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Abstract. This paper proves a probabilistic Weyl-law for the spectrum of randomly

perturbed Berezin-Toeplitz operators, generalizing a result proven by Martin Vogel

in [23]. This is done following the strategy of [23] using the exotic symbol calculus

developed by the author in [13].

1. Introduction

This paper generalizes a result of Martin Vogel in [23] which proves a probabilistic

Weyl-law for quantizations of functions on tori. Here we do the same, but with the

tori replaced by arbitrary Kähler manifolds equipped with positive line bundles.

In [23], Vogel considers Toeplitz quantizations of smooth functions on a real 2d-

dimensional torus, which associates every smooth function f on the torus to a family

of Nd ×Nd matrices, fN , for all N ∈ N (here N−1 is the semi-classical parameter). A

recent physical motivation for such constructions is written by Deleporte in [6, Section

1]. Next, a random matrix with sufficiently small norm is added to fN , and the

spectrum is shown to obey an almost-sure Weyl-law as N goes to infinity. This was

conjectured by Christiansen and Zworski in [4] and is a major extension of their work.

This result is most striking when the unperturbed matrix is non-self-adjoint. For

example, if f(x) = cos(2πx) + i cos(2πξ), then the quantization is

fN =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(2π/N) i/2 0 0 ⋯ i/2
i/2 cos(4π/N) i/2 0 ⋯ 0

0 i/2 cos(6π/N) i/2 ⋱ 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 i/2 cos(2(N − 1)π/N) i/2
i/2 0 ⋯ 0 i/2 cos(2π)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which numerically has spectrum contained on two crossing lines in the complex plane.

This operator is aptly named the Scottish flag operator and is further described by

Embree and Trefethen in [9]. Interestingly, (as far as we are aware) it is unknown

analytically where the spectrum of fN lives. However, if randomly perturbed, the

spectrum spreads out with density given by the push-forward of the Lebesgue measure

Date: March 15, 2023.
1

a
rX

iv
:2

2
0
7
.0

9
5
9
9
v
3
  
[m

a
th

.S
P

] 
 1

3
 M

a
r 

2
0
2
3



2 IZAK OLTMAN

on the torus by f . Figure 1 plots the spectrum of fN with no perturbation, and with

a small perturbation.

Figure 1. Left: Eigenvalues of the Scottish flag operator with N = 50. Right:

Eigenvalues of the Scottish flag operator with a small random perturbation

with N = 1000.

The spectral properties of randomly perturbed non-self-adjoint operators was pio-

neered by Hager in [11], in which the operator hDx + g(x) ∶ L2(S1) → L2(S1) was
studied. This result, and numerous subsequent results are discussed by Sjöstrand in

[16]. There are related results describing spectral properties of randomly perturbed

Toeplitz matrices, which can be defined as quantizations of symbols on T2 with sym-

bol independent of x. See Davies and Hager [5], Guionnet, Wood and Zeitouni [10],

Sjöstrand and Vogel [18] [17], and references given there.

This paper is the natural generalization of Vogel’s result in [23]. Here we prove a

similar result for quantizations of functions on Kähler manifolds (with sufficient struc-

ture, as discussed in Section 2). These quantizations, called Berezin-Toeplitz operators

(or just Toeplitz operators) were first described by Berezin in [2] as a particular type of

quantization of symplectic manifolds. Following [2], for every smooth function f on a

quantizable Kähler manifold X, we get a family of finite rank operators, TNf , indexed

by N ∈ N (see [14] for a connection between these quantizations, and quantizations on

the torus) which have physical interpretations. Deleporte in [6, Appendix A] relates

this quantization to spin systems in the large spin limit, and Douglas and Klevtsov in

[7] use path integrals for particles in a magnetic field to derive the Bergman kernel (a

key ingredient in constructing TNf).

Next, if we add a small Gaussian-type random perturbation Gω to these operators

(see Definition 2.3), the empirical measures weakly converge almost surely (see The-

orem 2 in Section 2 for a precise statement). Theorem 3 states a result about more

general random perturbations Wω (see Definition 2.3) but with a more restrictive cou-

pling constant. A consequence of Theorem 3 is the following probabilistic Weyl-law.
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Theorem 1 (A Probabilistic Weyl-law). Given a quantizable Kähler manifold X,

f ∈ C∞(X;C) such that there exists κ ∈ (0,1] so that

µd({x ∈X ∶ ∣f(x) − z∣2 ≤ t}) = O(tκ)
as t → 0 uniformly for z ∈ C (where µd is the Liouville volume form on X), Wω a

random matrix (see Definition 2.3), and Λ ⊂ C. Then almost surely

(2π
N
)d#{Spec(TNf +N−dWω) ∩Λ} N→∞

ÐÐÐ→ µd(x ∈X ∶ f(x) ∈ Λ).
Finer results are expected for describing the spectrum of randomly perturbed Toeplitz

operators. In [23], precise statements about the number of eigenvalues are obtained us-

ing counting functions of holomorphic functions. Here we only show weak convergence

of the empirical measures, but achieve this in a relatively simple way using logarithmic

potentials as presented in [20].

Here we present numerical examples to motivate the main result of this paper. Con-

sider the Kähler manifold CP1 (complex protective space of dimension 1) which can be

identified with the real 2-sphere with coordinates (x1, x2, x3). In Figure 2, we compute

the spectrum of the quantization of the function f = x1 + 2x22 + ix2. Before perturba-

tion, the spectrum lies on several lines in the complex plane, somewhat analogous to

the Scottish flag operator. However, as a perturbation is added, the spectrum fills in.

This paper describes the structure of the spectrum of this perturbed operator in the

semiclassical limit, as N →∞.

Figure 2. Left: Eigenvalues of the Toeplitz operator on CP
1 identified with

the real 2−sphere with symbol x1 + 2x
2
1 + ix2 and N = 50. Right: Eigenvalues

of the same operator but with a small random perturbation and N = 1000.

Numerical verification of this paper’s result can be seen if f = ix1+x2 (still on CP1).

Figure 3 computes the spectrum of TNf with a random perturbation added, and plots
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the number of eigenvalues in circles of increasing radii versus the predicted number of

such eigenvalues by Theorem 1. More animations can be found on my website1.

Figure 3. Left: Eigenvalues of the randomly perturbed Toeplitz operator on

CP
1 identified with the real 2−sphere with symbol ix1+x2 an N = 2000. Right:

The number of eigenvalues within circles in the complex plane centered at zero

with radii ranging from 0 to 1, plotted against the predicted distribution of

eigenvalues from Theorem 1.

