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Abstract—The primary objective of this paper is to establish
a generalized framework for pulse-shaping on the delay-Doppler
plane. To this end, we classify delay-Doppler pulse-shaping tech-
niques into two types, namely, circular and linear pulse-shaping.
This paves the way towards the development of a generalized
pulse-shaping framework. Our generalized framework provides
the opportunity to compare different pulse-shaping techniques
under the same umbrella while bringing new insights into their
properties. In particular, our derivations based on this framework
reveal that the recently emerged waveform orthogonal delay-
Doppler multiplexing (ODDM) is a linear pulse-shaping tech-
nique. By presenting ODDM under our generalized framework,
we clearly explain the observed staircase behavior of its spectrum
which has not been previously reported in the literature. Another
contribution of this paper is the proposal of a simple out-of-
band (OOB) emission reduction technique by inserting a small
number of zero-guard (ZG) symbols along the delay dimension
of the circularly pulse-shaped signals. Additionally, inserting
the zero-guards improves the bit-error-rate (BER) performance
of both circular and linear pulse-shaping techniques. Finally,
our simulation results confirm the validity of our mathematical
derivations, claims and the effectiveness of the ZGs in OOB
reduction and BER performance improvement.

Index Terms—Pulse-shaping, OTFS, ODDM, Delay-Doppler,
Multiplexing.

I. INTRODUCTION

Emerging applications, use cases, and network architectures
such as autonomous driving, high-speed trains, and intercon-
nected aerial and terrestrial systems bring new challenges
to future wireless networks [1]. Time-varying wireless en-
vironment is a common aspect of all these systems. While
orthogonal frequency division multiplexing (OFDM) has been
enjoying its dominance in the last two generations of wireless
systems, it cannot cope with the highly time-varying wireless
channels that appear in future networks [2].

Initiated by the landmark paper of Hadani et al. [2], multi-
plexing data in delay-Doppler domain has led to a great deal of
interest among researchers in both academia and industry. As
a paradigm-shifting technology, delay-Doppler multiplexing
transforms the time-varying channel into a two-dimensional
(2D) time-invariant one in delay-Doppler domain [2]. Orthog-
onal time-frequency space (OTFS), [3], is a rudimentary delay-
Doppler multiplexing technique that can be implemented on
the top of any multicarrier system, [2]–[6]. This is because

This publication has emanated from research conducted with the fi-
nancial support of Science Foundation Ireland under Grant numbers
SFI/19/FFP/7005(T) and SFI/21/US/3757. For the purpose of Open Access,
the authors have applied a CC BY public copyright licence to any Author
Accepted Manuscript version arising from this submission.

the delay-Doppler domain data can be easily translated into
the time-frequency domain by a 2D Fourier transform and
vice versa. More recently, a new modulation technique called
orthogonal delay-Doppler multiplexing (ODDM) was intro-
duced in [7]. ODDM deploys orthogonal pulses in delay-
Doppler domain to directly map the data symbols to the
delay-time domain [8]. From a different viewpoint, ODDM
is a multicarrier system whose signal is formed by staggering
multiple pulse-shaped OFDM symbols.

As mentioned earlier, OTFS can be implemented using any
time-frequency data transmission technology [2]. Backward
compatibility with the existing wireless standards is an impor-
tant aspect that requires careful attention in the air interface
design for future networks. This makes OFDM-based delay-
Doppler multiplexing techniques quite attractive for deploy-
ment in next generation networks. Hence, the focus of this
paper is specifically on OFDM-based OTFS and ODDM.

There exist a number of OFDM-based delay-Doppler multi-
plexing techniques, [7]–[16]. While the authors in [9] consider
ideal pulse-shaping, the impact of rectangular pulse-shaping
on OTFS is investigated in [10]. More recently, ideal and
rectangular pulse-shaping techniques are compared in [11].
The authors in [12] reveal that rectangular pulses in OTFS
lead to increased interference at the edges of the delay blocks
at the receiver side. Beyond studying the pulse-shaping effects
on OTFS, the authors in [13] and [14] focus on pulse-
shape design. The main idea of [13] is to design an optimal
receiver window across the time dimension for interference
cancellation purposes. To reduce the Doppler-induced leakage
at the receiver, a global windowing method was introduced in
[14]. In addition to the literature on pulse-shape design, there
are also several studies that introduce various pulse-shaping
techniques. The authors in [15] and [16] demonstrate that the
initial two-stage OTFS proposal in [2] can be effectively rep-
resented by a one-stage Zak transform, including the necessary
pulse-shaping for OTFS in the delay-Doppler domain. These
two works primarily focus on the feasibility of the existing
pulse-shaping filter in the delay-Doppler plane.

