyancy term in the
momentum equations would bring about an additional dimensionless
number in the form of a Rayleigh number (for cooling) or a Richardson
number (for heating).
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The LES was performed with the finite volume method with the wall-
adapting S-Omega SGS model described earlier, as this model was found
to provide results more consistent with pseudo-spectral LES than the
other models for the simulation at Re;, = 395 (to be shown further
below). In the field-scale simulation, the crosswind width of the domain
in Fig. 2 was specified to resolve a single pair of full-depth LC (smaller
than the width of the domain in the laboratory-scale simulations). The
reason for the smaller width is that the aim of the field-scale LES is to
investigate the effect of surface heating on the turbulence associated
with existing LC, rather than on the development of LC studied via the
laboratory-scale simulations. The downwind and crosswind lengths of
the domain (Fig. 2) were taken as L, = L, = 62.8 m, respectively, and
the water column height as H = 15 m (the latter following the field
measurements of Gargett et al. [25]).

Periodicity was enforced in the downwind and crosswind directions.
Standard wall functions [32] were used to calculate the bottom wall
stress based on the velocities at the first cell centers above the wall.

The simulation was initiated from rest with filtered temperature set
as T = T, (where recall that Ty is the reference temperature in (2)), and
with zero surface and bottom heat fluxes, thus no buoyancy effects. The
wave parameters were set to be the same as those described in the
previous Section. The wind stress was taken as 0.1 N m? (corresponding
to awind speed of 7.8 m sl at 10 m above the surface of the ocean) based
on the measurements of Gargett [25], resulting in a wind stress friction
velocity u, = 0.01 m s and a friction Reynolds number Re, = 75000.
Once the simulation reached statistical equilibrium characterized by a
single-pair full-depth LC and a mean bottom wall shear stress matching
the wind stress, the surface heat flux was set to 205 Watts m™? (surface
cooling or destabilizing) beginning the buoyancy effects. The surface
heat flux was subsequently dropped in a stepwise fashion to —600 Watts
m'2 (surface heating or stabilizing) over a period of 10 h to investigate
the decay of the turbulence, following the measurements of Gargett
[25]. Throughout this time, the wind and wave forcing remained con-
stant. Further details of the stepwise variation of the surface heat flux
will be given when describing the results.

A uniform grid was used in the downwind and crosswind directions
with 256 elements in both directions. In the vertical direction, 96
stretched elements were used. The element length in both the downwind
and crosswind directions is 0.25 m. The element length in the vertical is
0.05 m at the wall and at the surface and 0.22 m at mid-depth. These
element sizes are comparable to those in the pseudo-spectral field-scale
LES of Kukulka et al. [9], who performed simulations of LC under a wind
speed of 5 m s in a water column 20 m in height. Furthermore, in the
present mesh, the first cell center above the wall is at a distance 0.025 m
away from the wall, well within the log-layer limit suggested by Pope
[26], 2" > 30 and z < 0.36. For the present case with § =7.5m, 2 < 0.3
=2.25m.

4.3. Numerical methods

For both laboratory-scale and field-scale simulations described
above, the governing continuity, momentum and temperature equations
described earlier were solved using the finite volume method. The so-
lution algorithm involved the simultaneous solution of the momentum
equation and the pressure equation form of the continuity equation [33]
on a staggered grid [34]. The method employs a bounded central dif-
ference (BCD) scheme [35] for advection, least-squares gradient
reconstruction [36], and implicit second order accurate time stepping
via the approximation of the time derivative of scalar ¢ at time level t,, 1
as

i1 3¢ — 4"+ 9"

¢ 2At (23)

The time step At was chosen such that the Courant-Friedrichs-Lewy
(CFL) number was approximately 1.
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The BCD scheme is equipped with a detector for identifying oscilla-
tions in wavelengths that are 2Ax or shorter. In situations where such
oscillations are detected, the scheme reverts to a second-order upwind
scheme, or, in the worst case, to a first-order upwind scheme. More in-
formation about this approach is given by Leonard [35], Moukalled et al.
[36] and Ask and Davidson [37]. Ask and Davidson [37] have shown
that the BCD scheme described above is less dissipative than
second-order upwinding in simulations of the air flow around a generic
side mirror of a car. Overall, the BCD scheme provides minimal nu-
merical dissipation within the family of stable advection discretization
schemes in the finite volume framework.

As the numerical methods employed here are standard throughout
the computational fluid dynamics community, the ANSYS Fluent plat-
form [17] was used to carry out the simulations.