Outline of Paper. Section 2 reviews background material and states the main result

of this paper (Theorem 2). In Section 3, a series of preliminary results about Toeplitz

operators are presented. Section 4 reviews logarithmic potentials and reduces Theo-

rem 2 to proving a probabilistic bound involving logarithmic derivatives of Toeplitz

operators. Section 5 sets up a Grushin problem to further reduce the problem to prove

probabilistic bounds on spectral properties of self-adjoint operators. Section 6 proves

a deterministic bound involving the logarithmic derivative of Toeplitz operators. The

technique involves scaling the symbol by a power of N , and therefore relies on the

exotic calculus presented in Section 3. Finally, Section 7 chooses constants to establish

the required probabilistic bound for the almost sure convergence in Theorem 2. In Sec-

tion 8, we describe how to extend this result to the more general random perturbations

as stated in Theorem 3.

Notation. We will use the following notation in this paper for functions f and g

depending on N . We write f = O(g) if there exists C > 0 independent of N such that

∣f ∣ ≤ Cg. We write f = O(N−∞) if for every M ∈ N, f = O(N−M). Any subscript in

the big-O will denote dependence of C of what is in the subscript. We will write f ≲ g

1https://math.berkeley.edu/~izak/research/toeplitz/movies.html



A PROBABILISTIC WEYL-LAW FOR PERTURBED BEREZIN-TOEPLITZ OPERATORS 5

if there exists a C > 0 independent of N such that f ≤ Cg. We write f ≪ g to mean

that Cf ≤ g for some sufficiently large C > 0 independent of N . For a u, v,w elements

of a Hilbert space, denote u⊗ v the map that sends w to u ⟨w, v⟩.

2. Main Result

Let (X,σ) be a compact, connected, d−dimensional Kähler manifold with a holo-

morphic line bundle L with positively curved Hermitian metric locally given by h = e−ϕ.

That is over each fiber x ∈X, ∥v∥h ∶= e−ϕ(x)∣v∣. Given this, the globally defined symplec-

tic form, σ, is related to the Hermitian metric by i∂∂ϕ = σ. Fixing local trivializations,

ϕ can be described as a strictly plurisubharmonic smooth real-valued function (called

the Kähler potential). This is further outlined by Le Floch in [12].

Let LN be the Nth tensor power of L, which has Hermitian metric hN ∶= e−Nϕ. Let

µd = σ∧d/d! be the Liouville volume form on X. This provides an L2 structure on

sections of LN . Indeed, if u and v are smooth sections on LN , then define

⟨u, v⟩LN ∶= ∫
X
hN(u, v)dµd.

Define L2(X,LN) to be the space of smooth sections of LN with finite L2 norm. In

this L2 space, let H0(X,LN) be the space of holomorphic sections.

Proposition 2.1. The dimension of H0(X,LN) is finite, and is asymptotically

(N
2π
)d vol(X) +O(Nd−1).

Proof. See [3, Corollary 2]. �

For the remainder of this paper, denote dim(H0, (X,LN)) by N = N (N). The

orthogonal projection from L2(X,LN) to H0(X,LN) is called the Bergman projector

and is denoted by ΠN . Finally, given f ∈ C∞(X;C), the Toeplitz operators associated
to f , written TNf , are defined for each N ∈ N as TNf(u) = ΠN(fu), where u ∈

H0(X,LN). In this way, TNf are finite rank operators mapping H0(X,LN) to itself.

For the remainder of this paper, we will fix a basis for H0(X,LN) so that TNf (and

similar operators) can be considered as matrices.

The class of functions to quantize will often depend on N . To define this symbol

class requires local control of functions. Fix a finite atlas of neighborhoods (Ui, ζi)i∈I
for the Kähler manifold X.

Definition 2.2 (S(1)). S(1) is the set of all smooth functions f on X taking complex

values which can be written asymptotically f ∼ ∑N−jfj, where fj ∈ C∞(X;C) do not
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depend on N . This tilde means that for all α ∈ N

∂αx (f ○ ζi(x) − M

∑
j=0

N−jfj ○ ζi(x)) = Oα(N−j−1)
for all i ∈ I, and all α ∈ Nd. By Borel’s theorem, given any fj ∈ S(1) not depending on

N , there exists f ∈ S(1) such that f ∼ ∑N−jfj.

If f ∼ ∑N−jfj, we call f0 the principal symbol of f , which is unique modulo O(N−1).
We next add a random perturbation to these Toeplitz operators. For this we must

fix a probability space Ω with probability measure P.

Definition 2.3 (Gω and Wω). For each N , let {ei ∶ i = 1, . . . ,N } be an orthonormal

basis of H0(X,LN). Define:
Gω =

N

∑
i,j=1

αj,kei ⊗ ej ∶H
0(X,LN)→H0(X,LN)

where αj,k are independent identically distributed complex Gaussian random variables

with mean zero and variance 1.

Similarly define Wω = ∑Ni,j=1 α̃j,kei ⊗ ej, with α̃j,k independent identically distributed

copies of a complex random variable with mean zero and bounded second moment.

The ω in the subscript of these objects is to emphasize that these objects are random.

That is for each ω ∈ Ω, Gω is a finite rank operator. The majority of this article describes

perturbations by Gω (the Gaussian case), while a brief note at the end concerns the

more general perturbations by Wω.

This paper will prove almost sure weak convergence of the empirical distribution of

eigenvalues of randomly perturbed Toeplitz operators. The principal symbol of f must

also satisfy the property that there exists κ ∈ (0,1] such that

µd({x ∈X ∶ ∣f0(x) − z∣2 ≤ t}) = O(tκ) (2.1)

as t → 0 uniformly for all z ∈ C. It is observed in [4] that if f is real analytic, then

(2.1) holds. See [4], and references presented there, for further discussion of (2.1).

Theorem 2 (Main Theorem). Given f ∈ S(1) which satisfies (2.1) and Gω, a family

of random operators on H0(X,LN), as defined in Definition 2.3, then for each ε > 0

there exists β = β(ε) ∈ (0,1) and C > 0 such that if δ = δ(N) satisfies
Ce−N

β

< δ < C−1N−d/2−ε (2.2)

then we have almost sure weak convergence of the empirical measures of TNf + δGω to

vol(X)−1(f0)∗µd.
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More precisely, if λi = λi(N,ω) are the (random) eigenvalues of TNf + δGω, then for

all ϕ ∈ C∞
0
(C)

1

N

N

∑
i=1

ϕ(λi) N→∞
ÐÐÐ→

1

vol(X) ∫Cϕ(z)[(f0)∗µd](dz)
almost surely, where (f0)∗µd is the push-forward of the volume form µd on X by f0.

Moreover, for each ε > 0, the constant β(ε) in (2.2) can be chosen at most strictly

less than

⎧⎪⎪⎨⎪⎪⎩
2εκ if ε < 1

2(κ+1)

κ
κ+1

if ε ≥ 1

2(κ+1)

where κ is defined in (2.1).

We expect Theorem 2 to hold for a much larger class of random perturbations than

described in Definition 2.3. Indeed, the only properties of Gω we use is a norm bound

(Lemma 4.6) and an anti-concentration bound (Proposition 5.7). See [24] where Vogel

and Zeitouni establish similar logarithmic determinant estimates with these classes

of random perturbations, and [1, Remark 1.3] where Basak, Paquette, and Zeitouni

describe random perturbations satisfying these properties.

