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Kinetic trapping of nanoparticles by solvent-
induced interactions†

Troy Singletary,a German Drazer, b Amy C. Marschilok, c,d,e,f

Esther S. Takeuchi, c,d,e,f Kenneth J. Takeuchi *c,d,e,f and

Carlos E. Colosqui *a,f

Theoretical analysis based on mean field theory indicates that solvent-induced interactions (i.e. structural

forces due to the rearrangement of wetting solvent molecules) not considered in DLVO theory can

induce the kinetic trapping of nanoparticles at finite nanoscale separations from a well-wetted surface,

under a range of ubiquitous physicochemical conditions for inorganic nanoparticles of common materials

(e.g., metal oxides) in water or simple molecular solvents. This work proposes a simple analytical model

that is applicable to arbitrary materials and simple solvents to determine the conditions for direct par-

ticle–surface contact or kinetic trapping at finite separations, by using experimentally measurable pro-

perties (e.g., Hamaker constants, interfacial free energies, and nanoparticle size) as input parameters.

Analytical predictions of the proposed model are verified by molecular dynamics simulations and numeri-

cal solution of the Smoluchowski diffusion equation.

Introduction

Predicting the conditions that would result in direct contact

and physical adhesion of nanoparticles to a solid surface in

liquid media is critical for numerous nanotechnology appli-

cations such as self-assembly of nanomaterials,1–5 membrane-

based separation and nanofiltration,6–8 colloidal

stabilization,9–12 and enhancing charge transfer at electrode–

electrolyte interfaces,13–17 among many others. Furthermore,

the physical adhesion of nanoparticles is an essential process

in the hetero- or homoaggregation of nanoparticles and its

better understanding is critical to develop accurate models for

the environmental fate and toxicity of nanomaterials that are

extensively used in industrial applications.18–20

The conventional analytical approach for modeling physical

adhesion and aggregation of nanoparticles in liquid media is

currently based on the classical Derjaguin–Landau–Verwey–

Overbeek (DLVO) theory, which considers van der Waals (vdW)

and electrostatic interactions by assuming a perfectly uniform

solid and liquid medium (e.g., constant number density and per-

mittivity in the solid and liquid media).21–23 However, at nano-

scale distances from a solid–liquid interface the wetting liquid is

strongly non-uniform and anisotropic with large spatial vari-

ations of the local number density and/or permittivity induced by

molecular-level structures (e.g., hydration or solvation shells) with

quasi-crystalline order, anisotropic dipole orientation, and hydro-

gen bond networks.24–27 The re-arrangement of these molecular

structures, and the corresponding changes in free energy, when

two wetted surfaces approach contact gives rise to so-called

solvent-induced interactions, of which the oscillatory structural

force and attractive/repulsive hydrophobic and hydrophilic forces

are among the most notorious examples.24,28–30 It is well estab-

lished that such a type of solvent-induced interactions not con-

sidered in DLVO theory can dominate the near-contact dynamics

of planar surfaces in liquid.23,31–33

DLVO theory with the conventional assumption of a per-

fectly uniform solid and liquid medium provides effective

analytical expressions to prevent nanoparticle contact and

aggregation from the empirical or theoretical knowledge of (1)

Hamaker constants A parameterizing vdW forces and (2) the

surface zeta potential ζ (or diffuse-layer potentials) to deter-

mine the Electric Double Layer (EDL) force at a given pH and

ionic strength I.34–37 Substantial limitations must be expected
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when considering solely DLVO interactions to predict the equi-

librium and dynamic conditions under which particle–surface

contact in liquid media is attained. At single-digit nanometer

separation between wetted surfaces, the change in free energy

can present multiple local minima and long-lived metastable

states induced by solvent-induced interactions that are not

considered in DLVO theory.23,38–41 Furthermore, it is well-

established that DLVO predictions alone cannot account for

the interfacial surface energy γ associated with the degree of

wettability of a surface and readily determined experimentally

from the reversible work W = −2γAc required to bring two

wetted surfaces into direct contact over a finite contact area Ac.

