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A PROBABILISTIC WEYL-LAW FOR PERTURBED
BEREZIN-TOEPLITZ OPERATORS

IZAK OLTMAN

ABSTRACT. This paper proves a probabilistic Weyl-law for the spectrum of randomly
perturbed Berezin-Toeplitz operators, generalizing a result proven by Martin Vogel
in [23]. This is done following the strategy of [23] using the exotic symbol calculus
developed by the author in [13].

1. INTRODUCTION

This paper generalizes a result of Martin Vogel in [23] which proves a probabilistic
Weyl-law for quantizations of functions on tori. Here we do the same, but with the
tori replaced by arbitrary Kahler manifolds equipped with positive line bundles.

In [23], Vogel considers Toeplitz quantizations of smooth functions on a real 2d-
dimensional torus, which associates every smooth function f on the torus to a family
of N?x N¢ matrices, fy, for all N € N (here N-! is the semi-classical parameter). A
recent physical motivation for such constructions is written by Deleporte in [6, Section
1].  Next, a random matrix with sufficiently small norm is added to fy, and the
spectrum is shown to obey an almost-sure Weyl-law as N goes to infinity. This was
conjectured by Christiansen and Zworski in [4] and is a major extension of their work.

This result is most striking when the unperturbed matrix is non-self-adjoint. For
example, if f(x) = cos(2mx) +icos(27E), then the quantization is

cos(2m/N) i/2 0 0 i/2
if2 cos(4m/N) if2 0 0
fr = 0 i/2 cos(6m/N) i/2 0
(:] () 2/2 COS(Z(N: )n/N) 2/2

i/2 0 0 i/2 cos(2)

which numerically has spectrum contained on two crossing lines in the complex plane.
This operator is aptly named the Scottish flag operator and is further described by
Embree and Trefethen in [9]. Interestingly, (as far as we are aware) it is unknown
analytically where the spectrum of fy lives. However, if randomly perturbed, the

spectrum spreads out with density given by the push-forward of the Lebesgue measure
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on the torus by f. Figure 1 plots the spectrum of fy with no perturbation, and with
a small perturbation.
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Figure 1. Left: Eigenvalues of the Scottish flag operator with N = 50. Right:
Eigenvalues of the Scottish flag operator with a small random perturbation
with N = 1000.

The spectral properties of randomly perturbed non-self-adjoint operators was pio-
neered by Hager in [11], in which the operator hD, + g(z) : L?(S') — L%(S') was
studied. This result, and numerous subsequent results are discussed by Sjostrand in
[16]. There are related results describing spectral properties of randomly perturbed
Toeplitz matrices, which can be defined as quantizations of symbols on T? with sym-
bol independent of z. See Davies and Hager [5], Guionnet, Wood and Zeitouni [10],
Sjostrand and Vogel [18] [17], and references given there.

This paper is the natural generalization of Vogel’s result in [23]. Here we prove a
similar result for quantizations of functions on Kéhler manifolds (with sufficient struc-
ture, as discussed in Section 2). These quantizations, called Berezin-Toeplitz operators
(or just Toeplitz operators) were first described by Berezin in [2] as a particular type of
quantization of symplectic manifolds. Following [2], for every smooth function f on a
quantizable Kahler manifold X, we get a family of finite rank operators, Ty f, indexed
by N €N (see [14] for a connection between these quantizations, and quantizations on
the torus) which have physical interpretations. Deleporte in [6, Appendix A] relates
this quantization to spin systems in the large spin limit, and Douglas and Klevtsov in
[7] use path integrals for particles in a magnetic field to derive the Bergman kernel (a
key ingredient in constructing Ty f).

Next, if we add a small Gaussian-type random perturbation G, to these operators
(see Definition 2.3), the empirical measures weakly converge almost surely (see The-
orem 2 in Section 2 for a precise statement). Theorem 3 states a result about more
general random perturbations W,, (see Definition 2.3) but with a more restrictive cou-
pling constant. A consequence of Theorem 3 is the following probabilistic Weyl-law.
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Theorem 1 (A Probabilistic Weyl-law). Given a quantizable Kdhler manifold X,
feC>(X;C) such that there exists k€ (0,1] so that

pal{z € X |f(2) - o2 < 1)) = O(r%)

as t — 0 uniformly for z € C (where pq is the Liouville volume form on X ), W, a
random matriz (see Definition 2.3), and A c C. Then almost surely

d
(%ﬂ) #{Spec(Tnf + N"W,) n A} 2255 y(w e X« f(2) € A).

