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Abstract—This paper presents two machine learning-based
constraint management approaches based on Reference Gover-
nors (RGs). The first approach, termed NN-DTC, uses regression
neural networks to approximate the distance to constraints. The
second, termed NN-NL-RG, uses regression neural networks to
approximate the input-output map of a nonlinear RG. Both
approaches are shown to enforce constraints for a nonlinear
second order system. NN-NL-RG requires a smaller dataset
size as compared to NN-DTC for well-trained neural networks.
For systems with multiple constraints, NN-NL-RG is also more
computationally efficient than NN-DTC. Finally, promising re-
sults are reported by having both approaches implemented on
a more complex spacecraft proximity maneuvering and docking
application, through simulations.

Index Terms—Reference Governors, Offline Training, Neural
Networks, Constraint Management

I. INTRODUCTION

Reference governors (Fig. 1) are add-on control schemes
that are augmented to nominal, well-designed controllers,
to enforce state and control constraints [1]-[3]. Based on
the current state measurement or estimate xj, the reference
governor modifies the desired reference command r, when-
ever is required, to prevent constraint violation. The modified
reference command, vy, is then fed into the nominal controller
to generate the control input uy, which then drives the plant,
producing the output yi. As such, the reference governor
essentially acts as a pre-filter, preventing reference commands
that may lead to constraint violations. It is worth noting that
the term “reference governor” refers to a set of techniques with
a common intent of preserving, whenever possible, the closed-
loop system response designed with conventional control tech-
niques. A detailed survey on techniques based on reference
governors (RGs) can be found in [1], [2].

RGs generally require explicit knowledge of the model
of the system and constraints. On the other hand, learning
reference governors (LRGs) operate through learning from
data, such as a black-box model of the system, or actual
system through experimentation, and therefore do not require
explicit knowledge of the model. Liu et al. in [4] demonstrated
the use of LRG in guaranteeing constraint satisfaction in
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Fig. 1. Reference governor controller scheme. rj is the reference, vy is the
adjusted reference, uj, is the nominal controller input, x, is the system state,
Yy is the constrained output.

an automated rendezvous, proximity maneuvering operation,
and docking (ARPOD) of a spacecraft. Furthermore, with
limited knowledge of the model, Liu et al. have also shown
that constraint enforcement is theoretically guaranteed from
learning, with the proposed learning algorithm guaranteeing
convergence and applied to a fuel truck rollover avoidance in
[5]. Li et al. used deep reinforcement learning to learn system
constraints, with successful enforcement of actuation and state
constraints of an active suspension system in [6]. Reference [7]
explores support vector machines to determine stability regions
for constrained nonlinear systems. Lanchares et al. in [8] have
applied LRG, based on a neural network, to approximate the
maximal output admissible set. It was shown that LRG can
successfully enforce constraints on several examples. In all of
the above references, the LRGs are trained online, resulting
in the need for a learning phase, which could be at times a
lengthy process, at the start of the system operation. Further-
more, details on determining the neural network topology for
LRGs are often lacking. Examples from [8], [9] use neural
networks with one hidden layer, [10] with 4 hidden layers,
and a specified number of neurons for their results analyses.
The process of deriving the number of neurons in particular
is insufficiently described.

This paper presents two approaches to designing LRGs
for systems with soft constraints, with a focus on training
regression neural networks offline and on methods for dataset
generation. The first approach, termed NN-DTC, is to train
a regression neural network to approximate the distance to
constraint function. As we will discuss, this may be preferable
to a classification neural network in [8] that separates safe
and unsafe reference command and state pairs, but requires
that the distance to constraints be measured in the collected
dataset. It is found that large dataset sizes are needed to
build well-trained neural networks for the NN-DTC approach.
Our second approach, termed NN-NL-RG, involves the direct
training of neural networks to approximate the input-output
map of the nonlinear reference governor in [1]. NN-NL-
RG predicts the modified reference command directly. It



is advantageous for systems with multiple constraints, and
requires a smaller dataset size to build well-trained neural
networks, implying faster, offline, training times. This paper
also presents a systematic approach to deriving suitable neural
network topologies, which has not been considered in [8].
The developments exploit two case studies, a second order
nonlinear system with finite escape time, and a spacecraft
ARPOD case study as in [4]. In these case studies, both
approaches are shown to lead to solutions which strictly
enforce the given constraints.
In summary, the original contributions of this paper are:

e The NN-DTC approach is introduced and is shown to lead
to improvements over the previous classification neural
networks used in LRGs of [8].

o The NN-NL-RG approach is proposed with the potential
to shorten offline training times and lower online compu-
tational footprint over RG implementation that uses NN-
DTC.

o An approach to deriving a suitable neural network topol-
ogy for LRGs is proposed.

o Methods to generate the dataset for offline training, and
the necessary sizes of the dataset in order to build a well-
trained neural network, are described and analysed.