It is worth noting here that the solid–liquid interfacial surface

energy γ is negative in the case of wettable surfaces for which

liquid molecules reduce the free energy through contact with

the solid surface;42 the equilibrium contact angle for such sur-

faces is less than 90°. according to Young’s law.43–45

This work proposes a compact mean-field model that con-

siders solvent-induced interactions in order to accurately

predict physicochemical and dynamic conditions under which

nanoparticle contact and physical adhesion is attained or pre-

vented. The proposed model including solvent-induced inter-

actions predicts the kinetic trapping of nanoparticles at a

finite rage of distances from the liquid–solid interface for criti-

cally low values of the Hamaker constant (i.e., for critically

weak vdW attraction) or high values of the interfacial surface

energy (i.e., for wettable surfaces). To verify the modeling

assumptions and analytical predictions we perform numerical

solution of the time-dependent Smoluchowski diffusion

equation and molecular dynamics (MD) simulations for quasi-

spherical nanoparticles of sizes between 2 and 4 nm near

contact with a planar surface having well-controlled surface

energies. The proposed mean-field model, Smoluchowski

equation predictions, and MD simulations show good agree-

ment and document a critical role of solvent-induced inter-

actions by trapping nanoparticles at different metastable posi-

tions and controlling the time scales required to attain

thermodynamic equilibrium at the particle–surface contact

position.

Methods
Mean field theory

We will consider that the potential of mean force (PMF) U =

UDLVO + US for a nanoparticle in liquid media is composed of

two contributions: (i) UDLVO from conventional DLVO inter-

actions in perfectly homogeneous media and (ii) US from

solvent-induced interactions due to reconfiguration of the

molecular liquid structure. For a spherical nanoparticle of

radius R and a planar wall, the PMF U = U(d ) can be parame-

terized by the separation distance d between the particle–

liquid the wall–liquid interface located at the wall-normal coor-

dinate y = yw (see Fig. 1a). In this mean-field description for

which the particle–liquid and wall–liquid interfaces are sharp

(i.e., interfaces have zero thickness), particle–wall contact is

virtual and occurs at a zero-dimensional point for which d = 0.

We will consider that physical contact actually occurs over a

finite contact area Ac = πRc
2 defined by the effective contact

radius Rc, as illustrated in Fig. 1a.

Due to spatial oscillations of the PMF resulting from

solvent-induced interactions and the nanoscale interfacial

topography, stable physical adhesion can occur at a finite sep-

aration distance d0 for which U(d0) = min(U) is the global

energy minimum, as illustrated in Fig. 1b. The exact value of

the stable adhesion distance d0 is highly specific to the par-

ticular physicochemical conditions (e.g., surface energies mag-

nitude and sign, Hamaker constant and ionic strength) and

the molecular structure (e.g., crystalline lattice type) and nano-

scale topography of the nanoparticle and wall surfaces (e.g.,

particle shape and faceting, nanoscale surface roughness).

Metastable adhesion is expected at a finite set of distances dn
≃ d0 + nσ (n = 1, Nd) (see Fig. 1b) for which the PMF U(d ) has

local minima with a period comparable to the characteristic

liquid molecule diameter σ; such an energy profile is typically

produced by oscillatory structural forces.24,28,30,32,41

We will focus this analysis on the case of attractive particle–

wall vdW interactions (A ≥ 0) and wettable surfaces (γ < 0)

under near-contact conditions for which vdW forces dominate

over electrostatic EDL forces (i.e. ∂UvdW/∂d ≫ ∂UEDL/∂d ) and

thus UDLV0 ≃ −AR/(6d′), where the shifted distance d′ = d + σ/2

accounts for a finite-size repulsive core prescribed by the mole-

cular diameter. The studied conditions correspond to nano-

scale separation distances smaller than a critical value d* = (A/

kBT )
1/2 × (12πn0λD)

