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The surface diffusivity of nanoparticles physically
adsorbed at a solid–liquid interface

Troy Singletary,a Nima Iranmanesh a and Carlos E. Colosqui *abc

This work proposes an analytical model considering the effects of hydrodynamic drag and kinetic

barriers induced by liquid solvation forces to predict the translational diffusivity of a nanoparticle on an

adsorbing surface. Small nanoparticles physically adsorbed to a well-wetted surface can retain significant

in-plane mobility through thermally activated stick-slip motion, which can result in surface diffusivities

comparable to the bulk diffusivity due to free-space Brownian motion. Theoretical analysis and

molecular dynamics simulations in this work show that the surface diffusivity is enhanced when (i) the

Hamaker constant is smaller than a critical value prescribed by the interfacial surface energy and particle

dimensions, and (ii) the nanoparticle is adsorbed at specific metastable separations of molecular

dimensions away from the wall. Understanding and controlling this phenomenon can have significant

implications for technical applications involving mass, charge, or energy transport by nanomaterials

dispersed in liquids under micro/nanoscale confinement, such as membrane-based separation and

ultrafiltration, surface electrochemistry and catalysis, and interfacial self-assembly.

1 Introduction

The ability of physically adsorbed nanomaterials (e.g., nano-

particles, macromolecules, polyatomic ions) to move along

an adsorbing surface has critical implications in numerous

natural and industrial processes for water treatment, energy

storage, advanced manufacturing, and other emerging techno-

logies involving active and passive transport of nanomaterials

dispersed in a liquid under confinement. For example,

membrane-based separation processes are critically affected

by the ability of the rejected material, the retentate, to be

mobilized while adsorbed to the surface for preventing fouling

and reduction of the permeate.1–3 The surface mobility of electro-

active nanomaterials can control the maximum charge transferred

at an electrode in liquid electrolyte solutions or limit the access to

catalytic sites and the effective reaction rate.4–8 Similarly, the in-

plane mobility of ionic species adsorbed within the so-called Stern

layer leads to significant contributions to the electrical conductivity

of micro/nanopores and fluidic devices employing electrokinetic

flows for charge separation and energy conversion.9–11 Under-

standing and predicting the surface diffusivity of nanoparticles is

also relevant to advanced manufacturing technologies involving

2D self-assembly and sintering.12–18

The physical adsorption onto a surface of a rigid nanopar-

ticle dispersed in a liquid solvent occurs when there is a global

(stable) or local (metastable) minimum in the energy landscape

resulting from all molecular interactions between the particle,

surface, and solvent.19–21 The adhesion process is considered

as irreversible when the energy increase to escape the stable

(or metastable) minimum is much larger than the thermal

energy of the system kBT (here, kB is the Boltzmann constant,

T is the system temperature).22–24 Furthermore, the adsorbed

particle is ‘‘immobilized’’ in a given direction when the width

of a large energy well in such direction is much smaller

than the particle dimensions.25–27 These basic considerations,

however, are dependent on the observation time scales and the

dimensionality of the energy landscape, which can make highly

nontrivial the rationalization of the post-adsorption behavior of

a nanoparticle.

The 1D potential of mean force (PMF) U(d) as a function of

the particle–surface separation distance d is commonly pre-

dicted by the Derjaguin–Landau–Verwey–Overbeek (DLVO)

theory,20,28,29 considering van der Waals (vdW) and electric

double layer (EDL) forces, and predicts a single (stable) energy

minimum at direct particle–wall contact for which finite con-

tact separation d0 C s/2 is prescribed by the characteristic

molecular diameter s. However, energy minima at multiple

nanoscale separations d � d0 4 0 can be produced by solvent-

induced interactions (e.g., the oscillatory structural force) due

to the molecular reconfiguration of the solvation or hydration

layers confined between the particle and the wall.30–35 Previous

work has documented that such solvent-induced interactions
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not considered by DLVO theory can lead to the kinetic trapping

of rigid nanoparticles at periodic separations s C ns (n 4 0 is

an integer number) for which the particle is effectively immo-

bilized in the direction normal to the adsorbing surface while

retaining substantial in-plane translational mobility.36–39

This work proposes an analytical model to predict the

(in-plane) surface diffusivity D8 of physically adsorbed nano-

particles of rigid materials by considering hydrodynamic friction

effects along with spatial fluctuations of the PMF due to nanoscale

solvent-induced interactions in the solvation layers confined

between the particle and adsorbing surface. These solvation-

induced interactions lead to both the kinetic trapping of the

nanoparticle at finite separations from the solid wall and

‘‘stick-slip’’ motion parallel to the surface. The proposed model

requires as input parameters basic material properties that are

experimentally determinable (i.e., zero-shear bulk viscosity,

interfacial surface energies, Hamaker constants) and therefore

is applicable to general solid materials and liquid solvents.