Here we present a version of Theorem 2 for the more general random perturbations

Wω as described in Definition 2.3.

Theorem 3 (General Perturbations). For Wω defined in Definition 2.3, f ∈ S(1)
satisfying (2.1), δ = N−d, then the empirical measures of TNf + δWω converge almost

surely to (vol(X))−1(f0)∗µd.

A proof of this result is presented in Section 8.

Remark 2.1. We expect a wider range of δ’s and more general random perturbations

in Theorem 3 should lead to the same conclusion.

3. Review of an Exotic Calculus of Toeplitz Operators

In proving Theorem 2, non-negative symbols are scaled by powers of N−1. These

functions belong to a more exotic symbol class than smooth functions uniformly

bounded in N . Toeplitz operators of functions in this symbol class still have natu-

ral composition formulas. A summary of these results is contained in this section. For

proofs see [13].

Definition 3.1 (Order Function). For ρ ∈ [0,1/2), a ρ-order function m on X is a

function m ∈ C∞(X;R>0), depending on N , such that there exists M0 ∈ N such that for
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all x, y ∈X:

m(x)/m(y) ≲ (1 + dist(x, y)Nρ)M0 ,

where dist(x, y) is the distance between x and y with respect to the Riemannian metric

on X induced by the symplectic form σ.

Definition 3.2 (Sρ(m)). Given ρ ∈ [0,1/2) and a ρ-order function m on X. Sρ(m)
is defined as the set of smooth functions on X depending on N such that for all i ∈ I,

α ∈ Nd:

∣∂α(f ○ ζ−1i (x))∣ ≲α N δ∣ρ∣m ○ ζ−1i (x)
for all x ∈ ζi(Ui) (recall {(Ui, ζi) ∶ i ∈ I} is a finite atlas on X).

Proposition 3.3 (Composition). Given ρ ∈ [0,1/2), ρ-order functions m1,m2 on

X, f ∈ Sρ(m1) and g ∈ Sρ(m2). Then there exists h ∈ Sρ(m1m2) such that:

TNf ○ TNg = TNh +O(N−∞),
where O is in terms of the norm from L2(X,LN)→ L2(X,LN). Moreover, the principal

symbol of h is f0g0.

Claim 3.1. Given f ∈ S(1) with f0 ≥ 0, then if ρ ∈ [0,1/2), m(x) = f0N2ρ + 1 is a

ρ-order function on X and fN2ρ
∈ Sρ(m).

Proposition 3.4 (Parametrix Construction). Given ρ ∈ [0,1/2), a ρ-order func-

tion m on X, ρ ∈ [0,1/2), and f ∈ Sρ(m) such that there exists C > 0 so that f > Cm.

Then there exists g ∈ Sρ(m−1) such that:

TNf ○ TNg = 1 +O(N−∞), TNg ○ TNf = 1 +O(N−∞).
Proposition 3.5 (Functional Calculus). Given a ρ-order function m ≥ 1 on X (for

a fixed ρ ∈ [0,1/2)), a family of operators {RN}N∈N mapping H0(X,LN) to itself such

that ∥RN∥ = O(N−∞) and TNf + RN is self-adjoint for all N , and f ∈ Sρ(m) taking
real non-negative values such that there exists C > 0 with ∣f ∣ ≥mC−1−C. Then for any

χ ∈ C∞(R;C), there exists g ∈ Sρ(m−1) such that

χ(TNf +RN) = TNg +O(N−∞)
and g has principal symbol χ(f0).
Typically, Proposition 3.5 will be applied with RN = 0 for all N .

Proposition 3.6 (Trace Formula). If m is a ρ-order function on X (for fixed ρ ∈

[0,1/2)), and f ∈ Sρ(m), then
TrTNf = (N

2π
)d∫

X
f(x)dµd(x) +O(Nd−(1−2ρ))max

x∈X
m(x)

= (N
2π
)d∫

X
f0(x)dµd(x) +O(Nd−(1−2ρ))max

x∈X
m(x),
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where f0 is the principal symbol of f .

Note that if f = 1, then TrTN1 = Tr(ΠN) = dim(H0(X,LN)) = N which is an

alternative way of proving that N = vol(X)(N/2π)d +O(Nd−1).
4. Probabilistic Preliminaries

This paper uses the probabilistic machinery of logarithmic potentials. A brief

overview is presented in this section.

Definition 4.1 (P(C)). Let P(C) be the collection of probability measures µ on C

such that ∫ log(1 + ∣z∣)dµ(z) <∞.

Definition 4.2 (Logarithmic Potential). For ν ∈ P(C), define the logarithmic po-

tential as: Uν(z) ∶= ∫C log ∣z −w∣dν(w).
Using the fact that log ∣z∣ is the fundamental solution of the Laplacian, it can be

shown that, in the sense of distributions, ∆Uν = 2πν, which is the key ingredient in

proving the following theorem.

Proposition 4.3 (Convergence of Random Measures by Logarithmic Poten-

tials). Given {νN} ⊂ P(C) random measures such that almost surely supp νN ⊂ Λ for

N ≫ 1 (with Λ ⋐ Λ̄ ⋐ Λ′ ⋐ C) and for almost all z ∈ Λ′: UνN (z) → Uν(z) almost surely

for some ν ∈ P(C) with supp ν ⊂ Λ. Then almost surely νN → ν weakly.

Proof. See [20, Theorem 7.1]. �

We wish to use Proposition 4.3 to prove almost sure weak convergence of the em-

pirical measures of TNf + δGω.

Definition 4.4 (νN ). Let σN be the spectrum of TNf + δGω. Let νN = N −1∑λ∈σN
δ̂λ

where δ > 0 depends on N , and δ̂λ is the Dirac distribution centered at λ. The loga-

rithmic potentials for these random measures are

UνN (z) = 1

N
∑
λ∈σN

log ∣z − λ∣ = 1

N
log ∣det(TNf + δGω − z)∣.

Definition 4.5 (ν). Let ν = vol(X)−1(f0)∗µd (recall µd is the volume measure on X)

which has logarithmic potential

Uν(z) = ⨏
X
log ∣z − f0(x)∣dµd(x).

Where ⨏X f dµd is defined as vol(X)−1 ∫ f dµd.

Claim 4.1. For all N , νN , ν ∈ P(C).



10 IZAK OLTMAN

Proof. For each N ∈ N

∫
C

log(1 + ∣z∣)dνN(z) = 1

N
∑
λ∈σN

log(1 + ∣λ∣)
≤max

λ∈σN

log(1 + ∣λ∣)
≤ log(1 + ∥TNf + δGω∥) <∞.

And similarly,

∫
C

log(1 + ∣z∣)dν(z) = 1

vol(X) ∫C log(1 + ∣z∣)[(f0)∗µd](dz)
≤max

x∈X
log(1 + ∣f(x)∣) <∞.