Finer results are expected for describing the spectrum of randomly perturbed Toeplitz
operators. In [23], precise statements about the number of eigenvalues are obtained us-
ing counting functions of holomorphic functions. Here we only show weak convergence
of the empirical measures, but achieve this in a relatively simple way using logarithmic
potentials as presented in [20].

Here we present numerical examples to motivate the main result of this paper. Con-
sider the Kéhler manifold CP! (complex protective space of dimension 1) which can be
identified with the real 2-sphere with coordinates (x1, 2, x3). In Figure 2, we compute
the spectrum of the quantization of the function f = x; + 222 + ixze. Before perturba-
tion, the spectrum lies on several lines in the complex plane, somewhat analogous to
the Scottish flag operator. However, as a perturbation is added, the spectrum fills in.
This paper describes the structure of the spectrum of this perturbed operator in the
semiclassical limit, as N — oo.
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Figure 2. Left: Eigenvalues of the Toeplitz operator on CP! identified with
the real 2—sphere with symbol x1 + 23:% +ix9 and N =50. Right: Eigenvalues
of the same operator but with a small random perturbation and N = 1000.

Numerical verification of this paper’s result can be seen if f =ix; + x5 (still on CP?).
Figure 3 computes the spectrum of T f with a random perturbation added, and plots
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the number of eigenvalues in circles of increasing radii versus the predicted number of
such eigenvalues by Theorem 1. More animations can be found on my website'.
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Figure 3. Left: Eigenvalues of the randomly perturbed Toeplitz operator on
CP! identified with the real 2-sphere with symbol iz +z2 an N = 2000. Right:
The number of eigenvalues within circles in the complex plane centered at zero
with radii ranging from 0 to 1, plotted against the predicted distribution of
eigenvalues from Theorem 1.

Outline of Paper. Section 2 reviews background material and states the main result
of this paper (Theorem 2). In Section 3, a series of preliminary results about Toeplitz
operators are presented. Section 4 reviews logarithmic potentials and reduces Theo-
rem 2 to proving a probabilistic bound involving logarithmic derivatives of Toeplitz
operators. Section 5 sets up a Grushin problem to further reduce the problem to prove
probabilistic bounds on spectral properties of self-adjoint operators. Section 6 proves
a deterministic bound involving the logarithmic derivative of Toeplitz operators. The
technique involves scaling the symbol by a power of N, and therefore relies on the
exotic calculus presented in Section 3. Finally, Section 7 chooses constants to establish
the required probabilistic bound for the almost sure convergence in Theorem 2. In Sec-
tion 8, we describe how to extend this result to the more general random perturbations
as stated in Theorem 3.

Notation. We will use the following notation in this paper for functions f and g
depending on N. We write f = O(g) if there exists C' > 0 independent of N such that
If] < Cg. We write f = O(N~) if for every M € N, f = O(N-M). Any subscript in
the big-O will denote dependence of C' of what is in the subscript. We will write f $ g

1https ://math.berkeley.edu/~izak/research/toeplitz/movies.html
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if there exists a C' > 0 independent of N such that f < Cg. We write f <« g to mean
that C'f < g for some sufficiently large C' > 0 independent of N. For a u,v,w elements
of a Hilbert space, denote u ® v the map that sends w to u(w,v).

2. MAIN RESULT

Let (X,0) be a compact, connected, d—dimensional Kéhler manifold with a holo-
morphic line bundle L with positively curved Hermitian metric locally given by h = e~%.
That is over each fiber z € X, ||[v]|,, := e=#(®)v|. Given this, the globally defined symplec-
tic form, o, is related to the Hermitian metric by i0dp = o. Fixing local trivializations,
¢ can be described as a strictly plurisubharmonic smooth real-valued function (called
the Kéhler potential). This is further outlined by Le Floch in [12].

Let LN be the Nth tensor power of L, which has Hermitian metric hy = e N¥. Let
tq = 0™4/d! be the Liouville volume form on X. This provides an L? structure on
sections of LY. Indeed, if u and v are smooth sections on LY, then define

(u,v) n ::AhN(u,v)dud.

Define L2(X,L"Y) to be the space of smooth sections of LY with finite L? norm. In
this L? space, let H°(X, LY) be the space of holomorphic sections.