4.4. Performance of SGS models in shear turbulence

Prior to presenting results of the simulations with LC, the perfor-
mance of the finite volume LES with the various SGS models described
earlier is evaluated for the wind-driven (surface shear-driven) flow at
Re, =395 described above in Section 4a but without C-L vortex forcing
(i.e. without LC) on the corresponding finite volume mesh also described
above. Results obtained from these simulations under statistical equi-
librium shown in Fig. 3 in terms of mean downwind velocity and
resolved velocity variances do not show significant differences. Results
are also shown of the pseudo-spectral LES with C-L vortex forcing for
comparison, highlighting the significant variations induced by the LC.
As such, it is important to understand how well LES with the different
SGS models can capture these variations and the overall Langmuir cell
structure. As noted in the introduction, Tejada-Martinez and Grosch
[14] reported that the full-depth Langmuir cells contribute between 50
and 80 % of the TKE throughout the water column. Thus, it should be
expected that inaccuracies in the representation of the full-depth cell
structure will be reflected in the depth-profiles of the velocity variances
as will be shown in the next section.

5. Results
5.1. Laboratory-scale simulations

5.1.1. Cell development and structure: S-Omega SGS model

The development of the Langmuir cells from rest in the finite volume
LES with the wall-adapting S-Omega model can be seen in Fig. 4 in terms
of downwind-averaged vertical velocity fluctuations. The cells are
initially regular or smooth. As time progresses, the cells become unstable
and undergo a merging or amalgamation process in which they grow in
width (along the crosswind direction) and depth while becoming more
irregular as the flow transitions to Langmuir turbulence. After about 1 h,
the cells reach close to the bottom, which can be seen in terms of the full-
depth downwelling and upwelling limbs, or full-depth regions of nega-
tive and positive vertical velocity fluctuations, respectively. After
approximately 30 h, the largest scales of the turbulence, corresponding
to the full-depth LC, have stopped growing with the computational
domain able to capture two pairs of cells, as expected and described
earlier.

The overall cell structure in equilibrium obtained in the LES with the
wall-adapting S-Omega model is shown in Fig. 5, in terms of downwind-
averaged crosswind, vertical and downwind velocity fluctuations at t =
30 h. in panels (a)-(c) respectively. Equilibrium refers to the fact that the
cells have reached a stable length scale and thus are no longer merging.
The surface convergences and bottom divergences and the full-depth
downwelling and upwelling limbs of the LCs resolved in the LES can
be seen in panels (a) and (b) of Fig. 5, respectively, highlighted by the
white arrows. Note that the surface convergences of the cells lead to the
downwelling limbs, and the bottom convergences lead to the upwelling
limbs. Furthermore, the downwelling limbs coincide with full-depth



S. Zeidi et al. Computers and Fluids 284 (2024) 106394

15 | 15
pseudo-spectral LES
12 | 12 +
—— - =FV LES, dynamic
Smagorinsky
9 F 9 }
~ | === FV LES. WALE ~
g g
= —
N 6 N 6 F
® e e e FVLES, Smagorinsky
3 F 3
——FV LES. S-Omega
0 0
0 0.35 0 0.0001 0.0002
(w'2) (m?s~2)
15 15
12 12
~ o 9
~
E E
N N o6
3 3
0 0
0 0.0005 0.001 0.0015 0.002 0 (17,2) (mZS—Z) 0.001

() (m?s~?)

Fig. 3. (a) Mean downwind velocity and (b) vertical (¢) downwind and (d) crosswind velocity variances in finite volume (FV) LES of wind-driven flow without LC.
Mean downwind velocity and velocity variances obtained in pseudo-spectral LES with LC are shown (in red) for reference. Brackets denote averaging over time and
over the downwind and crosswind directions.
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Fig. 4. Instantaneous downwind averaged vertical velocity fluctuations over the vertical (z) and crosswind extents (y) of the computational domain in finite volume
LES with the S-Omega SGS model.
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Fig. 5. Instantaneous downwind-averaged crosswind (a), vertical (b), and downwind (c) velocity fluctuations over the vertical () and crosswind extents (y) of the
computational domain at ¢t = 30 h. in finite volume LES with the S-Omega SGS model.

regions of positive downwind velocity fluctuations, which are intensi-
fied near the surface and near the bottom (Fig. 5c). Such bottom
intensification of downwind velocity fluctuations has been observed in
the field during episodes of full-depth LC by Gargett and Wells [4] and is
considered a key signature of full-depth LC distinguishing it from the LC
traditionally observed in the upper ocean mixed layer (e.g. see [1]). The
coincidence of the downwelling limbs with full-depth regions of positive
downwind velocity fluctuations is because the downwelling limbs
entrain fluid possessing fast downwind velocity from the surface into the
water column, reaching close to the bottom. Analogously, the upwelling
limbs of the cells transport fluid possessing slow downwind velocity
from the bottom towards the surface.