This paper is organized as follows. Section 2 presents a
review of the maximal output admissible set, reference gover-
nors, and the nonlinear reference governor. Section 3 applies
an existing LRG approach of [8] to a second order nonlinear
system and shows its limitations. Section 4 uses the same
second order nonlinear system to show the development of
NN-DTC and NN-NL-RG. Section 5 presents computational
results for the spacecraft ARPOD system based on NN-DTC
and NN-NL-RG. Concluding remarks and topics for future
research are discussed in Section 6.

II. PRELIMINARIES

A. Maximal Output Admissible Set and Reference Governors

Consider a discrete-time, asymptotically stable closed-loop
system described by:

Trp1 = f(Tr, k), Yo = 9(Tk, Vk), (D

where x;, € R” is the state vector, vy € R™ is the adjusted
reference governor, and y; € RP is the constrained output
vector. The subscript & refers to the k** discrete time instant of
time ¢t = kT, where T is the sampling period. The constraints
are imposed as S(yx) < 0, for all k > 0, where S: RP — RY,
can be nonlinear, and vector inequalities are to be interpreted
element-wise. The set Y C RP is then defined as one where
all g constraints are satisfied,

Y ={y e RPs.t. S(y) < 0}. (2)

The Maximal Output Admissible Set (MAS), denoted by
O, is the safe set of initial states xg and constant input

commands v, = vy that satisfy constraints for all future time
steps [11]

Oco = {(z0,v0) :vp =vo, k€Zy =y €Y, k€ Zy}.
(3)

At each time instant k7T, a version of the RG called the
command governor, would select an adjusted v, by solving
the following minimization problem:

v € argmin (v — rk)TP(v —1k) 8.t (2x,v) € On, 4)

v

where P is a positive definite matrix. From (3), and assum-
ing no model mismatch, the solution to (4) is constraint-
admissible; furthermore, the existence of a feasible solution to
(4) at the initial time implies, assuming no model mismatch,
the existence of a feasible solution for all future times, a
property referred to as recursive feasibility.

B. Nonlinear Reference Governor (NL-RG)

An alternative approach to calculating vy is the Scalar
Reference Governor (SRG) [1], [2], in which

Vg = Vp—1 + K(TE — Vk—1), )

where x is obtained by solving the following linear program:

K = arg max vk, s.t. (T, vk) € O, (6)
k€[0,1]

and where vy is defined in (5). The approach originally
proposed in [12] exploits an implicit characterization of O
through the use of online simulations to predict the response
over a sufficiently long horizon. With this approach, the
functional representation of O, is never constructed and (6)
is implemented through the bisections. In this paper, we refer
to this method as the nonlinear reference governor (NL-RG),
while noting that there are other constructions of RGs for
nonlinear systems (including those that use subsets of Ox)
which we do not consider.

III. SECOND ORDER NONLINEAR SYSTEM AND AN
EXISTING LRG APPROACH OF [8]

In this section, we review the algorithms proposed in [8],
which uses a neural network to generate an approximation
of the MAS, and show that training a classification neural
network offline does not guarantee a satisfactory approxi-
mation of the MAS for the purpose of real-time constraint
management. Subsequently, this motivates the development of
the NN-DTC. Consider a non-linear second order system given
by the following continuous-time model:

jtlzarf—i-u,jsgle—v, (7
u = sat|_g0 20 (—0° — kp(z1 — v) — kyas), (3
ky = 5.6, kr = 16. )

The system represents a first order nonlinear system (7)
controlled by a Proportional-plus-Integral controller and a
feedforward term. The system is subject to control input
saturation in (8). The output of the system is y = z; and



is subject to the constraint y(¢) < 3.5. Denoting this system
as Case Study 1, an aggressive reference profile is designed
in order to test the ability of NL-RG to enforce constraints.
Fig. 2 shows the simulation result with such a profile, and the
adjusted v values to ensure constraints are not violated.
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Fig. 2. Simulation result using NL-RG.

