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A B S T R A C T

Langmuir turbulence consists of Langmuir circulation (LC) generated at the surface of rivers, lakes, bays, and 
oceans by the interaction between the wind-driven shear and surface gravity waves. In homogeneous shallow 
water, LC can extend to the bottom of the water column and interact with the bottom boundary layer. Large-eddy 
simulation (LES) of LC in shallow water was performed with the finite volume method and various forms of 
subgrid-scale (SGS) model characterized by different near-wall treatments of the SGS eddy viscosity. The wave 
forcing relative to wind forcing in the LES was set following the field measurements of full-depth LC during the 
presence of LC engulfing a water column 15 m in depth in the coastal ocean, reported in the literature. It is found 
that the SGS model can greatly impact the structure of LC in the lower half of the water column. Results are 
evaluated in terms of (1) the Langmuir turbulence velocity statistics and (2) the lateral (crosswind) length scale 
and overall cell structure of LC. LES with an eddy viscosity with velocity scale in terms of S and Ω (where S is the 
norm of the strain rate tensor and Ω is the norm of the vorticity tensor) and a Van Driest wall damping function 
(referred to as the S-Omega model) is found to provide best agreement with pseudo-spectral LES in terms of the 
lateral length scale and overall cell structure of LC. Two other SGS models, namely the dynamic Smagorinsky 
model and the wall-adapting local-eddy viscosity model are found to provide less agreement with pseudo- 
spectral LES, for example, as they lead to less coherent bottom convergence of the cells and weaker associ
ated upward transport of slow downwind moving fluid. Finally, LES with the S-Omega SGS model is also found to 
lead to good agreement with physical measurements of LC in the coastal ocean in terms of Langmuir turbulence 
decay during periods of surface heating.

1. Introduction

Turbulence at the surface of oceans, lakes, bays, and rivers is 
generated by a combination of surface winds, surface wave breaking, 
wave-current interaction and surface heat fluxes. Wave-current inter
action gives rise to Langmuir turbulence, characterized by a wide range 
of Langmuir circulation (LC) scales, parallel counter-rotating vortices or 
cells roughly aligned in the direction of the wind (Fig. 1a). Wind speeds 
greater than approximately 3 m s-1 and winds roughly parallel to waves 
provide favorable conditions for the generation of Langmuir turbulence. 
Generated at the surface at centimeter scales, the cells grow in depth and 
width up to tens of meters, typically engulfing the mixed layer in the 
upper ocean [1] or the entire water column in homogenous shallow 
water [2] on the order of tens of minutes. The more permanent, larger LC 
scales manifest by accumulating bubbles, particulate matter and flotsam 
along their surface convergence zones, forming what are often referred 

to as “windrows” (Fig. 1).
A common sketch of LC vortex pairs is shown in Fig. 1. The surface 

convergence of each cell leads to a downwelling region characterized by 
negative vertical velocity fluctuations (wʹ), while the bottom conver
gence leads to an upwelling region characterized by positive wʹ. These 
upwelling and downwelling limbs of LC induce non-local vertical 
transport of momentum, turbulent kinetic energy (TKE), and scalars, 
ultimately leading to enhanced levels of vertical mixing [3]. A key 
characteristic of LC is that its downwelling limbs coincide with regions 
of positive downwind velocity fluctuations, as the cells entrain 
high-speed downwind moving fluid into the water column. Thus, the 
cells lead to an enhanced downwind mean current coinciding with the 
downwelling limbs (Fig. 1). Analogously, the upwelling limbs of the cell 
transport slow downwind moving fluid towards the surface.

Historically, Langmuir cells have been measured within the upper 
ocean surface mixed layer in deep water. However, there have been 
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various field measurements of Langmuir cells in shallow coastal shelf 
environments, where under neutrally or weakly stratified conditions the 
cells reach the bottom of the water column and interact with the bottom 
boundary layer. Gargett et al. [2] and Gargett and Wells [4] reported 
measurements of Langmuir cells engulfing an entire water column 15 m 
in depth on the inner shelf off the coast of southern New Jersey, un
dergoing strong wind and wave forcing during the passage of a storm. 
These supercells persisted for over 18 h. Full-depth Langmuir cells have 
also been measured at a deeper site of approximately 26 m depth on 
mid-shelf off the coast of Georgia [5–7]. Kukulka et al. [8,9] highlighted 
coastal Langmuir cells in a weakly stratified water column 16 m in depth 
measured during the Coupled Boundary Layers and Air-Sea Transfer 
Experiment in Low Winds (CBLAST-Low) off the coast of Massachusetts 
[10,11].

Gargett et al. [2] denoted their observed full-depth cells as Langmuir 
supercells (LS) due to their significant impact on the turbulence dy
namics throughout the entire water column and the cells’ distinct 
structure compared to the more common LC in the upper ocean mixed 
layer. The full-depth cells lead to a Langmuir turbulence regime with 
characteristics vastly different than classical shear-driven turbulence. 
Furthermore, Gargett et al. [2] and Gargett and Wells [4] established LS 
as an important mechanism in the resuspension and subsequent hori
zontal transport of sediment and bioactive material on shallow shelves.

Although large-eddy simulations (LES) of full-depth LC in inner 
coastal shelves following the previously discussed field measurements 
have proven successful, these simulations have been limited to pseudo- 
spectral solvers employing highly accurate spectral discretizations in the 
horizontal directions (e.g. see Deng et al. [12,13], Tejada-Martinez and 
Grosch [14], Kukulka et al. [8,9] and Shrestha et al.[15,16]). To allow 
for simulations of LC affected by lateral boundaries typical of coastal, 
lake and estuarine zones, it would be beneficial to extend LC-resolving 
simulations to non-spectral discretizations capable of handling com
plex geometry. As an initial step towards that end, in this manuscript, a 
second-order accurate finite volume discretization is employed to 
perform LES of full-depth LC with different subgrid-scale (SGS) models.

While immersed boundary methods offer an effective approach for 
incorporating complex boundaries into spectral simulations, our focus 
on the finite volume method (FVM) is driven by its widespread appli
cation and the availability of well-developed FVM-based solvers, such as 
Fluent and openFoam (Fluent [17]; Weller et al. [18]). This choice is 
further substantiated by our specific interest in evaluating the SGS 
models’ performance, particularly in the context of eddy viscosity 
modifications near the wall, which have been well-established within 

the conventional FVM approach [19].
The pseudo-spectral LES of Tejada-Martinez and Grosch [14] showed 

that the full-depth Langmuir cells can contribute between 50 and 80 % 
of the TKE throughout the water column. Furthermore, the cells can 
increase the peak TKE value by about 70 % in the bottom boundary 
layer. This is due to the bottom convergences of the cells which induce 
elevated values of crosswind velocity variance and due to the dowelling 
limbs of the cells which induce elevated values of the downwind velocity 
variance. As the downwelling limbs of the cells impinge on the bottom 
they cause a thinning of the bottom boundary layer. This thinning in
duces elevated values of the downwind velocity variance (i.e. elevated 
shear turbulence). Thus, careful consideration must be given to the 
extension of LES of full-depth LC to a less accurate method such as finite 
volumes and to the SGS model in their representation of this magnified 
turbulence regime relative to classical shear turbulence.

The principal goal of this study is to assess the performance of 
various SGS models in LES of full-depth LC with the FVM on a fixed mesh 
commensurate of wall modeled LES [20–22]. Considering the influence 
of full-depth LC on the bottom boundary layer, focus is placed on the 
SGS models and their different near-wall treatments of the eddy vis
cosity. The assessment is made with respect to pseudo-spectral LES, in 
terms of the resolved full-depth LC structure and turbulence diagnostics 
such as resolved mean velocity and velocity variances. The 
pseudo-spectral LES has been found to provide results consistent with 
field measurements of LC [2,4,14,23].

The progression of the manuscript is as follows. First in Section 2, the 
filtered Navier-Stokes equations with the Craik-Leibovich (C-L) vortex 
force [24] are presented. The C-L vortex force accounts for the 
wave-current interaction mechanism that generates LC. In Section 3, the 
SGS models tested are presented and in Section 4 the computational 
domain, boundary conditions and grids employed for the LES are 
described. Section 5 presents results of the finite volume LES obtained 
with the different SGS models and compares them to pseudo-spectral 
LES results. In this section, LES with the S-Omega SGS model is identi
fied as performing in closest agreement with the pseudo-spectral LES in 
terms of (1) the Langmuir turbulence velocity statistics and (2) the 
lateral (crosswind) length scale and overall cell structure of LC.