−1/2, where kB is the Boltzmann constant, T

is the system temperature, n0 is the ion number density in the

liquid bulk, and λD is the Debye screening length for the

corresponding ionic strength in an electroneutral system. For

reference, d* ≃ 3 to 9 nm for a Hamaker constant |A| = 5kBT

and a symmetric 1 : 1 electrolyte in aqueous solution at con-

centrations between n0 = 0.1 and 10 mM. We further consider

that the oscillatory structural force associated to molecular

layering is the dominant contribution from solvent-induced

interactions for the studied near-contact conditions (i.e., for d

≲ 10–15 σ).24,28,30,31,41

We therefore adopt the heuristic expression for plane

surfaces23,30,46 US = Uw exp(−d/σ)cos(2πd/σ) parameterized by

the “wetting” energy Uw = US(0) required to remove the liquid

separating the surfaces.

Potential of mean force

Considering DLVO and solvent-induced interactions for the

studied near-contact conditions, the nanoparticle PMF is

modeled as

UðdÞ ¼ � AR

6d′
þ Uwe

�d
σ cos

2πd

σ

� �

: ð1Þ

The functional form of the PMF in eqn (1) with multiple

local minima is illustrated in Fig. 1b. It is worth noting that

modeling solvent-induced interactions as a harmonic spatial

oscillation of period σ ceases to be a valid approximation for d
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≤ σ, i.e., at separations below one molecular diameter for

which the particle becomes partially inserted in the first sol-

vation layer (see Fig. 1b). Moreover, the separation for stable

contact does not necessarily correspond to the global

minimum predicted at d0 ≃ σ/2 by eqn (1) and is specific to the

nanoscale surface topography and interfacial surface energy

value, as discussed above.

To complete the PMF formulation in eqn (1) we consider that

the contact energy solely due to solvent-induced interactions,

Uw ¼ �2γπRc
2, is determined by the average interfacial energy

γ ¼ γ1 þ γ2ð Þ=2, where γi (i = 1, 2) are the interfacial energies of

the particle–liquid and wall–liquid interfaces. To estimate the

effective contact radius for a quasi-spherical nanoparticle we

propose the simple expression Rc ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð1� δ=RÞ2
q

with δ ≃

σ, so that the contact radius is determined from the area

removed from the first solvation layer when particle–wall contact

is attained (cf. Fig. 1a). The solid–liquid interfacial energy γi will

be treated as a material property determinable from experimental

measurements or analytical means for two plane surfaces. The

validity of the modeling assumptions leading to eqn (1) will be

assessed by comparison of theoretical predictions with MD simu-

lation results.

Metastable adhesion

The solvent-induced interactions considered in eqn (1)

produce multiple energy minima for a finite set of nearly peri-

odic distances dn ≃ d0 + nσ (cf. Fig. 1b) that satisfy the

condition

e�
dn
σ

dn

σ
þ 1

2

� �2

� jAj
γj jσ2 �

Rσ

24π2Rc
2

� �

: ð2Þ

The expression in eqn (2) uses the estimate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4π2
p

’ 2π.

Predictions from eqn (2) are reported in Fig. 1c for a range of

typical values of (attractive) Hamaker constants (A = 0, 10, and

20kBT ) and interfacial surface energy magnitudes (|γ| ≤

1.5kBT/σ
2) for a spherical nanoparticle of radius R = 2 and

20 nm. Metastable adhesion occurs at finite separations from

the wall for weak particle–wall attraction and/or large magni-

tude of the interfacial surface energies (cf. Fig. 1c). Substantial

deviations from Brownian diffusion and DLVO theory predic-

tions, with a significantly hindered contact dynamics, are

expected under conditions for which eqn (2) is satisfied and

multiple metastable states exist at finite separations dn from

the wall.