Proposition 2.1. The dimension of HO(X, LN) is finite, and is asymptotically
N4
(—) vol(X) + O(NT).
2T
Proof. See [3, Corollary 2]. d

For the remainder of this paper, denote dim(H°, (X,LY)) by NV = N(N). The
orthogonal projection from L2(X,LY) to HO(X, L") is called the Bergman projector
and is denoted by IIy. Finally, given f e C>(X;C), the Toeplitz operators associated
to f, written Ty f, are defined for each N € N as T f(u) = IIy(fu), where u €
HO(X,LN). In this way, Ty [ are finite rank operators mapping H°(X, L) to itself.
For the remainder of this paper, we will fix a basis for Ho(X, L") so that Ty f (and
similar operators) can be considered as matrices.

The class of functions to quantize will often depend on N. To define this symbol
class requires local control of functions. Fix a finite atlas of neighborhoods (U;, (; )iz
for the Kahler manifold X.

Definition 2.2 (S(1)). S(1) is the set of all smooth functions f on X taking complex
values which can be written asymptotically f ~ > N7 f;, where f; € C~(X;C) do not
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depend on N. This tilde means that for all c € N
M
(1060 - RN L0 6(0)) =0,(v Y
=0

for allieZ, and all « e N?. By Borel’s theorem, given any f; € S(1) not depending on
N, there exists f € S(1) such that f ~ Y N7 f;.

If f~Y N7f;, wecall fy the principal symbol of f, which is unique modulo O(N1).

We next add a random perturbation to these Toeplitz operators. For this we must
fix a probability space 2 with probability measure P.

Definition 2.3 (G, and W,,). For each N, let {e;:i=1,..., N} be an orthonormal
basis of HO(X, LN). Define:

N
gw = Z aj,kei ®€j : HO(X7 LN) - HO(X7 LN)
ij=1
where o i, are independent identically distributed complex Gaussian random variables
with mean zero and variance 1.
Similarly define W,, = Z%’:l aj ke ® €5, with &;y, independent identically distributed
copies of a complex random variable with mean zero and bounded second moment.

The w in the subscript of these objects is to emphasize that these objects are random.
That is for each w € €2, G, is a finite rank operator. The majority of this article describes
perturbations by G, (the Gaussian case), while a brief note at the end concerns the
more general perturbations by W,,.

This paper will prove almost sure weak convergence of the empirical distribution of
eigenvalues of randomly perturbed Toeplitz operators. The principal symbol of f must
also satisfy the property that there exists € (0, 1] such that

a({ € X 2| fo(a) - 42 < 1)) = O(t") (2.1)

as t - 0 uniformly for all z € C. It is observed in [4] that if f is real analytic, then
(2.1) holds. See [4], and references presented there, for further discussion of (2.1).

Theorem 2 (Main Theorem). Given f € S(1) which satisfies (2.1) and G,,, a family
of random operators on H°(X, LY), as defined in Definition 2.3, then for each & > 0
there ezists = () € (0,1) and C >0 such that if 6 = 6(N) satisfies

Ce N’ <5< C N2 (2.2)

then we have almost sure weak convergence of the empirical measures of Ty f +0G,, to
vol(X) ™ (fo)«pta-
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More precisely, if \; = \i(N,w) are the (random) eigenvalues of Ty f +0G,,, then for
all p e C(C)

N—oo 1

1 N
2P0 T gy [eml2)

almost surely, where (fo)«fq is the push-forward of the volume form pg on X by fo.

Moreover, for each € >0, the constant B(g) in (2.2) can be chosen at most strictly
less than

K

{25/-@ if e < m
' 1
mq ez 2(rr1)

where K is defined in (2.1).

We expect Theorem 2 to hold for a much larger class of random perturbations than
described in Definition 2.3. Indeed, the only properties of G, we use is a norm bound
(Lemma 4.6) and an anti-concentration bound (Proposition 5.7). See [24] where Vogel
and Zeitouni establish similar logarithmic determinant estimates with these classes
of random perturbations, and [l, Remark 1.3] where Basak, Paquette, and Zeitouni
describe random perturbations satisfying these properties.

Here we present a version of Theorem 2 for the more general random perturbations
W,, as described in Definition 2.3.

Theorem 3 (General Perturbations). For W, defined in Definition 2.3, f € S(1)
satisfying (2.1), 6 = N=¢, then the empirical measures of T f + OW,, converge almost

surely to (vol( X)) (fo)«tta-

A proof of this result is presented in Section 8.

Remark 2.1. We expect a wider range of ’s and more general random perturbations
in Theorem 3 should lead to the same conclusion.

3. REVIEW OF AN ExoOTIiC CALCULUS OF TOEPLITZ OPERATORS

In proving Theorem 2, non-negative symbols are scaled by powers of N-'. These
functions belong to a more exotic symbol class than smooth functions uniformly
bounded in N. Toeplitz operators of functions in this symbol class still have natu-
ral composition formulas. A summary of these results is contained in this section. For
proofs see [13].