5.1.2. Cell structure: comparison between all SGS models

The development of the cells over time can be further explored in
terms of the instantaneous vertical velocity fluctuations over the hori-
zontal plane (i.e., the x-y plane) at mid-depth. On this plane, the vertical
velocity fluctuations are characterized by positive and negative streaks
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(a) FV LES with Dynamic Smagorinsky at 7 =12 hrs
120 - -

corresponding to the upwelling and downwelling limbs of the LC,
respectively. Fig. 6 shows these streaks at 12 h and 30 h after the finite
volume LES simulations with the different SGS stress models were
initiated from rest. The corresponding results obtained with the pseudo-
spectral LES code of Tejada-Martinez and Grosch [14] are also shown in
Fig. 6. As observed earlier in Fig. 5, with time, the cells grow in depth
and width. This is reflected in Fig. 6 through the meandering and
merging of streaks, forming so-called “y-junctions”, often used to
describe the manifestations of LC on the surface of lakes, rivers, bays,
and oceans (e.g., see Thorpe [38] and photograph of windrows in Fig. 1).
At t =12 h., the pseudo-spectral LES solution reveals three pairs of
streaks, with two of the positive streaks in the process of merging
(Fig. 6k). Similar y-junctioning may be observed in the finite volume LES
with the wall-adapting S-Omega SGS model (Fig. 6g). By t = 30 h., when
the cells have stopped growing and reached equilibrium, both simula-
tions reveal two pairs of streaks (Fig. 6, panels h and 1). Although a
similar behavior is seen in the finite volume LES with the other SGS
stress models (the WALE, dynamic Smagorinsky and wall-adapting
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Fig. 6. Instantaneous vertical velocity fluctuations over the downwind (x) and crosswind (y) extents of the computational domain at mid-depth (z = H /2) in finite

volume (FV) LES and pseudo-spectral LES.
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Smagorinsky models), these solutions at t = 30 h. under equilibrium are
characterized by three pairs of cells (rather than two pairs). As a result,
the finite volume LES with the wall-adapting S-Omega model and the
pseudo-spectral LES lead to cells with greater width than the finite
volume LES with the other SGS models. Note that the cells of smaller
width obtained with the WALE, wall-adapting Smagorinsky and dy-
namic Smagorinsky models reach equilibrium before t = 12 h., which is
much earlier than the cells obtained with the wall-adapting S-Omega
model and the pseudo-spectral LES.

The equilibrium cell structure obtained with the finite volume LES
with the different SGS models, and the pseudo-spectral LES is shown in
Figs. 7-9 in terms of downwind-averaged crosswind, vertical, and
downwind velocity fluctuations, respectively, at t = 30 h. The two cell
pairs obtained with the pseudo-spectral LES and the finite volume LES
with the S-Omega model and the three cell pairs obtained with the finite
volume LES with the other SGS models can again be appreciated in these
figures.

The pseudo-spectral LES and the finite volume LES with the S-Omega
SGS model lead to cells for which the maximum downwelling velocities
are stronger than the upwelling velocities, with the downwelling limbs
being narrower than the upwelling limbs in order to satisfy mass con-
servation (Fig. 8, panels (d) and (e)). This asymmetry between the up-
welling and downwelling limbs of the cells is consistent with the field
measurements of LC of Gargett and Wells [4]. Furthermore, this asym-
metry is not as pronounced in the cells obtained with the finite volume
LES with the wall-adapting Smagorinsky, the dynamic Smagorinsky, and
the WALE models (Fig. 8, panels (a)-(c)).

Another important feature of the cells obtained with the pseudo-
spectral LES and the finite volume LES with the wall-adapting S-
Omega model is that the cells’ downwell-to-downwell width is
approximately 60 m (Fig. 8, panels (d) and (e)), corresponding to ~4H
(H = 15 m), consistent with the range 3H-6H reported by Gargett and
Wells [4] in their observations of full-depth LC over periods greater than
20 h. The width of the cells obtained in the finite volume LES simulations
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with the WALE, dynamic Smagorinsky and wall-adapting Smagorinsky
models is less at ~3H (Fig. 8, panels (a), (b), and (c)).