Despite the numerous works on this topic, there is a lack
of in-depth analysis to consolidate and compare various pulse-
shaping techniques within a generalized framework. Addition-
ally, in the earlier literature on delay-Doppler multiplexing,
oversampling has been disregarded due to the focus on criti-
cally sampled baseband signals. Nevertheless, multi-stage dig-
ital oversampling is a necessity for practical implementation.
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Hence, in this paper, we present the discrete-time formu-
lation of the OFDM-based pulse-shaping techniques on the
delay-Doppler plane with oversampling. We classify these
techniques into two categories of linear and circular pulse-
shaping. Then, we derive a generalized framework that sheds
light on the properties, differences and similarities of various
pulse-shaping techniques. In this study, we establish a discrete-
time representation of ODDM. Our derivations reveal that
ODDM is a linear pulse-shaping technique. Furthermore,
by presenting ODDM within the context of our generalized
framework, we clearly explain the observed staircase behavior
of its spectrum which we report for the first time in this paper.
To enhance the out-of-band (OOB) emission performance of
the circular pulse-shaping techniques, we propose inserting a
small number of zero-guard (ZG) symbols along the delay
dimension. As mentioned earlier, the channel imposed inter-
ference is severe at the edges of the delay blocks. Hence,
ZG insertion improves the bit-error-rate (BER) performance.
Finally, we numerically confirm our mathematical derivations
and claims by simulations.

The rest of this paper is organized as follows. Section II
covers the delay-Doppler signaling fundamentals. Circular and
linear pulse-shaping techniques are discussed in Sections III
and IV. An OOB emission reduction technique for circularly
pulse-shaped signals is also proposed in Section III. Using the
derivations in Sections III and IV, a generalized framework for
delay-Doppler plane pulse-shaping is introduced in Section V.
Finally, our numerical results are presented in Section VI and
the paper is concluded in Section VII.

Notations: L-fold upsampling and downsampling along a
given dimension, l, of a multidimensional signal are repre-
sented by the operators (·)l,↑L

and (·)l,↓L
, respectively. M -

point circular convolution is presented as
M

⊛ and ∗ represents
linear convolution. δ[·] is the Dirac delta function and (·)−1

indicates the inverse operation. The DFT of x[l, n] with
respect to n is represented as X[l, k] = FN,n{x[l, n]} =
1√
N

∑N−1
n=0 x[l, n]e−j 2πkn

N .

II. SYSTEM MODEL

We consider the quadrature amplitude modulated (QAM)
data symbols, D[l, k], on a regular grid in the delay-Doppler
domain, where l = 0, . . . ,M − 1 and k = 0, . . . , N − 1
represent the delay and Doppler indices, respectively. Given
the delay spacing of ∆τ , each delay block comprising M
delay bins has the duration of T = M∆τ . Hence, the Doppler
spacing is ∆ν = 1

NT . To form the transmit signal, the data
symbols are translated to the delay-time domain by an inverse
DFT (IDFT) operation along the Doppler dimension as

X[l, n] =
1√
N

N−1∑
k=0

D[l, k]ej
2πkn

N . (1)

Then, the samples on the delay-time grid, X[l, n] are converted
to the serial stream x[κ]=X[l, n] for κ=nM+l, n=0,. . ., N−
1, and l = 0, . . . ,M−1 and a CP is appended at the beginning
of the block. The CP length is chosen as Lcp ≥ Lch to prevent
inter-block interference, where Lch is the channel length.

Let us consider the received signal after transmission over
the linear time-varying (LTV) channel and CP removal as r[κ]
for κ = 0, . . . ,MN − 1. To obtain the received data symbols
in the delay-Doppler domain that are affected by the channel,
we first form the 2D delay-time signal Y [l, n] = r[nM + l],
where l = 0, . . . ,M − 1 and n = 0, . . . , N − 1 are delay and
time indices, respectively. Then, we perform an N -point DFT
operation on Y [l, n] along the time dimension to obtain

D̃[l, k] =
1√
N

N−1∑
n=0

Y [l, n]e−j 2πkn
N . (2)

Finally, the received symbols D̃[l, k] are passed through the
channel equalizer to estimate the transmitted data symbols.

