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Abstract—A periodic Model Predictive Control scheme is
proposed for tracking halo orbits. The problem is formulated and
solved in the elliptic restricted three-body problem setting. The
reference trajectory to be tracked is designed by using eccentric-
ity continuation techniques. The model predictive control design
exploits the periodicity of the tracking model and guarantees
exponential stability of the linearized closed-loop system, through
a suitable choice of the terminal set and weight matrices. A
sum-of-norms cost function is adopted to promote fuel saving.
The proposed control scheme is validated on two simulated
missions in the Earth-Moon system, which, respectively, involve
station keeping on a halo orbit near L1 Lagrange point and
rendezvous to a halo orbit near the L2 Lagrange point. Results
illustrate the advantage of designing the reference trajectory
and the periodic control directly in the elliptic restricted three
body problem setting versus approximate solutions based on the
circular restricted three-body problem.

I. INTRODUCTION

Low-thrust station-keeping and orbital rendezvous in cis-
lunar space play a key role for long-term solar system ex-
ploration missions as well as lunar landing [1]. In particular,
parking orbits in the lunar vicinity are receiving increasing
attention from several space agencies [2]. Near Rectilinear
Halo Orbits (NRHOs) are limit cycles typically found close
to Lagrange points in the three-body problem of orbital
mechanics. Thanks to their properties, halo orbits near L1 and
L2 Lagrange points in the Earth-Moon system are deemed
promising candidates for parking orbits in cis-lunar space
missions. In particular, they benefit from the existence of
low-energy transfer orbits [3] and they provide a convenient
intermediate position between Earth orbits and distant retro-
grade orbits around the Moon. Moreover, NRHOs possess
favorable resonance features that are particularly useful to
avoid eclipses, thus permitting both an unobstructed view of
both the Earth and the Moon as well as communications
with the Earth [4], [5]. Despite their interesting properties,
spacecraft dynamics on NRHOs are strongly nonlinear and
sensitive to perturbations. For this reason, trajectory planning
and control on NRHOs become challenging tasks.
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Email: {quartullo,garulli}@diism.unisi.it

I. Kolmanovsky is with the Department of Aerospace Engineering, Univer-
sity of Michigan, Ann Arbor, MI 48109 USA. E-mail: ilya@umich.edu

Long-term station-keeping and trajectory design in the
Circular Restricted Three-Body Problem (CR3BP) have been
extensively treated in the literature (see [6] and references
therein). The CR3BP describes the motion of a satellite
attracted by the gravitation of two massive bodies orbiting their
centre of mass on circular orbits and maintaining a constant
distance between them during the motion. Choosing a rotating
reference frame that keeps the position of the primaries fixed,
the dynamics is represented by a set of autonomous ordinary
differential equations, i.e. a time-invariant model; such a model
has been extensively employed for station keeping [7]–[9] low-
thrust trajectory design [10], [11], formation flight [12] and
other applications.

However, the lunar orbit around the Earth is elliptic with
a non negligible eccentricity (' 0.055). For this reason, the
CR3BP represents only an approximation of the three-body
problem for the Earth-Moon system. The Elliptic Restricted
Three-Body Problem (ER3BP) takes into account the eccen-
tricity of the orbit of the primaries, and it is, therefore, a more
accurate model than the CR3BP. On the other hand, the time-
varying distance between the primaries render the equations of
motion non-autonomous; thus the model is periodically time-
variant. Furthermore, the generation of a reference halo orbit
to be tracked becomes more involved. A number of methods
have been developed for periodic orbit design in the ER3BP,
see e.g. [13]–[18]. Control problems in the ER3BP setting
have also been addressed [19], [20], although typically the
reference trajectory to be tracked is designed in the CR3BP
setting [21], [22].

In the last decade, Model Predictive Control (MPC) has
emerged as a promising technology for enhancing autonomy
of the flight control systems in space applications [23]. The
ability of MPC to handle state and input constraints and to
optimize suitable performance indexes has made this technique
attractive, especially for low-thrust operations and proximity
maneuvers, see, e.g., [24]–[28]. Most popular MPC schemes
are based on the minimization of a cost function which is
quadratic in both state and input vectors. However, it has
been observed that the use of alternative performance indexes
may be convenient to achieve specific control requirements. In
particular, sum-of-norms cost functions have been recognized
to provide desirable properties in terms of control sparsity and
fuel saving [27], [29], [30]. MPC can also be adapted to deal
with inherently periodic systems or to track periodic references
(see, e.g., [31]–[33] and references therein). In [34], an MPC
strategy has been derived for periodic systems involving a
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sum-of-norms objective function. In this paper, periodic MPC
solutions based on the sum-of-norms objective function are
derived for tracking halo orbits.