We first consider the approach of [8] which uses a clas-
sification neural network. For the purpose of neural network
training, we chose 20,000 data points where each data point is
a sampled pair of (x, v) from a uniform distribution in a region
described by: z1 € [—20,20], z2 € [~1,1], v € [—4,4]. Then
(z1,22) is applied as an initial condition, and with v held
constant, a simulation over a time interval of length t;, = 30
sec is carried out. The value of ¢;, was chosen to be sufficiently
large so that either transients subdue or the trajectories escape
prior to that time. The trajectory of the system is then checked
for constraint violation. Should there be no constraint violation
along the simulated trajectory, the pair is labeled as safe,
and it is labeled unsafe otherwise. Fig. 3 shows each (z,v)
pair labeled as safe or unsafe, after completing simulations
for all (x,v) pairs. For notation purpose, define a function
L(z,v): R" x R™ — {0, 1} such that

1, if (z,v) is labeled safe,
if (x,v) is labeled unsafe.

(10)

o 20 -4

Fig. 3. Pairs of (z,v) labeled as safe or unsafe.

For neural network implementation, the command
patternnet of MATLAB (ver. R2021b) is used. The
training options applied are set as default, whereby the
activation function is the tangent-sigmoid function, the
training algorithm is the scaled conjugate gradient, and the
input data are normalized. The dataset is randomly divided
into 3 sets with 70% of data used for training, 15% for
validation and 15% for testing. Stopping options were set
to recommended default values to prevent overtraining. The
input features are the (x,v) pairs, and the target feature is
the safe/unsafe label obtained from (10).

For this case study, a neural network with only a single
hidden layer is used. This is based on the expectation that a
single layer is sufficient given that the system is low order and
O« is in a low dimensional space. The hyperparameter of this
neural network is the number of neurons in the hidden layer; its
values are set to 10, 25, 50, and 100. For each design, 10 trials
are made with randomized initialization of biases, weights,
and data split, resulting in 40 different neural networks.
Let a neural network with « hidden layers and (5 neurons
be denoted as NN, /g and let NN, 3/, refer to the neural
network resulting from the trial number . After training, the
neural network defines a function ((z,v): R” x R™ — [0, 1],
¢(x,v) = p. The value p is a confidence level output from the
neural network after classifying a point. If p is close to 1, the
input pair is likely safe; if it is close to 0O, the pair is unsafe.
To assess the neural network ability in classifying safe/unsafe
pairs and avoid biasing it to be conservative, we assume a
fixed threshold value p;;, = 0.5, i.e., we do not tune it for the
specific application as in [8].

For evaluation, each neural network is used to inform O
based on the condition ((z,v) > pu, while RG (3)-(4) is
implemented by searching for vy, € [—4, 4] over a discrete set
of points such that ((x,vg) > pen. The value of vy is set
to vi_1 if no feasible solution is found in this search, which
is expected to be feasible due to the construction of the RG.
Simulations are performed using the same profile of r as in
Fig. 2. The initial condition for z5 is set to O while discrete
values of initial 2 from the interval of (—20, 3) in steps of 1
were chosen, yielding 24 cases. To quantify the performance
of the neural networks trained, the mean value of constraint
violation in z;, denoted by p,, is computed as

Ky = (1)

SRS

n
Z max {0, z1, — Z1},
k=1

where Z; is the constraint value, which is 3.5 in this case
study; n is the total number of discrete timesteps of length

s = 0.01 sec within the simulation time, ¢ ¢i, = 30 sec. A
neural network is then determined to be well-trained based on
its ability to enforce constraints for all 24 cases based on the
value of fig,, €.., fiz;, < 1075,

As Fig. 4 shows, none of the neural networks are able
to produce a RG that enforces constraint for all 24 cases.
Increasing the number of neurons improves the neural network
performance, but at 50 or 100 neurons, the number of neurons
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Fig. 4. Classification neural network performance evaluation, showing the best
trial result out of 10 trials for the neural networks designed with 1 hidden
layer and varying number of neurons.

is already greater than that used by [8] (20 and 40 neurons)
and [9] (9 neurons). In conclusion, we were not able to find
a classification neural network, trained offline, for the system
(7)-(9) following the approach of [8].

IV. MAIN RESULTS

In this section, we formally introduce the two proposed
approaches, namely NN-DTC and NN-NL-RG.