The only difference between the wall-adapting Smagorinsky and S-
Omega models in Eqs. (10) and (12), respectively, is in the velocity scale.
Thus, it may be concluded that the S-Omega model’s velocity scale given
through abs(|S| — |Q|) is an important factor enabling the resolved full-
depth LC in finite volume LES to possess a morphology or structure in
better agreement with the LC in pseudo-spectral LES and the field ob-
servations of Gargett and Wells [4]. This would be expected as the ve-
locity scale based on abs(|S| — |Q|) should be able to reflect the
importance of rotation in LC flows better than the velocity scale based
solely on [S|.

The LES with the S-Omega model and the pseudo-spectral LES lead to
cells that have similar forms at the surface and at the bottom of the water
column (e.g., see sketches and crosswind velocity fluctuations in Fig. 7,
panels (d) and (e)). In contrast, the finite volume LES with the dynamic
Smagorinsky model leads to significant differences between the near-
bottom and near-surface cell structure (e.g., see sketches and cross-
wind velocity fluctuations in Fig. 7, panel (a)). In Fig. 7a, the crosswind
velocity fluctuations reveal that the bottom convergences of the cells
obtained with the finite volume LES with the dynamic Smagorinsky
model are unable to fully extend across the bottom. Instead, the bottom
convergences of the cells are “snipped”. The weaker bottom conver-
gences of the snipped cells are also reflected through their upwelling
limbs, seen in Fig. 8a. For example, the intensity of the upwelling limbs
is significantly weaker at the bottom of the water column in the LES with
the dynamic Smagorinsky model (Fig. 8a) than in the LES with the S-
Omega model and the pseudo-spectral LES (Fig. 8, panels (d) and (e)).
Overall, a weaker intensity of the bottom convergences of the cells in the
finite volume LES with the dynamic Smagorinsky model leads to weaker
transport of slow downwind moving fluid from the bottom of the water
column towards the surface by the upwelling limbs. This can be seen in
Fig. 9a, where the regions of negative downwind velocity fluctuations in
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Fig. 7. Downwind averaged vertical velocity fluctuations over the vertical (2) and crosswind (y) extents of the computational domain in finite volume (FV) LES and

pseudo-spectral LES at t =0 h.
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the finite volume LES with the dynamic Smagorinsky model are not as
prominent near the surface compared to the same regions in the LES
with the S-Omega model and in the pseudo-spectral LES (Fig. 9, panels
(d) and (e), respectively).

To further quantify the impact of the SGS models on the transport of
slow-moving fluid from the bottom of the water column towards the
surface induced by the upwelling limbs of the full-depth Langmuir cells,
Fig. 10 plots the downwind-averaged downwind velocity fluctuations
over the crosswind extent of the computational domain at a depth close
to the surface. As can be seen in this figure, the negative downwind
velocity fluctuations reach to about —0.3 m s in the finite volume LES
with the S-Omega model, in good agreement with the pseudo-spectral
LES. However, in the finite volume LES with the dynamic Smagor-
insky model and WALE models, the negative downwind velocity fluc-

tuations only reach to ~ —0.1 m s™.

5.1.3. Velocity statistics and cell structure: comparison between all SGS
models

Differences can be seen across the LES with the different SGS models
in terms of resolved mean downwind velocity (Fig. 11) and resolved
velocity variances (Figs. 12-14). Given the well-mixed downwind ve-
locity profiles obtained in the simulations (Fig. 11a), the characteristic
bulk downwind velocity may be taken as the mean downwind velocity at
mid-depth. In Fig. 11a, it can be seen that the finite volume LES with the
wall-adapting S-Omega and Smagorinsky SGS models lead to slower
bulk downwind velocity relative to LES with the other SGS models and
relative to the pseudo-spectral LES. This may be attributed to the
stronger negative downwind velocity fluctuations induced by the LC in
the LES with the wall-adapting S-Omega and Smagorinsky models
compared to the dynamic Smagorinsky and WALE models, as observed
in Figs. 9 and 10. This may interpreted as the LC obtained with the wall-
adapting S-Omega and Smagorinsky models serving to provide a greater
resistance to the bulk flow. The slower bulk flow obtained within the
wall-adapting S-Omega and Smagorinsky models could also be tied to
the greater resistance from the higher near-wall eddy viscosities ob-
tained with these models (Fig. 15).