In recent years, several MPC schemes have been proposed
for problems involving halo orbits. The use of linear MPC
for station keeping while tracking a halo orbit was considered
in [35]. Nonlinear MPC is adopted in [36] for halo orbits in
the Sun-Earth CR3BP. In [37], a quadratic MPC approach is
proposed to stabilize a multirevolution halo orbit in the elliptic
Sun-Mercury model. The problem is formulated directly in
the ER3BP setting, but the periodicity of the model is not
directly exploited and stability of the control scheme is not dis-
cussed. A chance constrained MPC for spacecraft rendezvous
in NRHO has been proposed in [38], to ensure robustness
with respect to probabilistic disturbances. In [39], a nonlinear
continuous-time control law is coupled with a sampled-data
MPC to perform station keeping of quasi-halo orbits near L2.
The reference model is that of the CR3BP and the effect of
eccentricity is treated as a disturbance.

In this paper, a constrained stabilizing control law for
halo orbit tracking in the ER3BP is presented. By exploiting
periodicity of the ER3BP model, a periodic MPC controller
based on the application of the methodology proposed in
[34] is developed to control a spacecraft involved in cis-
lunar space missions. The novelty of the contribution with
respect to the literature is twofold. Firstly, the control design
problem is formulated as a periodic MPC with a sum-of-norms
objective function, instead of the usually employed quadratic
performance index. The control input is computed via con-
vex optimization. The second key feature of the proposed
approach is that the reference halo orbit is generated directly
in the ER3BP setting via eccentricity continuation techniques
[15], [17]. The resulting control scheme is validated on two
simulated space missions, by employing a high-fidelity model
based on nonlinear ER3BP spacecraft dynamics, affected by
several disturbance sources, such as localization errors, thrust
imperfections and fourth body perturbation. Simulation results
demonstrate the potential for successful application of the pe-
riodic MPC control scheme to station keeping and rendezvous
on NRHOs. In particular, it is shown that formulating and solv-
ing the orbit tracking problem directly in the ER3BP setting
leads to a remarkable reduction of control effort, and thus fuel
consumption, with respect to tracking a halo orbit designed
under the CR3BP assumption. Moreover, a comparison with a
classical quadratic MPC controller is presented, showing the
advantages of adopting a sum-of-norms cost function in terms
of more accurate tracking of the halo orbit in presence of
perturbations.

The paper is organized as follows. In Section II, a de-
scription of the ER3BP equations is provided and a model
suitable for the considered orbit tracking problem is described.
The control problem and the proposed MPC are presented in
Section III. Section IV details the generation of the periodic
orbit in ER3BP used as reference trajectory. The validation
of the proposed method through numerical simulations is
reported in Section V. Section VI contains some concluding
remarks.

II. DYNAMIC MODEL

The general restricted three-body problem describes the
motion of a body with negligible mass m3, under the grav-
itation attraction of two massive bodies m1 and m2 (with
m1 > m2 � m3), namely the primaries, whose mass ratio
is defined as ρ = m2/(m1 + m2). In the elliptic restricted
three-body problem the primaries move on elliptic orbits, with
eccentricity e and semi-major axis a, around their centre of
mass, according to Kepler’s law. In this paper, the particle
represents a controlled satellite and the primaries are the Earth
and the Moon.
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Fig. 1. Primaries rotating frame with respect to ECI frame. Vectors r1 and
r2 are defined in Appendix A.

The motion of the satellite is described in a rotating frame
centered in the Earth-Moon center of gravity, where the
position of the primaries is fixed on the x-axis (also known as
syzygy-axis), the z-axis is normal to the Earth-Moon orbital
plane, i.e., in direction of their angular momentum, and y-axis
completes a right-handed triad. In this frame, the distances
are instantaneously normalized, i.e. divided, by the primaries
separating distance, which changes with the small primary true
anomaly θ as

d(θ) =
p

1 + e cos θ
, (1)

where p = a(1 − e2) is the semi-parameter of the primaries
orbit. In this way, the position of the bodies is expressed
in non-dimensional units, the distance between Earth and
Moon is equal to 1 and their coordinates are (−ρ, 0, 0) and
(1 − ρ, 0, 0), respectively. Since the normalization factor is
not constant, the frame is also called pulsating [40].

Let r = [x, y, z]
T be the non-dimensional satellite position

in the described rotating and pulsating frame. Its dynamics are
then described by the following system of ordinary differential
equations, where the independent variable is the true anomaly
of the primaries θ:

x′′ − 2y′ =
1

1 + e cos θ

∂Ω

∂x
+ ūx

y′′ + 2x′ =
1

1 + e cos θ

∂Ω

∂y
+ ūy

z′′ + z =
1

1 + e cos θ

∂Ω

∂z
+ ūz

(2)
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In (2), ( )′ indicates the differentiation with respect to θ,

(3)
Ω(x, y, z) =

1

2
(x2 + y2 + z2) +

1− ρ√
(x+ ρ)2 + y2 + z2

+
ρ√

(x+ ρ− 1)2 + y2 + z2
+

1

2
ρ(1− ρ)

is the pseudo-potential, and ūx, ūy and ūz are the non-
dimensional forcing accelerations. For completeness and in
order to elucidate the definition and meaning of scaled inputs,
we include the derivation of equations (2) in Appendix A.
Fig. 1 depicts the rotating and pulsating frame with respect to
an Earth Centered Inertial (ECI) frame.