Theoretical predictions are verified by molecular dynamics

(MD) simulations for the case of small rigid nanoparticles with

a range of typical Hamaker constants and interfacial surface

energies that correspond to common metal oxides and poly-

meric materials, which are moderately wettable by water and

simple molecular solvents.

2 Theoretical analysis
2.1 Potential of mean force model: near-contact conditions

Adopting a continuum (mean-field) description, we will formu-

late a simple two-dimensional expression for the effective PMF

U(d,s) of a quasi-spherical rigid nanoparticle of radius R that is

fully immersed near a planar wall, in terms of the nanoscale

separation distance d and in-plane displacement s (cf. Fig. 1a).

We consider that solvent-induced interactions arise at small

nanoscale separations due to the formation and re-arrangement

of a 3D pseudo-crystalline liquid structure in the solvation

layers near a wettable surface. This leads to separation-

dependent oscillatory structural forces with a characteristic

energy Us, that decay exponentially away from the wall with a

period prescribed by the liquid molecule diameter s.20,33,34 In-

plane displacements produce a periodic shear deformation

and dislocation of the 3D solvation structure that result in

energy oscillations with amplitude U8 and a period prescribed

by the characteristic interatomic separation Dx B s between

solid atoms on the solid surface.

The PMF for the nanoparticle is therefore formulated as

Uðd; sÞ ¼ UDLVO þUse
�d
s cos

2pd

s

� �

� 1� b

2
cos

2ps

Dx

� �� �

(1)

where UDLVO is the energy from classical (particle–wall) DLVO

interactions, Us is the characteristic adhesion or de-wetting

energy due to the modeled solvent induced interactions, and

b is given by the ratio between the characteristic in-plane energy

oscillation and adhesion energy. The characteristic energy of adhe-

sion due to solvent-induced interactions is ref. 39

Us = �2�gpRc
2, (2)

where �g = (g1 + g2)/2 is the average interfacial energy determined

by the interfacial surface energies (energy per unit area) gi

(i = 1,2) for the particle and the wall surface, and Rc ¼
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð1� s=RÞ2
p

is the effective contact radius determined

from the area Sc C pRc removed from the first solvation layer

when direct particle–wall contact is attained (cf. Fig. 1b).

The PMF in eqn (1) introduces a periodic energy barrier DU8

for in-plane motion through similar simplifications as the

classical Frenkel–Kontorova model for contact friction and

stick-slip motion on the atomic scale.40–42 We consider that

the energy per unit area required to shear/dislocate the wetting

liquid structure, by breaking and forming the solvation layers

to regenerate wetted surface area as the particle moves parallel to

the wall, is comparable to the particle–liquid interfacial energy

gpl B kBT/s
2 to create solid–liquid interface (see Section 3.1).

Hence, the in-plane energy barrier for a physically adsorbed

nanoparticle is expressed as

DUkðdÞ ¼ 2b
kBT

s2
pRc

2e�
d
s cos

2pd

s

� �

(3)

for |d � dn| r s/2, where the metastable separation distances

dn = d0C ns are prescribed by an integer number n of molecular

layers, and the factor b, taking values 0 r b r 1, accounts for

static and dynamic effects reducing the effective energy barrier

for in-plane displacements. Such effects include ‘‘defects’’ in the

Fig. 1 Nanoparticle near an adsorbing surface in liquid media. (a) Con-

tinuum description: a spherical rigid nanoparticle of radius R lies near a

planar wall at a separation distance d. Particle–wall contact occurs at a

single point for which d = 0. The particle PMF U(d,s) is parameterized by

the particle–wall separation distance d and the in-plane displacement s. (b)