A. Distance-to-constraint Approximation (NN-DTC)

Instead of exploiting safe/unsafe pairs as in [8], we define a
function that characterizes the maximum distance to constraint
violation. Specifically, we define the function D(z,v) : R™ x
R™ — R:

D(z,v) = max {ur — 9}, (12)

where y;, is the simulated output corresponding to the initial
condition z and constant input v, and ¥ is the constraint. Note
that (12) implies

<0,
>0,

if (x,v) is labeled safe,

D(z,v) =
(@) if (x,v) is labeled unsafe.

13)
A regression neural network is then trained to approximate
D(z,v), i.e., to predict the distance to constraint for given x
and v. For the regression neural network implementation, we
used the command fitnet of MATLAB. The Levenberg-
Marquardt training algorithm was applied as the optimization
function, while the rest of training options and data splitting
follows those described in Section III. The input features
are the (z,v) pairs, and the target feature is the distance
to constraint values obtained from (12). After training, the
neural network defines a function ¢ (z,v): R® x R™ — R,
Y(x,v) = d, where d is the predicted distance to constraint.
If d < dy,, the input pair is likely safe; if d > dy,, the pair
is unsafe. To assess the neural network’s ability in classifying
safe/unsafe pairs and avoid biasing it to be conservative, we
assume a fixed threshold value d;;, = 0.0.

Neural network performance evaluation is carried out using
the same procedure as described in Section III. One difference
is that each neural network is used to inform O, based on
the condition ¢(x,v) < dy,, while RG (3)-(4) is implemented
by searching for vy € [—4,4] over a discrete set of points
such that ¥ (zy, vg) < dgp,. Fig. 5 shows that neural networks
with either 10 or 50 neurons could produce RGs that enforce
constraints for all 24 cases, while a neural network with 100
neurons is unable to do so. The poorer performance for a
greater number of neurons is likely due to overfitting which
degrades its generalization abilities [13]. As such, this result
is also in line with [8] and [9], where a smaller number of
neurons is sufficient for a well-trained neural network.
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Fig. 5. NN-DTC performance evaluation, showing the best trial result out of
10 trials for the neural networks designed with 1 hidden layer and varying
number of neurons.

To further robustify the performance of the neural network
predictions, an ensemble of 5 out of the 40 best performing
neural networks is assembled and ¢(z,v) is defined so that
it is set to the minimum output of these 5 neural networks.
With this implementation, no constraint violation occurred in
any of the simulations (Fig. 6).
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Fig. 6. Simulation results using NN-DTC and NN-NL-RG on various
reference profiles. Profile 1 is the same as that in Fig. 2.



B. NL-RG Approximation (NN-NL-RG)

This approach replaces the NL-RG described in [12] with
a neural network as an approximation function. Fig. 7 shows
the NL-RG which uses r, xx, and vi_1 as inputs to generate
vg, and the regression neural network replacing it.

Tkl NL-RG v | Closed-Loop |yj,
System
VUk—=1[,
Xk
1%  Neural v | Closed-Loop |y
Network System
[ Vk-1[,-
Xk

Fig. 7. NL-RG augmenting the nominal closed-loop system, replaced by a
regression neural network.

For dataset generation, we note that a control problem could
be posed as either a regulation or non-zero reference tracking.
Each requires a different procedure for dataset generation.

Regulation: For a regulation problem, r is O for all times.
As such, it is an inconsequential input to NL-RG. To build the
dataset for such a system, we first sample = over a uniform
distribution across the respective bounds, forming a total of
N samples. Each sample is then used to initialize the system,
and a simulation over a defined time interval ¢; is carried
out to obtain vy, as computed by the NL-RG algorithm. NL-
RG ensures that the computed vy, is constraint-admissible for
the entire trajectory. The second input feature of the neural
network, namely vi_1, is then obtained by applying a unit
delay to vg. For neural network training, the input features
are the (zy,vr—1) pairs and the target feature is vg.

Reference Tracking: For a control system with a reference
tracking objective, a random sequence of steps is generated
to represent the command profile r. Simulations with this r
profile are then carried out using NL-RG to obtain v that would
not violate constraints. As in the regulation problem, vjy_; is
obtained by applying a unit delay to v. For neural network
training, the input features are (xj,vi—1,7%) and the target
feature is vy,.

For both procedures, the entire simulated trajectory is
stored, and is used as a part of the dataset for neural network
training. As such, the dataset would either contain datapoints
from one single, extended trajectory, or it could be stitched
from multiple, completed, trajectories.