Let ξ = [x, y, z, x′, y′, z′]
T be the state vector collecting

the non-dimensional position and velocity components of the
satellite and ū = [ūx, ūy, ūz]

T be the control input vector. In
this notation, system (2) can be written as

ξ′ = f(ξ, θ) + B̄ū (4)

with

B̄ =

[
03×3
13×3

]
.

As shown in Appendix A, the non-dimensional acceleration ū
is related to the actual (dimensional) acceleration exerted by
the propulsion system ud by the equation

ū =
d(θ)3

h2
ud. (5)

where h =
√
G(m1 +m2)p is the magnitude of the angular

momentum of the primaries and G is the universal gravita-
tional constant. Note that the control law needs to ultimately
govern the physical acceleration of the satellite; hence we
define

u =
p3

h2
ud (6)

and B(θ) = 1
(1+e cos θ)3 B̄, so that (4) becomes

ξ′ = f(ξ, θ) + B(θ)u. (7)

Since the right hand-side of system (7) is periodic in θ with
period T = 2π, (7) is a non-linear periodic system.

III. PERIODIC MODEL PREDICTIVE CONTROL

In this paper, the control objective is to track a reference
trajectory, representing a close periodic orbit, within the family
of halo orbits [4]. In the following, a solution relying on
the receding horizon periodic MPC [34] is developed. Before
presenting the results, the following definition is given.

Definition 1: For given N ∈ N, a matrix sequence Mk is
termed N -periodic if it satisfies Mk = Mk+N , ∀k ∈ N.

Let ξr be an uncontrolled reference trajectory, obtained as
an unforced solution of (7), so that

ξr
′

= f(ξr, θ). (8)

By linearizing system (7) around ξr, one obtains a linear time-
varying system

x′ = A(θ)x+ B(θ)u, (9)

where x = ξ− ξr represents the deviation from the reference
trajectory,

A(θ) =

[
03×3 I3×3

A21(θ) 2J

]
, J =

 0 1 0
−1 0 0
0 0 0


and

A21(θ) =
∂2Ω

∂r2

∣∣∣∣
rr(θ)

.

In order to design a digital control scheme, system (9) is
ZOH-discretized with sampling interval θs. Thus the resulting
periodic discrete-time linear system has the form

x(k + 1) = Ak x(k) + Bk u(k), (10)

where k ∈ N and the matrix sequences Ak ∈ Rn×n and Bk ∈
Rn×m are N−periodic with period N = T/θs. The use of a
linearized model for control design has a twofold motivation.
On one hand, typical halo orbit missions involve transfer to a
neighborhood of the desired reference orbit, at which point the
controller is engaged to stay on the halo orbit itself. In such
a scenario, a linearized model provides a sufficiently accurate
representation of the dynamics for such a controller. Moreover,
the use of (10) as a prediction model allows one to formulate a
computationally feasible MPC problem, which can be solved
by standard convex optimization tools.

In this work, in the controller design phase, we assume that a
reliable state estimate is available at each time instant k from a
localization system. This assumption is in line with the current
state of art, see e.g. [41], [42], while measurement noise will
be considered during closed-loop simulations. Moreover, in
order to meet recent mission technology requirements, the
satellite is assumed to be equipped with a single electric
propulsion system. In particular, maneuvering is achieved by
firing a single thruster and steering the thrust vector via attitude
control. Therefore, constraints on the maximum deliverable
thrust can be modeled as ||u(k)||≤ 1 (a more general input
constraint ‖u(k)‖≤ umax can be recast as ‖u(k)‖≤ 1 by
scaling equation (10) by umax). In this paper, the attitude
control problem is not addressed, thus the orientation of
the thruster is assumed to be accurately realized during the
design, while thrust errors will be considered during closed-
loop simulations. This is a reasonable assumption in practice,
because the attitude control authority has typically a much
higher bandwidth than the translational one [43].

Let us consider the following optimization problem:

min
Ûk

Jk(Ûk)

s.t. x̂k(0) = x(k)

x̂k(j + 1) = Ak+j x̂k(j) + Bk+j ûk(j)

‖ûk(j)‖≤ 1 j = 0 . . . H − 1

x̂k(H)TSk+H x̂k(H) ≤ 1,

(11)

where H is a given time horizon length, x̂k(j) denotes the
predicted state j steps ahead of k and the decision variables
are the elements of the control sequence

Ûk = {ûk(0), . . . , ûk(H − 1)}. (12)
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The objective function J(Ûk) is chosen as

Jk(Ûk) =

H−1∑
j=0

{
‖Q x̂k(j)‖+‖ûk(j)‖

}
+ ‖Wk+H x̂k(H)‖,

(13)
in which Q is a full-rank matrix, while Wk+H and Sk+H are
full-rank matrices belonging to N−periodic sequences Wk

and Sk = STk , respectively. Matrix Q can be adjusted to trade-
off tracking performance and fuel consumption. The proposed
MPC design is based on the solution, at each time instant
k ∈ N, of problem (11). Then, as is common in the receding
horizon control, the first element of the optimal solution

Û∗k = {û∗k(0), . . . , û∗k(H − 1)} (14)

is applied to the system, i.e.,

u(k) = û∗k(0). (15)

Note that problem (11) is a second order cone program
(SOCP), thus its solution is computationally affordable with
convex optimization tools [44].