�

Let Λ be a neighborhood of f(X). Clearly supp ν ⊂ Λ, the same is true with

probability 1 for νN , for sufficiently large N . A standard random matrix lemma is

required to show this.

Lemma 4.6 (Norm of Gaussian Matrix). There exists C > 0 such that

P(∥Gω∥ ≤ CN 1/2) ≥ 1 − exp(−N ).
If an event has this lower bound of probability, it is said to occur with overwhelming

probability.

Proof. See [21, Exercise 2.3.3]. �

For a fixed ε > 0, we will choose δ = δ(N) such that

0 < δ = O(N −1/2−ε). (4.1)

Lemma 4.7 (Borel–Cantelli). If An are events such that ∑∞1 P(An) < ∞, then the

probability that An occurs infinitely often is 0.

Proof. See [8]. �

Lemma 4.8 (Bound of TNf). Given f ∈ S(1), then ∥TNf∥LN
→LN ≤ sup ∣f ∣.

Proof. This follows immediately by writing TNf = ΠN ○Mf ○ΠN and recalling that ΠN

is unitary. �

Claim 4.2. Almost surely, supp νN ⊂ Λ for N ≫ 1.

Proof. First note that ∥TNf + δGω∥ ≤ ∥TNf∥ + δ ∥Gω∥ ≤ sup f +N −ε with overwhelming

probability (by Lemma 4.6, (4.1), and Lemma 4.8). Let σN be the spectrum of TNf +

δGω. In this event, for sufficiently large N , σN ⊂ Λ. So if Ac
N is the event that σN ⊂ Λ,
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then P(Ac
N) ≥ 1 − e−N . Therefore ∑P(AN) < ∞ and so by Lemma 4.7, almost surely

P (Ac
N) = 1 for N ≫ 1.

�

Lemma 4.9 (Almost Sure Convergence). If {YN}N∈N and Y are random variables

on a probability space (Ω,P) and εN is a sequence of numbers converging to 0 such that
∞

∑
N=1

P(∣YN − Y ∣ > εN) <∞,
then YN → Y almost surely.

Proof. See [8]. �

Therefore νN and ν satisfy the conditions of Proposition 4.3. So it suffices to show

that UνN (z) → Uν(z) for almost all z in the bounded set containing Λ. To prove this

almost sure convergence, it suffices to apply Lemma 4.9 with YN = N −1 log ∣det(TNf +
δGω − z)∣ and Y = ⨏ log ∣z − f0(x)∣dµd(x) for suitably chosen εN .

5. Setting up a Grushin Problem

To control log ∣det(TNf + δGω −z)∣ we follow the now standard method of setting up

a Grushin problem. This approach was used in [23] and [11], and is comprehensively

reviewed in [19].

Let P = TNf and HN = H0(X,LN). Define the z-dependent self-adjoint operators

Q = (P −z)∗(P −z) and Q̃ = (P −z)(P −z)∗. These operators share the same eigenvalues

0 ≤ t2
1
≤ ⋯ ≤ t2

N
. We can find an orthonormal basis of eigenvectors of Q for these

eigenvalues, denoted by ei, and similarly, and orthonormal basis of eigenvectors of Q̃

denoted by fi. These eigenvectors can be chosen such that

(P − z)∗fi = tiei, (P − z)ei = tifi, i = 1, . . . , N .

Next we fix ρ ∈ (0,min(1/2, ε)), and define:

α ∶= N−2ρ, A ∶=max{i ∈ Z ∶ t2i ≤ α} .
Definition 5.1 (Pδ). Let δj be the standard basis of CA, and define the operators

R+(z) = ∑A
1 δi ⊗ ei ∶ HN → CA and R−(z) = ∑A

1 fi ⊗ δi ∶ C
A
→ HN , where we use the

notation (u⊗ v)(w) = ⟨w, v⟩u. For each z ∈ C and δ ≥ 0, define

Pδ(z) ∶= (P + δGω − z R−(z)
R+(z) 0

) ∶ (HN

CA
)→ (HN

CA
) . (5.1)

Lemma 5.2. If δ = 0, then Pδ, as defined in (5.1), is bijective with inverse

E0(z) = (∑NA+1 1

ti
ei ⊗ fi ∑A

1 ei ⊗ δi

∑A
1 δi ⊗ fi −∑A

1 tiδi ⊗ δi
) ∶= (E0(z) E0

+
(z)

E0
−
(z) E0

−+
(z)) . (5.2)
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Proof. See [23, Section 5.1]. �

To ease notation, the z in the argument for these operators will often be dropped.

Unless specified, all estimates are uniform in z.

Claim 5.1 (Invertibility of Pδ). Pδ is invertible if δ ∥GωE0∥≪ 1.

Proof. By computation

PδE0 = 1 + (δGωE0 δGωE0
+

0 0
) ∶= 1 +K.

If ∥K∥ < 1 (which is true given the hypothesis), then (I +K)−1 exists as a Neumann

series, and we get PδE0(I +K)−1 = I (a similar argument shows this is a left inverse as

well). �

Lemma 5.3 (Norm of E0). In the notation of (5.2), ∥E0∥ ≤ α−1/2.
Proof. By construction, E0

= ∑NM+1(ti)−1ei ⊗ fi, so that ∥E0∥ = ∥E0fM+1∥ = (tM+1)−1 ≤
α−1/2. �

Lemma 5.4 (Norm of E0

+
). In the notation of (5.2), ∥E0

+
∥ = 1.

Proof. By construction E0
+
(z) = ∑M

1 ei ⊗ δi which has norm 1. �

These lemmas, along with Lemma 4.6, guarantee that if δ = O(α1/2N −1/2), then Pδ

is invertible with overwhelming probability. Denote the inverse of Pδ by Eδ with the

same notation for its components as in (5.2).

Define P δ
= P + δGω. By Schur’s complement formula, if P δ − z is invertible,

det(P δ − z R−
R+ 0

) = det(P δ
− z)det(−R+(P δ

− z)−1R−).
Writing PδEδ = 1, we get that −R− = (P δ − z)Eδ

+
(Eδ
−+
)−1 and R+Eδ

+
= 1. Therefore

−R+(P δ − z)−1R− = (Eδ
−+
)−1, so that

log ∣det(P δ
− z)∣ = log ∣detPδ(z)∣ + log ∣detEδ

−+
(z)∣. (5.3)

Note that P δ−z is invertible if and only if Eδ
−+

is invertible. Therefore (5.3) holds even

when P δ − z is not invertible.

