Published on 13 February 2024. Downloaded by State University of New York at Stony Brook on 3/4/2024 4:54:08 PM.

Nanoscale

1 M) Check for updates

¥ ROYAL SOCIETY
P OF CHEMISTRY

Kinetic trapping of nanoparticles by solvent-

induced interactions+

Cite this: DOI: 10.1039/d3nr06469g

Troy Singletary,® German Drazer,
cdef Kenneth J. Takeuchi

Esther S. Takeuchi,

Carlos E. Colosqui (2 *3f

cdef

® Amy C. Marschilok,

xc.def and

Theoretical analysis based on mean field theory indicates that solvent-induced interactions (i.e. structural

forces due to the rearrangement of wetting solvent molecules) not considered in DLVO theory can

induce the kinetic trapping of nanoparticles at finite nanoscale separations from a well-wetted surface,

under a range of ubiquitous physicochemical conditions for inorganic nanoparticles of common materials

(e.g., metal oxides) in water or simple molecular solvents. This work proposes a simple analytical model

that is applicable to arbitrary materials and simple solvents to determine the conditions for direct par-
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Introduction

Predicting the conditions that would result in direct contact
and physical adhesion of nanoparticles to a solid surface in
liquid media is critical for numerous nanotechnology appli-
cations such as self-assembly of nanomaterials,"> membrane-
based  separation and  nanofiltration,°®  colloidal
stabilization,” "> and enhancing charge transfer at electrode-
electrolyte interfaces,"*™’” among many others. Furthermore,
the physical adhesion of nanoparticles is an essential process
in the hetero- or homoaggregation of nanoparticles and its
better understanding is critical to develop accurate models for
the environmental fate and toxicity of nanomaterials that are
extensively used in industrial applications.'®°
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ticle—surface contact or kinetic trapping at finite separations, by using experimentally measurable pro-
perties (e.g., Hamaker constants, interfacial free energies, and nanoparticle size) as input parameters.
Analytical predictions of the proposed model are verified by molecular dynamics simulations and numeri-
cal solution of the Smoluchowski diffusion equation.

The conventional analytical approach for modeling physical
adhesion and aggregation of nanoparticles in liquid media is
currently based on the classical Derjaguin-Landau-Verwey-
Overbeek (DLVO) theory, which considers van der Waals (vdW)
and electrostatic interactions by assuming a perfectly uniform
solid and liquid medium (e.g., constant number density and per-
mittivity in the solid and liquid media).*>* However, at nano-
scale distances from a solid-liquid interface the wetting liquid is
strongly non-uniform and anisotropic with large spatial vari-
ations of the local number density and/or permittivity induced by
molecular-level structures (e.g., hydration or solvation shells) with
quasi-crystalline order, anisotropic dipole orientation, and hydro-
gen bond networks.>*” The re-arrangement of these molecular
structures, and the corresponding changes in free energy, when
two wetted surfaces approach contact gives rise to so-called
solvent-induced interactions, of which the oscillatory structural
force and attractive/repulsive hydrophobic and hydrophilic forces
are among the most notorious examples.****7° 1t is well estab-
lished that such a type of solvent-induced interactions not con-
sidered in DLVO theory can dominate the near-contact dynamics
of planar surfaces in liquid.?*?'~*

DLVO theory with the conventional assumption of a per-
fectly uniform solid and liquid medium provides effective
analytical expressions to prevent nanoparticle contact and
aggregation from the empirical or theoretical knowledge of (1)
Hamaker constants A parameterizing vdW forces and (2) the
surface zeta potential { (or diffuse-layer potentials) to deter-
mine the Electric Double Layer (EDL) force at a given pH and
ionic strength 1.**"” Substantial limitations must be expected
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when considering solely DLVO interactions to predict the equi-
librium and dynamic conditions under which particle-surface
contact in liquid media is attained. At single-digit nanometer
separation between wetted surfaces, the change in free energy
can present multiple local minima and long-lived metastable
states induced by solvent-induced interactions that are not
considered in DLVO theory.>*?%*! Furthermore, it is well-
established that DLVO predictions alone cannot account for
the interfacial surface energy y associated with the degree of
wettability of a surface and readily determined experimentally
from the reversible work W = —2yA. required to bring two
wetted surfaces into direct contact over a finite contact area A..
It is worth noting here that the solid-liquid interfacial surface
energy y is negative in the case of wettable surfaces for which
liquid molecules reduce the free energy through contact with
the solid surface;*” the equilibrium contact angle for such sur-
faces is less than 90°. according to Young’s law.**™*