According to eqn (2), mestastable adhesion occurs for

Hamaker constant magnitudes smaller than a critical value

Am ¼ 67:3 γj jπRc
2σ=R, for which there is only a metastable state

at the closest local minima from the wall d1 = d0 + σ. For the

case of quasi-spherical particles of radius much larger than

the liquid molecule diameter R ≫ σ and with a finite contact

radius Rc ¼ R
ffiffiffiffiffiffiffiffiffiffiffi

2σ=R
p

(see Fig. 1a), eqn (2) predicts a (size-inde-

Fig. 1 Solvent-induced interactions and kinetic trapping. (a) Approach and contact of a spherical nanoparticle to plane wall immersed in liquid

characterized by the separation distance d ≥ 0. The finite contact radius Rc is prescribed by the characteristic atomic diameter σ. (b) The nanoparticle

PMF U = UDLVO + US modeled by eqn (1) (solid black line) has periodic minima at distances di (the red dashed line represents UDLVO). The stable

contact distance d0 and functional form of the PMF for d ≤ σ (dashed black line) is highly specific to the nanoscale interfacial topography and

physicochemical conditions. (c) Kinetic trapping and metastability conditions at discrete particle–wall separations for a nanoparticle of radius R =

2 nm & 20 nm, Hamaker constant A = 0, 10, & 20kBT, and interfacial energy magnitudes γj j � 1:5kBT=σ2. Gray shaded area: wall–particle separations

satisfying the metastability condition in eqn (2). Blue shaded area: wall–particle separations for which Γ+ ≥ Γi according to eqn (3), kinetic trapping

occurs at the outer boundary.
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pendent) Hamaker constant magnitude Am ’ 422:82 γj jσ2,
above which metastability is completely prevented and solely

considering DLVO interactions can describe accurately the

contact dynamics. This analysis thus predicts that exception-

ally large Hamaker constants, |A| > Am = 200–400kBT, are

required to prevent metastable adhesion for the case of con-

ventional hydrophilic surfaces in water for which γj j ¼
0:5� 1kBT=σ

2 (e.g., common metal oxides and polymer

surfaces).

Kinetic trapping

When the particle is near a metastable position dn with neigh-

boring maxima in the forward/backward directions (±) at d± =

dn ± σ/2 and thus |d − dn| ≤ σ/2, one can assume a probability

distribution p(d,t ) ∝ exp(−U/kBT ) that is approximately gov-

erned by a diffusion equation with constant translational diffu-

sivity D. Hence one can estimate the characteristic diffusive

times T±(dn) = kBT/(Dü±) × exp(ΔU±/kBT ) for crossing over the

forward/backward maxima; here, ü± ≡ ü(d±) is the PMF second-

order derivative at the corresponding neighboring maxima

and ΔU± = U(d±) − U(dn) are the energy barriers separating

neighboring metastable states in the forward/backward direc-

tions. At metastable separation distances dn, for which eqn (2)

is satisfied, the nanoparticle approach to the surface is

approximately described by a rate equation ḋ = σ × (Γ+ − Γ−)

with forward/backward rates Γ± = 1/T±.

The “kinetic” trapping of the particle will occur when Γ+ ≥

Γ− and the particle–wall separation d(t ) cannot be further

reduced by biased thermally activated transitions between

metastable states. The kinetic trapping thus occurs at the

farthest metastable separation dn = d0 + nσ for which

Uðdn � σ=2Þ � Uðdn þ σ=2Þ � kBT � 0: ð3Þ

Predictions from eqn (3) employing the PMF U(d ) modeled

in eqn (1) are reported in Fig. 1c, along with the conditions for

satisfying metastability (eqn (2)), for a range of conditions

commonly encountered for nanoparticles of conventional

metal oxides9,35,47,48 (e.g., Fe3O4, SiO2, TiO2) or polymeric

materials.49–51 For wettable substrates with γj j � kBT=σ
2, the

kinetic trapping can occur farther than four molecular layers

away from the wall (i.e., d ≃ 1 nm) (cf. Fig. 1c).