It is worth stressing that the proposed MPC scheme is
characterized by the cost (13), which is different from standard
quadratic performance indexes, being instead a sum-of-norms
of states and inputs. It has been observed that this choice
is useful to promote control sparsity and fuel saving (see,
e.g., [27], [29], [30]). Sum-of-norms MPC schemes have
been studied for both time-invariant and periodic time-varying
systems [30], [34]. Hereafter, their main theoretical properties
are briefly recalled.

In order to ensure closed-loop stability of system (10) with
the control law (11)-(15), it is crucial to suitably design the
terminal set and the terminal cost, defined respectively by
the N -periodic matrix sequences Sk and Wk. Due to the
structure of matrices Ak and Bk, system (10) is stabilizable
via N−periodic linear feedback. Hence, consider an auxiliary
asymptotically stabilizing control law

u(k) = −Kk x(k), (16)

where the feedback gain Kk ∈ Rm×n is N−periodic and
can be computed, for instance, by solving a periodic Riccati
equation [45]. The resulting closed-loop system is given by

x(k + 1) = (Ak −BkKk)x(k) = Acl
k x(k), (17)

which is clearly N−periodic. The following results estab-
lish the desired theoretical properties of the proposed MPC
scheme.

Proposition 1: Let Sk = STk ∈ Rn×n be a N -periodic
matrix sequence such that it is the solution of the following
set of periodic Linear Matrix Inequalities (LMIs)

Sk > 0

(Acl
k )TSk+1A

cl
k − Sk < 0

Sk ≥ KT
kKk

(18)

for k = 0, 1, . . . , N . Then, if problem (11) is feasible at time
k0, then it is also feasible for all k > k0.

Proof: See [34].

Proposition 2: Let Yk be a N -periodic matrix sequence
such that YT

k Yk is a solution to the periodic Lyapunov
equation

(Acl
k )TYT

k+1Yk+1A
cl
k −YT

k Yk + (‖Q‖+‖Kk‖)Dk = 0,
(19)

where Dk is a given N−periodic positive definite symmetric
matrix sequence. Define

Wk =

(
min

i∈{0,...,N−1}

λm(Di)

‖Yi+1Acl
i ‖+‖Yi‖

)−1
·Yk, (20)

where λm(Di) denotes the minimum eigenvalue of the matrix
Di. Then the proposed MPC scheme (11)-(15) with Sk
computed as in Proposition 1 and Wk chosen as in (20),
renders the origin of system (10) exponentially stable.

Proof: See [34].
Proposition 1 provides a periodic matrix sequence Sk ensuring
that problem (11) is recursively feasible. Note that in (18) the
constraint S0 = SN is implicit from Definition 1. On the
other hand, Proposition 2 selects the periodic matrix sequence
Wk in such a way that the cost Jk decreases over time,
thus guaranteeing closed-loop stability. Matrix Dk in (19) is
a further degree of freedom, which can be used as a tuning
parameter of the control design procedure.

IV. REFERENCE TRAJECTORY GENERATION

In order to generate the reference trajectory ξr, one has
to find a solution of the ER3BP (8). Due to the time-
variance of the problem, generating a periodic orbit in the
ER3BP involves more complications than in the CR3BP. The
distance between the primaries changes accordingly to their
true anomaly, thus Lagrange points have no fixed positions.
This yields an asymmetry of the problem. For this reason,
halo orbit generation in the ER3BP is more involved than
in CR3BP. Furthermore, in CR3BP an orbit can achieve a
period which is uncorrelated to the primaries periodicity. In
ER3BP this is, in general, not possible, since the right hand
side of equation (2) is periodic with period 2π. On the other
hand, designing the reference trajectory in the ER3BP leads
to significant improvements in the control performance, with
respect to trajectories designed in the CR3BP, as it will be
shown in Section V.