The trained neural network is then used in place of the NL-
RG in the numerical simulations. At each discrete time instant
k, given the state x, the previous command v;_1, and, in
the case of a tracking problem, the command ry, the trained
neural network is applied to directly predict vy. This eliminates
the need to solve a minimization problem required in NN-
DTC. Furthermore, a single neural network is also sufficient
for a system with multiple constraints. This greatly improves
computational efficiency. Therefore, after training, the neural

network defines a function &(z, vg_1,7): R"XR™xR™ — R,
where &(z,v5—_1,7) = Vk.

We now apply NN-NL-RG to Case Study 1. Multiple
simulations of 30s were carried out with different random
reference profiles. Fig. 6 shows examples of the reference
profiles used, together with different initializations of (z1, z2).
The trajectories are then collated into a dataset that is used for
training. There are 2,000 data points in total for this dataset.
Note that this is 10 times smaller than the dataset used for
training in NN-DTC.

Neural network performance evaluation is carried out using
the same procedure as described in Section III. Fig. 8 shows
NNy /10 inability to satisfy constraints for a number of cases
when trained with a smaller dataset. A minimum of 25 neurons
is needed, and similar to NN-DTC, 100 neurons could not
enforce constraints for all 24 cases due to loss of generalization
abilities. Assembling an ensemble of 5 out of the 40 best
performing neural networks, each neural network predicts a
v for a given input (zy,vg_1,7%). The minimum of the
predicted vy, values is then applied to the nominal controller.
With this implementation, no constraint violation occurred
in any simulation (Fig. 6). As such, a significant benefit of
using NN-NL-RG is perhaps its ability to generate well-trained
neural networks with smaller datasets, which also implies
time-savings when training the neural networks. This is further
verified by training NN-DTC with a dataset of only 2,000
points, which resulted in no neural network being able to
enforce constraints for all 24 cases.
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Fig. 8. NN-NL-RG performance evaluation, showing the best trial result out
of 10 trials for the neural networks designed with 1 hidden layer and varying
number of neurons.

V. SPACECRAFT ARPOD CASE STUDY

The two approaches presented in the previous section are
applied to an ARPOD operation of a chaser spacecraft to a
target spacecraft [4], [14]. The objective is to enforce both
thrust and line of sight cone constraints, similar to the 3rd case
mentioned in [4]. The closed-loop spacecraft relative motion
dynamics are described as

& = f(or,vp),

14
Ti = g(xp, vr), (19



where ), = [6x75y,69b,5y,0,9]T denotes the state of the
spacecraft at the time instant k, dx, dy, d&, oy are the compo-
nents of the position and velocity vectors of the spacecraft in
Hill’s frame, 6, 0 are angle and angular velocity that prescribed
the direction of the thrust vector; vy, is the vector of desired dx
and Jy of the spacecraft coordinates. The LRG is applied to
this closed-loop system that consists of a plant being controlled
by a nominal controller. A key point to note is that this is a
regulation case study; the objective is to have the position of
the chaser spacecraft go to dx = dy = 0. Y} is the output
of the system at time instant k¥ on which the constraints are
imposed. The constraints of the system are: a maximum thrust
limit where the thrust force, F; < Fr = 1.5N, and Line
of Sight (LOS) cone angle constraint, where the cone angle,
¢ < ¢ = 2.5° = 0.0436rad. Cone constraint is further split
into 2 separate constraints, such that ¢ < ¢_> = 0.0436rad and
¢ > —¢ = —0.0436rad. They are denoted as upcone, ¢, and
dncone, dg,, respectively. For the sake of brevity, the reader
is referred to [4] for the detailed derivation of the constraints.

A nominal controller has already been designed, where
a thruster controller is used to provide the desired thrust
force, and a Proportional-Derivative (PD) controller is used
to track the desired orientation of the spacecraft. As with the
implementation in [4], a LRG is then designed to enforce
both constraints together with the nominal controllers. Cone
angle and thrust constraints would be violated without RGs
implemented [4].

As this is a more complex, higher order nonlinear system
with multiple constraints, both the number of hidden layers
and number of neurons in each layer are set as hyperparam-
eters of the neural network. The number of hidden layers are
either 1 or 2, and the number of neurons per layer are set
to 10, 25, 50 and 100. As such, there are 8 combinations of
hyperparemeters. Similar to Case Study 1, 10 trials are made
for each combination.