Therefore, to prove Theorem 2, it suffices to show summability of the probability of

the events:

AN ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

RRRRRRRRRRRRRRRRRRRR
(N )−1(log ∣detPδ ∣ + log ∣detEδ

−+
(z)∣) −

 

X

log ∣z − f0(x)∣dµ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=B

RRRRRRRRRRRRRRRRRRRR
> εN

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.
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We let εN = N−γ for a suitably chosen γ = γ(d, κ) > 0. Expand B = B1 +B2 +B3 where:

B1 = N
−1 log ∣detP0∣ −⨏

X
log ∣z − f0(x)∣dµ(x), (5.4)

B2 = N
−1(log ∣detPδ ∣ − log ∣detP0∣), (5.5)

B3 = N
−1 log ∣detEδ

−+
∣. (5.6)

Controlling B1 requires the most work as it requires utilizing the calculus of Toeplitz

operators. However, it is completely deterministic, and remains true for unperturbed

operators. B2 will be easily shown to be negligible. Proving a lower bound on B3 is

the key ingredient in proving Theorem 2, as it will force the events AN to sufficiently

small probability. Without a perturbation, B3 will have no lower bound.

Proving bounds on B2 and B3 closely follow [23].

Lemma 5.5 (Bound on E−+). In the notation of (5.2), ∥E0
−+
∥ ≤√α.

Proof. By construction, E0
−+
= −∑A

1 tjδj ⊗ δj, so ∥E0
−+
∥ = ∣E0

−+
(δA)∣ = tA ≤√α. �

Lemma 5.6 (Bound on Eδ). In the notation of (5.2), ∥Eδ∥ ≤ 2α−1/2 with overwhelm-

ing probability.

Proof. By the Neumann construction, ∥Eδ∥ = ∥E0(1 + δGωE0)−1∥ ≤ 2 ∥E0∥ which is

bounded by 2α−1/2 by Lemma 5.3. �

Claim 5.2 (Bound on B2). In the notation of (5.5), B2 = O(δα−1/2N 1/2) with over-

whelming probability.

Proof. Using Jacobi’s formula, (log detA)′ = Tr(A−1A′), we have that

NB2 = log ∣detPδ ∣ − log ∣detP ∣ = ∫ δ

0

d

dτ
log ∣detPτ ∣dτ

= ∫
δ

0

Re(Tr(Eτ d
dτ
Pτ))dτ = ∫ δ

0

Re (Tr(EτGω))dτ.
Taking absolute values and using properties of trace norms

∣ log ∣detPδ ∣ − log ∣detP0∣∣ ≤ δ sup
τ∈[0,δ]

∥Eτ∥ ∥Gω∥tr ≤ O(δα−1/2N ∥Gω∥), (5.7)

where we used Lemma 5.6, and Hölder’s inequality for the Schatten norm. Recalling

the bound on Gω, (5.7) is O(δα−1/2N 3/2) with overwhelming probability. �

The following theorem about singular values of randomly perturbed matrices is

required for proving a lower bound of B3. Given a matrix B, let s1(B) ≥ s2(B) ≥ ⋯ ≥
sN(B) be its singular values.
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Proposition 5.7. If B is an N ×N complex matrix and Gω is a random matrix with

independent identically distributed complex Gaussian entries of mean 0 and variance

1, then there exists C > 0 such that for all δ > 0, t > 0:

P(sN(B + δGω) < δt) ≤ CNt2.
Proof. See [23, Theorem 23], which is a complex version proven by Sankar, Spielmann

and Teng in [15, Lemma 3.2]. �

Claim 5.3 (Bound on B3). In the notation of (5.6), B3 obeys the probabilistic upper

bound

P(N −1 log ∣detEδ
−+
∣ < 0) > 1 − e−N , (5.8)

for N ≫ 1. And B3 obeys the probabilistic lower bound: there exists there exists C > 0

such that for all δ > 0

P (N −1 log ∣detEδ
−+
∣ ≥ AN −1 log(δt)) > 1 −CN t2 − e−N .

Proof. First, by the Neumann series construction and choice of δ, with overwhelming

probability,

∥Eδ
−+
∥ ≤ ∥Eδ

−+
−E0

−+
∥ + ∥E0

−+
∥ = ∥E0

−
(1 − δGωE0)−1δGωE0

+
∥ + ∥E0

−+
∥

≤ 2 ∥δGω∥ + α1/2
≤ Cα1/2.

So, in this event, ∥Eδ
−+
∥ ≤ Cα1/2

< 1 for N ≫ 1, and therefore log ∣detEδ
−+
∣ < 0 proving

(5.8).

For the lower bound, first note that

log ∣detEδ
−+
∣ = A

∑
1

log sj(Eδ
−+
) ≥ A log sA(Eδ

−+
).

For a matrix B, let t1(B) be the smallest eigenvalue of
√
B∗B, so sA(Eδ

−+
) = t1(Eδ

−+
).

Assume that P − z is invertible. Using that (E0
−+
)−1 = −R+(P − z)−1R− and properties

of singular values of sums and products of trace class operators, we get

(t1(E0

−+
))−1 = s1((E0

−+
)−1) ≤ s1(R−)s1(R+)s1((P − z)−1) = ∥R+∥ ∥R−∥ s1((P − z)−1)

= s1((P − z)−1) = (t1(P − z))−1 = sN ((P − z)−1).
For δ = O(N −1/2α1/2), this holds for Eδ

−+
(the event of a singular matrix has probability

zero and the singular values depend continuously on δ) so sA(Eδ
−+
) = t1(Eδ

−+
) ≥ sN (P +

δGω − z) with overwhelming probability.

Using Proposition 5.7, in the event that ∥Gω∥ ≤ CN 1/2 (overwhelming probability)

and sN (P − z + δGω) > δt (probability at least 1 − CN t2), we have that sA(Eδ
−+
) > δt

with probability greater than 1 −CN t2 − e−N . Therefore

log ∣detEδ
−+
∣ ≥ A log sA(Eδ

−+
) ≥ A log(δt)
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with probability ≥ 1 − e−N −CN t2. �

6. Bound on B1

This section is devoted to estimating B1 (as in (5.4)) which involves computing the

trace of a function of a Toeplitz operator belonging to an exotic symbol class. This

closely follows [23], however several simplifications arise partially due to requiring

weaker bounds, and several modifications are required as we are working with Toeplitz

operators.

Claim 6.1 (Bound on B1). For P defined in (5.1),

log ∣detP0∣ = Nd⨏
X
log ∣f0(x) − z∣2 dµ +O(Nd−min(2ρκ,(1−2ρ)) log(N)).

Proof. Let’s first consider some preliminary reductions in computing log ∣detP0∣. By

Schur’s complement formula, ∣detP0∣2 = ∣det(P − z)∣2∣detE0
−+
∣−2. The first term is:

∣det(P − z)∣2 = detQ = N∏
i=1

t2i .