Critical conditions for contact

The model in eqn (1)–(3) can estimate the conditions for

which particle–wall contact is possible by considering the

nanoparticle shape and surface wettability. Particle–wall

contact requires avoiding kinetic trapping at the local minima

d1 = d0 + σ/2 closest to the wall, which according to eqn (3) is

expected for Hamaker constants above a critical value

Ac ¼ 0:465πRc
2 γj j � kBT

� �

� 22:5σ=Rð Þ; ð4Þ

prescribed by the particle radius, contact area, and interfacial

surface energies of the particle–liquid and wall–liquid inter-

faces. It is worth noting that eqn (4) provides conservative esti-

mates for the attractive vdW forces needed to attain contact by

solely considering translational motion normal to the wall.

Hence, according to eqn (4), a “large” quasi-spherical nano-

particle with R ≫ σ and Rc ’ R
ffiffiffiffiffiffiffiffiffiffiffi

2σ=R
p

will attain contact for

Hamaker constants larger than the critical value

Ac ¼ 65:7 γj jσ2. As noted in the previous section for the case of

hydrophilic surface and nanoparticle materials in aqueous

solution, particle–wall contact and stable physical adhesion at

d = d0 requires rather large Hamaker constants A ≳ 30–65kBT.

Additionally, eqn (4) predicts that contact and stable adhesion

can still be attained for vanishingly small DLVO interactions

with A ≃ 0, for sufficiently low magnitudes of the interfacial

surface energy γj j , 0:685kBT=Rc
2 (cf. Fig. 1c). For a

vanishingly small Hamaker constant A ≃ 0, contact areas Ac ≃

πσ
2 of molecular dimensions would be required to attain

particle–wall contact for a hydrophilic particle and/or wall

surface.

Results and discussion

To assess the validity of the proposed mean-field model in eqn

(1)–(4), we perform (1) numerical solution of the

Smoluchowski diffusion equation and (2) MD simulations for

the contact dynamics for quasi-spherical nanoparticles on a

planar wall with different interfacial surface energies. The

employed mesoscale and atomistic models report the time-

dependent rms distance, which enables direct verification of

analytical predictions for the kinetic trapping of nanoparticles

and contact conditions.

Smoluchowski diffusion equation

The mesoscale description of the contact dynamics is based

on the time-dependent probability density function p(y,t ) for

the center-of-mass position of the nanoparticle along the

y-direction normal to a plane wall located at y = yw (cf. Fig. 1a).

Assuming overdamped Brownian motion with uniform

thermal energy kBT, the evolution of the probability density

p(y,t ) is governed by the Smoluchowski diffusion equation

@

@t
p y; tð Þ ¼ @

@y
De

� U
kBT

@

@y
e

U
kBTp y; tð Þ

� �

; ð5Þ

where D is the nanoparticle translational diffusivity, and the

PMF U(d ) defined in eqn (1) is parameterized by the separ-

ation distance d = yw − R − y. eqn (5) is solved numerically for

0 ≤ y ≤ yw with zero-flux boundary conditions

@

@y
eU=kBTp y; tð Þ
h i

¼ 0 at y = 0 and y = yw. The nanoparticle diffu-

sivity D is estimated from the constant free-space diffusivity,

considering that hindrance to the contact dynamics is largely

caused by solvent-induced interactions rather than near-wall

hydrodynamic friction; the validity of this approximation is

examined by comparison with MD simulations.

For a nanoparticle of radius R with an initial center-of-mass

position y(0) = 0 we define the root-mean-square (rms) displa-
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cement normal to the wall yðtÞ ¼
Ð yw
0 pðy; tÞy2dy

	 
1=2
and thus

the rms separation distance

d̄ðtÞ ¼ yw � R� ȳðtÞ: ð6Þ

Far from the wall, where U(d ) ≃ 0, eqn (5) gives the conven-

tional expressions for free-space Brownian motion p(y,t ) =

(4πDt )−1/2 exp(−y2/(4Dt )) and eqn (6) gives d ¼ yw � R�
ffiffiffiffiffiffiffiffi

2Dt
p

.

We therefore define the diffusive time TD = (yw − R)2/(2D) as

a characteristic time scale for nanoparticle–wall contact.