Recent LES and field measurements have begun to shed light on the 
influence of other coastal ocean processes on full-depth LC such as tidal 
forcing [8,15] and surface heat fluxes [25]. In Section 5, an additional 
test of finite volume LES with the S-Omega SGS model is presented 
consisting of full-depth LC under the influence of surface heat fluxes. 
Good agreement with the physical measurements of LC of Gargett [25] is 

Fig. 1. Sketch of LC (left) and photograph of windrows along the surface convergence of LC in Ochlockonee Bay, Florida (right). Note the lateral meandering and y- 
junctioning exhibited by the windrows in the field. Photograph source: ldeo.columbia.edu/~ant/Langmuir.
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found in terms of Langmuir turbulence decay during periods of surface 
heating.

Finally, Section 6 presents a summary of the results and discusses 
future research.

2. Navier-Stokes equations and the Craik-Leibovich vortex force

Phase-averaging of surface gravity waves gives rise to the C-L vortex 
force [24] in the Navier-Stokes equations. These equations admit LC 
without the need to resolve surface deformation due to waves as the 
wave-current interaction that generates LC is accounted for though the 
C-L vortex force. The incompressible spatially filtered continuity equa
tion, the Navier-Stokes equations under the Boussinesq approximation 
augmented with the C-L vortex force, and the energy or temperature 
equations are 

∂ui

∂xi
= 0 (1) 

∂ui

∂t
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∂uj
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= −

1
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respectively, where the over-bar denotes application of the filter, ui is 
the filtered velocity, T is the filtered temperature, Π is a filtered modified 
pressure, τij is the deviatoric portion of the subgrid-scale (SGS) stress 
generated by the spatial filtering [26] (with the isotropic part lumped 
into the pressure (not shown)), and λj is the SGS heat flux. Furthermore, 
ρ0 is the fluid density and ν its kinematic viscosity, T0 is a reference 
temperature, β is the coefficient of thermal expansion and κ is diffusivity.

Eqs. (1) and (2) are defined in a Cartesian coordinate system con
sisting of streamwise (or downwind) (x1), spanwise (or crosswind) (x2), 
and vertical (or wall-normal) (x3) directions. In (2), the gravitational 
acceleration is g with the gravity vector pointing in the −x3 direction.

The last term in (2) is the C-L vortex force consisting of the cross 
product between the Stokes drift velocity Us

j , induced by the surface 
gravity waves, and the filtered vorticity ωk. In this term, ϵijk is the Levi- 
Civita epsilon. The modified filtered pressure in (2) is defined as 

Π =
p
ρ +

1
2

[
Us

i U
s
i + 2uiUs

i
]

(4) 

where p is the filtered pressure under the Boussinesq approximation. In 
this study, the Stokes drift velocity is taken to be aligned in the direction 
of the wind, therefore, the crosswind and vertical components of the 
Stokes drift are zero (US

2 = US
3 = 0). The downwind component is taken 

as 

US
1 = σka2cosh(2kx3)

2sinh2
(kH)

(5) 

defined by Phillips. In (5) H is the depth of the water column, σ is the 
dominant frequency, k is the dominant wavenumber and a is the 
dominant amplitude of the waves generating LC. The wavenumber and 
the frequency can be related through the surface gravity wave dispersion 
relation. Furthermore, the dominant wavelength and period of the 
waves can be obtained through λ = 2π/k and T = 2π /σ, respectively.

3. SGS stress models

The performance of various SGS stress models will be investigated in 
LES of shallow water wind-driven shear flow in which the turbulence is 
characterized by full-depth LC. In this setting, the LC is generated at the 
surface growing in time over crosswind and depth extents, eventually 
reaching the bottom of the water column and remaining in equilibrium 

for the rest of the simulation. As such, the LES SGS stress model should 
not cause excessive damping of resolved scales which could lead to 
inaccurate equilibrium turbulence dynamics and final crosswind width 
of the cells. However, it is well known that classical SGS stress models, 
such as the Smagorinsky model, can cause excessive turbulence damp
ing. Thus, various forms of the Smagorinsky model will be tested, 
characterized by different near wall treatments.

Following the Boussinesq hypothesis, the deviatoric portion of the 
SGS stress in Eq. (1) is expressed in terms of the eddy viscosity νt 

τij = νtSij (6) 

where the filtered symmetric part of the velocity gradient or the filtered 
strain rate tensor is defined as 

Sij ≡
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

(7) 

The SGS heat flux, λj, in Eq. (3) is modeled via an eddy diffusivity 
taken as νt/Prt times the filtered temperate gradient, ∂T/∂xi, where the 
turbulent Prandtl number is set as Prt = 0.85.

3.1. Wall adapting Smagorinsky model

The simplest model that could be considered is the Smagorinsky 
model in which the Smagorinsky length scale is integrated within a 
spatially varying mixing length scale as follows: 

νt = L2
m|S| (8) 

where |S| ≡
(
2SijSij

)1/2 is the norm or absolute value of the filtered strain 
rate and Lm is the spatially varying mixing length scale computed as 

Lm = min(κdwn, CSΔ) (9) 

In the previous expression dwn is the wall distance normal to the wall, 
Δ is the local grid scale given as the cube root of the cell volume, κ =

0.41 is the von Karman constant, and CS = 0.1 is the Smagorinsky 
constant. Away from a wall, Lm is determined through the length scale 
CSΔ. Near the wall, Lm is dominated by dwn, as in this region the energetic 
eddies of the turbulence scale with dwn. This near-wall behavior follows 
the Reynolds-averaged Prandtl’s mixing-length theory.

Shur et al. [19] showed that the Smagorinsky model above can result 
in excessive dissipation in the outer layer of turbulent channel flow and 
proposed a mixing length scale, Lm, accounting for grid anisotropy and 
modified by a van Driest wall damping function [27]: 

νt = min
[
(κdwall)

2
,
(
CSmagΔ

)2
]

|S|
{

1 − exp
[

− (y+/25)
3
]}

(10) 

where the wall damping function is defined in terms of y+, the wall 
distance normal to the wall in plus (or wall) units. The latter is defined as 
y+ = u∗dwall/ν where u∗ is the wall friction velocity. The mixing length 
scale, Lm, is modified through the local grid scale as follows: 

Δ = min(max(Cwall dwall, Cwall hmax, hwn), hmax) (11) 

where Cwall = 0.15, hwn is the grid cell size in the wall-normal direction, 
and hmax is the maximum local grid spacing (i.e., the maximum edge 
length of the cell). Note that the outer layer is the region extending from 
the edge of the inner layer (or logarithmic layer) to the outer edge of the 
boundary layer itself, where the flow velocity approaches the free 
stream velocity.

3.2. Wall adapting S-Omega model

A drawback of the wall adapting Smagorinsky model is that it yields 
non-zero eddy viscosity in regions of constant shear. Consequently, the 
model results in excessive values of the eddy viscosity in flows charac
terized by transition to turbulence. The model can also result in exces
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sively high eddy viscosity in flows with separated shear layers. To 
alleviate these inaccuracies, the norm or the magnitude of the filtered 
strain rate tensor can be replaced by the absolute value of the norm of 
the filtered strain rate tensor minus the norm of the filtered vorticity 
tensor as proposed in [17]: 

νt = min
[
(κdwall)

2
,
(
CSmagΔ

)2
]

abs(|S| − |Ω|)
{

1 − exp
[

− (y+/25)
3
]}

(12) 

where Δ is given in (11), |Ω| ≡
(
2ΩijΩij

)1/2 and 

Ωij ≡
1
2

(
∂ui

∂xj
−

∂uj

∂xi

)

(13) 

is the anti-symmetric part of the resolved velocity gradient or the 
resolved vorticity tensor.

3.3. Dynamic Smagorinsky model

A third model tested is the dynamic Smagorinsky model [28] in 
which the eddy viscosity is taken as 

νt = (CSΔ)
2
|S| (14) 

where the Smagorinsky coefficient is calculated dynamically as a func
tion of space and time. The dynamic computation of the coefficient relies 
on the resolved Leonard tensor defined as 

Lij = ûiui − ûi ûj (15) 

where the over-hat notation denotes application of a spatial filter, often 
referred to as the test filter.

Note that the Leonard tensor Lij may computed exactly via the 
resolved velocity ui in (15) and can also be approximated via the Sma
gorinsky model and minimization of the difference between this 
approximation and the definition in (15) leads to the dynamic expres
sion for the Smagorinsky coefficient: 

C2
S =

〈(
Lij − Lkk δij

/
3

)
Mij

〉

〈
MijMij

〉 (16) 

where δij is the Kronecker delta and 

Mij = −2
(

Δ̂
2
|
̂S|

̂Sij − Δ2 ̂
|S| Sij

)
(17) 

In the above equation, Δ is the width of the primary filter applied to 
obtain the filtered Navier-Stokes equations in (2) and Δ̂ is the width of 
the filter resulting from sequential application of the primary filter and 
the test filter. In implicit LES, Δ is taken as the local grid scale (i.e. the 
cube root of the cell volume) with Δ̂ = 2Δ. Finally, the brackets in the 
numerator and denominator in the expression for C2

S denote local 
averaging performed for stability.