Atomistic description: a quasi-spherical nanoparticle formed by atoms or

molecules of finite diameter s makes contact with the wall over a finite

surface area Sc = pRc
2 at an average separation d0 C s/2. The contact

radius Rc ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð1� s=RÞ2
p

is then determined from the surface area Sc
removed from the first solvation layer to attain contact.
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sheared quasi-crystalline solvation structure, particle rotation

and misalignment with the wall plane, and correlated displace-

ments of the particle and wetting liquid molecules.43–45

DLVO interactions near contact. The PMF formulated in

eqn (1) is valid for near-contact conditions, under which the

oscillatory structural force is the dominant contribution from

solvent-induced interactions and vdW forces are the dominant

DLVO interaction. For this analysis we will thus adopt

UDLVO ¼ � AR

6 d þ s

2

� � (4)

where A is the Hamaker contact for particle–wall interactions in

the liquid medium. The vdW interactions dominate over electro-

static effects for weak surface charge ss � 1:84
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ae= 24plD3ð Þ
p

and small separations d o R, or moderate-to-large surface

charge and nanoscale separations d � s �o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ae= 24pss2lDð Þ
p

;

here, e is the solvent dielectric and lD is the Debye length

prescribed by the ion concentration n0. For charge regulating

surfaces and electroneutral systems one has ssj j �o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8n0ekBT
p 46,47

and the near-contact conditions modeled by eqn (1) would

correspond to d t 1–3 nm (i.e., 3 to 10 molecular diameters)

in the case of moderate Hamaker constants (|A| = 5–10kBT) and

ion concentrations (0.01 and 1 mM) of a symmetric 1 : 1

electrolyte in aqueous solution.

Metastable adhesion and off-plane kinetic trapping. The

solvent-induced interactions modeled in eqn (1) produce local

energy minima at a finite number of nearly periodic distances

dn C d0 + ns (n = 1,N) that satisfy the condition39

e�
dn
s

dn

s
þ 1

2

� �2

� jAj
j�gjs2 �

Rs

24p2Rc
2

� �

; (5)

where we use
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4p2
p

’ 2p. According to eqn (5), metastable

adhesion at finite separations of 1 to 4 molecular layers is

expected for small nanoparticles of radius R t 100 nm and

conventional rigid materials for which |A| t 20kBT and |�g| t

3kBT/s
2, in aqueous solutions for which s C 0.3 nm. The PMF

in eqn (1) additionally predicts that particle–wall contact can be

effectively prevented due to a kinetic trapping phenomenon

when |U(dn � s/2,0) � U(dn + s/2,0)| 4 kBT.
39 Fully preventing

the kinetic trapping and achieving particle–wall contact with

stable adhesion at d = d0 requires Hamaker constants larger

than a critical value39

Ac = (0.465pRc
2|�g| � kBT) � (22.5s/R). (6)

Eqn (6) predicts that quasi-spherical nanoparticles with R c s

can attain contact for Hamaker constants larger than Ac =

65.7|�g|s2, which corresponds to moderately large Hamaker

constants A \ 20–60kBT for the case of common hydrophilic

materials (e.g., metal oxides) in aqueous media.

2.2 Surface diffusivity

To rationalize the surface diffusivity of a physically adsorbed

sub-100-nm nanoparticle we will consider that the particle can

be ‘‘trapped’’ at metastable separations dn C d0 + ns within a

few molecular layers (n = 1,4), according to eqn (5), and that

direct ‘‘dry’’ contact is prevented over long times when the

Hamaker constant is smaller than the critical value predicted

by eqn (6).39 According to the PMF model in eqn (1) thermally

activated stick-slip motion parallel to the surface arises while

the particle is adsorbed at metastable separations dn; i.e.,

the particle ‘‘sticks’’ when trapped at local minima for which

qU/qs = 0 and ‘‘slips’’ when rapidly crossing over an energy

barrier of magnitude DU8 in the in-plane direction. Hence,

a substantial effective diffusivity is expected for negative

(repulsive) or weakly positive (attractive) Hamaker constants

smaller than the critical value Ac predicted by eqn (6).