Because E0
−+
= −∑A

1 tjδj ⊗ δj (recall A is the largest integer such that t2A ≤ α), the

second term is

∣detE0

−+
∣−2 = ( A

∏
i=1

t2i)
−2

,

therefore

∣detP0∣2 = N

∏
i=A+1

t2i = α
−A

N

∏
i=1

1α(t2i ) = α−A det 1α(Q)
where 1α = max(x,α). If χ is a cut-off function identically 1 on [0,1], and supported

in [−1/2,2], then x + (α/4)χ(4x/α) ≤ 1α(x) ≤ x + αχ(x/α) for x ≥ 0. Therefore
det (Q + 4−1αχ (Q/(4−1α))) ≤ det(1α(Q)) ≤ det (Q + αχ(Q/α)) . (6.1)

Now fix 1≫ α1 > α, so that log det(Q + αχ(Q/α)) can be written

−∫
α1

α

d

dt
log det(Q + tχ(Q/t))dt + log det(Q + α1χ(Q/α1)). (6.2)

First the integrand is estimated. Let ψ(t) = (t − tχ′(t))(1 + χ(t))−1 so that

d

dt
log(x + tχ(x/t)) = t−1ψ(x/t)

for t > 0 and ψ ∈ C∞
0
(R≥0). Therefore, by Jacobi’s identity,

d

dt
log det(Q + tχ(Q/t)) = Tr(t−1ψ(Q/t)).
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While morally the same, here we diverge from [23]’s proof to handle this trace term,

and must rely on Section 3. The main issues are that Q is the composition of Toeplitz

operators, which may no longer be a Toeplitz operator (but is modulo O(N−∞) error),
Q/t belongs to an exotic symbol class so to compute ψ(Q/t) requires an exotic calculus,

and the trace formula (Proposition 3.6) has weaker remainder than for quantizations

of tori.

Let ρt be such that t = N−2ρt . By Proposition 3.3, Q = TNq +O(N−∞), where the

principal symbol of q is ∣f0 − z∣2. For each t, Q/t is (modulo O(N−∞)) a Toeplitz

operator with symbol in Sρt(mt) where mt = q0/t + 1, by Claim 3.1. And so, by

Proposition 3.5, there exists qt ∈ Sρt(m−1t ), such that ψ(Q/t) = TN(qt)+EN(t). Where

qt has principal symbol ψ(q/t) and EN(t) = O(N−∞) (with estimates uniform over t).

Therefore

∫
α1

α

d

dt
log det(Q + tχ(Q/t))dt = ∫ α1

α
Tr(t−1ψ(Q/t))dt

= ∫
α1

α
t−1Tr(TN(qt) +EN(t))dt.

The error term is

∫
α1

α
t−1Tr(EN(t))dt = O(N−∞)

because EN(t) is uniformly O(N−∞). While for each t, Proposition 3.6 shows that

Tr(TN(qt)) = (N
2π
)d∫

X
ψ(q0/t)dµd(x) + t−1O(Nd−1)

because m−1 is bounded. Therefore

∫
α1

α

d

dt
log det(Q + tχ(Q/t))dt = ∫ α1

α
(∫

X
(N
2π
)d t−1ψ(q0/t)dµd(x) + t−2O(Nd−1))dt

= (N
2π
)d∫

X
log(q0 + tχ(q0/t))∣t=α1

t=α
dµ(x) +O(Nd−1α).

Next the second term of (6.2) is computed. Because α1 is fixed, Q/α1 has symbol in

S(1). Therefore, by Proposition 3.5, Q+α1χ(Q/α1) = TNr+EN (with ∥EN∥ = O(N−∞))
where r ∈ S(1) with principal symbol q0 + α1χ(q0/α1). Let rt = tr + (1 − t) ∈ S(1), so
that

log det(Q + α1χ(Q/α1)) = ∫ 1

0

d

dt
log det(TNrt + tEN)dt

= ∫
1

0

Tr((TNrt + tEN)−1 ( d
dt
TNr

t
+EN))dt.

The principal symbol of rt is r1
0
= t(q0 + α1χ(q0/α1)) + (1 − t). Note that when x ≥ 0,

then x + α1χ(x/α1) ≥ α1 > 0. Therefore (rt0) ≥ α1 .
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Lemma 6.1. There exists s(t) ∈ S(1) (with bounds uniform in t) such that (TNrt +
tEN)−1 = TNs(t) +O(N−∞), and the principal symbol of s(t) is (rt

0
)−1.

Proof. By Proposition 3.4, there exists a symbol ` = `(t) ∈ S(1) which inverts (modulo

O(N−∞) error) TNrt, and has principal symbol (rt
0
)−1. But then

(TNrt + tEN)TN` = 1 +K
with K = O(N−∞), using that tEN = O(N−∞) and TN` has norm bounded independent

of N . By Neumann series, for N ≫ 1, (1 +K) is invertible, so that:

(TNrt + tEN)(TN`)(1 +K)−1 = 1.
(TN`)(1 +K)−1 will be a Toeplitz operator, modulo a O(N−∞) term, with symbol `

which has principal symbol (rt
0
)−1. By repeating this argument, but left-composing by

TN`, we get the lemma. �

Clearly d
dt
TNrt = TN(r − 1) so using Lemma 6.1, we get that

(TNrt + tEN)−1 ( d
dt
TNr

t
+EN)

is (modulo O(N−∞)) a Toeplitz operator with principal symbol (rt
0
)−1( d

dt
rt
0
). So by

Proposition 3.6

Tr((TNrt + tEN)−1 ( d
dt
TNr

t
+EN)) = (N

2π
)d∫

X
(rt0)−1 ( ddtrt0)dµd(x) +O(Nd−1)

which when integrated from t = 0 to t = 1 becomes:

(N
2π
)d∫

X
log(r10)dx +O(Nd−1) = (N

2π
)d∫

X
log(q0 + α1χ(q0/α1))dµd(x) +O(Nd−1).

Therefore (6.2) becomes:

(N
2π
)d∫

X
log(q0 + αχ(q0/α))dµd +O(Nd−1α−1).

A calculus lemma is required to estimate ∫X log(q0 + αχ(q0/α))dx.
Lemma 6.2. Given q ∈ C∞(X;R≥0) such that µd ({x ∈X ∶ q(x) ≤ t}) = O(tκ) as t→ 0

for κ ∈ (0,1], and χ ∈ C∞
0
((−1/2,2); [0,1]) identically 1 on [0,1]. Then

∫
X
log(q + αχ(q/α))dµd = ∫

X
log(q)dµd +O(ακ).
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Proof. Let g(t) = log(t + αχ(t/α)) and m(t) = µd({x ∈X ∶ q(x) ≤ t}). Then, letting

q1 =max q + 2α,

∫
X
log(q + αχ(q/α)) − log(α)dµd = ∫

X
g(q(x)) − g(0)dµd = ∫

X
∫

q(x)

0

g′(t)dtdµd

= ∫
q1

0

g′(t)∫
q(x)>t

dµd dt = ∫
q1

0

g′(t)(vol(X) −m(t))dt

= vol(X)(g(q1) − log(α)) −∫ q1

0

g′(t)m(t)dt.
So that:

∫
X
log(q + αχ(q/α)dµd = vol(X)g(q1) −∫ q1

0

g′(t)m(t)dt. (6.3)

Similarly, if g̃(t) = log(t), we get an analogous expression as (6.3), that is:

∫
X
log(q)dµd = vol(X)g̃(q1) −∫ q1

0

g̃′(t)m(t)dt.
Note that g(q1) = g̃(q1). Therefore:

∣∫
X
log(q + αχ(q/α)) − log(q)dµd∣ = ∣∫ q1

0

(g̃′(t) − g′(t))m(t)dt∣
= ∣∫ q1

0

(1
t
−
1 + χ′(t/α))
t + αχ(t/α) )m(t)dt∣

= ∣∫ q1/α

0

(1
s
−
1 + χ′(s)
s + χ(s) )m(sα)ds∣

≲ ∫
2

0

s−1m(sα)ds
≲ ακ∫

2

0

sκ−1 ds ≲ ακ.