3.4. Wall adapting local eddy viscosity (WALE) model

As the distance to a wall (dwn) approaches zero, the norm of the 
filtered strain rate, |S|, is O(1) and thus in this limit the eddy viscosity in 

Eq. (14) is νt ∼ O(1); however, the proper wall scaling is νt ∼ O
(

d3
wn

)

[29]. To obtain this scaling, Nicoud and Ducros [29] proposed the WALE 
model based on the square of the gradient of velocity tensor: 

νt = L2
m

(
S ij S ij

)3/2

(
S ij S ij

)5/2
+

(
SijSij

)3/2 (18) 

where 

Lm = min(κdwn, CwΔ) (19) 

and 

S ij =
1
2

(
g2

ij + g2
ij

)
(20) 

with gij = ∂ui/∂xj, g2
ij = gikgkj, WALE model constant Cw = 0.325, and Δ, 

the local grid scale, taken as the cube root of the cell volume. Nicoud and 
Ducros [29] show that S ijS ij may be expressed as 

S ijS ij =
1
6

(
S2S2 + Ω2Ω2)

+
2
3
S2Ω2 + 2VSΩ (21) 

where 

S2 = SijSij, Ω2 = ΩijΩij, VSΩ = SikSikΩjlΩli (22) 

with Ωij the vorticity tensor defined in (13). Thus, as noted by Nicoud 
and Ducros [29], this model is expected to detect turbulence structures 
with either (large) strain rate, rotation rate or both.

4. Computational setup

4.1. Laboratory-scale simulations

4.1.1. Reynolds number
LES of laboratory-scale full-depth LC with a finite volume (FV) nu

merical scheme at Reynolds number (Reτ) of 395 based on wind stress 
friction velocity, uτ, and water column half-depth, δ = H/2 following 
the pseudo-spectral LES of Tejada-Martinez and Grosch [14] which were 
performed with this same Reynolds number. In these simulations, under 
statistical equilibrium, the wind stress is balanced by the mean wall 
shear stress, resulting in the bottom mean friction velocity (u∗) being 
equal to uτ. This latter condition was approximately satisfied during the 
field measurements of Gargett et al. [2] and Gargett and Wells [4]. 
Furthermore, no temperature effects were considered, thus the buoy
ancy term was excluded from Eq. (2), also based on the field measure
ments of Gargett et al. [2].

Solving the dimensionless Navier-Stokes equations, non- 
dimensionalized with uτ and δ, at a specified Reynolds number, say, 
Reτ = 395, gives rise to the non-dimensional velocity und

i = ui/uτ where 
ui is the dimensional velocity. Tejada-Martinez et al. [23] showed that 
the resolved non-dimensional velocity fluctuations obtained from 
pseudo-spectral LES at Reτ = 395 dimensionalized by multiplying by the 
wind stress friction velocity measured in the field by Gargett et al. [2] 
during the presence of full-depth Langmuir cells (uτ = 0.01 m/s corre
sponding to a wind stress of 0.1 Pascals) are in good agreement with the 
velocity fluctuations measured in the field. This agreement was attrib
uted to a Reynolds number-independence of the flow which is likely 
because the resolved full-depth cells are efficient at mixing momentum 
vertically throughout the water column regardless of the value of the 
Reynolds number. This mixing leads to a near-zero vertical gradient of 
the mean downwind velocity and thus a near-zero vertical shear 
throughout the bulk of the water column. Thus, the dynamics of the 
full-depth Langmuir cells are nearly inviscid throughout the bulk of the 
water column regardless of the value of Reτ in the simulation. Hence
forth, the computational setup will be described in both units of δ and in 
scale-up dimensional units. Results will also be presented in scale-up 
dimensional units.

4.1.2. Domain and boundary conditions
The computational domain consists of a 3-D channel (see Fig. 2) with 

a wind sheared rigid lid surface and periodicity in the downwind (x1 or 
x) and crosswind (x2 or y) directions. Standard wall functions [30] were 
used to calculate the bottom wall shear stress based on the velocities at 
the first grid cell centers above the wall. Grid cell sizes are given further 
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below.
The channel height (along x3 or z) is H = 15 m, corresponding to the 

depth of the water column in the coastal ocean observations of full-depth 
LC of Gargett et al. [2] and Gargett and Wells [4]. The downwind length 
of the domain is Lx = 40πδ = 942.5 m and the crosswind length is Ly 

= (16 /3)πδ = 125.7 m, where δ = H/2 = 7.5░m. Note that these 
lengths are greater than the lengths used in the original pseudo-spectral 
LES of this flow by Tejada-Martinez and Grosch [14] (Lx = 4πδ, Ly =

(8 /3)π δ) in order to allow for the full spatiotemporal development of 
the large scale LC (starting from rest condition), characterized by 
so-called y-junctions and overall length scales consistent with the field 
observations. The earlier simulations of Tejada-Martinez and Grosch 
[14] did not evolve from rest but rather from a Couette flow where the 
large scales of the turbulence consisted of Couette cells.

Using the domain lengths Lx = 4πδ and Ly = (8 /3)π δ, the Tejada- 
Martinez and Grosch [14] LES captured a single LC pair with cross
wind width consistent with the field measurements of Gargett et al. [2] 
and Gargett and Wells [4]. They also showed that a second simulation 
with Lx = 4πδ but with double the crosswind domain width 
(Ly = (16 /3)π δ) yielded two LC pairs, demonstrating that the width of 
the LC obtained was not an artifact of the finite domain size. Thus, it is 
expected that the new simulations in the present study with Ly 

= (16 /3)π δ should capture 2 LC pairs.
For the current study, preliminary simulations with the pseudo- 

spectral LES code of Tejada-Martinez and Grosch [14] initiated from 
rest led to the determination of the domain length as Lx = 40πδ long in 
the downwind direction in order to allow for the development of the 
expected two LC pairs of width consistent with the field measurements. 
Smaller values of Lx were observed to hinder this development leading 
to cells of smaller crosswind width. Note that this temporal evolution of 
full-depth LC from rest (to be further described below in the Results 
section) is important to represent for future studies investigating, for 
example, the behavior of LC under the time-varying wind and wave 
forcing conditions occurring in the field.

4.1.3. Grid resolution
In wall-resolved LES of plane channel flows (assuming a structured 

grid), the wall distance to the center of the cells adjacent to the wall 
measured in “plus” or wall units is usually taken as z+

1 = 1, where wall 
units are defined as x+

i = xi u∗/ν. Thus, with z+
1 < 5, the grid resolves 

down to the Law of the Wall viscous sublayer. Furthermore, the 
streamwise (downwind) and spanwise (crosswind) cell sizes are taken to 
be in the approximate ranges of Δx+ ≅ 50–150 and Δy+ ≅ 15–40 [21]. 
In wall-modeled LES or WMLES, outer layer structures (outside of the 
Law of the Wall log-layer) are assumed to interact weakly with the inner 
layer, thus a coarser mesh is permitted resolving down only to the 
log-layer and thus z+

1 is set to lie within this layer. Furthermore, Δx+ ≅

100–600 and Δy+ ≅ 100–300 [21].
In the present simulations, a uniform grid in the downwind, cross

wind, and vertical directions was employed consisting of 300 cells along 

x, 120 cells along y, and 64 cells along z, respectively. This grid is more 
commensurate with WMLES than wall-resolved LES. Note that the first 
cell center is at a distance of z+

1 = 6.2 from the wall, which is within the 
Law of the Wall buffer layer above the viscous sublayer. This resolution 
reaches below the log-layer based on the reported interaction that oc
curs between full-depth LC and the log-layer. Tejada-Martinez et al. [31] 
showed that full-depth LC can give rise to a deviation away from the 
log-law in the mean velocity, suggesting that the mesh should have good 
resolution of the log-layer region. Although the log-law deviation was 
also observed by Deng et al. [12,13], they found that the deviation was 
more pronounced at Re τ = 395, compared to Reτ = 1000. However, 
Tejada-Martinez et al. [31] also reported that the downwelling limbs of 
full-depth LC impinge on the bottom boundary layer within the log layer 
region, thereby thinning the overall bottom boundary layer, while the 
upwelling limbs cause the opposite effect. Thus, within the individual 
limbs of the LC, the deviation away from the log law may still be sig
nificant, even at high Reynolds numbers. As such, the present LES were 
performed with z+

1 = 6.2 (corresponding to resolution extending below 
the log-layer).

Finally, the grid spacing in the downwind and crosswind directions is 
Δx+

1 = uτ Δx1/ν = 165.5 and Δx+
2 = uτ Δx2/ν = 55, respectively, which 

are on the finer end of the approximate range specified for WMLES by 
Piomelli [21] (see further above). The potential impact of a coarser mesh 
on results will be discussed further below.