The above formulation is generic to delay-Doppler multi-
plexing techniques and it does not capture the pulse-shaping
effects. Pulse-shaping is a design consideration that is of a
paramount importance to any other communication system.
Hence, in the rest of this paper, we first classify different pulse-
shaping techniques into two types, namely, circular and linear
pulse-shaping. Then, we introduce a generalized framework
that reveal the properties of different pulse-shaping techniques.

III. CIRCULAR PULSE-SHAPING

In this section, we initiate our discussion with oversam-
pling and pulse-shaping the multiplexed data in delay-Doppler
domain, using the OFDM modulator. For reasons that will
become clear shortly, this type of pulse-shaping falls under
the category of circular pulse-shaping techniques.

The initial proposal of OTFS utilizes the inverse symplectic
finite Fourier transform (ISFFT) to convert data symbols into
the time-frequency domain. This is followed by an OFDM
modulator, which performs oversampling and pulse-shaping,
by zero-padding in the frequency domain and windowing in
the time domain, often with a rectangular window. With the
oversampling factor Lus, this process is performed by increas-
ing the number of frequency bins from M to M ′ = MLus

and setting the high-frequency bins to zero [17]. As shown
in Fig. 1, this can be alternatively performed by creating
Lus replicas of the signal along the frequency dimension and
multiplication by a rectangular window in each time-slot.

Creating Lus spectral replicas of the time-frequency domain
signal at each time-slot is equivalent to the expansion of the
delay-time domain signal in (1) along the delay dimension as

Xe[l
′, n] =

M−1∑
l=0

X[l, n]δ[l′ − lLus], (3)

where l′ = 0, . . . ,M ′−1. Frequency domain multiplication by
a rectangular window can also be equivalently performed in
the delay-time domain with an M ′-point circular convolution
operation along the delay dimension, i.e.,

X
C
[l′, n] = Xe[l

′, n]
M′

⊛ p[l′], (4)

where p[l′] is the ‘sinc’ function which can be replaced with
any Nyquist pulse such as the root-raised cosine (RRC) pulse.
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Fig. 1. The relationship between zero-padding in frequency dimension and oversampling in delay dimension where M = 10, N = 8, Lus = 2.

The transmit signal before CP addition can be constructed
by converting the two-dimensional delay-time domain signal,
X

C
[l′, n], into the serial stream xCus[κ

′] = X
C
[l′, n] where κ′ =

nM ′ + l′. Assuming X
C
[l′, n] to be non-zero only for l′ =

0, . . . ,M ′ − 1 and n = 0, . . . , N − 1, and zero elsewhere,
xCus[κ

′] can be expressed as

xCus[κ
′] =

N−1∑
n=0

X
C
[κ′ − nM ′, n]. (5)

By substituting (4) into (5), we obtain

xCus[κ
′] =

N−1∑
n=0

Xe[κ
′ − nM ′, n]

M′

⊛ p[κ′ − nM ′]. (6)

As shown below, using (1) in (3) and reordering the sum-
mations, Xe[l

′, n] can be directly obtained by expanding the
delay-Doppler domain data symbols.

Xe[l
′, n]=

M−1∑
l=0

(
1√
N

N−1∑
k=0

D[l, k]ej
2πnk

N

)
δ[l′ − lLus]

=
1√
N

N−1∑
k=0

(
M−1∑
l=0

D[l, k]δ[l′ − lLus]

)
ej

2πnk
N

=
1√
N

N−1∑
k=0

De[l
′, k]ej

2πnk
N = F−1

N,k

{
De[l

′, k]
}
, (7)

where De[l
′, k] =

(
D[l, k]

)
l,↑Lus

. Then, by inserting (7) into

(6), we obtain

xCus[κ
′] =

N−1∑
n=0

F−1
N,k

{
De[κ

′−nM ′, k]
}

M′

⊛ p[κ′−nM ′]

=
N−1∑
n=0

F−1
N,k

{
De[κ

′−nM ′, k]
M′

⊛ p[κ′−nM ′]
}
. (8)

Our result in (8) reveals that oversampling and pulse-shaping
can be performed in either the delay-Doppler or delay-time do-
mains. In fact, circular convolution in (8) can be interpreted as
making De[l

′, k] and p[l′] periodic along the delay dimension,
linearly convolving them, and confining the resulting signal by
a rectangular window with length M ′. This can be thought of
as a circular pulse-shaping procedure for OTFS which we call
C-PS OTFS. After appending a CP with length L′

cp = LcpLus

at the beginning of xCus[κ
′], the resulting signal is transmitted

through the channel.