Definition 3.1 (Order Function). For p€[0,1/2), a p-order function m on X is a
function m € C*(X;Ryg), depending on N, such that there exists My € N such that for
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all x,ye X:

m(z)[m(y) s (1 +dist(z, y) N*)*,
where dist(x,y) is the distance between x and y with respect to the Riemannian metric
on X induced by the symplectic form o.

Definition 3.2 (S,(m)). Given p €[0,1/2) and a p-order function m on X. S,(m)
is defined as the set of smooth functions on X depending on N such that for all i € T,
aeNd:

0°(f 0 ¢ (2))] Sa NV o G (2)
for all x € ;(U;) (recall {(U;, &)1 €L} is a finite atlas on X ).
Proposition 3.3 (Composition). Given p € [0,1/2), p-order functions my,mg on
X, feS,(my) and g € S,(m2). Then there exists h € S,(mims) such that:

TnfoTng=Tnh+O(N™),

where O is in terms of the norm from L*(X,LN) — L*(X,LY). Moreover, the principal
symbol of h 1s fogo-
Claim 3.1. Given f € S(1) with fo > 0, then if p € [0,1/2), m(x) = foN?’ +1 is a
p-order function on X and fN? € S,(m).

Proposition 3.4 (Parametrix Construction). Given p € [0,1/2), a p-order func-
tionm on X, pe[0,1/2), and f € S,(m) such that there exists C'> 0 so that f > Cm.
Then there exists g € S,(m=t) such that:

TyfoTng=1+O(N™™), TygoTnf=1+O(N™™).

Proposition 3.5 (Functional Calculus). Given a p-order function m >1 on X (for
a fized p € [0,1/2)), a family of operators { Ry} o mapping HO(X, LN) to itself such
that |Ry| = O(N=) and Txf + Ry is self-adjoint for all N, and f € S,(m) taking
real non-negative values such that there exists C' > 0 with |f| > mC~1=C. Then for any
x € C*(R;C), there exists g € S,(m™t) such that

X(TNf + RN) = TNg + O(N_oo)
and g has principal symbol x(fo).
Typically, Proposition 3.5 will be applied with Ry =0 for all N.
Proposition 3.6 (Trace Formula). If m is a p-order function on X (for fized p €
[0,1/2)), and f € S,(m), then

TrTnf = (%)d fX f(x) dpg(x) + O(N0-20)) max m(z)

xeX

(XY [ ) ) + O (),
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where fo 1s the principal symbol of f.

Note that if f = 1, then TrTy1 = Tr(lly) = dim(H°(X,LY)) = N which is an
alternative way of proving that N = vol(X)(N/27)% + O(N41).

4. PROBABILISTIC PRELIMINARIES

This paper uses the probabilistic machinery of logarithmic potentials. A brief
overview is presented in this section.

Definition 4.1 (P(C)). Let P(C) be the collection of probability measures j on C
such that [log(1+|z]) du(z) < .

Definition 4.2 (Logarithmic Potential). For v e P(C), define the logarithmic po-
tential as: U,(z) = [-log|z — w|dv(w).

Using the fact that log|z| is the fundamental solution of the Laplacian, it can be
shown that, in the sense of distributions, AU, = 27v, which is the key ingredient in
proving the following theorem.

Proposition 4.3 (Convergence of Random Measures by Logarithmic Poten-
tials). Given {vy} c P(C) random measures such that almost surely suppvy c A for
N > 1 (with Ae Ae A" e C) and for almost all z € N': U, (z) - U,(2) almost surely
for some v € P(C) with suppv c A. Then almost surely vy — v weakly.

Proof. See 20, Theorem 7.1]. O

We wish to use Proposition 4.3 to prove almost sure weak convergence of the em-
pirical measures of T f + 0G.,,.

Definition 4.4 (vy). Let on be the spectrum of T f + 6G,,. Let vy = N1 Y reon 5,\
where § > 0 depends on N, and 6y is the Dirac distribution centered at A\. The loga-
rithmic potentials for these random measures are

Uy (2) = ,/\l[ > loglz - Al = ilog|det(TNf+(5gw -2)|.

/\GO‘N N

Definition 4.5 (v). Let v =vol(X)=1(fo)«pa (recall g is the volume measure on X )
which has logarithmic potential

Un(2) = 4, 10g]2 = fo(@)] dpta(a).