Results from the finite volume laboratory-scale LES with the different 
forms of SGS models described earlier will be compared with results 
obtained from the pseudo-spectral LES code of Tejada-Martinez and 
Grosch [14]. The pseudo-spectral LES was performed with the domain 
lengths specified earlier, Lx = 40πδ, Ly = (16 /3)πδ, where δ = H/2 is 
the channel half-height. The number of grid cells were 320 along x, 128 
along y, and 96 along z. The grid was stretched in the vertical such that 
the z-distance in plus units from the wall to the first grid point above the 
wall is z+

1 = 1. The latter ensures resolution down to the viscous sub
layer. The z-distance in plus units from the surface to the first grid point 
below the surface is also z+

1 = 1.

4.1.4. Wind and wave forcing conditions
Simulations started from rest with sudden imposition of the wind 

stress (such that Reτ = uτδ/ν = 395) and the C-L vortex force. The 
characteristic Stokes drift velocity, σka2, appearing in (4) and ultimately 
in the vortex force in (2), when non-dimensionalized by the wind stress 
friction velocity, uτ, gives rise to the turbulent Langmuir number, 
defined as Lat =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
uτ/(σka2)

√
. The latter is representative of wave 

forcing relative wind forcing. A wind stress of 0.1 N m-2, a wave period 
of 8 s, a wavelength of 90 m and an amplitude of 0.6 m, measured during 
the full-depth LC field measurements of Gargett et al. [2], gives rise to 
Lat = 0.7 (using the wave dispersion relation). Accordingly, the C-L 
vortex force was set to give rise to this same value of Lat in the LES 
ensuring that the wind forcing relative to wave forcing in the lab-scale 
simulations was the same as in the field. Furthermore, the wavelength 
in the sinh and cosh functions in (4), appearing through the wave
number k = 2π/λ with λ being the wavelength, was set to λ = 6H = 12δ 
in the simulations. This is consistent with the wavelength of 90 m and 
water column depth of 15 m registered in the field measurements.

4.2. Field-scale simulation

Field-scale LES of full-depth LC under a time varying surface heat 
flux was performed following field measurements of Gargett et al. [25]. 
These simulations were performed at the field-scale Reynolds number 
primarily to avoid having to scale down the surface heat flux to 
lab-scale. Note that non-dimensionalizing the buoyancy term in the 
momentum equations would bring about an additional dimensionless 
number in the form of a Rayleigh number (for cooling) or a Richardson 
number (for heating).

Fig. 2. Schematic of computational domain. Red arrows denote the wind stress.
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The LES was performed with the finite volume method with the wall- 
adapting S-Omega SGS model described earlier, as this model was found 
to provide results more consistent with pseudo-spectral LES than the 
other models for the simulation at Reτ = 395 (to be shown further 
below). In the field-scale simulation, the crosswind width of the domain 
in Fig. 2 was specified to resolve a single pair of full-depth LC (smaller 
than the width of the domain in the laboratory-scale simulations). The 
reason for the smaller width is that the aim of the field-scale LES is to 
investigate the effect of surface heating on the turbulence associated 
with existing LC, rather than on the development of LC studied via the 
laboratory-scale simulations. The downwind and crosswind lengths of 
the domain (Fig. 2) were taken as Lx = Ly = 62.8 m, respectively, and 
the water column height as H = 15 m (the latter following the field 
measurements of Gargett et al. [25]).

Periodicity was enforced in the downwind and crosswind directions. 
Standard wall functions [32] were used to calculate the bottom wall 
stress based on the velocities at the first cell centers above the wall.

The simulation was initiated from rest with filtered temperature set 
as T = T0 (where recall that T0 is the reference temperature in (2)), and 
with zero surface and bottom heat fluxes, thus no buoyancy effects. The 
wave parameters were set to be the same as those described in the 
previous Section. The wind stress was taken as 0.1 N m-2 (corresponding 
to a wind speed of 7.8 m s-1 at 10 m above the surface of the ocean) based 
on the measurements of Gargett [25], resulting in a wind stress friction 
velocity uτ = 0.01 m s-1 and a friction Reynolds number Reτ = 75000. 
Once the simulation reached statistical equilibrium characterized by a 
single-pair full-depth LC and a mean bottom wall shear stress matching 
the wind stress, the surface heat flux was set to 205 Watts m-2 (surface 
cooling or destabilizing) beginning the buoyancy effects. The surface 
heat flux was subsequently dropped in a stepwise fashion to −600 Watts 
m-2 (surface heating or stabilizing) over a period of 10 h to investigate 
the decay of the turbulence, following the measurements of Gargett 
[25]. Throughout this time, the wind and wave forcing remained con
stant. Further details of the stepwise variation of the surface heat flux 
will be given when describing the results.

A uniform grid was used in the downwind and crosswind directions 
with 256 elements in both directions. In the vertical direction, 96 
stretched elements were used. The element length in both the downwind 
and crosswind directions is 0.25 m. The element length in the vertical is 
0.05 m at the wall and at the surface and 0.22 m at mid-depth. These 
element sizes are comparable to those in the pseudo-spectral field-scale 
LES of Kukulka et al. [9], who performed simulations of LC under a wind 
speed of 5 m s-1 in a water column 20 m in height. Furthermore, in the 
present mesh, the first cell center above the wall is at a distance 0.025 m 
away from the wall, well within the log-layer limit suggested by Pope 
[26], z+ > 30 and z < 0.3δ. For the present case with δ = 7.5 m, z < 0.3δ 
= 2.25 m.

4.3. Numerical methods

For both laboratory-scale and field-scale simulations described 
above, the governing continuity, momentum and temperature equations 
described earlier were solved using the finite volume method. The so
lution algorithm involved the simultaneous solution of the momentum 
equation and the pressure equation form of the continuity equation [33] 
on a staggered grid [34]. The method employs a bounded central dif
ference (BCD) scheme [35] for advection, least-squares gradient 
reconstruction [36], and implicit second order accurate time stepping 
via the approximation of the time derivative of scalar ϕ at time level tn+1 
as 

ϕ̇˙n+1
=

3ϕn+1 − 4ϕn + ϕn−1

2Δt
(23) 

The time step Δt was chosen such that the Courant-Friedrichs-Lewy 
(CFL) number was approximately 1.

The BCD scheme is equipped with a detector for identifying oscilla
tions in wavelengths that are 2Δx or shorter. In situations where such 
oscillations are detected, the scheme reverts to a second-order upwind 
scheme, or, in the worst case, to a first-order upwind scheme. More in
formation about this approach is given by Leonard [35], Moukalled et al. 
[36] and Ask and Davidson [37]. Ask and Davidson [37] have shown 
that the BCD scheme described above is less dissipative than 
second-order upwinding in simulations of the air flow around a generic 
side mirror of a car. Overall, the BCD scheme provides minimal nu
merical dissipation within the family of stable advection discretization 
schemes in the finite volume framework.

As the numerical methods employed here are standard throughout 
the computational fluid dynamics community, the ANSYS Fluent plat
form [17] was used to carry out the simulations.

4.4. Performance of SGS models in shear turbulence

Prior to presenting results of the simulations with LC, the perfor
mance of the finite volume LES with the various SGS models described 
earlier is evaluated for the wind-driven (surface shear-driven) flow at 
Reτ = 395 described above in Section 4a but without C-L vortex forcing 
(i.e. without LC) on the corresponding finite volume mesh also described 
above. Results obtained from these simulations under statistical equi
librium shown in Fig. 3 in terms of mean downwind velocity and 
resolved velocity variances do not show significant differences. Results 
are also shown of the pseudo-spectral LES with C-L vortex forcing for 
comparison, highlighting the significant variations induced by the LC. 
As such, it is important to understand how well LES with the different 
SGS models can capture these variations and the overall Langmuir cell 
structure. As noted in the introduction, Tejada-Martinez and Grosch 
[14] reported that the full-depth Langmuir cells contribute between 50 
and 80 % of the TKE throughout the water column. Thus, it should be 
expected that inaccuracies in the representation of the full-depth cell 
structure will be reflected in the depth-profiles of the velocity variances 
as will be shown in the next section.

5. Results

5.1. Laboratory-scale simulations

5.1.1. Cell development and structure: S-Omega SGS model
The development of the Langmuir cells from rest in the finite volume 

LES with the wall-adapting S-Omega model can be seen in Fig. 4 in terms 
of downwind-averaged vertical velocity fluctuations. The cells are 
initially regular or smooth. As time progresses, the cells become unstable 
and undergo a merging or amalgamation process in which they grow in 
width (along the crosswind direction) and depth while becoming more 
irregular as the flow transitions to Langmuir turbulence. After about 1 h, 
the cells reach close to the bottom, which can be seen in terms of the full- 
depth downwelling and upwelling limbs, or full-depth regions of nega
tive and positive vertical velocity fluctuations, respectively. After 
approximately 30 h, the largest scales of the turbulence, corresponding 
to the full-depth LC, have stopped growing with the computational 
domain able to capture two pairs of cells, as expected and described 
earlier.