Fig. 11b reveals that the faster bulk downwind velocity obtained
with the dynamic Smagorinsky and WALE models leads to a greater
deviation from the log-law in the lower half of the channel (for example
at 2"~ 90) compared to the wall-adapting S-Omega and Smagorinsky
SGS models and the pseudo-spectral LES. This bottom log-layer devia-
tion is expected in flows with full-depth LC as discussed earlier when
presenting the computational setup in Section 4a.
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The differences in intensity and structure of the full-depth LC
resolved in the various simulations described earlier can also be
observed in terms of depth profiles of the resolved vertical, downwind,
and crosswind velocity variances, under statistical equilibrium. Focus is
placed on the variances in the middle and lower half of the water column
rather than on the surface given that in the ocean the near-surface tur-
bulence is strongly affected by wave-breaking and none of the simula-
tions performed accounts for surface wave breaking.

Fig. 12 reveals that the finite volume LES with the S-Omega SGS
model leads to better agreement with pseudo-spectral LES in terms of
vertical velocity variance, compared to the other SGS models, in the
middle of the water column. Furthermore, the vertical velocity variances
obtained in the LES with the S-Omega SGS model and the pseudo-
spectral LES are lower than in the LES with the other SGS models.
This trend can be directly linked to the similar LC cell structure obtained
with the LES with the S-Omega SGS and the pseudo-spectral LES. In
Fig. 8 two key characteristics can be observed: (1) The finite volume LES
with the S-Omega SGS model and the pseudo-spectral LES lead to cells
for which the maximum downwelling velocities are stronger than the
upwelling velocities, with the downwelling limbs being narrower than
the upwelling limbs, as noted earlier. Meanwhile the finite volume LES
with the other SGS models give rise to downwelling and upwelling ve-
locities nearly equal in magnitude, and thus dowelling and upwelling
limbs of nearly equal width. (2) The maximum downwelling velocities
across all simulations are nearly the same (~ — 0.02 m s'1) as well as the
width of the downwelling limbs. Thus, the lower vertical velocity vari-
ances obtained in the LES with the S-Omega SGS model and the pseudo-
spectral LES may be attributed to the wider crosswind coverage of the
slower upwelling limbs in these simulations compared to the simulations
with the other SGS models.

In Fig. 13, it can be seen that the finite volume LES with the WALE
and the dynamic Smagorinsky models lead to near-bottom downwind
velocity fluctuations that are excessively high, relative to the pseudo-
spectral LES and the finite volume LES with either the wall-adapting
S-Omega or the wall-adapting Smagorinsky models. This behavior is
attributed to the lower values of the eddy viscosities obtained in the
finite volume LES simulations with the WALE and the dynamic Sma-
gorinsky models compared to the wall-adapting S-Omega and Smagor-
insky models (see Fig. 15). Near the wall, the wall-adapting S-Omega
and Smagorinsky models give rise to larger eddy viscosities, consistent
with the hybrid Reynolds-averaged Navier-Stokes (RANS)-LES concept
in which the outer layer is computed via LES and the near-wall region is
treated in a Reynolds-average sense where the SGS stress should behave

0.05
0.04 FV LES, S-Omega
0.03
—~ 002 eeee eV LES, with wall
<L adapting Smagorinsky
g 001
~ FV LES, dynamic
(3 0 Smagorinsky
=
<~ 001 Py NS\ v Y Wee [T e \U | e FV LES, WALE
-0.02
-0.03 pseudo-spectral LES
-0.04
0 20 40 60 80 100 120
y (m)

Fig. 10. Downwind-averaged downwind velocity fluctuations vs. crosswind extent of the at domain (y) at z = 14.65 m at t = 30 h. averaged over downwind and
crosswind extents of the domain in finite volume (FV) LES and pseudo-spectral LES. Note that y-regions of negative downwind velocity fluctuations correspond the
upwelling limbs of the full-depth Langmuir cells and regions of positive downwind velocity fluctuations correspond to the downwelling of the cells.
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Fig. 12. Resolved vertical velocity variance in finite volume (FV) LES and pseudo-spectral LES. Brackets denote averaging over time and over the downwind and
crosswind directions.
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closer to classical Reynolds stress models. generated shear turbulence resolved in the LES with these models. As a

The excessive near-bottom downwind velocity variances obtained
with the WALE and the dynamic Smagorinsky models (relative to
pseudo-spectral LES) are indicative of the over-prediction of the bottom-

12

result, the bottom convergence zones of the cells and their corre-
sponding bottom upwelling limbs obtained with these models are less
prominent, compared to the cells obtained with the wall-adapting S-
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Fig. 13. Resolved downwind velocity variance in finite volume (FV) LES and pseudo-spectral LES. Brackets denote averaging over time and over the downwind and
crosswind directions.
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Omega and Smagorinsky model (Figs. 7 and 8). In other words, the
excessive bottom-generated shear turbulence in the LES with the WALE
and dynamic Smagorinsky models may be viewed as causing disruption
of the bottom development of the cells. Accordingly, the near-bottom
crosswind velocity variances obtained with the WALE and dynamic
Smagorinsky models are also weaker, as seen in Fig. 13.