At the receiver, we express the received signal after CP
removal as rCus[κ

′]. Then, the 2D delay-time signal Y C
us[l

′, n] =
rCus[l

′ + nM ′] is constructed where l′ = 0, . . . ,M ′ − 1 and
n = 0, . . . , N − 1. Next, Y C

us[l
′, n] goes through a matched

filtering process using p∗[−l′], followed by down-sampling
with a factor of Lds = Lus, both along the delay dimension.
Finally, we take an N -point DFT across the time dimension
to obtain the received delay-Doppler domain data symbols as

D̃[l, k] = FN,n

{(
Y C
us[l

′, n]
M′

⊛ p[l′]
)
↓Lds

}
=
(
FN,n

{
Y C
us[l

′, n]
}

M′

⊛ p[l′]
)
↓Lds

, (9)

where p∗[−l′] = p[l′] as p[l′] is symmetric and real-valued. As
shown in (9), matched filtering and down-sampling stages can
be performed in either delay-Doppler or delay-time domain.

The circular convolution in (4) causes the transients of the
pulse-shape to wrap around at the edges of each delay block.
Therefore, circular pulse-shaping does not allow the transients
of the pulse shape to appear. This leads to abrupt changes at
the boundaries of the delay blocks that result in high OOB
emissions. To circumvent the wrap around effect, we propose
zero-padding the delay-Doppler domain data symbols in all
time-slots along the delay dimension. Inserting ZG symbols
lead to the appearance of the smooth transients at the edges
of each delay block which lowers the OOB emissions. As we
will show in Section VI, by inserting only a small number
of ZG symbols, a significant amount of OOB reduction can
be achieved. Furthermore, the benefits of the ZG insertion is
two-fold as they also lead to BER performance improvement.

IV. LINEAR PULSE-SHAPING

In the previous section, we discussed and formulated circu-
lar pulse-shaping while explaining OOB emission limitations
of this pulse-shaping class. In this section, we explain and for-
mulate linear pulse-shaping as an alternative to circular pulse-
shaping which inherently has low OOB emissions. Addition-
ally, we present the discrete-time formulation of the emerging
delay-Doppler multiplexing technique, ODDM. Our deriva-
tions show that ODDM is a linear pulse-shaping technique
while explaining an interesting property of this waveform that
has not been previously reported in the literature.
A. Linearly Pulse-Shaped OTFS

As explained in Section III, frequency domain oversampling
is performed in two steps. At the first step, the translated
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data symbols to the time-frequency domain are repeated Lus

times along frequency. At the second step, only one replica
is preserved. In circular pulse-shaping, the second step is
performed by cyclic filtering, see (4). In this section, we
alternatively remove the unwanted spectral replicas by linear
filtering. Linear filtering leads to smooth signal edges in each
time-slot and thus, low OOB emissions. For a specific time-
slot n, linear pulse-shaping can be performed by replacing
circular convolution in (4) with linear convolution,

X
L
[l′, n] = Xe[l

′, n] ∗ p[l′], (10)

where l′=−M ′

2 + 1,. . .,M ′ + M ′

2 − 1. Thanks to the Nyquist
property of the deployed pulses for pulse-shaping, the transmit
signal before adding the CP can be constructed by overlapping
the adjacent time slots with a spacing of M ′ samples as

xLus[κ
′] =

N−1∑
n=0

X
L
[κ′ − nM ′, n], (11)

where κ′=−M ′

2 +1, . . . ,M ′N+M ′

2 −1. It is important to note
that the first M ′/2−1 and the last M ′/2 samples of xLus[κ

′] are
part of the transient interval of the pulse-shaping filter p[l′]. To
shorten the transient intervals, the pulse p[l′] can be truncated
up to Q zero-crossings, which include significant sidelobes
on each side of its main lobe, [8]. However, pulse truncation
comes at the expense of approximating the Nyquist criterion,
which means perfect reconstruction of the transmit symbols
at the receiver cannot be assured, [17]. While pulse truncation
does not have a substantial impact on the BER performance
for small constellation sizes, it can result in a performance
penalty as the constellation size increases. Moreover, for very
small values of Q, truncation results in significantly increased
OOB emissions. Thus, Q should be chosen carefully.