Molecular dynamics

Atomistic simulations considering pairwise DLVO interactions

are instrumental to verify the predictions in eqn (1)–(3) based

on the PMF U(d ) formulated for considering solvent-induced

interactions. For this purpose we perform fully atomistic MD

simulations of the physical adhesion of a single quasi-spheri-

cal nanoparticle onto a plane wall fully immersed in a liquid

(see Fig. 2a) using the open-source package LAMMPS.52 Our

MD simulations employ standard 12–6 Lennard-Jones (L-J)

potentials modeling hard-core and vdW pairwise interactions

from which collective molecular-level interactions that control

nanoparticle adhesion, including solvation and oscillatory

structural forces and other solvent-induced interactions, arise

dynamically.53–55

As reported in Fig. 2a, the nanoparticle (p), plane wall (w),

and liquid solvent (l) are made of three different species

having the same atomic diameter σ and mass m. A quasi-

spherical nanoparticle of radius R = 3 & 6 σ (i.e., 2 & 4 nm dia-

meter) is carved out of a fcc lattice with uniform spacing Δx =

41/3σ and the plane wall is a “frozen” fcc lattice with the same

uniform spacing Δx (cf. Fig. 2a). The particle and wall number

densities np = nw = 1/σ3 are thus uniform and equal. The simu-

lation domain (see Fig. 2a) is a 3D periodic box fully filled with

the liquid and confined along the y-direction by the wall. The

average number density of the liquid is nl = 0.8/σ3. The pair-

wise L-J interactions between species are parameterized to

produce three different solid–liquid interfacial energies γ =

−0.23, −0.34, & −0.6kBT/σ
2 and three Hamaker constants A ≃

0, 5, 10kBT for the particle–wall vdW interaction in the model

liquid solvent. The MD force field parameterization and pro-

cedure to determine the interfacial surface energy is described

in detail in the ESI.†

To determine the rms separation distance d̄(t ) (eqn (6)) we

compute yrmsðtÞ ¼
P

N

i

yi
2=N

� �1=2

with N = 5 replicas of each

studied physical condition (cf. Fig. 2b) that are initialized with

different atomic positions and velocities producing a macro-

scopically quiescent liquid with the targeted system tempera-

ture T = 300 K. Each replica simulation (Fig. 2b) is initialized

with the nanoparticle at the center of the simulation domain

and run over a time interval Ts ≃ 5TD corresponding to nearly

5 diffusive times. While the simulation time is sufficiently

large so that the nanoparticle reaches within three atomic

layers from the wall in every simulation, adhesion at finite dis-

Fig. 2 Molecular dynamics simulations of nanoparticle contact. (a) Atomistic representation of the modeled quasi-spherical nanoparticle and solid

wall, and periodic simulation domain (Lx = 80σ, Ly = 42.5σ, Lz = 80σ) that is fully filled with liquid. The particle–wall distance d = yw − R − |y| to the

top/bottom walls located at y = ±yw is computed from the center-of-mass normal coordinate y(t ) reported by MD simulations. (b) Replica MD simu-

lations (colored lines) report different center-of-mass trajectories y(t ) for the same studied macroscopic initial condition and set of physical para-

meters. The cases reported correspond to R = 6σ, A = 15.8kBT, and γpl = γwl = −0.34kBT/σ
2.
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tance from the wall or contact (either at the top or bottom

side) are observed as probabilistic events (cf. Fig. 2b) with a

likelihood prescribed by the surface energies of the particle–

liquid (γpl) and wall–liquid (γwl) interfaces and the Hamaker

constant for particle–wall interactions.

Nanoparticle near-contact dynamics

Analytical predictions for the transition to metastable

dynamics (eqn (2)) and kinetic trapping at finite separations

dn > d0 (eqn (3)) are compared in Fig. 3 and 4 with the

Smoluchowski equation and MD simulation results for the

time-dependent rms separation from contact d̄ − d0. The

contact distance d0 = σ/2 ± 20% is determined from the MD

simulations for which direct particle–wall contact is observed.