The overall cell structure in equilibrium obtained in the LES with the 
wall-adapting S-Omega model is shown in Fig. 5, in terms of downwind- 
averaged crosswind, vertical and downwind velocity fluctuations at t =

30 h. in panels (a)–(c) respectively. Equilibrium refers to the fact that the 
cells have reached a stable length scale and thus are no longer merging. 
The surface convergences and bottom divergences and the full-depth 
downwelling and upwelling limbs of the LCs resolved in the LES can 
be seen in panels (a) and (b) of Fig. 5, respectively, highlighted by the 
white arrows. Note that the surface convergences of the cells lead to the 
downwelling limbs, and the bottom convergences lead to the upwelling 
limbs. Furthermore, the downwelling limbs coincide with full-depth 
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Fig. 3. (a) Mean downwind velocity and (b) vertical (c) downwind and (d) crosswind velocity variances in finite volume (FV) LES of wind-driven flow without LC. 
Mean downwind velocity and velocity variances obtained in pseudo-spectral LES with LC are shown (in red) for reference. Brackets denote averaging over time and 
over the downwind and crosswind directions.

Fig. 4. Instantaneous downwind averaged vertical velocity fluctuations over the vertical (z) and crosswind extents (y) of the computational domain in finite volume 
LES with the S-Omega SGS model.
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regions of positive downwind velocity fluctuations, which are intensi
fied near the surface and near the bottom (Fig. 5c). Such bottom 
intensification of downwind velocity fluctuations has been observed in 
the field during episodes of full-depth LC by Gargett and Wells [4] and is 
considered a key signature of full-depth LC distinguishing it from the LC 
traditionally observed in the upper ocean mixed layer (e.g. see [1]). The 
coincidence of the downwelling limbs with full-depth regions of positive 
downwind velocity fluctuations is because the downwelling limbs 
entrain fluid possessing fast downwind velocity from the surface into the 
water column, reaching close to the bottom. Analogously, the upwelling 
limbs of the cells transport fluid possessing slow downwind velocity 
from the bottom towards the surface.

5.1.2. Cell structure: comparison between all SGS models
The development of the cells over time can be further explored in 

terms of the instantaneous vertical velocity fluctuations over the hori
zontal plane (i.e., the x-y plane) at mid-depth. On this plane, the vertical 
velocity fluctuations are characterized by positive and negative streaks 

corresponding to the upwelling and downwelling limbs of the LC, 
respectively. Fig. 6 shows these streaks at 12 h and 30 h after the finite 
volume LES simulations with the different SGS stress models were 
initiated from rest. The corresponding results obtained with the pseudo- 
spectral LES code of Tejada-Martinez and Grosch [14] are also shown in 
Fig. 6. As observed earlier in Fig. 5, with time, the cells grow in depth 
and width. This is reflected in Fig. 6 through the meandering and 
merging of streaks, forming so-called “y-junctions”, often used to 
describe the manifestations of LC on the surface of lakes, rivers, bays, 
and oceans (e.g., see Thorpe [38] and photograph of windrows in Fig. 1). 
At t = 12 h., the pseudo-spectral LES solution reveals three pairs of 
streaks, with two of the positive streaks in the process of merging 
(Fig. 6k). Similar y-junctioning may be observed in the finite volume LES 
with the wall-adapting S-Omega SGS model (Fig. 6g). By t = 30 h., when 
the cells have stopped growing and reached equilibrium, both simula
tions reveal two pairs of streaks (Fig. 6, panels h and l). Although a 
similar behavior is seen in the finite volume LES with the other SGS 
stress models (the WALE, dynamic Smagorinsky and wall-adapting 

Fig. 5. Instantaneous downwind-averaged crosswind (a), vertical (b), and downwind (c) velocity fluctuations over the vertical (z) and crosswind extents (y) of the 
computational domain at t = 30 h. in finite volume LES with the S-Omega SGS model.

Fig. 6. Instantaneous vertical velocity fluctuations over the downwind (x) and crosswind (y) extents of the computational domain at mid-depth (z = H /2) in finite 
volume (FV) LES and pseudo-spectral LES.
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Smagorinsky models), these solutions at t = 30 h. under equilibrium are 
characterized by three pairs of cells (rather than two pairs). As a result, 
the finite volume LES with the wall-adapting S-Omega model and the 
pseudo-spectral LES lead to cells with greater width than the finite 
volume LES with the other SGS models. Note that the cells of smaller 
width obtained with the WALE, wall-adapting Smagorinsky and dy
namic Smagorinsky models reach equilibrium before t = 12 h., which is 
much earlier than the cells obtained with the wall-adapting S-Omega 
model and the pseudo-spectral LES.

The equilibrium cell structure obtained with the finite volume LES 
with the different SGS models, and the pseudo-spectral LES is shown in 
Figs. 7–9 in terms of downwind-averaged crosswind, vertical, and 
downwind velocity fluctuations, respectively, at t = 30 h. The two cell 
pairs obtained with the pseudo-spectral LES and the finite volume LES 
with the S-Omega model and the three cell pairs obtained with the finite 
volume LES with the other SGS models can again be appreciated in these 
figures.

The pseudo-spectral LES and the finite volume LES with the S-Omega 
SGS model lead to cells for which the maximum downwelling velocities 
are stronger than the upwelling velocities, with the downwelling limbs 
being narrower than the upwelling limbs in order to satisfy mass con
servation (Fig. 8, panels (d) and (e)). This asymmetry between the up
welling and downwelling limbs of the cells is consistent with the field 
measurements of LC of Gargett and Wells [4]. Furthermore, this asym
metry is not as pronounced in the cells obtained with the finite volume 
LES with the wall-adapting Smagorinsky, the dynamic Smagorinsky, and 
the WALE models (Fig. 8, panels (a)–(c)).

Another important feature of the cells obtained with the pseudo- 
spectral LES and the finite volume LES with the wall-adapting S- 
Omega model is that the cells’ downwell-to-downwell width is 
approximately 60 m (Fig. 8, panels (d) and (e)), corresponding to ~4H 
(H = 15 m), consistent with the range 3H-6H reported by Gargett and 
Wells [4] in their observations of full-depth LC over periods greater than 
20 h. The width of the cells obtained in the finite volume LES simulations 

with the WALE, dynamic Smagorinsky and wall-adapting Smagorinsky 
models is less at ~3H (Fig. 8, panels (a), (b), and (c)).

The only difference between the wall-adapting Smagorinsky and S- 
Omega models in Eqs. (10) and (12), respectively, is in the velocity scale. 
Thus, it may be concluded that the S-Omega model’s velocity scale given 
through abs(|S| − |Ω|) is an important factor enabling the resolved full- 
depth LC in finite volume LES to possess a morphology or structure in 
better agreement with the LC in pseudo-spectral LES and the field ob
servations of Gargett and Wells [4]. This would be expected as the ve
locity scale based on abs(|S| − |Ω|) should be able to reflect the 
importance of rotation in LC flows better than the velocity scale based 
solely on |S|.

The LES with the S-Omega model and the pseudo-spectral LES lead to 
cells that have similar forms at the surface and at the bottom of the water 
column (e.g., see sketches and crosswind velocity fluctuations in Fig. 7, 
panels (d) and (e)). In contrast, the finite volume LES with the dynamic 
Smagorinsky model leads to significant differences between the near- 
bottom and near-surface cell structure (e.g., see sketches and cross
wind velocity fluctuations in Fig. 7, panel (a)). In Fig. 7a, the crosswind 
velocity fluctuations reveal that the bottom convergences of the cells 
obtained with the finite volume LES with the dynamic Smagorinsky 
model are unable to fully extend across the bottom. Instead, the bottom 
convergences of the cells are “snipped”. The weaker bottom conver
gences of the snipped cells are also reflected through their upwelling 
limbs, seen in Fig. 8a. For example, the intensity of the upwelling limbs 
is significantly weaker at the bottom of the water column in the LES with 
the dynamic Smagorinsky model (Fig. 8a) than in the LES with the S- 
Omega model and the pseudo-spectral LES (Fig. 8, panels (d) and (e)). 
Overall, a weaker intensity of the bottom convergences of the cells in the 
finite volume LES with the dynamic Smagorinsky model leads to weaker 
transport of slow downwind moving fluid from the bottom of the water 
column towards the surface by the upwelling limbs. This can be seen in 
Fig. 9a, where the regions of negative downwind velocity fluctuations in 

Fig. 7. Downwind averaged vertical velocity fluctuations over the vertical (z) and crosswind (y) extents of the computational domain in finite volume (FV) LES and 
pseudo-spectral LES at t = 0 h.
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Fig. 8. Downwind-averaged vertical velocity fluctuations over the vertical (z) and crosswind extents (y) of the computational domain in finite volume (FV) LES and 
pseudo-spectral LES at t = 30 h.