This work proposes a compact mean-field model that con-
siders solvent-induced interactions in order to accurately
predict physicochemical and dynamic conditions under which
nanoparticle contact and physical adhesion is attained or pre-
vented. The proposed model including solvent-induced inter-
actions predicts the kinetic trapping of nanoparticles at a
finite rage of distances from the liquid-solid interface for criti-
cally low values of the Hamaker constant (i.e., for critically
weak vdW attraction) or high values of the interfacial surface
energy (i.e., for wettable surfaces). To verify the modeling
assumptions and analytical predictions we perform numerical
solution of the time-dependent Smoluchowski diffusion
equation and molecular dynamics (MD) simulations for quasi-
spherical nanoparticles of sizes between 2 and 4 nm near
contact with a planar surface having well-controlled surface
energies. The proposed mean-field model, Smoluchowski
equation predictions, and MD simulations show good agree-
ment and document a critical role of solvent-induced inter-
actions by trapping nanoparticles at different metastable posi-
tions and controlling the time scales required to attain
thermodynamic equilibrium at the particle-surface contact
position.

Methods

Mean field theory

We will consider that the potential of mean force (PMF) U =
Upivo t Ug for a nanoparticle in liquid media is composed of
two contributions: (i) Upyo from conventional DLVO inter-
actions in perfectly homogeneous media and (ii) Us from
solvent-induced interactions due to reconfiguration of the
molecular liquid structure. For a spherical nanoparticle of
radius R and a planar wall, the PMF U = U(d) can be parame-
terized by the separation distance d between the particle—
liquid the wall-liquid interface located at the wall-normal coor-
dinate y = y,, (see Fig. 1a). In this mean-field description for
which the particle-liquid and wall-liquid interfaces are sharp
(i.e., interfaces have zero thickness), particle-wall contact is
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virtual and occurs at a zero-dimensional point for which d = 0.
We will consider that physical contact actually occurs over a
finite contact area A, = zR.> defined by the effective contact
radius R, as illustrated in Fig. 1a.

Due to spatial oscillations of the PMF resulting from
solvent-induced interactions and the nanoscale interfacial
topography, stable physical adhesion can occur at a finite sep-
aration distance d, for which U(d,) = min(U) is the global
energy minimum, as illustrated in Fig. 1b. The exact value of
the stable adhesion distance d, is highly specific to the par-
ticular physicochemical conditions (e.g., surface energies mag-
nitude and sign, Hamaker constant and ionic strength) and
the molecular structure (e.g., crystalline lattice type) and nano-
scale topography of the nanoparticle and wall surfaces (e.g.,
particle shape and faceting, nanoscale surface roughness).
Metastable adhesion is expected at a finite set of distances d,
~ dy + no (n =1, Ng) (see Fig. 1b) for which the PMF U(d) has
local minima with a period comparable to the characteristic
liquid molecule diameter o; such an energy profile is typically
produced by oscillatory structural forces.>*28:30-32:41

We will focus this analysis on the case of attractive particle—
wall vdW interactions (A > 0) and wettable surfaces (y < 0)
under near-contact conditions for which vdW forces dominate
over electrostatic EDL forces (i.e. 0U,qw/0d > 0Ugpi/od) and
thus Upryo = —AR/(6d'), where the shifted distance d' = d + ¢/2
accounts for a finite-size repulsive core prescribed by the mole-
cular diameter. The studied conditions correspond to nano-
scale separation distances smaller than a critical value d* = (4/
ksT)"* x (122n04p)" "%, where kg is the Boltzmann constant, T
is the system temperature, 1, is the ion number density in the
liquid bulk, and Ap is the Debye screening length for the
corresponding ionic strength in an electroneutral system. For
reference, d* ~ 3 to 9 nm for a Hamaker constant |4| = 5kgT
and a symmetric 1:1 electrolyte in aqueous solution at con-
centrations between n, = 0.1 and 10 mM. We further consider
that the oscillatory structural force associated to molecular
layering is the dominant contribution from solvent-induced
interactions for the studied near-contact conditions (i.e., for d
s 10-15 0)'24,28,30,31,41