The effective diffusivity, determined from the mean square

displacement (MSD) in a specific direction of motion, is pre-

scribed by (1) dissipative effects (e.g., hydrodynamic drag)

determined by a friction coefficient x and (2) kinetic effects

controlled by the magnitude of energy barriers DU along such

direction of motion.25,48–51 Such dissipative and kinetic effects

can be highly local and anisotropic in the presence of liquid–

solid interfaces.43–45,52 The in-plane diffusivity D8, as well as the

off-plane diffusivity D>, near contact is generally expected to

differ significantly from the diffusion constant D0 = kBT/x0 in

the isotropic liquid bulk, which is prescribed by the free-space

drag coefficient x0 in the absence of energy barriers hindering

thermal motion.53–56 The in-plane hydrodynamic friction

coefficient can be conveniently expressed as x8 = l8(d)x0 where

l8(d) is a separation-dependent correction factor and x0 = 6pmR0

is the free-space Stokes drag determined by the shear viscosity

of the liquid and the hydrodynamic or solvated radius R0

of the nanoparticle.57,58 The thermally activated crossing of

in-plane energy barriers is a random process with a kinetic rate

G8 = G0 exp(�DU8/kBT) where the attempt rate G0 = 2D8/s
2 is

estimated from the time to diffuse between neighboring

minima under pure Brownian motion.25,48–51 From the in-

plane mean square displacement MSD8(1/G8) = s2 = 2D8/G8

due to thermally activated crossings between neighboring

minima one can estimate the effective surface diffusivity

D8(d) = D0 exp(�DU8/kBT).

Considering dissipative and kinetic effects near contact

conditions the nanoparticle surface diffusivity is thus given by

D8(d) = D0 � l8 � e�DU8/kBT, (7)

where DU8 is defined in eqn (3) and the hydrodynamic friction

factor is analytically estimated as

lkðdÞ ¼ 1þ 1

6

R
02
c

R0d
; (8)

by adding to the Stokes drag for a sphere the shear drag of a

planar circular facet with a solvated radius R0
c
moving parallel

to the wall at a small separation distance do R; we will employ

in this expression the hydrodynamic or solvated radii R0 = R +

2s and R0
c
¼ Rc þ 2s based on MD simulation results for the

studied conditions (see Section 3). Predictions from eqn (7) and

(8) with the PMF modeled in eqn (1) will be compared with MD

simulations described in the following section for a range of

conditions commonly encountered for rigid nanoparticles of
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conventional metal oxides59–61 (e.g., Fe3O4, SiO2, TiO2) or poly-

meric materials.62–64

3 Molecular dynamics

To verify the analytical model for the surface diffusivity

proposed in Section 2 we perform MD simulations with the

open-source package LAMMPS65 for single quasi-spherical

rigid nanoparticles subject to thermal motion while physically

adsorbed onto a plane wall fully immersed in liquid. The MD

simulations in this work are not intended to model any specific

solid or liquid (e.g., polar/non-polar solvents) but to produce

the DLVO and solvent-induced interactions considered in the

analytical expressions in Section 2 through measurable mate-

rial properties. Three different atomic species model the liquid

solvent (l), solid particle (p), and wall (w), the three atomic

species are modeled with the same van der Waals diameter s,

atomic mass m, and zero charge. The particle and wall number

densities np = nw = 1/s3 are uniform and equal, and the bulk

number density of the liquid is nl = 0.8/s3. The simulation

domain is a 3D periodic box (Lx = 80s, Ly = 42.5s, Lz = 80s) fully

filled with the modeled liquid solvent and confined along the

y-direction by a plane wall located at y = �yw; here, the wall

coordinate yw = 20s is defined by the plane where liquid and

solid molecules of finite size s get in contact (see Fig. 2a).

A quasi-spherical nanoparticle of radius R = 6s (i.e., B4 nm

diameter) is carved out of a fcc lattice with uniform spacing

Dx = 41/3s and the plane wall is a ‘‘frozen’’ fcc lattice with the

same uniform spacing Dx (cf. Fig. 2a). All the MD simulations

are performed in the NVT ensemble with a Nose–Hoover

thermostat to maintain constant system temperature for the

particle and liquid.66

The MD simulations in this work employ the standard 12-6

Lennard-Jones (LJ) pairwise potential U(r) = 4eij[(s/r)
12 � (s/r)6],

where eij is the characteristic interaction energy between dif-

ferent species (i,j = l, p, w) and r is the distance between any two

atoms. The LJ potential is used with a cutoff distance rc = 2.5s

for liquid–liquid and solid–liquid interactions and rc = 4s for

particle–wall interactions, which improves computational effi-

ciency while accurately representing interatomic forces.67,68

The standard LJ potential models pairwise hard-core repulsion

and non-retarded vdW attraction between different atomic

species, which collectively gives rise to the DLVO and solvent

induced-interactions39,52,69–71 considered in the PMF model

in eqn (1).