Fig. 9. Downwind averaged downwind velocity fluctuations over the vertical (z) and crosswind (y) extents of the computational domain in finite volume (FV) LES 
and pseudo-spectral LES at t = 30 h.
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the finite volume LES with the dynamic Smagorinsky model are not as 
prominent near the surface compared to the same regions in the LES 
with the S-Omega model and in the pseudo-spectral LES (Fig. 9, panels 
(d) and (e), respectively).

To further quantify the impact of the SGS models on the transport of 
slow-moving fluid from the bottom of the water column towards the 
surface induced by the upwelling limbs of the full-depth Langmuir cells, 
Fig. 10 plots the downwind-averaged downwind velocity fluctuations 
over the crosswind extent of the computational domain at a depth close 
to the surface. As can be seen in this figure, the negative downwind 
velocity fluctuations reach to about −0.3 m s-1 in the finite volume LES 
with the S-Omega model, in good agreement with the pseudo-spectral 
LES. However, in the finite volume LES with the dynamic Smagor
insky model and WALE models, the negative downwind velocity fluc
tuations only reach to ~ −0.1 m s-1.

5.1.3. Velocity statistics and cell structure: comparison between all SGS 
models

Differences can be seen across the LES with the different SGS models 
in terms of resolved mean downwind velocity (Fig. 11) and resolved 
velocity variances (Figs. 12–14). Given the well-mixed downwind ve
locity profiles obtained in the simulations (Fig. 11a), the characteristic 
bulk downwind velocity may be taken as the mean downwind velocity at 
mid-depth. In Fig. 11a, it can be seen that the finite volume LES with the 
wall-adapting S-Omega and Smagorinsky SGS models lead to slower 
bulk downwind velocity relative to LES with the other SGS models and 
relative to the pseudo-spectral LES. This may be attributed to the 
stronger negative downwind velocity fluctuations induced by the LC in 
the LES with the wall-adapting S-Omega and Smagorinsky models 
compared to the dynamic Smagorinsky and WALE models, as observed 
in Figs. 9 and 10. This may interpreted as the LC obtained with the wall- 
adapting S-Omega and Smagorinsky models serving to provide a greater 
resistance to the bulk flow. The slower bulk flow obtained within the 
wall-adapting S-Omega and Smagorinsky models could also be tied to 
the greater resistance from the higher near-wall eddy viscosities ob
tained with these models (Fig. 15).

Fig. 11b reveals that the faster bulk downwind velocity obtained 
with the dynamic Smagorinsky and WALE models leads to a greater 
deviation from the log-law in the lower half of the channel (for example 
at z+∼ 90) compared to the wall-adapting S-Omega and Smagorinsky 
SGS models and the pseudo-spectral LES. This bottom log-layer devia
tion is expected in flows with full-depth LC as discussed earlier when 
presenting the computational setup in Section 4a.

The differences in intensity and structure of the full-depth LC 
resolved in the various simulations described earlier can also be 
observed in terms of depth profiles of the resolved vertical, downwind, 
and crosswind velocity variances, under statistical equilibrium. Focus is 
placed on the variances in the middle and lower half of the water column 
rather than on the surface given that in the ocean the near-surface tur
bulence is strongly affected by wave-breaking and none of the simula
tions performed accounts for surface wave breaking.

Fig. 12 reveals that the finite volume LES with the S-Omega SGS 
model leads to better agreement with pseudo-spectral LES in terms of 
vertical velocity variance, compared to the other SGS models, in the 
middle of the water column. Furthermore, the vertical velocity variances 
obtained in the LES with the S-Omega SGS model and the pseudo- 
spectral LES are lower than in the LES with the other SGS models. 
This trend can be directly linked to the similar LC cell structure obtained 
with the LES with the S-Omega SGS and the pseudo-spectral LES. In 
Fig. 8 two key characteristics can be observed: (1) The finite volume LES 
with the S-Omega SGS model and the pseudo-spectral LES lead to cells 
for which the maximum downwelling velocities are stronger than the 
upwelling velocities, with the downwelling limbs being narrower than 
the upwelling limbs, as noted earlier. Meanwhile the finite volume LES 
with the other SGS models give rise to downwelling and upwelling ve
locities nearly equal in magnitude, and thus dowelling and upwelling 
limbs of nearly equal width. (2) The maximum downwelling velocities 
across all simulations are nearly the same (~ − 0.02 m s-1) as well as the 
width of the downwelling limbs. Thus, the lower vertical velocity vari
ances obtained in the LES with the S-Omega SGS model and the pseudo- 
spectral LES may be attributed to the wider crosswind coverage of the 
slower upwelling limbs in these simulations compared to the simulations 
with the other SGS models.

In Fig. 13, it can be seen that the finite volume LES with the WALE 
and the dynamic Smagorinsky models lead to near-bottom downwind 
velocity fluctuations that are excessively high, relative to the pseudo- 
spectral LES and the finite volume LES with either the wall-adapting 
S-Omega or the wall-adapting Smagorinsky models. This behavior is 
attributed to the lower values of the eddy viscosities obtained in the 
finite volume LES simulations with the WALE and the dynamic Sma
gorinsky models compared to the wall-adapting S-Omega and Smagor
insky models (see Fig. 15). Near the wall, the wall-adapting S-Omega 
and Smagorinsky models give rise to larger eddy viscosities, consistent 
with the hybrid Reynolds-averaged Navier-Stokes (RANS)-LES concept 
in which the outer layer is computed via LES and the near-wall region is 
treated in a Reynolds-average sense where the SGS stress should behave 

Fig. 10. Downwind-averaged downwind velocity fluctuations vs. crosswind extent of the at domain (y) at z = 14.65 m at t = 30 h. averaged over downwind and 
crosswind extents of the domain in finite volume (FV) LES and pseudo-spectral LES. Note that y-regions of negative downwind velocity fluctuations correspond the 
upwelling limbs of the full-depth Langmuir cells and regions of positive downwind velocity fluctuations correspond to the downwelling of the cells.
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closer to classical Reynolds stress models.
The excessive near-bottom downwind velocity variances obtained 

with the WALE and the dynamic Smagorinsky models (relative to 
pseudo-spectral LES) are indicative of the over-prediction of the bottom- 

generated shear turbulence resolved in the LES with these models. As a 
result, the bottom convergence zones of the cells and their corre
sponding bottom upwelling limbs obtained with these models are less 
prominent, compared to the cells obtained with the wall-adapting S- 

Fig. 11. (a) Mean downwind velocity profiles over the depth of the water column and (b) mean downwind velocity profiles in wall units in the lower half of the water 
column in finite volume (FV) LES and pseudo-spectral LES. In (b), velocity profiles based on the Law of the Wall are shown in green. Brackets denote averaging over 
time and over the downwind and crosswind directions.

Fig. 12. Resolved vertical velocity variance in finite volume (FV) LES and pseudo-spectral LES. Brackets denote averaging over time and over the downwind and 
crosswind directions.
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Fig. 13. Resolved downwind velocity variance in finite volume (FV) LES and pseudo-spectral LES. Brackets denote averaging over time and over the downwind and 
crosswind directions.

Fig. 14. Resolved crosswind velocity variance in finite volume (FV) LES and pseudo-spectral LES. Brackets denote averaging over time and over the downwind and 
crosswind directions.

Fig. 15. Eddy viscosity scaled by molecular kinematic viscosity at t = 30 h. averaged over downwind and crosswind extents of the domain in finite volume (FV) LES.
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Omega and Smagorinsky model (Figs. 7 and 8). In other words, the 
excessive bottom-generated shear turbulence in the LES with the WALE 
and dynamic Smagorinsky models may be viewed as causing disruption 
of the bottom development of the cells. Accordingly, the near-bottom 
crosswind velocity variances obtained with the WALE and dynamic 
Smagorinsky models are also weaker, as seen in Fig. 13.

The excessive bottom-generated shear turbulence in the LES with the 
WALE and dynamic Smagorinsky models can also be seen in terms of 
color contours of resolved turbulent kinetic energy (TKE) in Fig. 16, 
panels (a) and (b). In contrast, the higher near-bottom eddy viscosities 
provided by the wall-adapting S-Omega and Smagorinsky models (seen 
in Fig. 15) lead to lower levels of bottom-generated shear turbulence (i. 
e. lower resolved TKE in Fig. 16, panels (c) and (d)) allowing for a fuller 
development of the bottom convergences of the LC, relative to the cells 
obtained with the WALE and dynamic Smagorinsky models (see sketches 
in panels (a) and (d) of Fig. 16). This suggests that the high intensity of 
the bottom shear turbulence obtained with the WALE and dynamic 
Smagorinsky models prevents the bottom convergence of the cells from 
extending fully across the bottom, ultimately serving to disrupt or “snip” 
the bottom of the cells, as described earlier and shown in the sketches in 
Figs. 7a and 16a.