Using (7) and (10), (11) can be rearranged as

xLus[κ
′] =

N−1∑
n=0

Xe[κ
′ − nM ′, n] ∗ p[κ′ − nM ′]

=

N−1∑
n=0

F−1
N,k

{
De[κ

′−nM ′, k]
}
∗ p[κ′−nM ′]

=
N−1∑
n=0

F−1
N,k

{
De[κ

′−nM ′, k] ∗ p[κ′−nM ′]
}
. (12)

Considering the truncated pulse p[l′], κ′ =−Q′, . . . ,M ′N +
Q′ − 1, and Q′ = QLus for Q ∈ {1, . . . , M

2 }. From (12), it is
evident that oversampling and pulse-shaping can be performed
either in the delay-Doppler domain or the delay-time domain.
This flexibility is due to the fact that pulse-shaping is carried
out along the delay dimension and independent of Doppler. A
CP of length L′

cp is then inserted at the beginning of xLus[κ
′].

As this type of pulse-shaping is based on OTFS framework,
we refer to it as linearly pulse-shaped OTFS (L-PS OTFS).

Similarly to C-PS OTFS in Section III, we can represent
the received signal after CP removal as rLus[κ

′]. Then, we can
rearrange the received signal samples to form the 2D signal
Y L
us[l

′, n] = rLus[l
′ +nM ′] for l′ = −Q′, . . . ,M ′ +Q′ − 1 and

n = 0, . . . , N − 1 in the delay-time domain. The received
delay-Doppler domain symbols can be obtained through a
two-step procedure, i.e., matched filtering followed by down-
sampling along the delay dimension with a factor of Lds =
Lus. This operation can also be performed either in the delay-
time domain or the delay-Doppler domain as

D̃[l, k] = FN,n

{(
Y L
us[l

′, n] ∗ p[l′]
)
↓Lds

}
=
(
FN,n

{
Y L
us[l

′, n]
}
∗ p[l′]

)
↓Lds

, (13)

where p∗[−l′] = p[l′], since it is real and symmetric.

B. ODDM as a Linear Pulse-Shaping Technique

In ODDM, data transmission relies on an orthogonal delay-
Doppler domain pulse. To construct the transmit signal, each
data symbol D[l, k], scales the pulse-shape that is shifted by
l positions along the delay dimension and modulated to the
Doppler frequency k/NT , i.e.,

xODDM(t) =

M−1∑
l=0

N−1∑
k=0

D[l, k]u(t− l
T

M
)ej

2πk
NT (t−l T

M ), (14)

where −T
2 ≤ t<NT + T

2 , T =M∆τ is the symbol period,
u(t) =

∑N−1
n=0 p(t − nT ), and p(t) is a Nyquist pulse that

may be truncated. After appending a CP with length LcpTs

at the beginning of xODDM(t), the resulting signal xODDMcp (t) is
transmitted over the channel.

At the receiver, the CP is discarded first and then the
received symbols are obtained after matched filtering, [8]. In
the following, we proceed to establish the discrete-time for-
mulation of ODDM that sheds light on some of its unexplored
aspects. Considering the oversampling factor Lus, (14) can be
represented in discrete time as

xODDMus [κ′] =
M−1∑
l=0

N−1∑
k=0

D[l, k]u[κ′ − lLus]e
j
2πk(κ′−lLus)

NM′ , (15)

where u[κ′] =
∑N−1

n=0 p[κ′−nM ′] for κ′ = −Q′, . . . ,M ′N +
Q′ − 1 and xODDMus [κ′] = xODDM(κ′ T

M ′ ), u[κ′ − lLus] = u((κ′ −
lLus)

T
M ′ ). Hence, (15) can be expanded as

xODDMus [κ′] =
N−1∑
n=0

M−1∑
l=0

N−1∑
k=0

D[l, k]p[κ′−lLus−nM ′]ej
2πk(κ′−lLus)

NM′

=
N−1∑
n=0

N−1∑
k=0

(
M−1∑
l=0

D[l, k]pk[(κ
′−nM ′)−lLus]