Here we use that χ(0) = 1 to get a lower bound on ∣s + χ(s)∣, and the fact that

χ(s) − sχ′(s) is supported in (0,2). �

Applying this lemma, we get:

log det(Q + αχ(Q/α)) = (N
2π
)d∫

X
log(q)dµd(x) +O(ακ) +O(Nd−(1−2ρ)).

Recalling that (N/2π)dN −1 = vol(X)−1 +O(N−1), we get that:

log det(Q + αχ(Q/α)) = (N +O(N−1))⨏ log(q)dµd +O(Nd−(1−2ρ)). (6.4)

∫X log(q)dµd can be uniformly bounded in z, so that the O(N−1) term can be absorbed

into O(Nd−(1−2ρ)). By (6.1), we get the following lower bound by replacing α by α/4:
log det(Q + αχ(Q/α)) ≥ N ⨏ log(q)dµd +O(Nd−(1−2ρ)). (6.5)
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Lemma 6.3 (Bound on A). The number of eigenvalues of Q that are less than α is

O(NdN−min(2ρκ,(1−2ρ))).
Proof. Let ψ ∈ C∞

0
([−1/2,3/2]; [0,1]) be identically 1 on [0,1]. It then suffices to

estimate Tr(ψ(Q/α)). By Proposition 3.5, ψ(Q/α) = TN,q2 +O(N−∞), where q2 ∈ Sρ(1)
with principal symbol ψ(q/α).
Then by Proposition 3.6

Tr(ψ(Q/α)) = Tr(TN,q2 +O(N−∞))
= (N/2π)d∫

X
ψ(q/α)dµd(x) +O(Nd−(1−2ρ))

≲ Ndακ
+Nd−(1−2ρ)

= O(NdN−min(2ρκ,1−2ρ)).
�

Therefore, putting everything together, we get that

log ∣detP0∣ = 1

2
log(∣detP0∣2) = 1

2
log(α−A det 1α(Q)) = A

2
log(1/α) + 1

2
log det(1αQ)).

(6.4) and (6.5) provide upper and lower bounds of 2−1 log det(1α(Q)). Then using that

2−1 log q0 = ∣f0 − z∣ and Lemma 6.3 we get:

∣log ∣detP0∣ −N ⨏
X
log ∣f0 − z∣dµd∣ ≲ A log(1/α) + ακ

+Nd−(1−2ρ)

≲ Nd−min(2ρκ,(1−2ρ)) log(N) +N−2ρκ +Nd−(1−2ρ)

≲ Nd−min(2ρκ,(1−2ρ)) log(N).
Recall NB1 = log ∣detP0∣ −N ⨏ log ∣z − f0(x)∣dµd, so that

B1 = O(N−min(2ρκ,(1−2ρ)) log(N)).
�

7. Summability of AN

Recall that AN = {∣B(N)∣ > εN}, where B(N) = B1 +B2 +B3 with:

B1 = N
−1 log ∣detP0∣ −⨏ log ∣z − f0(x)∣dµd(x),

B2 = N
−1(log ∣detPδ ∣ − log ∣detP0∣),

B3 = N
−1 log ∣detEδ

−+
∣.

The following table summarizes the bounds on B1,B2, and B3.
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Bound Probability of Bound Reference

B1 = O(N−min(2ρκ,(1−2ρ)) log(N)) 1 Claim 6.1

B2 = O(δα−1/2N 1/2) > 1 − exp(−N ) Claim 5.2

B3 ≥ N
−1A log(tδ) > 1 −CN t2 − exp(−N ) Claim 5.3

B3 < 0 > 1 − exp(−N ) Claim 5.3

Recall that ρ ∈ (0,min(1/2, ε)) and α = N−2ρ. Theorem 2 will follow if ∑P(AN) <∞
for εN = N−γ. Recall that δ = O(N−d/2−ε) = O(N−d/2α1/2). Fix 0 < γ <min(ε−ρ,2ρκ,1−
2ρ).
Then P(AN) = P(B > N−γ) + P(B < −N−γ). The first term is:

P(B > N−γ) = P(B3 > N
−γ
−B2 −B1).

Because γ < ε − ρ and B2 = O(Nρ−ε) (with overwhelming probability), we see that

B2 = O(N−γ) (with overwhelming probability). Similarly, because of the bound on B1

and the choice of γ, B1 = O(N−γ). So ifN is sufficiently large, N−γ−B2−B1 ≥ CN−γ > 0.

But then by Claim 5.3, P(B > N−γ) ≤ e−Nd
for N ≫ 1.

Similarly, for N sufficiently large, there exists C0 ∈ (0,1/2) such that, ∣B1∣ + ∣B2∣ <
C0N−γ, so P(B < −N−γ) ≤ P(B3 < −(1 −C0)N−γ) = 1 − P(B3 ≥ −(1 −C0)N−γ). By the

choice of γ, bound on A from Lemma 6.3, and selecting t = N −2/d−1/2, we get for large

enough N : −(1 −C0)N−γ ≤ N −1A log(δt) as long as:

−N−γ(1 −C0) ≤ N −1A log(δ).
This requires that δ ≫ e−N

β
for β =min(2ρκ,1−2ρ)−γ ∈ (0,1). In this case, by Claim

5.3,

P(B3 > −N
−γ) ≥ P(B3 > AN

−1 log(δt))
≥ 1 −CN t2 − e−N

= 1 −CN −2/d + e−N .

Therefore P(B < −N−γ) ≤ CN−2 + e−Nd
for N ≫ 1.

With this, ∑∞N=1 P(AN) = C + ∑N≫1 P(AN) ≤ C + ∑N≫1(N−2 + 2e−Nd) < ∞ which

proves Theorem 2.

Note that if ε > (2(κ + 1))−1, then we can select ρ = (2(κ + 1))−1 and choose γ

arbitrarily small, so that β = κ(κ + 1)−1 − γ. While if ε < (2(κ + 1))−1, then the

maximum β can be is 2εκ. Therefore we have:

β <

⎧⎪⎪⎨⎪⎪⎩
2εκ if ε < 1

2(κ+1)

κ
κ+1

if ε ≥ 1

2(κ+1)
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8. General random perturbations

In this section we provide a discussion about how to modify the proof of Theorem

2 (Gaussian random perturbations) to prove Theorem 3 (more general random per-

turbations). We also deduce Theorem 1 (stated in the introduction) from Theorem

3.