We therefore adopt the heuristic expression for plane
surfaces**%*® Ug = U,, exp(—d/o)cos(2rd/s) parameterized by
the “wetting” energy U,, = Us(0) required to remove the liquid
separating the surfaces.

Potential of mean force

Considering DLVO and solvent-induced interactions for the
studied near-contact conditions, the nanoparticle PMF is
modeled as

ud) = —% + Uye ™% cos (?) (1)

The functional form of the PMF in eqn (1) with multiple
local minima is illustrated in Fig. 1b. It is worth noting that
modeling solvent-induced interactions as a harmonic spatial
oscillation of period o ceases to be a valid approximation for d

This journal is © The Royal Society of Chemistry 2024



Published on 13 February 2024. Downloaded by State University of New York at Stony Brook on 3/4/2024 4:54:08 PM.

View Article Online

Paper

R =2nm |

Nanoscale

(a) d>0 d=0 © |
1
y(®)== &1

=2

~

S
dI liquid = 05

Yw LT

solid wall 0

A
(Eq. 3) (Eq.3) (Eq.3)
> I > I '
| (Eq.2) | (Bq.2) [ | (Eq.2)
B i ~
4 6 8

A=0 A = 10kgT = 20kgT

_— | ——

2 4 6 80 2 4 6 80 2

@ liquid atom (d—do)/o (d—do)/o (d—-dy)/o
@ wall atom Yw %g 1 5| R = 20 nm |
2 A=0 A = 5kpT A ZJloksT
(b) F ) a3 (Eq.3) (Eq.3)
* s =y I, >ﬂ
)
~Ft =~ ]
S |-
St B (Eq.2)[— (Eq. 2)
7 2 4 6 80 2 4 6 8
(d—dg)/o (d—dy)/o (d—dy)/o

0 dO dl dZ d?

Fig. 1 Solvent-induced interactions and kinetic trapping. (a) Approach and contact of a spherical nanoparticle to plane wall immersed in liquid
characterized by the separation distance d > 0. The finite contact radius R, is prescribed by the characteristic atomic diameter o. (b) The nanoparticle
PMF U = Upvo + Us modeled by egn (1) (solid black line) has periodic minima at distances d; (the red dashed line represents Upyo). The stable
contact distance dy and functional form of the PMF for d < ¢ (dashed black line) is highly specific to the nanoscale interfacial topography and
physicochemical conditions. (c) Kinetic trapping and metastability conditions at discrete particle—wall separations for a nanoparticle of radius R =
2 nm & 20 nm, Hamaker constant A = 0, 10, & 20kgT, and interfacial energy magnitudes |7| < 1.5kgT/c2. Gray shaded area: wall—particle separations
satisfying the metastability condition in egn (2). Blue shaded area: wall—particle separations for which I', > I'; according to eqn (3), kinetic trapping

occurs at the outer boundary.

< o, lLe., at separations below one molecular diameter for
which the particle becomes partially inserted in the first sol-
vation layer (see Fig. 1b). Moreover, the separation for stable
contact does not necessarily correspond to the global
minimum predicted at dy, =~ 6/2 by eqn (1) and is specific to the
nanoscale surface topography and interfacial surface energy
value, as discussed above.