The Smoluchowski equation with the PMF modeled in eqn (1)

and constant particle diffusivity, and MD simulation results

are in reasonably good agreement under the studied con-

ditions. Above the critical separation for metastability pre-

dicted by eqn (2) the rms particle–wall separation predicted for

pure Brownian motion with constant free-space diffusivity D is

in close agreement with the Smoluchowski equation and MD

simulations (cf. Fig. 3a and 4c).

The set of results in Fig. 3 correspond to the modeled

quasi-spherical nanoparticle of radius R = 6σ, with moderately

large Hamaker constants A = 7.9–23.7kBT and a set of nine

different conditions with weak-to-moderate particle–liquid

Fig. 3 Metastable contact dynamics and kinetic trapping. (a–f ) Time-dependent rms separation d̄(t ) − d0 from the contact position for a quasi-

spherical nanoparticle of radius R = 6σ, for three Hamaker constants A = 7.9, 15.8, & 23.7kBT and six different values of the average interfacial energy

magnitude γj j ¼ γpl þ γwl

�

�

�

�=2 = 0.23–0.6kBT/σ
2 (see figure labels) for nine different combinations of particle–liquid γpl and wall–liquid γwl interfacial

energies (see legends). MD simulation results (markers) are compared with numerical solutions of the Smoluchwoski equation (eqn (5)) and analytical

predictions for free-space Brownian motion (see legends). Grey shaded area: metastable dynamics region predicted by eqn (2). Blue shaded area:

region with Γ+ ≥ Γ− predicted by eqn (3) with kinetic trapping predicted at the region boundary.
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interfacial energies γpl = −0.6, −0.34, & −0.23kBT/σ
2 and wall–

liquid interfacial energies γwl = −0.6, −0.34, & −0.23kBT/σ
2. The

nine studied conditions are therefore characterized by only six

different values of the average interfacial energy magnitude

γj j ¼ γpl þ γwl

�

�

�

�

�

�=2 = 0.23–0.6kBT/σ
2 (cf. Fig. 3a–f ). The con-

ditions studied in Fig. 3 correspond to the case of an aqueous

solution at room temperature, and moderately hydrophilic

substrates with interfacial surface energies γ ≃ −37 to −10 mM

m−2 and (solid–water–air) Young contact angles θY ≃ 60–80°

that are reported for conventional metal oxide surfaces by

different experimental techniques.56–59 For the low interfacial

energy magnitudes γj j � 0:3kBT=σ
2, the nanoparticles are able

to eventually attain direct contact with the wall after crossing

the metastable dynamics region predicted by eqn (2) but they

do so at substantially longer times than predicted for pure

Brownian motion (cf. Fig. 3a–c). For critically large surface

energies (cf. Fig. 3d–i) the kinetic trapping of the nanoparticle

away from the wall is observed at the finite separations pre-

dicted by eqn (3), and reported in Fig. 1c, with metastable sep-

arations up to three liquid molecule diameters for the case of

moderately wettable surfaces with an average interfacial energy

γ ’ �kBT=σ
2.

To further asses the validity of the analytical predictions for

kinetic trapping and contact conditions in eqn (3) and (4), we

perform an additional set of MD simulations for which the

interfacial surface energy magnitude of the particle and wall

γj j ¼ γpl

�

�

�

�

�

� ¼ γwlj j = 0.34kBT/σ
2 remains constant (with a moder-

ate magnitude) as the Hamaker constant and nanoparticle

radius is varied. The case reported in Fig. 4a corresponds to

the condition modeled in Fig. 3d with a nanoparticle of radius

R = 6σ and γpl = γwl = −0.34kBT/σ
2, but with a vanishing

Hamaker constant A = 0. Under this studied condition the par-

ticle becomes kinetically trapped at a finite separation of two

molecular diameters from contact, due to solvent-induced

interactions alone as predicted by eqn (3) and reported in

Fig. 1c for vanishing van der Waals forces between the particle

and the wall.