Proof. Under the assumptions of Wω (see Definition 2.3), we have the following prob-

abilistic norm bound:

E[∥Wω∥2] = N

∑
i,j=1

E[∣(Wω)i,j ∣2] = O(N 2), (8.1)

as well as the following anti-concentration bound (from [22, Theorem 3.2]): for γ0 ≥ 1/2,
A0 ≥ 0, there exists a c > 0 such that if M is a deterministic matrix with ∥M∥ ≤ N γ0

then

P(sN (M +Wω) ≤ N −(2A0+1)γ0) ≤ c (N −A0+o(1) + P(∥Wω∥ ≥ N γ0)) . (8.2)

Recall, for an N ×N matrix A, we denote s1 ≥ s2 ≥ ⋯ ≥ sN(A) the singular values of

A.

From (8.1), and Markov’s inequality, we get

P(∥Wω∥ ≥ Nd−1) = O(N−2)
therefore if δ = N−d then δ ∥Wω∥ = O(N−1) with probability at least 1 −CN−2. From

this, Claim 4.2 (the supports of the random empirical measures being contained in a

bounded set for N ≫ 1) will follow by an identical argument.

Next, with probability at least 1−CN−2, we have δ ∥Wω∥α1/2
≪ 1. In this event, we

can build our perturbed Grushin problem the same way as in Section 5.

Next, we have to modify the estimate of B2 which was estimated in Claim 5.2. For

this, we simply modify (5.7) with a weaker estimate on the probability ∥Wω∥ is small.

Specifically, we see there exists C > 0 such that

P(B2 = O(α−1/2N−1)) > 1 −CN−2.
The final modification is in estimating B3 = N

−1 log ∣detEδ
−+
∣. We see, by the same

argument presented in Section 5, that

P(B3 < 0) ≥ 1 −CN−2.
To prove a lower bound, we go through the same argument, to get that:

log ∣detEδ
−+
∣ ≥ A log ∣sN (TNf − z + δWω)∣.



22 IZAK OLTMAN

Next, let

K0 ∶= sup
z∈Λ

∥TNf − z∥ = O(1)
(recall Λ is a neighborhood of f(X)). By (8.2) (with γ0 = 1 and A0 = 2), we have (for

N ≫ 1)

P(sN (TNf − z + δWω) ≤ N−7d) = P(sN (δ−1K−10 (TNf − z) +K−10 Wω) ≤ (Nd)−(2A0+1)γ0)
≤ c(N−2d+o(1) + P(∥K−10 Wω∥ ≥ N−d))
≤ cN−2.

Here we use that ∥δ−1K−1
0
(TNf − z)∥ ≤ Nd. With this, we can proceed as in Section 7,

with weaker probabilistic estimates. We choose ρ ∈ (0,1/2), and 0 < γ < min(2ρκ,1 −
2ρ). Writing P(AN) = P(B > N−γ) + P(B < −N−γ), we see that

P(B > N−γ) ≤ CN−2
for N ≫ 1. Similarly, in the event sN (TNf − z + δWω) ≥ N−7d, we have (for N ≫ 1)

A log ∣sN (TNf − z + δWω)∣ ≤ Nd−γ

so that

P(B3 > −N
−γ) ≥ P(B3 > AN

−1 log ∣sN (TNf − z + δWω)∣) ≥ 1 −CN−2.
Therefore P(B < −N−γ) ≤ CN−2 for N ≫ 1. With this, ∑∞1 P(AN) < ∞, and

we have almost sure weak convergence of the empirical measures of TNf + δWω to

vol(X)−1(f0)∗µd. �

Proposition 8.1. Theorem 3 implies the probabilistic Weyl law (Theorem 1) stated

in the introduction.

Proof. For Λ ⊂ C given in the hypothesis, letAN = (vol(X)/N )#{Spec(TNf +N−dWω) ∩Λ}.
It suffices to show that for each ε > 0

P(lim sup
N→∞

∣AN − µd(f ∈ Λ)∣ > ε) = 0.
We may assume Λ is bounded. If not, let Λ̃ be an open, bounded neighborhood of

f(X). Recall that almost surely Spec(TNf + δWω) ⊂ Λ̃ for N ≫ 1. Therefore if

ÃN = (vol(X)/N )#{Spec(TNf +N−dWω) ∩Λ ∩ Λ̃}, then
P(lim sup

N→∞

∣AN − µd(f ∈ Λ)∣ > ε) = P(lim sup
N→∞

∣ÃN − µd(f ∈ Λ)∣ > ε) .
Now relabel Λ ∩ Λ̃ as Λ. Let ϕ,ψ ∈ C∞

0
(C; [0,1]) be such that suppϕ ⊂ Λ, ϕ(x) ≡ 1

for dist(x, ∂Λ) > ε, ψ(x) ≡ 1 for x ∈ Λ, and ψ(x) = 0 for dist(x, ∂Λ) > ε (here ∂Λ is the
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boundary of Λ). Therefore we have

vol(X)
N

N

∑
j=1

ϕ(λi) ≤ AN ≤
vol(X)
N

N

∑
j=1

ψ(λi). (8.3)

By Theorem 3, the lower bound of (8.3) convergences almost surely to

∫
C

ϕ(z)(f∗µd)(dz) = µd(f ∈ Λ) +O(εκ).
And similarly the upper bound of (8.3) converges almost surely to µd(f ∈ Λ) +O(εκ)
(where the constant in O(εκ) is deterministic). Therefore there exists C > 0 such that

P(lim sup
N→∞

∣AN − µd(f ∈ Λ)∣ > Cεκ) = 0.
Because ε > 0 is arbitrary, this implies AN converges almost surely to µd(f ∈ Λ).
Then, because N = vol(X)(N/2π)d +O(Nd−1), (N/2π)d vol(X)N −1AN converges al-

most surely to µd(f ∈ Λ). �
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de Strasbourg, Mar. 2019.

[7] M. R. Douglas and S. Klevtsov, Bergman kernel from path integral, Com-

munications in Mathematical Physics, 293 (2010), pp. 205–230.



24 IZAK OLTMAN

[8] R. Durrett, Probability: theory and examples, vol. 49, Cambridge university

press, 2019.

[9] M. Embree and L. N. Trefethen, Spectra and Pseudospectra: The Behavior

of Nonnormal Matrices and Operators, Princeton University Press, 2005.

[10] A. Guionnet, P. Wood, and O. Zeitouni, Convergence of the spectral mea-

sure of non-normal matrices, Proceedings of the American Mathematical Society,

142 (2014), pp. 667–679.
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[18] , Toeplitz band matrices with small random perturbations, Indagationes Math-

ematicae, 32 (2021), pp. 275–322.

[19] J. Sjöstrand and M. Zworski, Elementary linear algebra for advanced spectral

problems, Annales de L’Institute Fourier, 57 (2007), pp. 2095–2141.
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