To complete the PMF formulation in eqn (1) we consider that
the contact energy solely due to solvent-induced interactions,
Uy = —2ynR.2, is determined by the average interfacial energy
7 = (y1 +7»)/2, where y; (i = 1, 2) are the interfacial energies of
the particle-liquid and wall-liquid interfaces. To estimate the
effective contact radius for a quasi-spherical nanoparticle we
propose the simple expression R, = Ry/1 — (1 — §/R)* with & ~
o, so that the contact radius is determined from the area
removed from the first solvation layer when particle-wall contact
is attained (¢f Fig. 1a). The solid-liquid interfacial energy y; will
be treated as a material property determinable from experimental
measurements or analytical means for two plane surfaces. The
validity of the modeling assumptions leading to eqn (1) will be
assessed by comparison of theoretical predictions with MD simu-
lation results.

Metastable adhesion

The solvent-induced interactions considered in eqn (1)
produce multiple energy minima for a finite set of nearly peri-
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odic distances d, ~ do + no (¢f Fig. 1b) that satisfy the

condition
2
dfdy 1 |A] Ro
e |l —+=) > X [ — . 2
(G +2) ~ |rlo? 2472R.> )

The expression in eqn (2) uses the estimate /1 4 472 ~ 2x.
Predictions from eqn (2) are reported in Fig. 1c for a range of
typical values of (attractive) Hamaker constants (4 = 0, 10, and
20ksT) and interfacial surface energy magnitudes (|y| <
1.5kT/6”) for a spherical nanoparticle of radius R = 2 and
20 nm. Metastable adhesion occurs at finite separations from
the wall for weak particle-wall attraction and/or large magni-
tude of the interfacial surface energies (c¢f. Fig. 1c). Substantial
deviations from Brownian diffusion and DLVO theory predic-
tions, with a significantly hindered contact dynamics, are
expected under conditions for which eqn (2) is satisfied and
multiple metastable states exist at finite separations d, from
the wall.

According to eqn (2), mestastable adhesion occurs for
Hamaker constant magnitudes smaller than a critical value
Am = 67.3|7|7R.%c /R, for which there is only a metastable state
at the closest local minima from the wall d; = d, + o. For the
case of quasi-spherical particles of radius much larger than
the liquid molecule diameter R > ¢ and with a finite contact
radius R. = R+/20/R (see Fig. 1a), eqn (2) predicts a (size-inde-
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pendent) Hamaker constant magnitude Ap, ~ 422.827|6?,
above which metastability is completely prevented and solely
considering DLVO interactions can describe accurately the
contact dynamics. This analysis thus predicts that exception-
ally large Hamaker constants, |A| > A, = 200-400kg7, are
required to prevent metastable adhesion for the case of con-
ventional hydrophilic surfaces in water for which |y| =
0.5 — 1kgT/c* (e.g., common metal oxides and polymer
surfaces).

Kinetic trapping

When the particle is near a metastable position d,, with neigh-
boring maxima in the forward/backward directions (+) at d. =
dn, t 0/2 and thus |d — d,,| < 6/2, one can assume a probability
distribution p(d,t) « exp(-U/kgT) that is approximately gov-
erned by a diffusion equation with constant translational diffu-
sivity D. Hence one can estimate the characteristic diffusive
times T.(d,) = kgT/(Dii.) x exp(AU./kgT) for crossing over the
forward/backward maxima; here, i, = ii(d.) is the PMF second-
order derivative at the corresponding neighboring maxima
and AU, = U(d.) — U(d,) are the energy barriers separating
neighboring metastable states in the forward/backward direc-
tions. At metastable separation distances d,,, for which eqn (2)
is satisfied, the nanoparticle approach to the surface is
approximately described by a rate equation d = o x (I', — I'_)
with forward/backward rates I', = 1/Ts.

The “kinetic” trapping of the particle will occur when I", >
I'_ and the particle-wall separation d(¢) cannot be further
reduced by biased thermally activated transitions between
metastable states. The kinetic trapping thus occurs at the
farthest metastable separation d, = d, + no for which

U(dn — 6/2) — U(dn + 6/2) — ksT > 0. (3)

Predictions from eqn (3) employing the PMF U(d) modeled
in eqn (1) are reported in Fig. 1c, along with the conditions for
satisfying metastability (eqn (2)), for a range of conditions
commonly encountered for nanoparticles of conventional
metal oxides”*>*”*® (e.g., Fe;0,, SiO,, TiO,) or polymeric
materials.**" For wettable substrates with [7| ~ ksT/c?, the
kinetic trapping can occur farther than four molecular layers
away from the wall (i.e., d ~ 1 nm) (cf. Fig. 1c).