The excessive bottom-generated shear turbulence in the LES with the
WALE and dynamic Smagorinsky models can also be seen in terms of
color contours of resolved turbulent kinetic energy (TKE) in Fig. 16,
panels (a) and (b). In contrast, the higher near-bottom eddy viscosities
provided by the wall-adapting S-Omega and Smagorinsky models (seen
in Fig. 15) lead to lower levels of bottom-generated shear turbulence (i.
e. lower resolved TKE in Fig. 16, panels (c) and (d)) allowing for a fuller
development of the bottom convergences of the LC, relative to the cells
obtained with the WALE and dynamic Smagorinsky models (see sketches
in panels (a) and (d) of Fig. 16). This suggests that the high intensity of
the bottom shear turbulence obtained with the WALE and dynamic
Smagorinsky models prevents the bottom convergence of the cells from
extending fully across the bottom, ultimately serving to disrupt or “snip”
the bottom of the cells, as described earlier and shown in the sketches in
Figs. 7a and 16a.

The over-prediction of bottom-generated shear turbulence with the
WALE and the dynamic Smagorinsky models occurred despite the first
grid cell center being within the buffer sublayer, as described in Section
4a. A coarser resolution in the wall-normal direction, more commen-
surate with WMLES, is likely to lead to a greater over-prediction of the
bottom turbulence, and thus a poorer representation of the near-bottom
LC structure.

5.2. Field-scale simulations

Given the better performance of the LES with the S-Omega model
compared to the other SGS models tested relative to pseudo-spectral
LES, LES with the S-Omega model was subsequently tested on a case
previously untried.

Gargett [25] focused on the effect of surface buoyancy on full-depth
LC during the diurnal cycle. Fig. 17, borrowed from Gargett [25], shows
records of depth-averaged vertical velocity variance during a period
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when the surface heat flux, Q, was increasingly stabilizing during field
measurements of full-depth LC. The color of each dot in Fig. 17 corre-
sponds to the depth-averaged vertical velocity variance averaged over a
two-hour period. The arrows in Fig. 17 connect dots over consecutive
averaging periods. As can be seen from this figure, a period of 8 h over
which the surface heat flux decreased from approximately 200 Watts m™
(destabilizing) to approximately — 400 Watts m2 (stabilizing) did not
significantly affect the average vertical velocity variance, remaining at
approximately 2.5 cm? 5”2, A significant change was eventually observed
over the last 2 h of record when the surface heat flux further decreased
from ~ — 400 to — 600 Watts m™ accompanied by a vertical velocity
variance decrease of a factor of about 4.5 to 0.56 cm? 52, In summary, a
period of continuously stabilizing surface heat flux of ~8 h over which
the surface heat flux decreased from ~ 200 to ~ — 400 Watts m'2 did not
lead to significant decrease in vertical velocity variance. A delayed
response was finally observed in the vertical velocity variance over
hours 9 and 10 of continuous stabilizing heat flux as Q dropped from ~
— 400 to — 600 Watts m™.