For evaluation, each neural network is applied into a simu-
lation with 1 of the 9 initial conditions listed in Table I, and
all other states 6 = 6y = 6 = § = 0. This yields 9 cases. To
quantify the performance of the neural networks after training,
the mean values of constraint violation in Frr, ¢y, and ¢4y,

denoted by ppy, pe,, and pg,,, are computed as

I _
HFr :g kz_lmaX{OaFTk _FT}v

1 & _
Howy = — D _max{0, bup — dup}, (15)
k=1
1 < _
Hpan, = E ]; maX{O, Pdn — ¢dn}

A well-trained neural network is then determined based on its
ability to enforce the constraints for all 9 cases over a fixed
threshold. Similar to Case Study 1, the threshold is set to 1075,

TABLE I
PAIRS OF dx AND Yy USED FOR INITIALIZATION
Case [0, 0yl Case [0, oyl Case [0z, 0yl
1 [—18, —300] 2 [0, —300] 3 [18, —300]
4 [—12, —200] 5 [0, —200] 6 [12, —200]
7 [—9, —100] 8 [0, —100] 9 [9, —100]

A. Approach 1: NN-DTC

Similar to Case Study 1, the dataset is generated through
sampling of (x,v) pairs from a uniform distribution in a
region described as: dx € [—20,20], dy € [—350,10], 6% €
—[0.5,0.2], 0y € [-1.2,1.2], 8 € [-5,4], 0 [—0.7,0.2],
v € [—350,10]. For this ARPOD case study, t;, = 400s.
Datasets containing 15,000 and 20,000 data points were found
to not produce viable neural networks that could enforce all
3 constraints, thus a dataset containing 25,000 data points
was used. As this system has 3 constraints, three separate
neural networks were trained for predicting distance to each
constraint. Training a neural network for a single output
would ensure better fitting, and makes evaluation of the neural
network performance simpler. Training a neural network for
multiple constraints shall be left as future work.

Neural networks trained to manage upcone and dncone con-
straints exhibit minimal violations and are hence not discussed
here. Fig. 9 shows that thrust constraint is more difficult
to enforce, with more cases incurring constraint violations.
NNy /100 has the best performance by being able to enforce
thrust constraints for all 9 cases. Furthermore, using 2 hidden
layers did not yield better performance, likely due to over-
parameterization.

Similar steps are taken to robustify the performance of
the neural network predictions, with an ensemble of 5 neural
networks made for each constraint. With this implementation,
the regression neural networks successfully enforced both
thrust and cone constraints, and have the chaser spacecraft
successfully reaching the target spacecraft for all 9 cases.
Subjecting the same ensemble of neural networks to a Monte
Carlo simulation with random initialization of the states,
Fig. 10 show that constraints are satisfied for these cases as
well. The time taken for all these cases is well within 1000
sec. This is far shorter than that from [4], as the need for a
lengthy online learning phase has been shifted offline in our
approach.

B. Approach 2: NN-NL-RG

As this is a regulation case study, we initially used the
method as described in Section IV-B to generate the dataset.
The same bounds, as described previously, are used for the
random sampling of . We note that such a dataset used for
training yield poorly trained neural networks. This is due to
a large portion of the vy_; and vy values being zeros, as
r is always zero for all times. As such, a modification is
made to address this issue. For the ARPOD case study, vy
is a desired value of dyi,. To enhance the dataset quality,
we change the input feature vi_1 to vg_1 — dyx_1, i.e., the
tracking error along the dy coordinate, and the target feature
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Fig. 9. NN-DTC performance evaluation for thrust constraint, showing the
best trial result out of 10 trials for the neural networks designed with either
1 or 2 hidden layers and varying number of neurons.
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Fig. 10. NN-DTC Monte Carlo simulations.

v to vE — Oyi. This mitigates the issue of large portions of
zeros for both vi_1 and vy values, and significantly improved
neural networks training performance. Therefore, to reiterate,
the input features are now (xy,vi—1 — 0yk—1) pairs, and the
target feature is vy, — dyy. Unlike NN-DTC, using NN-NL-RG
requires only one neural network to enforce all 3 constraints
in the ARPOD case study.