Critical conditions for contact

The model in eqn (1)-(3) can estimate the conditions for
which particle-wall contact is possible by considering the
nanoparticle shape and surface wettability. Particle-wall
contact requires avoiding kinetic trapping at the local minima
dy = dy + 6/2 closest to the wall, which according to eqn (3) is
expected for Hamaker constants above a critical value

Ac = (0.4657R.>|7| — ksT) % (22.56/R), (4)

prescribed by the particle radius, contact area, and interfacial
surface energies of the particle-liquid and wall-liquid inter-
faces. It is worth noting that eqn (4) provides conservative esti-
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mates for the attractive vdW forces needed to attain contact by
solely considering translational motion normal to the wall.

Hence, according to eqn (4), a “large” quasi-spherical nano-
particle with R > ¢ and R, ~ R\/2¢/R will attain contact for
Hamaker constants larger than the critical value
A, = 65.7|7|6>. As noted in the previous section for the case of
hydrophilic surface and nanoparticle materials in aqueous
solution, particle-wall contact and stable physical adhesion at
d = d, requires rather large Hamaker constants A > 30-65kpT.
Additionally, eqn (4) predicts that contact and stable adhesion
can still be attained for vanishingly small DLVO interactions
with 4 ~ 0, for sufficiently low magnitudes of the interfacial
surface energy 7| < 0.685ksT/R.> (¢f Fig. 1c). For a
vanishingly small Hamaker constant A ~ 0, contact areas A, ~
76 of molecular dimensions would be required to attain
particle-wall contact for a hydrophilic particle and/or wall
surface.

Results and discussion

To assess the validity of the proposed mean-field model in eqn
(1)-(4), we perform (1) numerical solution of the
Smoluchowski diffusion equation and (2) MD simulations for
the contact dynamics for quasi-spherical nanoparticles on a
planar wall with different interfacial surface energies. The
employed mesoscale and atomistic models report the time-
dependent rms distance, which enables direct verification of
analytical predictions for the kinetic trapping of nanoparticles
and contact conditions.

Smoluchowski diffusion equation

The mesoscale description of the contact dynamics is based
on the time-dependent probability density function p(y,t) for
the center-of-mass position of the nanoparticle along the
y-direction normal to a plane wall located at y = y,, (¢f. Fig. 1a).
Assuming overdamped Brownian motion with uniform
thermal energy kg7, the evolution of the probability density
p(y,t) is governed by the Smoluchowski diffusion equation

0 0 v 0 u

L. t) =2 | pemT L emp(y. ¢ 5

00:0) = 5 |De ™ L plyg)|. 5
where D is the nanoparticle translational diffusivity, and the
PMF U(d) defined in eqn (1) is parameterized by the separ-
ation distance d =y, — R — y. eqn (5) is solved numerically for
0 < y < y, with zero-flux boundary conditions

% {eu/"“Tp(y7 t)} =0 aty =0 and y = y,,. The nanoparticle diffu-

sivity D is estimated from the constant free-space diffusivity,
considering that hindrance to the contact dynamics is largely
caused by solvent-induced interactions rather than near-wall
hydrodynamic friction; the validity of this approximation is
examined by comparison with MD simulations.

For a nanoparticle of radius R with an initial center-of-mass
position y(0) = 0 we define the root-mean-square (rms) displa-

This journal is © The Royal Society of Chemistry 2024
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cement normal to the wall y(t) = [[?* p(y, t)y>dy] 2 and thus
the rms separation distance

d(t) =yw — R—J(t). (6)

Far from the wall, where U(d) ~ 0, eqn (5) gives the conven-
tional expressions for free-space Brownian motion p(y,t) =
(4zDt)™"* exp(—y*/(4Dt)) and eqn (6) gives d = y,y — R — v/2Dt.

We therefore define the diffusive time Tp, = (y,, — R)*/(2D) as
a characteristic time scale for nanoparticle-wall contact.