Field-scale LES of full-depth LC with the S-Omega model with surface
buoyancy (heat) flux guided by Gargett [25] measurements was per-
formed. The LES was initiated from rest with the wind and wave forcing
described earlier in Section 4b and with zero surface heat flux until the
mean bottom stress matched the surface stress. An instantaneous solu-
tion is shown in Fig. 18 in terms of the cell structure. As expected from
the domain chosen (see discussion in Section 4b), one full-depth LC pair
is resolved. At this point a surface heat flux of Q = 205 Watts m'> was
applied, and the simulation was continued running for two hours of flow
time. This time span of the simulation is denoted as 00. At the end of
time span 00, the surface heat flux was switched to Q = 200 Watts m™
and the simulation was continued for another two hours of flow time.
This latter time span is denoted as 01. Similar two-hour flow simulation
time spans were continued for which the surface heat flux was changed
to Q =0, Q = — 400 Watts m'z, and Q = — 600 Watts m™ at the end of
each time span. These simulation time spans are denoted as 02, 03, 04,
respectively in Fig. 19. Results are shown in Fig. 19 and Table 1 in terms
of resolved vertical velocity variance averaged over the downwind and
spanwise directions and averaged over the last 15 min of each time span.
The vertical velocity variances reported in Table 1 were further
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Fig. 17. Data of Gargett [25], illustrating the influence of time-dependent surface buoyancy forcing (in terms of surface heat flux Q) on time-averaged and
depth-averaged vertical velocity variance during a full-depth LC event at relatively constant wave forcing (in terms of g.). The inverse time scale g, is used by Gargett
[25] as a measure of wave forcing. The field measurements displayed here are characterized by relatively constant g,, thus relatively constant wave forcing. These
results suggest a long turbulence adjustment time scale associated with surface heat flux.
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Fig. 18. Instantaneous downwind-averaged crosswind (a), vertical (b), and
downwind (c) velocity fluctuations over the vertical (z) and crosswind extents
(y) of the computational domain with zero surface heat flux. This solution
served as initial condition for case 00 with surface heat flux set to Q = 205
Watts m™2.

averaged over the depth of the water column considered by Gargett
[25]. Note that Gargett [25] measurements span the water column be-
tween 1.4 and 12 m above the bottom of the water column due to lim-
itations of the instrumentation.

During the first 8 h of simulation, when the surface heat flux
decreased stepwise from 205 to — 400 Watts m™, as described above,
the peak vertical velocity variance stayed at about 1.8 cm? s (Fig. 19).
Remarkably, following the trend of the field measurements, a delayed
response was finally observed in the vertical velocity variance over
hours 9 and 10 of continuous stabilizing heat flux as Q dropped from ~
— 400 to — 600 Watts m™ resulting in a peak of vertical velocity vari-
ance reaching up to 0.9 cm? s2. Such a delayed response is indicative of
the importance that LC can have towards the vertical transport in coastal
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waters under sustained strong wind and wave forcing.

Surface heating can lead to stably stratified turbulence which can be
challenging for LES and related SGS models to represent. The reason for
this is that surface heating can greatly dampen the vertical velocity
fluctuations relative to the downwind and crosswind velocity fluctua-
tions, leading to what is often referred to as “pancake turbulence”. In
these situations, the Smagorinsky-based models can lead to over-
damping of the vertical velocity fluctuations (e.g. see [39]). However,
in the present simulations, the strength of the full-depth Langmuir cell is
diminished by the surface heating applied, but not to the point of
resulting in “pancake turbulence” as the full-depth cell is still present at
the end of the simulation inducing significant downwelling and up-
welling (vertical) velocities.

6. Summary and conclusions

The performance of various SGS models were investigated in finite
volume LES simulations of wind and wave-driven full-depth LC in the
coastal ocean. It was found that for a relatively coarse mesh commen-
surate with wall-modeled LES (coarser than LES with near-wall resolu-
tion), the results depend strongly on the SGS model and the near-wall
treatment of the SGS eddy viscosity. This was expected given that the
full-depth Langmuir cells significantly magnify the TKE in the bottom
boundary layer relative to wind-driven flow without LC [14] and the
SGS model may or may not represent this elevated turbulence intensity
accurately. The wall-adapting S-Omega model possessing a near-wall
behavior following RANS turbulence models, and a velocity scale that
takes into consideration the rotation or vorticity in LC flows, was found
to lead to a full-depth LC structure in good agreement with the cell
structure obtained in well-resolved pseudo-spectral LES and field mea-
surements of full-depth LC. The dynamic Smagorinsky and WALE SGS
models with the relatively coarse mesh were found to be
under-dissipative in the near-wall region leading to an over-prediction
of bottom-generated shear turbulence. The latter was deemed as a dis-
ruptor of the full-depth LC serving to “snip” the bottom convergences of
the cells, leading to weakened upward transport of slow downwind
velocity fluid by the upwelling limbs of the cells. The higher
near-bottom eddy viscosity provided by the wall-adapting S-Omega
model was able to more accurately account for the bottom-generated
shear turbulence, enabling a more accurate resolution of the full-depth
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Fig. 19. Resolved vertical velocity variances in LES with surface heat flux.

Table 1
Comparison between LES and field measurements in terms of vertical velocity
variance, m? s2.

Time Vertical velocity Vertical velocity variance in field
spans variance in LES measurements of Gargett [25]

00 9.153e-05 ~ 2.00e-4

01 9.162e-05 ~ 2.00e-4

02 9.137e-05 ~ 2.00e-4

03 9.084E-05 ~ 2.00e-4

04 5.02861E-05 ~ 1.00e-4
LC structure, consistent with pseudo-spectral LES and field
measurements.