In this work, reference periodic halo orbits in the ER3BP are
generated starting from halo orbits in the CR3BP, through dif-
ferential corrections and eccentricity continuation techniques,
similar to [15], [17]. Let MS be the number of the satellite
revolutions around a Lagrange point and MP the number of
primaries revolutions around their barycenter. The objective
is to generate an orbit with a resonance ratio MS : MP .
By exploiting the mirror theorem [46], a periodic orbit with
period TC = 2MP

MS
π is generated in the CR3BP through a

single-shooting algorithm, see e.g. [47]. In particular, the latter
provides the initial condition ξrc(0) = [x0, 0, z0, 0, y′0, 0]

T

such that, integrating system (2) with e = 0, a perpendicular
and symmetric crossing of the normal plane occurs after half
of the period. At this point it is sufficient to propagate the
half orbit forward for the remaining half period to have the
full periodic solution ξrc .
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To generate a periodic solution in the ER3BP, the rationale is
similar, i.e. the objective is to find a vector of initial conditions
such that, integrating the unforced version of system (2), the
resulting trajectory is a closed periodic orbit. A sufficient
condition for this is stated in [15]: for an orbit to be periodic
in the ER3BP, it is sufficient that it has two perpendicular
crossing with either the normal plane or the syzygy-axis, or
both of them, when the primaries are at the apse-line.

Let χ0 = [x0, z0, y
′
0]
T be the vector of the free variables

at θ = θ0, i.e., when the Moon is either at the periapsis
(θ0 = 0) or at apoapsis (θ0 = π). The remaining three
variables are equal to zero, in order to ensure the first
perpendicular crossing of the normal plane. According to the
periodicity criterion, the second crossing has been imposed at
θ = θ0 + π. This means that, after the integration of (2) for
θ ∈ [θ0, θ0 + π], the final state must satisfy the condition
Te(χ0) = [yπ(χ0), x′π(χ0), z′π(χ0)]

T
= 0. At this point

it is sufficient to propagate the half trajectory forward to
θ = θ0 + 2MPπ to obtain the full periodic solution. In this
way all obtained periodic trajectories are MS : MP resonant
orbits in the ER3BP with period T = 2MPπ = MSTC , i.e.
an integer multiple of the primaries periodicity.

The condition Te(χ0) = 0 can be enforced by using
numerical root finding techniques. However, the reliability and
quality of the solution are often dependent on the initialization
of the solver. In other words, using directly ξrc as initial
guess in the ER3BP with the actual Earth-Moon eccentricity
usually does not produce acceptable results. For this reason,
this problem is tackled iteratively with the eccentricity used as
continuation parameter. The eccentricity is gradually increased
with a fixed small step δe until the actual primaries eccentricity
e is achieved. At each iteration j a periodic orbit is generated
in the ER3BP through the described procedure with the current
eccentricity ej ∈ {0, δe, 2δe . . . , e} using the orbit computed
at iteration j− 1 as initial guess for the solver. The procedure
is outlined in Algorithm 1.

Algorithm 1 Periodic orbit generation with continuation in
ER3BP.

Inputs: e = desired eccentricity, δe = step size
Initialize: e0 ← 0, ξre0 ← ξrc
Set M =

e

δe
for j = 1, . . ., M do

ej ← ej−1 + δe
Find χ?0: Tej (χ?0) = 0 using ξrej−1

as initial guess
Compute ξrej integrating (8) with initial condition χ?0

end for
return ξre ← ξreM

V. NUMERICAL RESULTS

In this section, the performance of the proposed MPC
scheme is evaluated through numerical simulations.

A. Simulation model and control design
The proposed Sum-of-Norms MPC scheme, herafter re-

ferred as SoN-MPC, has been tested on a high-fidelity non-
linear model, including several sources of uncertainty. The

nonlinear ER3BP dynamics (2)-(3) has been corrupted by
measurement noise, thruster imperfections and fourth body
perturbation. In particular, position and velocity measurements
provided by the localization module are affected by additive
noise with standard deviations σr = 10 km and σv = 0.1 m/s,
respectively. These values are in the same order as those con-
sidered in [41]. In order to account for thruster imperfections,
an input disturbance with standard deviation σu = 10−7 m/s2,
corresponding to 1 mN, is considered. Moreover, the missions
are simulated under solar gravity perturbation. Despite its long
distance to the Earth-Moon system, the Sun represents the
most perturbing fourth body for the three-body problem. Its
huge mass yields an additional acceleration term in the ER3BP
model, whose derivation is detailed in Appendix B.

As far as the reference mission is concerned, the primaries
orbit features are summarized in Table I.

TABLE I
PRIMARIES CONSTANTS

Earth mass m1 = 5.972 · 1024 Kg
Moon mass m2 = 7.342 · 1022 Kg
Mass ratio ρ = 0.0121
Universal gravitational const. G = 6.6743 · 1011 m3kg−1s−2

Eccentricity e = 0.0550
Semi-major axis a = 384399 Km
Parameter p = 383240 Km
Angular momentum h = 3.9323 · 1011 m2/s

A servicing satellite with mass m3 = 10000 kg is assumed
to be equipped with a fixed electric thruster capable of exerting
a maximum force of 1 N, resulting in a maximum acceleration
of 10−4 m/s2. According to the values in Table I, the maximum
adimensional acceleration, scaled as in (6), is umax = 0.0364.
The primaries orbit is sampled assuming the sampling interval
θs = 0.0491 rad, corresponding to N = 128 samples.

