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Abstract—This paper demonstrates a circular transmitarray-
augmented Luneburg lens antenna for beam-forming at a
millimeter-wave (mmWave) regime. The proposed structure is
comprised of an augmentation of 80 dielectric cubes phase
correction layer and two semi-circular 10-layer Luneburg lenses.
The circular transmitarray-augmented Luneburg lens antenna is
fed by a 9 dBi horn antenna at normal incidence and an oblique
incidence of —15°. The beam is successfully transmitted with an
angle up to +45°. When the feed is oriented in normal incidence,
a pencil beam is transmitted at 166° and 151° with a realized gain
of 20.3 dBi, and sidelobe level (SSL) below —10.0 dB, at 28 GHz.

I. INTRODUCTION

Enhancements in antenna systems are crucial in the
millimeter-wave (mmWave) spectrum. Escalating demands for
fifth-generation (5G) networks are addressing critical needs
involving high transmission data rates [1]. Phased array
antennas [2] are pivotal in wireless and satellite
communications. However, they present challenges including
high costs and power consumption. Transmitarray antennas [3]
are regarded as a viable solution for cost-effective beam-
forming and as a concept found its way into novel technologies
of holographic beamforming and reconfigurable intelligent
edges [4]. Besides, the Luneburg lens [5] is widely used in
embedded systems for beam-steering [6], [7] and beam-
scanning [8] at mmWave frequencies, owing to its
advantageous features including directive beams, focusing
abilities, and multi-beam generation.

This paper introduces an innovative two-dimensional (2D)
transmitarray-augmented Luneburg lens antenna designed for
mmWave applications. Featuring a compact, all-dielectric
structure, this lens is readily manufacturable using 3D-printing
technology, offering a cost-effective solution.

IL DESIGN ASPECTS OF THE CIRCULAR TRANSMITARRAY -
AUGMENTED LUNEBURG LENS ANTENNA
A. The Luneburg Lens

The Luneburg lens is an optical instrument characterized by
its capacity to transform a point source located at its periphery
into a planar wave, which is then emitted in the opposite
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direction from the lens. The refractive index (n) distribution of
the Luneburg lens is characterized as follows.

2 _ — r\?
n?=e =2- (%) (1)
Where 7 is the radial distance from the center, « is the radius of
the lens, and €, is the relative dielectric permittivity. The
proposed Luneburg lens consists of ten dielectric layers with a
diameter of 200 mm and a thickness of 10 mm. The effective
permittivity of these layers gradually increases from 1.19 in the
outermost layer to 1.99 in the innermost layers.

Full-wave electromagnetic simulation was employed to
examine the phase profile along two specific cross-sections:
one aligned with the direction of incident energy and the other
with the direction of the transmitted beam. The required phase
A4 is determined by (2). In this relationship, ¢, denotes the
phase of the transmitted beam while ¢; denotes the phase of
incident energy. This phase analysis was pivotal for the
development of the subsequent phase correction layer.

Ap= ¢ — ¢ 2

B. The Phase Correction Layer

A plane wavefront traversing a dielectric structure whose
relative dielectric permittivity €, experiences a phase delay ¥
which can be determined by (3) [9]. In this formula, S is the
structure thickness, ¢ is the speed of light in vacuum, and w is
the angular frequency.

Y= (V& — 1S 3)

For the realization of 360° transmission phase delay at
28 GHz with a material’s permittivity of 4.5, a material’s
thickness of 10 mm is required. The fundamental unit is a
cubical form with dimensions 5 x 5 x 10 mm?®. Consequently,
the phase correction layer is designed using two sets of 1 x 40
dielectric cubes. These are vertically positioned between two
semi-circular Luneburg lenses as depicted in Fig. 1.
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Fig. 1. Sketch of the proposed 2D transmitarray-augmented Luneburg lens.
The phase correction layer is made of a filament with relative dielectric
permittivity of 4.5 represented in purple and air represented in blue.

III. SIMULATION RESULTS AND DISCUSSION

The proposed 2D transmitarray-augmented Luneburg lens
was simulated utilizing CST Microwave Studio [10],
employing a horn antenna with a gain of 9 dBi and an aperture
size measuring 14.5 mm x 11 mm.

First, the Luneburg lens was simulated using the horn
antenna at a normal incidence. Then, two distinct phase
correction layers were added to transmit the beam at angles of
+165° and +150°. The symmetrical nature of the Luneburg lens
allowed for achieving a focused beam opposite to the incident
wave at +180° with a realized gain of 22.6 dBi and sidelobe
levels (SLL) below -24.6 dB at 28 GHz. Conversely, our
transmitarray-augmented Luneburg lens demonstrated effective
transmission across the frequency band of 24 — 30 GHz. At
28 GHz, it transmitted beams towards angles of +166° with a
realized gain of 20.3 dBi and SLL below -11.4 dB, and towards
angles of +151° with a realized gain of 20.3 dBi and SLL
below -10.0 dB. Simulated far-field radiation patterns of these
three different Luneburg lens variants are depicted in Fig. 2a.
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Figure 2. Simulated far-field radiation patterns for the Luneburg lens and
transmitarray Luneburg lens excited at 28 GHz by a 9 dBi horn: (a) at 0° and
(b) at —15°.
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Additionally, the horn was rotated —15° to illuminate the
Luneburg lenses. Similarly, it achieved the focused beam at
+165° due to the lens symmetry. When the phase correction
layers were employed, the beam was transmitted at +180° with
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a realized gain of 20.8 dBi and SLL below —12.4 dB, and at
+151° with a realized gain of 18.8 dBi and SLL below —12.5
dB. Simulated far-field radiation patterns for the three distinct
variants of the Luneburg lens are given in Fig. 2b.

IV. CONCLUSION

This paper presents an analysis and design aspects of a two-
dimensional (2D) circular transmitarray-augmented Luneburg
lens antenna suitable for millimeter-wave (mmWave)
applications. Constructed from ten dielectric layers with a 200
mm diameter and a 10 mm thickness, the Luneburg lens was
examined through full-wave simulations to evaluate phase
fields and develop an effective phase correction layer. This
layer, made up of dual 1 x 40 dielectric cubes, each 5 X 5 x 10
mm? in size, was strategically placed between two semi-
circular Luneburg lenses. Feeding the antenna with a 9 dBi
horn antenna, both at normal and —15° oblique incidences,
yielded a successfully transmitted beam with angles reaching
up to +45° These results underscore the potential of this
antenna configuration for advanced beam-forming applications
in the mmWave frequency spectrum, including reconfigurable
intelligent edges.
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