Molecular dynamics

Atomistic simulations considering pairwise DLVO interactions
are instrumental to verify the predictions in eqn (1)-(3) based
on the PMF U(d) formulated for considering solvent-induced
interactions. For this purpose we perform fully atomistic MD
simulations of the physical adhesion of a single quasi-spheri-
cal nanoparticle onto a plane wall fully immersed in a liquid
(see Fig. 2a) using the open-source package LAMMPS.> Our
MD simulations employ standard 12-6 Lennard-Jones (L-])
potentials modeling hard-core and vdW pairwise interactions
from which collective molecular-level interactions that control
nanoparticle adhesion, including solvation and oscillatory
structural forces and other solvent-induced interactions, arise
dynamically.”*>*

As reported in Fig. 2a, the nanoparticle (p), plane wall (w),
and liquid solvent (1) are made of three different species
having the same atomic diameter ¢ and mass m. A quasi-
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spherical nanoparticle of radius R =3 & 6 ¢ (i.e., 2 & 4 nm dia-
meter) is carved out of a fcc lattice with uniform spacing Ax =
436 and the plane wall is a “frozen” fcc lattice with the same
uniform spacing Ax (c¢f. Fig. 2a). The particle and wall number
densities n, = n,, = 1/6® are thus uniform and equal. The simu-
lation domain (see Fig. 2a) is a 3D periodic box fully filled with
the liquid and confined along the y-direction by the wall. The
average number density of the liquid is n; = 0.8/¢>. The pair-
wise L-J interactions between species are parameterized to
produce three different solid-liquid interfacial energies y =
—0.23, —0.34, & —0.6kpT/6* and three Hamaker constants 4 ~
0, 5, 10kgT for the particle-wall vdW interaction in the model
liquid solvent. The MD force field parameterization and pro-
cedure to determine the interfacial surface energy is described
in detail in the ESL{

To determine the rms separation distance d(¢) (eqn (6)) we

N 1/2
compute Yyms(t) = (Zin/N) with N = 5 replicas of each
i

studied physical condition (cf. Fig. 2b) that are initialized with
different atomic positions and velocities producing a macro-
scopically quiescent liquid with the targeted system tempera-
ture T = 300 K. Each replica simulation (Fig. 2b) is initialized
with the nanoparticle at the center of the simulation domain
and run over a time interval Ty ~ 5T, corresponding to nearly
5 diffusive times. While the simulation time is sufficiently
large so that the nanoparticle reaches within three atomic
layers from the wall in every simulation, adhesion at finite dis-

(@)

® liquid (1)
@ particle (p)

wall (w)
nanoparticle solid wall
(fec lattice) (fec lattice)
Q
R =60
A =158kgT
Ypr = —0.34 kT /c?
Ywi = —0.34kgT /c?
s,
3 5
t/Tp

Fig. 2 Molecular dynamics simulations of nanoparticle contact. (a) Atomistic representation of the modeled quasi-spherical nanoparticle and solid
wall, and periodic simulation domain (L, = 80¢, L, = 42.5¢, L, = 800) that is fully filled with liquid. The particle-wall distance d = y,, — R — lyl to the
top/bottom walls located at y = +y,, is computed from the center-of-mass normal coordinate y(t) reported by MD simulations. (b) Replica MD simu-
lations (colored lines) report different center-of-mass trajectories y(t) for the same studied macroscopic initial condition and set of physical para-
meters. The cases reported correspond to R = 60, A = 15.8kgT, and yp = yw = —O.34kBT/02.
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tance from the wall or contact (either at the top or bottom
side) are observed as probabilistic events (c¢f Fig. 2b) with a
likelihood prescribed by the surface energies of the particle-
liquid (yp1) and wall-liquid (y) interfaces and the Hamaker
constant for particle-wall interactions.