Replica simulations. Five MD replica simulations per case

are performed by initializing the atomic velocities with different

random values producing the same system temperature T and

letting the system energy equilibrate with the particle fixed at the

center of the domain (cf. Fig. 2b). After the equilibration step

the nanoparticle is free to translate and rotate as a rigid body,

Fig. 2 Molecular dynamics simulations of nanoparticle adsorption and surface diffusion. (a) Atomistic representation of the modeled quasi-spherical

rigid nanoparticle (R = 6s) and planar wall. The periodic simulation domain has the top/bottom walls located at y = �yw = �20s and is filled with the

modeled liquid. The particle–wall distance d(t) = yw � R � |y| and in-plane displacement sðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2
p

are computed from the center-of-mass position

x(t) reported by the MD replica simulations. (b) Replica MD simulations (five) for each of the studied eleven conditions (see Table 1) report different

separation distances d(t) and in-plane displacements s(t) (color lines). Metastable adhesion or contact occurs at a random time Ta (see circles) after which

the separation distance d(t 4 Ta) C %d remains nearly constant. The particle can perform stick-slip motion or remain immobile after adhesion (cf. right

panels). The reported MD replicas correspond to A = 15.8kBT and gpl = gwl = �0.34kBT/s
2.
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the equations of motion for the particle and liquid atoms are

integrated with a small timestep Dt ¼ 0:01
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=ms
p

. Under the

modeled conditions the liquid has a constant bulk shear viscosity

m ¼ 2:1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

mkBT
p �

s2.72,73 The Stokes–Einstein relation D0 = kBT/

(6pmR0) with a hydrodynamic radius R0 = R + 2s accounts for the

particle diffusivity determined from free-space MD simulations

within a 15% relative error for all the studied cases.39 As reported

in Table 1 these replica simulations are performed for eleven

different conditions by using a set of different interaction ener-

gies for the particle–liquid LJ energy epl = 0.5–1.5kBT and wall–

liquid energy ewl = 0.5–1.5kBT, while the LJ energy is eii = kBT for

all self-interactions and epw = kBT for the pairwise particle–wall

interactions. This set of pairwise interaction energies produces

five different Hamaker constants A = 4p2s6np(nwepw � nlepl) =

�7.9, 0, 7.9, 15.8, & 23.7kBT, and five different interfacial energies

�g = (gpl + gwl)/2 = �0.23, �0.34, �0.6, �0.81, & �1kBT/s
2, as

described in Section 3.1.

The MD simulations report the instantaneous center-

of-mass position of the nanoparticle, x(t) = xi + yj + zk, from

which the wall–particle separation distance d = yw � R � |y(t)|

and in-plane displacement sðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2
p

are readily deter-

mined. All the replica simulations are initialized with the

nanoparticle at the center of the simulation domain at an

initial separation d(0) = yw � R from the top/bottom walls

and run over the same simulation time Ts C 5d(0)2/D0 that is

nearly five times the diffusive time TD = d(0)2/D0 to reach the (top

or bottom) wall under free-space Brownian motion. Metastable

adhesion or contact in each replica simulation occurs at a random

adhesion time Ta, after which the nanoparticle remains ‘‘trapped’’

near a finite distance dn � d0C ns (n = 0,4) undergoing extremely

small off-plane displacements |d(t4 Ta)� dn|{ s that result in a

vanishing off-plane diffusivity D> - 0 for t 4 Ta (cf. Fig. 2b).

Notably, the nanoparticle can retain substantial in-plane diffusivity

D8(d)t D0 through stick-slip motion after metastable adhesion at

finite separations %d � d0 = 1–4s of one to four molecular layers

from the wall for certain studied combinations of sufficiently low

Hamaker constant and large magnitude of the interfacial surface

energy (cf. Table 1).

3.1 Solvation structure and interfacial energy

The solid–liquid interfacial energy and local free energy of the

liquid can be effectively determined from the equilibrium number

density via conventional mean-field approximations.35,39,74

To determine the number density field from MD we perform a

set of supplementary simulations with the modeled liquid con-

fined by the plane wall as reported in Fig. 2a but without a

nanoparticle. As shown in Fig. 3a, the 2D number density field

nðx; yÞ ¼ nðz; yÞ ¼ 1=Lzð Þ
Ð Lz

0
nðx; y; zÞdz computed from the time-

averaged 3D positions of liquid atoms presents off-plane and in-

plane spatial fluctuations near the wall with similar magnitude a

period comparable to the atomic diameter s. This phenomenon

corresponds to the formation of a 3D quasi-crystalline structure in

the solvation layers near the wall and gives rise to the solvent-

induced interactions approximately modeled in eqn (1)–(3). Spatial

density variations normal and parallel to the wall have similar

magnitudes (cf. Fig. 3a) indicating the presence of comparable free

energy barriers Du = �kBT ln(n/nl) induced by the liquid structure

along the off-plane and in-plane directions, as considered in

formulating eqn (3).