The additional case in Fig. 4b corresponds to the same con-

ditions in Fig. 3d, with A ≃ 15.8kBT and γpl = γwl = −0.34kBT/σ
2,

but with a smaller nanoparticle of radius R = 3σ. As predicted

via eqn (4), we find that reducing the particle size, and thus

the contact radius Rc, prevents the kinetic trapping at finite

separations and direct particle–wall contact is observed (cf.

Fig. 4b). The critical condition for contact in eqn (4) is thus

verified by MD simulations for the cases studied in Fig. 3 and

4 with small nanoparticles of radius R ≃ 1 to 2 nm and a sub-

stantial variation of surface energy magnitudes γj j =

0.23–0.6kBT/σ
2.

Conclusions

This work formulated and verified a mean-field model for pre-

dicting the conditions to attain or prevent the metastable

adhesion and contact of nanoparticles to surfaces in liquid

media by considering both conventional DLVO and solvent-

induced interactions, the latter parameterized by the inter-

facial surface energy that prescribes the macroscale wetting

properties of the nanoparticle and wall surfaces. The proposed

simple model employs a compact set of experimentally mea-

surable properties such as the interfacial surface energy and

Hamaker constant and therefore can be applied to nano-

particles of arbitrary materials (e.g., crystalline or amorphous,

polar/non-polar) and simple molecular solvents. The formu-

lated model can predict the conditions for homo- and hetero-

aggregation of nanoparticles, colloidal stability of nanoparticle

suspensions, or nanoparticle-electrode contact in liquid media

with high electrolyte concentration and/or weak surface

charge. The proposed model can be readily extended to

include the electric double layer force when this is necessary.

A key prediction of the proposed model is the kinetic trap-

ping of nanoparticles at finite nanoscale separations from

contact for the case of moderately to highly hydrophilic

materials (e.g., metal oxides, metals, and polymeric materials)

dispersed in aqueous media. The predicted kinetic trapping at

single-digit nanoscale separations from the wall leads to the

effective prevention of particle–wall contact and has significant

implications for understanding and controlling the contact

and physical adhesion of nanoparticles to liquid–solid inter-

faces. This finding is particularly relevant to nanomaterials

that are extensively employed in diverse technological and

industrial applications, and are subsequently released in the

environment.

Fig. 4 Metastable contact dynamics and kinetic trapping: time-depen-

dent rms separation d̄(t ) − d0 from contact for two cases with the same

interfacial energy γj j ¼ γpl þ γwl

�

�

�

�=2 = 0.34kBT/σ
2 but different Hamaker

constants and particle size. (a) R = 6σ & A = 0. (b) R = 3σ & A = 15.8kBT.

MD simulation results are compared with numerical solution of the

Smoluchowski equation (eqn (5)) and analytical predictions for free-

space Brownian motion (see legends). Grey area: metastable dynamics

region predicted by eqn (2). Blue area: region with Γ+ ≥ Γ− predicted by

eqn (3) with kinetic trapping predicted at the region boundary.
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The validity of the analytical predictions is verified by com-

parison with MD simulations studying quasi-spherical (crystal-

line) nanoparticles with vanishingly small to large attractive

van der Waals interactions and a range of weakly to moderately

wettable surfaces. For moderate to large magnitude of the

interfacial surface energy, the analytical expression proposed

for predicting the contact conditions accounts closely for MD

simulation results and indicates that uncommonly large

Hamaker constants are needed to fully prevent kinetic trap-

ping and attain stable physical adhesion of small nano-

particles (i.e., smaller than 50 nm) at direct particle–wall

contact. The findings of this work highlight the importance of

considering solvent-induced interactions, prescribed by the

surface wettability and nanoscale surface topography, to

understand and ultimately control the adhesion, aggregation,

and contact dynamics of small nanoparticles in liquid media

and the faith of nanomaterials in the environment. In particu-

lar, the findings of this work provide valuable insights to

understand mass and charge transport processes at liquid–

solid interfaces that are mediated by the contact and physical

adhesion of nanoparticles, macromolecules, and finite-size

mass and charge carriers.
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