The SoN-MPC scheme (11)-(15) is applied with a horizon
H = N , corresponding to one orbit of the primaries. This
choice of the prediction horizon is motivated by the fact that
low-thrust propulsion systems involve low control authority,
thus problem (11) may be infeasible for shorter horizons.
Moreover, halo orbits are typically characterized by highly
unstable regions [4]. Therefore, it is appropriate to include the
whole orbit period in the predicted dynamics, so as to prevent
too aggressive control actions. Nevertheless, despite the long
prediction horizon, sufficient time to solve problem (11) is
available, thanks to the large sampling time (in the order of
hours).

The design of the control input is performed according to
Propositions 1 and 2. The gain matrix Kk in (16) is chosen as
the solution to the standard periodic LQR problem [45], with
state weighting matrix QTQ, with Q used in the cost (13), and
input weighting equal to the identity matrix. Matrices Sk+H
and Wk+H are chosen as in (18) and (19)-(20), respectively,
with the matrix Dk equal to the identity matrix for all k.
The LMI problem (18) is solved by using CVX [48] and
the commercial solver Mosek, capable to tackle semi-definite
conic programming. Its solution required about 3 s on a
standard laptop. However, note that the solution of (18) can
be computed offline, therefore its computational burden is not
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a key issue. The solution of the MPC problem (11) is carried
out by using CVX and the commercial solver Gurobi. A single
MPC problem instance is composed by m(H − 1) + nH
optimization variables (corresponding to 1149 variables in our
case study) and the computing time for its solution is in the
order of 0.5 s.

To solve the reference orbit generation problem, i.e., to
implement Algorithm 1, we iteratively invoked the built-
in MATLAB function fsolve, which numerically finds the
solution relying on Newton’s method for each eccentricity step
δe = 0.001. Examples of the generated reference trajectories
are reported in Figs. 2 and 7. Note that the resulting revolutions
of the third body are not overlapping, oppositely to what
observed in the CR3BP. This is in line with the fact that in
the ER3BP it is not possible to achieve periodicities which are
not integer multiples of 2π.

Under the above conditions, two space mission scenarios
are simulated:

a) Station-Keeping: the operating satellite is required to
actively track a halo orbit around the collinear Lagrange
point L1 with a 3:1 resonance ratio.

b) Orbital Rendezvous: The servicing satellite has to ap-
proach an unperturbed reference point, assumed to lie
on a halo orbit around the L2 Lagrange point with a 2:1
resonance ratio.

B. Station-Keeping

In this first mission, the objective is to show the ability of
the SoN-MPC to keep the satellite on the reference trajectory,
which is the 3:1 halo orbit around the Lagrange point L1,
depicted in Fig. 2. Thus, the initial state is set as ξ(0) = ξr(0).
The state weighting matrix in cost function (13) is chosen
as Q = I6×6. In Fig. 3, the dimensional components of
the position and velocity errors between the satellite and
the reference are reported, while Fig. 4 shows the 2-norm

Fig. 2. 3:1 resonant halo orbit around L1 in the Earth-Moon system, used as
reference trajectory for the station-keeping mission, generated in the ER3BP,
compared to the trajectory generated in the CR3BP adopted as initial guess
for Algorithm 1. The axes are expressed in non-dimensional units.
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Fig. 3. Satellite dimensional position and velocity errors for the station-
keeping mission.
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Fig. 4. 2-norm of the dimensional input profile for the station-keeping
mission. The dashed line shows the upper bound on the input norm.

of the dimensional input profile. Note that the satellite is
able to accurately track the halo orbit, keeping the tracking
error bounded in a small range, in spite of all the considered
disturbances. The oscillatory behavior of the error is mainly
due to the fourth body perturbation (which rapidly leads to
divergence in absence of control, due to strong instability of
the halo reference trajectory [5]). Fig. 5 shows the trajectory
of the satellite in the inertial Earth centered frame. It can
be observed that the tracked halo orbit accomplishes three
revolutions around the Earth.

It is worth stressing the advantages of addressing the
station-keeping problem in the ER3BP setting, with respect
to adopting the CR3BP one, as usually done in the literature.
To this aim, the SoN-MPC approach has been applied to
maintain the reference trajectory generated from the CR3BP
model (i.e., the red curve in Fig. 2). The tests have been
performed on the same high-fidelity simulation model, with
CR3BP-specific linearized model used for prediction in (11).
Interesting results are obtained in regards to the fuel con-
sumption for the entire mission. First, it has been observed
that problem (11) turns out to be infeasible after few time
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Fig. 5. Satellite trajectory in the inertial Earth centered frame.
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Fig. 6. Comparison between the dimensional command profiles used for
tracking the orbit generated in the ER3BP and in the CR3BP. The dashed
line indicates the dimensional input bound.

steps, with the maximum thrust set to 1 N. Indeed, the small
control authority is not sufficient to compensate the difference
between the eccentricity assumed for the trajectory generation
and the one considered in the simulation. In order to assess
the control effort needed to compensate such a discrepancy,
the maximum deliverable thrust has been increased to 2 N,
for both scenarios. In Fig. 6, the comparison between the two
resulting command profiles is shown. A significant fuel saving
can be observed by tracking the trajectory generated for the
ER3BP. In fact, considering

∑
k||u(k)|| as a fuel consumption

indicator, tracking the trajectory designed in the ER3BP leads
to a 64% fuel consumption reduction. This corroborates the
benefits of designing periodic MPC scheme using the reference
orbit generated with the ER3BP model in low-thrust missions.