The solid–liquid interfacial energy g ¼ �kBT
Ð Ly=2
0

n ln n=nlð Þdy
is given by the energy required to remove the wetting liquid

under equilibrium conditions35,74 and can thus be determined

from the 1D liquid density profile nðyÞ ¼
Ð Ð

nðx; y; zÞdxdz= LxLzð Þ
in the direction normal to a plane wall (cf. Fig. 3b). The surface

energy thus determined from the liquid density profile considers

both DLVO and non-DLVO interactions from liquid–liquid and

liquid–solid interactions that give rise to the formation of inter-

facial solvation structures and solvent-induced interactions.

Solid–liquid interfacial surface energies computed with this

approach are reported in Fig. 3c for pairwise (wall–liquid) LJ

energies ewl = 0.5–1.5kBT that result in a range of moderate to

large interfacial surface energies gwl = �0.23 to �1kBT/s
2. The

surface energy magnitude |gwl| for the studied conditions

increases with the pairwise LJ energy ewl following a nearly

quadratic relation (cf. Fig. 3c). The solid–liquid interfacial ener-

gies thus computed for a plane wall are employed to estimate the

wall–liquid and particle–liquid interfacial surface energies

employed in analytical expressions. The particle–liquid and

wall–liquid interfacial energies with the corresponding solvation

energies, and Hamaker constants for the eleven cases studied by

MD simulations are reported in Table 1.

4 Results and discussion

This section analyzes and compares analytical predictions for

the surface diffusivity from eqn (7) using the PMF model in

Table 1 Experimentally determinable model parameters for the eleven

cases modeled by MD simulation. Each combination of LJ interaction

energies in MD simulations produce the reported particle–liquid and wall–

liquid interfacial surface energies gpl and gwl, respectively, adhesion (or

dewetting) energy Us, Hamaker constant A, and the critical contact value

Ac. The average surface diffusivity %D8 and wall separation %d � d0 are

computed by averaging all MD replica simulations for each studied con-

dition. Shaded area: predicted contact conditions for which the Hamaker

constant A 4 Ac is larger than the critical value Ac given by eqn (6). For

reference, Hamaker constants typically range from 5 to 20kBT for metal

oxides59–61 (e.g., SiO2, TiO2, ZnO) and 3 to 5kBT for hydrophilic polymers

(e.g., PEG, PMAA) under room temperature conditions62–64
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eqn (1)–(3) and results from the MD replica simulations

described in Section 3 for a set of eleven conditions with the

experimentally determinable parameters described in Table 1.

The parameters reported in Table 1 with a range of weakly

repulsive to strongly attractive Hamaker constants A/kBT = �7.9

to 23.7 and weakly to moderately strong surfaces energies �gs2/

kBT = �0.23 to �1.0, correspond to a small quasi-spherical

nanoparticle (R = 6sC 4 nm) of weakly to moderately wettable

materials dispersed in simple molecular solvents, such as metal

oxides and hydrophilic polymers in aqueous solutions. The

retention of substantial in-plane mobility after physical adsorp-

tion, while the nanoparticle is kinetically trapped at finite

metastable separations from the solid wall, is predicted for

the cases for which A t 65.7�gs2 according to eqn (6) (see

exposed region in Table 1).39

Nanoparticle surface diffusivity. To determine the

separation-dependent surface diffusivity from the MD replica

simulations we compute the in-plane MSD after adhesion or

contact

MSDkðDt; �dÞ ¼
1

N

X

N

i¼1

s ti þ Dtð Þ � s tið Þð Þ2 for dj tið Þ � �d
�

�

�

�o
s

2
;

(9)

for lag times 0 o Dt r Ts � Ta by using only the N parallel

displacements for which the wall–particle separation is within

half a molecular diameter from the average adhesion distance
�d ¼ ð1=NÞP d ti 4Tað Þ. As reported in Fig. 4a–c, the in-plane

MSD computed from MD simulations via eqn (9) increases

linearly with the lag times for finite lag times Dt \ 0.2s2/D0.