The over-prediction of bottom-generated shear turbulence with the 
WALE and the dynamic Smagorinsky models occurred despite the first 
grid cell center being within the buffer sublayer, as described in Section 
4a. A coarser resolution in the wall-normal direction, more commen
surate with WMLES, is likely to lead to a greater over-prediction of the 
bottom turbulence, and thus a poorer representation of the near-bottom 
LC structure.

5.2. Field-scale simulations

Given the better performance of the LES with the S-Omega model 
compared to the other SGS models tested relative to pseudo-spectral 
LES, LES with the S-Omega model was subsequently tested on a case 
previously untried.

Gargett [25] focused on the effect of surface buoyancy on full-depth 
LC during the diurnal cycle. Fig. 17, borrowed from Gargett [25], shows 
records of depth-averaged vertical velocity variance during a period 

when the surface heat flux, Q, was increasingly stabilizing during field 
measurements of full-depth LC. The color of each dot in Fig. 17 corre
sponds to the depth-averaged vertical velocity variance averaged over a 
two-hour period. The arrows in Fig. 17 connect dots over consecutive 
averaging periods. As can be seen from this figure, a period of 8 h over 
which the surface heat flux decreased from approximately 200 Watts m-2 

(destabilizing) to approximately − 400 Watts m-2 (stabilizing) did not 
significantly affect the average vertical velocity variance, remaining at 
approximately 2.5 cm2 s-2. A significant change was eventually observed 
over the last 2 h of record when the surface heat flux further decreased 
from ~ − 400 to − 600 Watts m-2 accompanied by a vertical velocity 
variance decrease of a factor of about 4.5 to 0.56 cm2 s-2. In summary, a 
period of continuously stabilizing surface heat flux of ~8 h over which 
the surface heat flux decreased from ~ 200 to ~ − 400 Watts m-2 did not 
lead to significant decrease in vertical velocity variance. A delayed 
response was finally observed in the vertical velocity variance over 
hours 9 and 10 of continuous stabilizing heat flux as Q dropped from ~ 
− 400 to − 600 Watts m-2.

Field-scale LES of full-depth LC with the S-Omega model with surface 
buoyancy (heat) flux guided by Gargett [25] measurements was per
formed. The LES was initiated from rest with the wind and wave forcing 
described earlier in Section 4b and with zero surface heat flux until the 
mean bottom stress matched the surface stress. An instantaneous solu
tion is shown in Fig. 18 in terms of the cell structure. As expected from 
the domain chosen (see discussion in Section 4b), one full-depth LC pair 
is resolved. At this point a surface heat flux of Q = 205 Watts m-2 was 
applied, and the simulation was continued running for two hours of flow 
time. This time span of the simulation is denoted as 00. At the end of 
time span 00, the surface heat flux was switched to Q = 200 Watts m-2 

and the simulation was continued for another two hours of flow time. 
This latter time span is denoted as 01. Similar two-hour flow simulation 
time spans were continued for which the surface heat flux was changed 
to Q = 0, Q = − 400 Watts m-2, and Q = − 600 Watts m-2 at the end of 
each time span. These simulation time spans are denoted as 02, 03, 04, 
respectively in Fig. 19. Results are shown in Fig. 19 and Table 1 in terms 
of resolved vertical velocity variance averaged over the downwind and 
spanwise directions and averaged over the last 15 min of each time span. 
The vertical velocity variances reported in Table 1 were further 

Fig. 16. Resolved turbulent kinetic energy (TKE) at t = 30 h. in finite volume (FV) LES. Instantaneous resolved TKE is defined as 
(〈

uʹ2〉

x +
〈
v́ 2〉

x +
〈
wʹ2〉

x

)
/2 where 

〈⋅〉x denotes averaging over the downwind direction.
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averaged over the depth of the water column considered by Gargett 
[25]. Note that Gargett [25] measurements span the water column be
tween 1.4 and 12 m above the bottom of the water column due to lim
itations of the instrumentation.

During the first 8 h of simulation, when the surface heat flux 
decreased stepwise from 205 to − 400 Watts m-2, as described above, 
the peak vertical velocity variance stayed at about 1.8 cm2 s-2 (Fig. 19). 
Remarkably, following the trend of the field measurements, a delayed 
response was finally observed in the vertical velocity variance over 
hours 9 and 10 of continuous stabilizing heat flux as Q dropped from ~ 
− 400 to − 600 Watts m-2 resulting in a peak of vertical velocity vari
ance reaching up to 0.9 cm2 s-2. Such a delayed response is indicative of 
the importance that LC can have towards the vertical transport in coastal 

waters under sustained strong wind and wave forcing.
Surface heating can lead to stably stratified turbulence which can be 

challenging for LES and related SGS models to represent. The reason for 
this is that surface heating can greatly dampen the vertical velocity 
fluctuations relative to the downwind and crosswind velocity fluctua
tions, leading to what is often referred to as “pancake turbulence”. In 
these situations, the Smagorinsky-based models can lead to over- 
damping of the vertical velocity fluctuations (e.g. see [39]). However, 
in the present simulations, the strength of the full-depth Langmuir cell is 
diminished by the surface heating applied, but not to the point of 
resulting in “pancake turbulence” as the full-depth cell is still present at 
the end of the simulation inducing significant downwelling and up
welling (vertical) velocities.

6. Summary and conclusions

The performance of various SGS models were investigated in finite 
volume LES simulations of wind and wave-driven full-depth LC in the 
coastal ocean. It was found that for a relatively coarse mesh commen
surate with wall-modeled LES (coarser than LES with near-wall resolu
tion), the results depend strongly on the SGS model and the near-wall 
treatment of the SGS eddy viscosity. This was expected given that the 
full-depth Langmuir cells significantly magnify the TKE in the bottom 
boundary layer relative to wind-driven flow without LC [14] and the 
SGS model may or may not represent this elevated turbulence intensity 
accurately. The wall-adapting S-Omega model possessing a near-wall 
behavior following RANS turbulence models, and a velocity scale that 
takes into consideration the rotation or vorticity in LC flows, was found 
to lead to a full-depth LC structure in good agreement with the cell 
structure obtained in well-resolved pseudo-spectral LES and field mea
surements of full-depth LC. The dynamic Smagorinsky and WALE SGS 
models with the relatively coarse mesh were found to be 
under-dissipative in the near-wall region leading to an over-prediction 
of bottom-generated shear turbulence. The latter was deemed as a dis
ruptor of the full-depth LC serving to “snip” the bottom convergences of 
the cells, leading to weakened upward transport of slow downwind 
velocity fluid by the upwelling limbs of the cells. The higher 
near-bottom eddy viscosity provided by the wall-adapting S-Omega 
model was able to more accurately account for the bottom-generated 
shear turbulence, enabling a more accurate resolution of the full-depth 

Fig. 17. Data of Gargett [25], illustrating the influence of time-dependent surface buoyancy forcing (in terms of surface heat flux Q) on time-averaged and 
depth-averaged vertical velocity variance during a full-depth LC event at relatively constant wave forcing (in terms of g∗). The inverse time scale g∗ is used by Gargett 
[25] as a measure of wave forcing. The field measurements displayed here are characterized by relatively constant g∗, thus relatively constant wave forcing. These 
results suggest a long turbulence adjustment time scale associated with surface heat flux.

Fig. 18. Instantaneous downwind-averaged crosswind (a), vertical (b), and 
downwind (c) velocity fluctuations over the vertical (z) and crosswind extents 
(y) of the computational domain with zero surface heat flux. This solution 
served as initial condition for case 00 with surface heat flux set to Q = 205 
Watts m-2.
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LC structure, consistent with pseudo-spectral LES and field 
measurements.

Based on the positive results obtained with the S-Omega SGS model, 
finite volume LES with this model was further tested with surface 
buoyancy. LES of full-depth LC with the S-Omega SGS model was per
formed with surface cooling and heating corresponding to the diurnal 
cycle during field measurements of full-depth LC of Gargett [25]. The 
LES led to good agreement with the field measurements in terms of the 
temporal evolution of the depth-averaged vertical velocity variance, 
representative of the strength of the LC. The LES was able to accurately 
capture the time-response of the full-depth LC to over 6 h of continuous 
surface heating. It was shown that full-depth LC can be a dominant 
turbulent structure in the coastal ocean requiring times longer than 6 h 
in order for its vigorous vertical transport to be significantly suppressed 
by surface heating.