C. Rendezvous

In this scenario, the servicing satellite aim is to reach
another satellite already orbiting on a 2:1 halo orbit near
the L2 Lagrange point (shown in Fig. 7). The initial state
ξ(0) is picked from a Gaussian distribution with mean
ξr(0) + 1

d(0)

[
2 · 106, −1 · 106, 0.5 · 106, 0, 0, 0

]T
, which

corresponds to an initial separating distance of 2291.3 km.
The covariance matrix of ξ(0) is chosen to cover a variation
of 150 km on each initial position component and 1 m/s on
each initial velocity component. The state weighting matrix is
set to Q = blockdiag{5·I3×3, I3×3}. As a first experiment, the

Fig. 7. 2:1 resonant halo orbit around L2 in the Earth-Moon system, used
as reference trajectory for the rendezvous mission, generated in the ER3BP,
compared to the trajectory generated in the CR3BP adopted as initial guess
for Algorithm 1. The axis are expressed in adimensional units.
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Fig. 8. Distance and velocity errors during a rendezvous maneuver simulated
in the ER3BP model without disturbances.

SoN-MPC scheme has been tested on the ER3BP dynamics
with no disturbances. The result of a typical run is shown in
Fig. 8. It can be observed that the tracking error goes to zero
in finite time (approximately, 8 days). This is a typical feature
of MPC schemes adopting sum-of-norms cost functions, as
opposite to classical quadratic ones.

A Monte Carlo set of 100 simulations, in which the servic-
ing satellite starts at different random initial conditions, has
been performed on the high-fidelity simulator, including all
the disturbance sources. Fig. 9 shows the distance and velocity
errors during all the simulated maneuvers. It can be seen that
the rendezvous between the two satellites is always achieved
after about 12 days, corresponding to less than half a lunar
orbit. Moreover, the dispersion of the simulated trajectories
after the initial transient is negligible, confirming the inherent
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Fig. 9. Rendezvous mission: distance and velocity errors during all the
rendezvous maneuvers (light) with the mean error profile in solid line.

robustness of the adopted MPC scheme with respect to the
considered disturbances (fourth-body perturbation, thrust error,
measurement noise).

In order to assess the benefits of the sum-of-norms formu-
lation of the MPC problem, the performance of SoN-MPC
is compared to that of a periodic quadratic MPC (hereafter
referred to as Q-MPC). This amounts to solving problem (11)
with the following cost function

H−1∑
j=0

{
‖Qx̂k(j)‖2+‖ûk(j)‖2

}
+ x̂k(H)TΨk+H x̂k(H),

(21)
where the matrix sequence Ψk is the solution of the periodic
LQR [45]. The distance and velocity errors of the two ap-
proaches for one simulated maneuver are reported in Fig. 10,
while the time history of the norm of the corresponding input
acceleration vector is shown in Fig. 11. It can be observed that
SoN-MPC in superior in terms of tracking errors, while the
periodic Q-MPC is prone to oscillations, which are mainly
due to the fourth-body perturbation. The same behavior has
been observed for the 3:1 halo orbit considered in the station-
keeping maneuver of Section V-B.

To further evaluate the performance of the proposed ap-
proach, both SoN-MPC and Q-MPC have been tested with
a state weighting matrix Q = diag{q1 · I3×3, q2 · I3×3}, for
different values of q1 and q2. For each pair (q1, q2), a set of
50 simulations has been performed, with the same setting as
those in Fig. 9. The Root Mean Square Error (RMSE) of the
steady state distance error (from the 15th day on) is reported
in Table II. It can be seen that SoN-MPC yields much more
precise tracking for all the considered values of (q1, q2).

VI. CONCLUSIONS

A periodic MPC scheme has been developed for halo orbit
stabilization and tracking. Its ability to accurately track a peri-
odic orbit in the elliptic restricted three-body problem has been
demonstrated through numerical simulations which included
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Fig. 10. Distance and velocity errors of SoN-MPC and Q-MPC for the
rendezvous maneuver.
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Fig. 11. 2-norm of the dimensional acceleration input resulting from SoN-
MPC and Q-MPC. The dashed line shows the upper bound on the input norm.

several perturbation effects. Furthermore, the same control
scheme has been shown to successfully complete a simulated
rendezvous mission, thereby highlighting its applicability to
different low-thrust cis-lunar scenarios.