The effective surface diffusivity in MD simulations (cf. Fig. 3b)

is therefore readily determined from the standard Brownian

diffusion relationship

MSD8(Dt,d) = 2D8(d) � Dt (10)

by using linear regression for the finite range of lag times

corresponding to 0.2s2/D0 r D0Dt/s
2
r 2, which yields very

high R-square values R2 = 0.96–0.98 for all the studied cases.

The surface diffusivities computed via eqn (9) and (10) and

corresponding R-squared values did not show significant varia-

tion when increasing the upper bound of the lag time range

employed for linear regression.

The average particle–wall separation %d and surface diffusivity
%D8 computed from the five replica simulations for each studied

condition are reported in Table 1. The averaged results show

a gradual increase of the particle–wall separation and average

surface diffusivity with the magnitude of the interfacial surface

energies that characterize the degree of wettability of the particle

and wall surfaces. Notably, the cases for which the particle

Hamaker constant A is larger than the critical contact value Ac
predicted by eqn (6) (see shaded area in Table 1) report a notice-

able reduction of the average surface diffusivity, as expected when

direct ‘‘dry’’ contact between the particle and the wall is attained.

The in-plane mean square displacement and separation-

dependent surface diffusivity D8(d) reported in Fig. 4 for

individual replica simulations provides a more detailed picture

of the complex post-adsorption behavior with stick-slip motion

or immobilization randomly occurring at different separations

from the wall. As showed in Fig. 4a–c the surface diffusivity

D8(d) for individual simulations for the same studied condi-

tions can differ significantly from the average surface diffusivity

as the Hamaker constant increases and/or the interfacial energy

magnitude decreases. We compare in Fig. 4d the separation-

dependent surface diffusivity D8(d) predicted by the analytical

model in eqn (7) for the case of vanishingly small in-plane

energy barriers b = 0 and for thermally activated stick-slip

motion with energy barriers comparable to the solvation energy

by using b = 0.25 & 1 in eqn (3). The surface diffusivities

Fig. 3 Liquid structure and solvation layers near a planar wall. (a) The 2D

liquid density field n(x,y) = n(z,y) computed from MD presents periodic

spatial variations of comparable magnitude in the direction normal and

parallel to the wall, indicating the presence of off- and in-plane energy

barriers induced by the liquid solvation structure. (b) The 1D liquid density

profile nðyÞ ¼ 1=Lxð Þ
Ð Lx
0
nðx; yÞdy shows local energy minima in the liquid

solvation structure with a period similar to the liquid molecule diameter s.

The density profiles, reported for three different solid–liquid interaction

energies ewl = 0.5, 0.75, & 1kBT, show that density fluctuations decay nearly

exponentially away from the wall and their magnitude increases mono-

tonically with the pairwise LJ energy ewl. (c) Solid–liquid interfacial ener-

gies gwl computed from MD via the 1D density profile n(y). For the modeled

conditions, |gwl| increases with the pairwise energy ewl following a nearly

quadratic relation (see fit to the MD data).
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determined from MD simulations (see markers in Fig. 4d) are

reported for the average post-adsorption separations %d for each of

the five replicas of the eleven studied conditions. To readily

compare the surface and bulk diffusivity, the results reported in

Fig. 4d are normalized by the bulk diffusion constantD0 computed

inMD simulations for free-space Brownianmotion (see Section 3).

All the surface diffusivities computed from individual MD

replica simulations fall within the analytical predictions for in-

plane Brownian diffusion solely hindered by hydrodynamic

drag (i.e., b = 0 in eqn (3)) and stick-slip motion with activation

barriers prescribed by a surface energy gt = kBT/s
2 (i.e., b = 1 in

eqn (3)). First we must note that while the upper bound value

D8 = D0l8 p d�1 is solely prescribed by hydrodynamic friction

and inversely proportional to the wall–particle separation, the

lower surface diffusivity bound decreases exponentially with the

separation distance. Hence, as the Hamaker constant decreases

and/or the surface energy magnitude increases so that A o AcC

65.7|�g|s2 and contact is prevented by kinetic effects, the surface

diffusivities D8 \ 0.2D0 can become comparable to the free-space

diffusivity D0. This analytical prediction is verified by the MD

replica simulations and indicates that significant in-plane

mobility can be retained after physical adsorption when either

or both the particle and wall surface wettability increases. Sec-

ondly, the ability to diffuse in-plane is generally reduced when the

nanoparticle is adsorbed at separations from contact dn � d0 = ns

given by an integer number n of molecular liquid layers (cf.