Nanoparticle near-contact dynamics

Analytical predictions for the transition to metastable
dynamics (eqn (2)) and kinetic trapping at finite separations
dn > do (eqn (3)) are compared in Fig. 3 and 4 with the
Smoluchowski equation and MD simulation results for the
time-dependent rms separation from contact d — d,. The
contact distance dy, = 6/2 + 20% is determined from the MD
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simulations for which direct particle-wall contact is observed.
The Smoluchowski equation with the PMF modeled in eqn (1)
and constant particle diffusivity, and MD simulation results
are in reasonably good agreement under the studied con-
ditions. Above the critical separation for metastability pre-
dicted by eqn (2) the rms particle-wall separation predicted for
pure Brownian motion with constant free-space diffusivity D is
in close agreement with the Smoluchowski equation and MD
simulations (¢f. Fig. 3a and 4c).

The set of results in Fig. 3 correspond to the modeled
quasi-spherical nanoparticle of radius R = 60, with moderately
large Hamaker constants A = 7.9-23.7kgT and a set of nine
different conditions with weak-to-moderate particle-liquid

(a) 4|)7| =0.23 kT /0% A =237 kgT (d) |7| = 0.34 kgT/0? A =158 kgT (@ |71=0.6kgT/0?> A=79ksT
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Fig. 3 Metastable contact dynamics and kinetic trapping. (a—f) Time-dependent rms separation d(t) — do from the contact position for a quasi-
spherical nanoparticle of radius R = 60, for three Hamaker constants A = 7.9, 15.8, & 23.7kgT and six different values of the average interfacial energy
magnitude |7| = |ypl + ywl|/2 = 0.23-0.6kgT/o” (see figure labels) for nine different combinations of particle-liquid 7p1 and wall-liquid y,, interfacial
energies (see legends). MD simulation results (markers) are compared with numerical solutions of the Smoluchwoski equation (eqn (5)) and analytical

predictions for free-space Brownian motion (see legends). Grey shaded

area: metastable dynamics region predicted by egn (2). Blue shaded area:

region with I", > I"_ predicted by eqn (3) with kinetic trapping predicted at the region boundary.
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Fig. 4 Metastable contact dynamics and kinetic trapping: time-depen-
dent rms separation d(t) — do from contact for two cases with the same
interfacial energy 7| = ‘ypl + }’w||/2 = 0.34kgT/o? but different Hamaker
constants and particle size. (@Q) R=66& A=10.(b) R =36 & A = 15.8kgT.
MD simulation results are compared with numerical solution of the
Smoluchowski equation (eqn (5)) and analytical predictions for free-
space Brownian motion (see legends). Grey area: metastable dynamics
region predicted by eqn (2). Blue area: region with I", > I'_ predicted by
eqn (3) with kinetic trapping predicted at the region boundary.

interfacial energies y, = —0.6, —0.34, & —0.23kg7/6” and wall-
liquid interfacial energies y,; = —0.6, —0.34, & —0.23kgT/6”. The
nine studied conditions are therefore characterized by only six
different values of the average interfacial energy magnitude
7| = ‘}/pl + }/Wl‘ /2 = 0.23-0.6kgT/6” (¢f Fig. 3a-f). The con-
ditions studied in Fig. 3 correspond to the case of an aqueous
solution at room temperature, and moderately hydrophilic
substrates with interfacial surface energies 7 ~ —37 to —10 mM
m~2 and (solid-water-air) Young contact angles 6y =~ 60-80°
that are reported for conventional metal oxide surfaces by
different experimental techniques.’*>° For the low interfacial
energy magnitudes [y| . 0.3kgT /0%, the nanoparticles are able
to eventually attain direct contact with the wall after crossing
the metastable dynamics region predicted by eqn (2) but they
do so at substantially longer times than predicted for pure
Brownian motion (c¢f. Fig. 3a-c). For critically large surface
energies (c¢f Fig. 3d-i) the kinetic trapping of the nanoparticle
away from the wall is observed at the finite separations pre-
dicted by eqn (3), and reported in Fig. 1c, with metastable sep-
arations up to three liquid molecule diameters for the case of
moderately wettable surfaces with an average interfacial energy
y ~ —kgT/c>.