)
ej

2πkn
N

=
N−1∑
n=0

N−1∑
k=0

M ′−1∑
λ=0

D[
λ

Lus
, k]pk[(κ

′−nM ′)− λ]

ej
2πkn

N

=
N−1∑
n=0

N−1∑
k=0

(
D[

κ′ − nM ′

Lus
, k] ∗ pk[κ′− nM ′]

)
ej

2πkn
N

=
√
N

N−1∑
n=0

F−1
N,k

{
De[κ

′ − nM ′, k] ∗ pk[κ′−nM ′]
}
,

(16)
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D[l, k]
(
·
)
l,↑Lus

pk[l
′] F−1

N,k{·} O/A CP
Addition

LTV
Channel

CP
Removal S/P FN,k{·} p∗k[−l′]

(
·
)
l′,↓Lds

D̃[l, k]

Modulator Demodulator

Fig. 2. Generalized modem structure for pulse-shaping on delay-Doppler plane (for C/L-PS OTFS, pk[l′] = p0[l′], ∀k).

where the second line in (16) is obtained by multiplication
of the first line by e−j 2πknM′

NM′ ej
2πknM′

NM′ = 1 and defining
the modulated pulse pk[κ

′] = p[κ′]ej
2πkκ′
NM′ . The third line is

obtained by a change of variable λ = lLus.
In its initial proposal, ODDM was described as a combina-

tion of M shifted and staggered pulse-shaped OFDM signals,
xODDMl (t) =

∑N−1
k=0 D[l, k]ej

2πk
NT tu(t), each with N Doppler

subcarriers [7], [8]. This results in the ODDM transmit sig-
nal xODDM(t) =

∑M−1
l=0 xODDMl (t − l T

M ). A more recent work
presented in [18] approximated the ODDM transmit signal
by sample-wise pulse-shaping of the serialized delay-time
signal X[l, n], resulting in the same signal as the one in (12).
However, this approximation is accurate only when 2Q ≪ M .

Comparing our derivation in (16) with (12), it becomes
evident that ODDM is a linear pulse-shaping technique, and it
is different from L-PS OTFS. The distinction between ODDM
and L-PS OTFS primarily lies in the choice of pulse-shaping
filter for different Doppler bins. In ODDM, pulse-shaping
along the delay dimension for a specific Doppler bin k is
performed by the modulated pulse pk[κ

′]. This clearly explains
the staircase behavior of the ODDM spectrum that is observed
in our numerical results in Section VI. In contrast, L-PS OTFS
employs the same pulse p[κ′], for pulse-shaping along the
delay dimension across all Doppler bins, as shown in (12).

Considering the received signal after CP removal, rODDMus [κ′],
the 2D delay-time domain signal can be represented as
Y ODDM
us [l′, n] = rODDMus [l′ + nM ′], where l′ = −Q′, · · · ,M ′ +

Q′ − 1 and n = 0, . . . , N − 1. Due to the dependency of
the pulse-shaping filter on the Doppler index, pulse-shaping at
the transmitter and matched filtering at the receiver can only
be performed in the delay-Doppler domain. This is another
point of difference between ODDM and L-PS OTFS. Thus,
to obtain the received symbols, we first convert the signal
Y ODDM
us [l′, n] to the delay-Doppler domain. Then, noting that

p∗k[−l′] ̸= pk[l
′], we apply the matched filter, p∗k[−l′], followed

by down-sampling, both along the delay dimension which is
mathematically expressed as

D̃[l, k] =
1√
N

(
FN,n

{
Y ODDM
us [l′, n]

}
∗ p∗k[−l′]

)
↓Lds

. (17)

V. GENERALIZED PULSE-SHAPING FRAMEWORK

Based on our derivations in Sections III and IV, in this
section, we introduce a generalized framework that encom-
passes different pulse-shaping techniques on delay-Doppler
plane that were discussed earlier. This framework provides
a deep understanding of the properties, similarities, and dis-
tinctions between the pulse-shaping techniques under study.
Based on the transmit signal expressions in (8), (12) and (16)

and the receive signal expressions in (9), (13), and (17), the
generalized baseband block diagram for pulse-shaping on the
delay-Doppler plane is illustrated in Fig. 2.

As shown in Fig. 2, all of these pulse-shaping techniques
can be implemented in four stages at the transmitter; (i) Lus-
fold expansion of the delay-Doppler domain data symbols
along the delay dimension, (ii) pulse-shaping the resulting
signal along the delay dimension, (iii) IDFT operation across
the Doppler dimension, and (iv) parallel-to-serial conversion
by overlap-and-add operation along the delay dimension, i.e.,
overlapping the delay blocks every M ′ samples. The reverse
procedure is performed at the receiver.