Fig. 4d). On the other hand, the surface diffusivity D8(d) -

D0l8(d) increases toward the maximum value prescribed by

hydrodynamic drag when the particle–wall separation is slightly

larger than themetastable position and 0o |d� dn|o s/2, which

is consistent with the analytical prediction for in-plane energy

barriers in eqn (3). This observation indicates that ‘‘defects’’ in the

pseudo-crystalline structure of the liquid solvation layers, induced

by the particle rotation, shape, and misalignment with the plane

wall, can have significant effects on the effective surface diffusivity

of a physically adsorbed nanoparticle.

5 Conclusions

A simple analytical model using as input a compact set of

measurable or determinable parameters was formulated to

Fig. 4 In-plane mean square displacement MSD8 and surface diffusivity D8 at different adhesion separations. (a)–(c) MSD8(Dt,d) vs. lag time Dt computed

from individual MD replica simulations for three studied cases with surface energy magnitudes |�g| = 0.34, 0.6, & 1.0kBT/s
2 and Hamaker constants

A = 15.8, 7.9, & �7.9kBT, respectively. Black solid lines: linear fits (R2 = 0.96–0.98) to the MD data computed via eqn (9) for individual replica simulations.

Dashed grey line: MSD corresponding to the average surface diffusivity %D determined using all the replica simulations for the studied case. (d) Surface

diffusivity D8(d) vs. separation from contact d � d0 computed from individual MD replica simulations for the eleven studied cases reported in Table 1 (see

legend). Analytical predictions from eqn (7) are reported for purely hydrodynamic effects (DU8 = 0) and kinetic effects with energy barriers DU8

comparable to the adhesion energy: b = 0 (red line), b = 0.25 (dark red dashed-dotted line), and b = 1.0 (black line). Shaded yellow regions: conditions for

which A 4 Ac and contact with vanishing surface diffusivity is expected.
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predict the surface diffusivity of rigid nanoparticles physically

adsorbed to a surface immersed in liquid media. While only

vdW forces were considered for the studied near-contact con-

ditions with particle–wall separations of molecular dimensions,

the proposed model and analysis can be readily extended to

include the electric double layer force when this is necessary.

Analytical predictions from the formulated model provide the

upper and lower bound for the range of random surface

diffusivities reported by MD simulations of single particle

adsorption over a range of physical conditions that correspond

to common hydrophilic nanomaterials dispersed in aqueous

solutions. While stable physical adsorption occurs for direct

contact between the nanoparticle and solid surface, there are

ubiquitous physicochemical conditions for which contact is

prevented due to a kinetic trapping phenomenon caused by

solvent-induced interactions for critically low Hamaker constants.

Under such trapping conditions corresponding to ‘‘weak’’ attrac-

tive vdW interactions with A t 65.7|�g|s2, nanoparticles of radius

R c s can have surface diffusivities D8 B D0 comparable to the

free-space diffusivity D0, over observation times t c R2/D0 much

larger than the characteristic diffusive time prescribed by the

particle radius. Notably, the in-plane diffusivity is enhanced when

the particle remains physically adsorbed at particle–wall separa-

tions that prevent the formation of an integer number of solvation

layers between the particle and wall surfaces.

An important conclusion of this work is that nanoparticles

of common materials that are moderately to highly hydrophilic

can produce combinations of Hamaker constant and surface

energies that enable post-adsorption surface diffusion over

distances larger than the particle size. Tuning the ability of a

nanoparticle to remain mobile over an adsorbing surface has

important implications to various technical applications that

involve adhesion, transport, and removal of nanomaterials to/

from wetted surfaces, or the reduction/oxidation of nano-

particles at catalytic sites on an electrode surface. The findings

of this work are relevant to common nanomaterials (e.g., metal

oxide nanoparticles and micro/nanoplastics) that are exten-

sively employed in commercial applications, and are subse-

quently released in the environment. The proposed analytical

model can be employed to guide future experimental studies,

support the rational design of applications involving mass and

charge transfer on wetted surfaces, and to help improve models

for the environmental fate of engineered nanomaterials.
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