The results obtained with the finite volume LES with the different 
SGS models highlight an important interaction between the full-depth 
Langmuir cells and the bottom-generated shear turbulence mediated 
by the SGS model. A more detailed analysis of this interaction and 
mediation would require, for example, a triple decomposition of the 
flow into the mean component, the full-depth Langmuir cell component, 
and the smaller turbulent scales. An initial attempt at developing TKE 
transport equations for each of these components has been made by 
Martinat et al. [40] and should be continued in the future to better 
understand the role of the SGS model in the energy transfer across the 
three components. This analysis should also be informed by energy 
spectra at various depths of the water column.

As discussed in the Introduction, full-depth LC can contribute 
significantly to the TKE throughout the water column, observed in low 
Reynolds number pseudo-spectral LES of Tejada-Martinez and Grosch 
[14] and corroborated by the infinite Reynolds number simulations of 
Kukulka et al. (2010, [9]). The Reynolds number independence of 
full-depth LC suggested by the good agreement between the 
low-Reynolds (low-Re) number simulations of Tejada-Martinez and 
Grosch [14] and the field measurements of Gargett and Wells [4], as 

identified by Tejada-Martinez et al. [23], further supports this finding. 
Therefore, findings on the performance of the SGS models and the FVM 
in full-depth LC flow at low Re highlighted in the current study should 
also be applicable to LES at high (field-scale) Reynolds numbers. 
Nevertheless, future high Reynolds number LES of full-depth LC should 
explore not only the performance of the SGS model, but also the per
formance of the wall model [20,22]. This is important because high 
Reynolds number simulations of wall-bounded flows assume a weak 
coupling between the flow structures in the outer boundary layer and 
the turbulence in the inner layer, which is not the case in flows with 
full-depth LC.

Future research should also seek to further understand the behavior 
of the dynamic Smagorinsky and WALE models in finite volume LES of 
full-depth LC. For example, the scale-invariance assumption required by 
the dynamic Smagorinsky model may not be valid in the LES conducted 
here and might need to be reconsidered. In such instances, the dynamic 
Smagorinsky model can be under-dissipative [41]. Furthermore, the 
impact of the grid length scale Δ in the SGS models should be considered 
in the future. This length scale was taken as shown in Eq. (11) for the 
wall-adapting S-Omega and Smagorinsky models, meanwhile it was 
taken as the cube root of the cell volume for the dynamic Smagorinsky 
and the WALE models. The length scale in (11) was designed by Shur 
et al. [19] to depend not only on the grid spacing, but also on the wall 
distance. Shur et al. [19] showed that (11) leads to significant 
improvement in the resolved mean velocity over the more traditional 
cube root of the cell volume expression for Δ for wall-resolved LES of 
turbulent channel flow at Reτ = 395 with the constant coefficient 
Smagorinsky model with van Driest damping function.

Ask and Davidson [37] have shown that the BCD advection dis
cretization used in the finite volume LES is less dissipative than 
second-order upwinding in simulations of the air flow around a generic 
side mirror of a car. Overall, the BCD scheme provides minimal nu
merical dissipation within the family of stable advection discretization 
schemes in the finite volume framework. Thus, it is realistic that the 
elevated shear turbulence triggered by the impinging of the bottom 
boundary layer by the downwelling limbs of the Langmuir cells [31] 
could lead to an unchecked pile-up of energy at the small scales if the 
SGS model is not sufficiently strong when using the minimal numerically 
dissipative BCD scheme. This could be the source of the elevated shear 
turbulence intensity near the bottom of the water column obtained in 
the simulations with the dynamic Smagorinsky and WALE models. 
Although replacing the BCD scheme with a more dissipative numerical 
scheme could address this issue, it could cause an undesired deteriora
tion of resolved Langmuir cell structure.

Fig. 19. Resolved vertical velocity variances in LES with surface heat flux.

Table 1 
Comparison between LES and field measurements in terms of vertical velocity 
variance, m2 s-2.

Time 
spans

Vertical velocity 
variance in LES

Vertical velocity variance in field 
measurements of Gargett [25]

00 9.153e-05 ~ 2.00e-4
01 9.162e-05 ~ 2.00e-4
02 9.137e-05 ~ 2.00e-4
03 9.084E-05 ~ 2.00e-4
04 5.02861E-05 ~ 1.00e-4

S. Zeidi et al.                                                                                                                                                                                                                                     Computers and Fluids 284 (2024) 106394 

16 



CRediT authorship contribution statement

Seyedmohammadjavad Zeidi: Visualization, Validation, Investi
gation, Formal analysis. L. Srujana Sarvepalli: Visualization, Valida
tion. Andrés E. Tejada-Martínez: Writing – review & editing, Writing – 
original draft, Visualization, Supervision, Validation, Resources, Project 
administration, Methodology, Investigation, Funding acquisition, 
Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgment

This research has been made possible by National Science Founda
tion Grants 1756902 and 1805786.

References

[1] Skyllingstad ED, Denbo DW. An ocean large-eddy simulation of Langmuir 
circulations and convection in the surface mixed layer. J Geophys Res Oceans 
1995;100:8501–22.

[2] Gargett AE, Wells JR, Tejada-Martínez AE, Grosch CE. Langmuir supercells: a 
mechanism for sediment resuspension and transport in shallow seas. Science 2004; 
306:1925–8 (1979).

[3] Sinha N. Toward a K-profile parameterization of Langmuir turbulence in shallow 
coastal shelves. J Phys Oceanogr 2015;45:2869–95.

[4] Gargett AE, Wells JR. Langmuir turbulence in shallow water. Part 1. Observations. 
J Fluid Mech 2007;576:27–61.

[5] Gargett AE, Savidge DK, Wells JR. Anatomy of a Langmuir supercell event. J Mar 
Res 2014;72:127–63.

[6] Savidge DK, Gargett AE. Langmuir supercells on the middle shelf of the South 
Atlantic Bight: 1. Cell structure. J Mar Res 2017;75:49–79.

[7] Savidge WB, Gargett AE, Jahnke RA, Nelson JR, Savidge DK, Short RT, Voulgaris G. 
Forcing and dynamics of seafloor-water column exchange on a broad continental 
shelf. Oceanography 2008;21:179–85.

[8] Kukulka T, Plueddemann AJ, Sullivan PP. Nonlocal transport due to Langmuir 
circulation in a coastal ocean. J Geophys Res Oceans 2012:117.

[9] Kukulka T, Plueddemann AJ, Trowbridge JH, Sullivan PP. The influence of 
crosswind tidal currents on Langmuir circulation in a shallow ocean. J Geophys Res 
Oceans 2011;116.

[10] Edson J, Crawford T, Crescenti J, Farrar T, Frew N, Gerbi G, Helmis C, Hristov T, 
Khelif D, Jessup A. The coupled boundary layers and air–sea transfer experiment in 
low winds. Bull Am Meteorol Soc 2007;88:341–56.

[11] Gerbi GP, Trowbridge JH, Terray EA, Plueddemann AJ, Kukulka T. Observations of 
turbulence in the ocean surface boundary layer: energetics and transport. J Phys 
Oceanogr 2009;39:1077–96.

[12] Deng B-Q, Yang Z, Shen L. Bottom wall shear stress fluctuations in shallow-water 
Langmuir turbulence. J Fluid Mech 2022;942:A6.

[13] Deng B-Q, Yang Z, Xuan A, Shen L. Localizing effect of Langmuir circulations on 
small-scale turbulence in shallow water. J Fluid Mech 2020;893:A6.

[14] Tejada-Martinez AE, Grosch CE. Langmuir turbulence in shallow water. Part 2. 
Large-eddy simulation. J Fluid Mech 2007;576:63–108.

[15] Shrestha K, Anderson W. Coastal Langmuir circulations induce phase-locked 
modulation of bathymetric stress. Environ Fluid Mech 2020;20:873–84.

[16] Shrestha K, Anderson W, Tejada-Martínez AE, Kuehl J. Orientation of coastal-zone 
Langmuir cells forced by wind, wave and mean current at vaiable obliquity. J Fluid 
Mech 2019;879:716–43.

[17] Fluent Ansys 2015. “Ansys fluent theory guide, release 15.0.” ANSYS, Inc.
[18] Weller HG, Tabor G, Jasak H, Fureby C. A tensorial approach to computational 

continuum mechanics using object oriented techniques. Comput Phys 1998;12: 
620–31.

[19] Shur ML, Spalart PR, Strelets MK, Travin AK. A hybrid RANS-LES approach with 
delayed-DES and wall-modelled LES capabilities. Int J Heat Fluid Flow 2008;29: 
1638–49.

[20] Bose ST, Park GI. Wall-modeled large-eddy simulation for complex turbulent flows. 
Annu Rev Fluid Mech 2018;50:535–61.

[21] Piomelli U. Large-eddy and direct simulation of turbulent flows. In: Proceedings of 
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