To further asses the validity of the analytical predictions for
kinetic trapping and contact conditions in eqn (3) and (4), we
perform an additional set of MD simulations for which the
interfacial surface energy magnitude of the particle and wall
Il = Ypi| = 7w = 0.34kpT/c” remains constant (with a moder-

This journal is © The Royal Society of Chemistry 2024
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ate magnitude) as the Hamaker constant and nanoparticle
radius is varied. The case reported in Fig. 4a corresponds to
the condition modeled in Fig. 3d with a nanoparticle of radius
R = 60 and yp = ywi = —0.34kgT/6?, but with a vanishing
Hamaker constant 4 = 0. Under this studied condition the par-
ticle becomes kinetically trapped at a finite separation of two
molecular diameters from contact, due to solvent-induced
interactions alone as predicted by eqn (3) and reported in
Fig. 1c for vanishing van der Waals forces between the particle
and the wall.

The additional case in Fig. 4b corresponds to the same con-
ditions in Fig. 3d, with A ~ 15.8ksT and yp = w1 = —0.34kgT/0”,
but with a smaller nanoparticle of radius R = 36. As predicted
via eqn (4), we find that reducing the particle size, and thus
the contact radius R., prevents the kinetic trapping at finite
separations and direct particle-wall contact is observed (cf:
Fig. 4b). The critical condition for contact in eqn (4) is thus
verified by MD simulations for the cases studied in Fig. 3 and
4 with small nanoparticles of radius R ~ 1 to 2 nm and a sub-
stantial variation of surface energy magnitudes [7| =
0.23-0.6kT/c”.

Conclusions

This work formulated and verified a mean-field model for pre-
dicting the conditions to attain or prevent the metastable
adhesion and contact of nanoparticles to surfaces in liquid
media by considering both conventional DLVO and solvent-
induced interactions, the latter parameterized by the inter-
facial surface energy that prescribes the macroscale wetting
properties of the nanoparticle and wall surfaces. The proposed
simple model employs a compact set of experimentally mea-
surable properties such as the interfacial surface energy and
Hamaker constant and therefore can be applied to nano-
particles of arbitrary materials (e.g., crystalline or amorphous,
polar/non-polar) and simple molecular solvents. The formu-
lated model can predict the conditions for homo- and hetero-
aggregation of nanoparticles, colloidal stability of nanoparticle
suspensions, or nanoparticle-electrode contact in liquid media
with high electrolyte concentration and/or weak surface
charge. The proposed model can be readily extended to
include the electric double layer force when this is necessary.

A key prediction of the proposed model is the kinetic trap-
ping of nanoparticles at finite nanoscale separations from
contact for the case of moderately to highly hydrophilic
materials (e.g., metal oxides, metals, and polymeric materials)
dispersed in aqueous media. The predicted kinetic trapping at
single-digit nanoscale separations from the wall leads to the
effective prevention of particle-wall contact and has significant
implications for understanding and controlling the contact
and physical adhesion of nanoparticles to liquid-solid inter-
faces. This finding is particularly relevant to nanomaterials
that are extensively employed in diverse technological and
industrial applications, and are subsequently released in the
environment.
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The validity of the analytical predictions is verified by com-
parison with MD simulations studying quasi-spherical (crystal-
line) nanoparticles with vanishingly small to large attractive
van der Waals interactions and a range of weakly to moderately
wettable surfaces. For moderate to large magnitude of the
interfacial surface energy, the analytical expression proposed
for predicting the contact conditions accounts closely for MD
simulation results and indicates that uncommonly large
Hamaker constants are needed to fully prevent kinetic trap-
ping and attain stable physical adhesion of small nano-
particles (i.e., smaller than 50 nm) at direct particle-wall
contact. The findings of this work highlight the importance of
considering solvent-induced interactions, prescribed by the
surface wettability and nanoscale surface topography, to
understand and ultimately control the adhesion, aggregation,
and contact dynamics of small nanoparticles in liquid media
and the faith of nanomaterials in the environment. In particu-
lar, the findings of this work provide valuable insights to
understand mass and charge transport processes at liquid-
solid interfaces that are mediated by the contact and physical
adhesion of nanoparticles, macromolecules, and finite-size
mass and charge carriers.
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