VI. NUMERICAL RESULTS
In this section, we numerically analyze and compare the

OOB emissions and BER performance of the pulse-shaping
techniques under investigation. Additionally, we evaluate the
efficacy of our proposed OOB reduction technique for C-PS
OTFS that also improves the BER performance of all the
pulse-shaping schemes. The observed staircase behavior of the
ODDM spectrum confirms the validity of our derivations in
Section IV. In our simulations, we consider a delay-Doppler
grid with M = 64 delay bins and N = 32 Doppler bins
for data transmission at the carrier frequency fc = 5.9 GHz,
and the subcarrier spacing ∆f = 15 kHz. We employ a
RRC pulse-shaping filter with the roll-off factor 0.1 and the
truncation parameter Q = 8. The upsampling factor is set to
Lus = 2. We use the extended vehicular A (EVA) channel
model [19]. The CP is chosen to be longer than the channel
delay spread. Maximum Doppler spread at the relative velocity
of v = 500 km/h between the transmitter and the receiver is
considered, i.e., νmax = v

c fc, where c is the speed of light. We
assume perfect synchronization and perfect knowledge of the
channel at the receiver. For detection, we deploy the minimum
mean square error (MMSE) equalizer.

In Fig. 3, we compare the OOB emissions of different pulse-
shaping techniques. Fig. 3 shows that the linear pulse-shaping
techniques have the lowest OOB emissions. An interesting
observation here is the staircase spectral behavior of ODDM
which has not been previously reported in the literature. Based
on our derivations, the modulated pulse in (16) clearly explains
this behavior. According to Section III, C-PS OTFS has large
OOB emissions which is effectively reduced by ZG insertion
along the delay dimension. As Fig. 3 illustrates, by sacrificing
only around 6% of the delay block, i.e., 2 ZGs at the edges
of each delay block, up to 20 dB reduction in OOB emissions
is achieved. ZG insertion at the edges of each delay block is
similar to full-CP OTFS where CPs (as guards) are inserted at
the beginning of the delay blocks. In 5G NR, the CP length is
7% of the OFDM symbol duration. As a delay block in OTFS
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is equivalent to an OFDM symbol, allocating 6% of the delay
block length to the ZGs is in line with 5G NR specifications.

In Fig. 4, we analyze the BER performance of different
pulse-shaping techniques versus Eb/N0. From Fig. 4, it is
evident that both circular and linear pulse-shaping techniques
yield nearly the same performance. As Fig. 4 demonstrates, in-
serting only 2 ZGs at the edges of each delay block effectively
enhances the performance of all the pulse-shaping techniques
by around 2 dB for 16-QAM and 1 dB for 4-QAM. For C-
PS OTFS, the rectangular pulse has the worst performance
which is due to its large sidelobes.

VII. CONCLUSION

In this paper, we classified pulse-shaping of the multiplexed
data on the delay-Doppler plane into two types of circular
and linear pulse-shaping techniques. Then, we formulated
each pulse-shaping class by considering block-wise pulse-
shaping along the delay dimension. We also formulated the
recently emerged waveform ODDM in discrete time. Our
derivations led to a generalized framework that explains all
the pulse-shaping techniques under the same umbrella while
revealing their properties, similarities and differences. Using
our generalized framework, we clearly explained the reasons
for high OOB emissions of circularly pulse-shaped signals.
Then, we proposed an effective OOB emission reduction tech-
nique by inserting a small number of ZG symbols along the

delay dimension. Furthermore, we showed that our proposed
ZG insertion technique is also beneficial to the linear pulse-
shaping techniques as it effectively improves their BER per-
formance. We presented ODDM in our generalized framework
which revealed its interesting staircase spectral behavior. We
also showed that ODDM is a linear pulse-shaping technique.
Ultimately, we compared the OOB emission and BER perfor-
mance of the pulse-shaping techniques by simulations while
confirming our mathematical derivations and claims.

REFERENCES

[1] Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis,
and P. Fan, “6G wireless networks: Vision, requirements, architecture,
and key technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp.
28–41, 2019.

[2] R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F.
Molisch, and R. Calderbank, “Orthogonal time frequency space modu-
lation,” in IEEE Wireless Commun. and Netw. Conf., 2017, pp. 1–6.