Possible developments of the proposed approach concern
the inclusion of state constraints dictated by mission re-
quirements and the adoption of offset-free scheme to reject
persistent disturbances such as the fourth body perturbation.
Alternative techniques for generating the reference trajectory
may also be considered, an example being the cooperative

TABLE II
RMSE INDEXES FOR DIFFERENT TUNING OF MATRIX Q

Tuning RMSE [km]

q1 q2 SoN-MPC Quadratic MPC

1 0.2 129.9 1342.9
5 1 73.2 406.7

15 3 60.7 226.7
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dual-task space framework [49]. Adaptation to system vari-
ations over time or to actuator faults are other subjects for
continuing research.

APPENDIX

A. ER3BP Model with Forcing Input

Let R = [X, Y, Z]
T be the dimensional position of the

third body in the rotational frame and Ṙ =
[
Ẋ, Ẏ , Ż

]T
its

time-derivative. Remember that dimensional position is related
to non-dimensional one as R = d(θ)r.

The coordinate system rotates at rate θ̇ about the z-axis,

so that the angular velocity vector is ω =
[
0, 0, θ̇

]T
and the

velocity vector can be written as

V = Ṙ + ω ×R =
[
Ẋ − θ̇Y, Ẏ + θ̇X, Ż

]T
(22)

The position of the spacecraft with respect to the primaries
can be expressed by R1 = [X + ρd, Y, Z]

T and R2 =
[X + (ρ− 1)d, Y, Z]

T .
Denoting the kinematic energy by K, the potential by U and

the Lagrangian by L, one obtains

K =
1

2
m3V·V =

1

2
m3

[(
Ẋ − θ̇Y

)2
+
(
Ẏ + θ̇X

)2
+ Ż2

]
,

(23)

(24)
U =

Gm3m1

||R1||
+
Gm3m2

||R2||

= Gm3(m1 +m2)

[
1− ρ
||R1||

+
ρ

||R2||

]
,

and
L = K − U . (25)

The forced Euler-Lagrange equations with the components of
the position vector R as the generalized coordinates, reads

d
dt

(
∂L
∂Ṙ

)
− ∂L
∂R

= m3ud. (26)

For the sake of brevity, let us derive only equation (26) for
the component X , that yields

Ẍ − θ̇2X − 2θ̇Ẏ − θ̈Y = − 1

m3

∂U
∂X

+ ud,x. (27)

In order to simplify (27), a transformation to the rotating
and pulsating frame defined in Section 2 is required. Such
transformation exploits the scaling in (1), a normalization of
the time by the characteristic time t? =

√
G(m1 +m2)/d(θ)

and then a transformation of time derivatives into derivatives
with respect to true anomaly, taking into account that

d( )

dt
=

d( )

dθ
dθ
dt

= ( )′θ̇, θ̇ =
h

d(θ)2
.

According to these considerations, the relationships between
the dimensional, time-dependent and the non-dimensional, true
anomaly-dependent velocities and accelerations are

Ẋ =
h

p
[(1 + e cos θ)x′ + e sin θx] , (28)

Ẍ =
h2

p3
(1 + e cos θ)2 [(1 + e cos θ)x′′ + e cos θx] . (29)

Then, substituting (28)-(29) in (27), one obtains

x′′ − 2y′ − 1

1 + e cos θ
x =

(1− ρ)(ρ+ x)

||r1||3

+
ρ(x− 1 + ρ)

||r2||3
+
d(θ)3

h2
ud,x,

(30)

where r1 =
√

(x+ ρ)2 + y2 + z2 and r2 =√
(x+ ρ− 1)2 + y2 + z2. Defining the pseudo-potential

as in (3) and scaling ūx as in (5), (30) can be rewritten as

x′′ − 2y′ =
1

1 + e cos θ

∂Ω

∂x
+ ūx, ūx =

d(θ)3

h2
ud,x, (31)

which is the first equation of (2). The other equations are
derived in the same way.

B. Fourth Body Perturbation

In [50], a characterization of the solar gravity acceleration
in the CR3BP has been given:

u4 =
∂Ω4

∂r
, Ω4 = ρ4

(
1

||r3,4||
− r3,4 · r4
||r4||

)
(32)

where ρ4 = m4/(m1 + m2) with m4 the mass of the
fourth body, i.e. the Sun. In (32), r3,4 is the satellite and
Sun separating vector and r4 is the (constant in magnitude)
non-dimensional Sun position with respect to the primaries
barycenter

r4 = ||r4||

 cos(−ω4t+ θ4,0)
sin(−ω4t+ θ4,0)

0

 (33)

where ω4 is the magnitude of the non-dimensional angular
velocity of the Sun as viewed in the Earth-Moon rotating frame
and θ4,0 is the initial Sun angular position. The angular veloc-
ity is computed as the difference between the non-dimensional
mean motion of the Sun in the inertial frame centred at the
Earth-Moon barycenter, that is, n4

√
(1 + ρ4)/||r4||3, and the

non-dimensional mean motion of the Earth-Moon system with
respect to the same observer, that is 1. The simulation model
adopted for the numerical results is the same as in (2) where
the modified pseudo-potential is Ω∗ = Ω + Ω4.
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