Based on the positive results obtained with the S-Omega SGS model,
finite volume LES with this model was further tested with surface
buoyancy. LES of full-depth LC with the S-Omega SGS model was per-
formed with surface cooling and heating corresponding to the diurnal
cycle during field measurements of full-depth LC of Gargett [25]. The
LES led to good agreement with the field measurements in terms of the
temporal evolution of the depth-averaged vertical velocity variance,
representative of the strength of the LC. The LES was able to accurately
capture the time-response of the full-depth LC to over 6 h of continuous
surface heating. It was shown that full-depth LC can be a dominant
turbulent structure in the coastal ocean requiring times longer than 6 h
in order for its vigorous vertical transport to be significantly suppressed
by surface heating.

The results obtained with the finite volume LES with the different
SGS models highlight an important interaction between the full-depth
Langmuir cells and the bottom-generated shear turbulence mediated
by the SGS model. A more detailed analysis of this interaction and
mediation would require, for example, a triple decomposition of the
flow into the mean component, the full-depth Langmuir cell component,
and the smaller turbulent scales. An initial attempt at developing TKE
transport equations for each of these components has been made by
Martinat et al. [40] and should be continued in the future to better
understand the role of the SGS model in the energy transfer across the
three components. This analysis should also be informed by energy
spectra at various depths of the water column.

As discussed in the Introduction, full-depth LC can contribute
significantly to the TKE throughout the water column, observed in low
Reynolds number pseudo-spectral LES of Tejada-Martinez and Grosch
[14] and corroborated by the infinite Reynolds number simulations of
Kukulka et al. (2010, [9]). The Reynolds number independence of
full-depth LC suggested by the good agreement between the
low-Reynolds (low-Re) number simulations of Tejada-Martinez and
Grosch [14] and the field measurements of Gargett and Wells [4], as
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identified by Tejada-Martinez et al. [23], further supports this finding.
Therefore, findings on the performance of the SGS models and the FVM
in full-depth LC flow at low Re highlighted in the current study should
also be applicable to LES at high (field-scale) Reynolds numbers.
Nevertheless, future high Reynolds number LES of full-depth LC should
explore not only the performance of the SGS model, but also the per-
formance of the wall model [20,22]. This is important because high
Reynolds number simulations of wall-bounded flows assume a weak
coupling between the flow structures in the outer boundary layer and
the turbulence in the inner layer, which is not the case in flows with
full-depth LC.

Future research should also seek to further understand the behavior
of the dynamic Smagorinsky and WALE models in finite volume LES of
full-depth LC. For example, the scale-invariance assumption required by
the dynamic Smagorinsky model may not be valid in the LES conducted
here and might need to be reconsidered. In such instances, the dynamic
Smagorinsky model can be under-dissipative [41]. Furthermore, the
impact of the grid length scale A in the SGS models should be considered
in the future. This length scale was taken as shown in Eq. (11) for the
wall-adapting S-Omega and Smagorinsky models, meanwhile it was
taken as the cube root of the cell volume for the dynamic Smagorinsky
and the WALE models. The length scale in (11) was designed by Shur
et al. [19] to depend not only on the grid spacing, but also on the wall
distance. Shur et al. [19] showed that (11) leads to significant
improvement in the resolved mean velocity over the more traditional
cube root of the cell volume expression for A for wall-resolved LES of
turbulent channel flow at Re, = 395 with the constant coefficient
Smagorinsky model with van Driest damping function.

Ask and Davidson [37] have shown that the BCD advection dis-
cretization used in the finite volume LES is less dissipative than
second-order upwinding in simulations of the air flow around a generic
side mirror of a car. Overall, the BCD scheme provides minimal nu-
merical dissipation within the family of stable advection discretization
schemes in the finite volume framework. Thus, it is realistic that the
elevated shear turbulence triggered by the impinging of the bottom
boundary layer by the downwelling limbs of the Langmuir cells [31]
could lead to an unchecked pile-up of energy at the small scales if the
SGS model is not sufficiently strong when using the minimal numerically
dissipative BCD scheme. This could be the source of the elevated shear
turbulence intensity near the bottom of the water column obtained in
the simulations with the dynamic Smagorinsky and WALE models.
Although replacing the BCD scheme with a more dissipative numerical
scheme could address this issue, it could cause an undesired deteriora-
tion of resolved Langmuir cell structure.
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