[3] R. Hadani, S. Rakib, S. Kons, M. Tsatsanis, A. Monk, C. Ibars,
J. Delfeld, Y. Hebron, A. J. Goldsmith, A. F. Molisch, and
R. Calderbank, “Orthogonal time frequency space modulation,” 2018.
[Online]. Available: https://doi.org/10.48550/arXiv.1808.00519

[4] S. Tiwari and S. S. Das, “Circularly pulse-shaped orthogonal time
frequency space modulation,” IEEE Electron. Lett., vol. 56, no. 3, pp.
157–160, 2020.

[5] S. M. Pishvaei, B. M. Tazehkand, and J. Pourrostam, “Design and per-
formance evaluation of FBMC-based orthogonal time–frequency space
(OTFS) system,” Physical Commun., vol. 53, p. 101723, 2022.

[6] C. D’Andrea, S. Buzzi, M. Fresia, and X. Wu, “Doppler-
resilient universal filtered multicarrier (DR-UFMC): A beyond-OTFS
modulation,” 2023. [Online]. Available: https://arxiv.org/abs/2302.09405

[7] H. Lin and J. Yuan, “Multicarrier modulation on delay-Doppler plane:
Achieving orthogonality with fine resolutions,” in IEEE Int. Conf. on
Commun., 2022, pp. 2417–2422.

[8] ——, “Orthogonal delay-Doppler division multiplexing modulation,”
IEEE Trans. on Wireless Commun., vol. 21, no. 12, pp. 11 024–11 037,
2022.

[9] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Practical pulse-
shaping waveforms for reduced-cyclic-prefix OTFS,” IEEE Trans. on
Veh. Technol., vol. 68, no. 1, pp. 957–961, 2019.

[10] P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Interference can-
cellation and iterative detection for orthogonal time frequency space
modulation,” IEEE Trans. on Wireless Commun., vol. 17, no. 10, pp.
6501–6515, 2018.

[11] A. Zhou, Y. Pan, J. Wu, H. Lin, and J. Yuan, “On the performance of
practical pulse-shaped OTFS with analog receivers,” in IEEE Int. Conf.
on Commun. Workshops, 2023, pp. 518–523.

[12] C. Shen, J. Yuan, and H. Lin, “Error performance of rectangular pulse-
shaped OTFS with practical receivers,” IEEE Wireless Commun. Lett.,
vol. 11, no. 12, pp. 2690–2694, 2022.

[13] Z. Wei, W. Yuan, S. Li, J. Yuan, and D. W. K. Ng, “Transmitter and
receiver window designs for orthogonal time-frequency space modula-
tion,” IEEE Trans. on Commun., vol. 69, no. 4, pp. 2207–2223, 2021.

[14] A. Tusha and H. Arslan, “Low complex inter-doppler interference
mitigation for OTFS systems via global receiver windowing,” IEEE
Trans. on Veh. Technol., vol. 72, no. 6, pp. 7685–7698, 2023.

[15] S. K. Mohammed, R. Hadani, A. Chockalingam, and R. Calderbank,
“OTFS—a mathematical foundation for communication and radar sens-
ing in the delay-Doppler domain,” IEEE BITS the Info. Theory Mag.,
vol. 2, no. 2, pp. 36–55, 2022.

[16] S. Li, W. Yuan, Z. Wei, J. Yuan, B. Bai, and G. Caire, “On the pulse
shaping for delay-Doppler communications,” 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2306.08704

[17] B. Farhang-Boroujeny, Signal Processing Technique for Software Ra-
dios. Lulu Publishing House, 2010.

[18] J. Tong, J. Xi, J. Yuan, and H. Lin, “On the input-output relation of
ODDM modulation over general physical channels,” in IEEE Inter. Conf.
on Commun. Workshops (ICC Workshops), 2023, pp. 289–294.

[19] 3GPP, “Evolved universal terrestrial radio access (E-UTRA); base station
(BS) radio transmission and reception,” 3rd Generation Partnership
Project (3GPP), TS 36.104 V15.3.0, 2018.

2024 IEEE International Conference on Communications (ICC): Communication Theory Symposium

793
Authorized licensed use limited to: The University of Utah. Downloaded on November 02,2024 at 04:53:07 UTC from IEEE Xplore.  Restrictions apply. 