Neural networks are trained with different dataset sizes,
where N = 5000, 10000 or 20000. For sake of brevity, we
based the analysis on just NNy /19 and NNy /4o, and illustrate
the impact of different N on thrust constraint. Fig. 11 shows
that for N = 5000 or 10000, constraint violations occur for
majority of the 9 cases; having 2 hidden layers did not improve
neural network’s performance either. At N = 20000, the
neural networks trained are able to satisfy thrust constraint
requirement for all 9 cases. As such, N = 20000 dataset
is used for subsequent analysis. Furthermore, as the ARPOD
case study is a higher order nonlinear system, it is expected
that a larger dataset is required to produce well-trained neural
networks. However, the dataset size required for NN-NL-RG
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Fig. 11. Effect of dataset size, N, on NN-NL-RG performance

is still smaller than that for NN-DTC.

The performance of the NN-NL-RG is evaluated in Fig. 12
for the thrust constraint. The trend is similar for upcone and
dncone constraints and are hence omitted for conciseness. It
is remarkable that neural networks with 10 or 25 neurons per
layer could enforce all 3 constraints. Furthermore, although
one hidden layer shows constraint violations with 50 and 100
neurons per layer, this is resolved with 2 hidden layers. As
such, these are all networks that can be used to build the
ensemble for robustifying the neural network performance.
Selecting 5 best performing networks, the regression neural
networks could also satisfy both thrust and cone constraints,
and have the chaser spacecraft successfully reaching the target
spacecraft for all 9 cases. Subjecting the same ensemble of
neural networks to the same Monte Carlo simulations applied
with NN-DTC previously, Fig. 13 shows that constraints are
satisfied for these cases as well. The computation time is also
significantly improved, as the NN-NL-RG only employs 5
networks while the NN-DTC requires 15 networks, 5 for each
of the 3 constraints.

This ARPOD case study shows that despite an increase in
state dimensions, from 2 in case study 1 to 6 here, the dataset
size required for training viable neural networks need not
increase exponentially. This is made possible through careful
selection of the parameters used as inputs, especially for NN-
NL-RG. NN-NL-RG also show that neural networks with two
hidden layers provide better solutions than just one hidden
layer, an architecture not often considered in previous works.

C. Processing Time

The ARPOD operation is then simulated with NN-DTC,
NN-NL-RG and the conventional NL-RG methods, and have
their processing times compared. All simulations were per-
formed for 300 time steps in MATLAB on a Dell XPS 13
laptop with INTEL core i7 and 16 GB memory. Simulations
with each of the above methods were run 10 times and
the averages were calculated, to eliminate possible effects
of background processes running on the computer. The NN-
DTC, NN-NL-RG and conventional NL-RG took 24.11sec,
9.02sec and 179.99sec respectively. The conventional NL-
RG is significantly slower as at each time step, the plant
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Fig. 12. NN-NL-RG performance evaluation for thrust constraint.
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was simulated over the entire 300s while implementing the
bisectional search algorithm. However, both proposed methods
are almost an order of magnitude faster than the conventional
NL-RG. Furthermore, NN-NL-RG is almost 3 times faster
than NN-DTC, as NN-NL-RG directly predicts v using a
single neural network, while NN-DTC is implemented with 3
separate neural networks for each constraint to approximate
the MAS, and then solve a minimization problem.

VI. CONCLUSIONS

This paper considered alternative approaches to learning
reference governor-based solutions to enforcing constraints in
nonlinear systems. We first showed the limitations of a classi-
fication neural network approach to the MAS approximation.
To overcome that, we presented two alternative approaches,
both relying on regression neural networks. The first approach,
termed NN-DTC, uses neural networks to approximate the
distance to constraints. The second approach, termed NN-NL-
RG, uses neural networks to approximate the input-output
map of the NL-RG. The dataset size required for training
of NN-NL-RG is generally smaller than for the NN-DTC

approach. There is also no need to train neural networks
for each constraint with NN-NL-RG, hence NN-NL-RG has
a lower computational footprint than NN-DTC for a system
with multiple constraints. While constraints can be aggregated,
typically a more complex neural network will still be needed
with NN-DTC. Both approaches have been examined in two
case studies: a nonlinear second order system with a finite
escape time, and a spacecraft ARPOD mission. Satisfactory
solutions have been obtained with both approaches. Future
work will address additional constraints in ARPOD missions
and the use of alternative, more advanced neural network
architectures. Comparing the proposed methods with other
machine learning models, and testing the proposed methods
on public datasets for dynamical systems with constraints, will
also be studied.
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