Where £ fduq is defined as vol(X)™ [ f dug.
Claim 4.1. For all N, vy,v € P(C).
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Proof. For each N ¢ N

[L1og(1+ el v (=) :j%/ 3 log(1+ A))

)\GO’N

<maxlog(1+ |A|)
)\60’1\]
<log(1+ |Tnf+06G,|) < oo.

And similarly,

Jrom(1 D dv(2) = o [ lon(1+ [AD(fo)pa)(d2)

< m%(xlog(l +f(z)]) < oo.

O

Let A be a neighborhood of f(X). Clearly supprv c A, the same is true with
probability 1 for vy, for sufficiently large N. A standard random matrix lemma is
required to show this.

Lemma 4.6 (Norm of Gaussian Matrix). There ezists C' >0 such that
P(|Gu] < CN'?) 21— exp(=N).

If an event has this lower bound of probability, it is said to occur with overwhelming
probability.

Proof. See [21, Exercise 2.3.3]. O
For a fixed € > 0, we will choose § = 6(/N') such that
0<d=0WN ). (4.1)

Lemma 4.7 (Borel-Cantelli). If A, are events such that Y7 P(A,) < oo, then the
probability that A, occurs infinitely often is 0.

Proof. See [8]. O
Lemma 4.8 (Bound of T'x f). Given f e S(1), then |Tnf| ~_;~ <suplf].

Proof. This follows immediately by writing T f = Iy o My oIl and recalling that Il
is unitary. 0

Claim 4.2. Almost surely, suppvy c A for N > 1.

Proof. First note that | Ty f + G, | < |Tnf]| +9|Gw| <sup f + N=¢ with overwhelming
probability (by Lemma 4.6, (4.1), and Lemma 4.8). Let oy be the spectrum of Ty f +
0G,,. In this event, for sufficiently large N, oy c A. So if A is the event that oy c A,
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then P(A%) > 1 - e . Therefore Y P(Ax) < o0 and so by Lemma 4.7, almost surely
P(A%) =1 for N> 1.

O

Lemma 4.9 (Almost Sure Convergence). If {Yy} o and Y are random variables
on a probability space (2, P) and ey is a sequence of numbers converging to 0 such that

ST P(|Yy - Y] > ex) < oo,

N=1
then Yn — Y almost surely.

Proof. See [8]. O

Therefore vy and v satisfy the conditions of Proposition 4.3. So it suffices to show
that U, (z) - U,(z) for almost all z in the bounded set containing A. To prove this
almost sure convergence, it suffices to apply Lemma 4.9 with Yy = N~tlog|det(Tn f +
6G, —z)| and Y = f log|z — fo(2)|dpa(x) for suitably chosen ey.

5. SETTING UP A GRUSHIN PROBLEM

To control log |det(Ty f + 3G, — z)| we follow the now standard method of setting up
a Grushin problem. This approach was used in [23] and [11], and is comprehensively
reviewed in [19].

Let P=Txf and Hy = H°(X,L"V). Define the z-dependent self-adjoint operators
Q= (P-2)*(P-z)and Q = (P-z)(P-2z)*. These operators share the same eigenvalues
0 <t < <t3. We can find an orthonormal basis of eigenvectors of @) for these
eigenvalues, denoted by e;, and similarly, and orthonormal basis of eigenvectors of Q
denoted by f;. These eigenvectors can be chosen such that

(P =2)"fi = ties, (P-2z)e;=tifi, i=1,..., N.
Next we fix p € (0,min(1/2,¢)), and define:
=N, A::max{ieZ:t?SQ}.

Definition 5.1 (P°). Let 6; be the standard basis of C4, and define the operators
R,(2)=%06,®e;: Hy - CA and R_(2) = 39 f; ® 6; : CA - My, where we use the
notation (u®v)(w) = (w,v)u. For each z € C and § >0, define

- ) e

Lemma 5.2. If § =0, then P?, as defined in (5.1), is bijective with inverse

_ Z/f\lerlliei@fi 21461@’51 _[E°(2) EY(2)
80(2)_( ngi‘g’fi —thiﬁsi@@‘ a E°%(z) E°(2)) (5:2)
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Proof. See [23, Section 5.1]. O

To ease notation, the z in the argument for these operators will often be dropped.
Unless specified, all estimates are uniform in z.

Claim 5.1 (Invertibility of P°). P% is invertible if § |G, E°| «< 1.

Proof. By computation

0G,E° 6G,E?

500 _
735—1+( 0 0

)::1+K.

If |K| <1 (which is true given the hypothesis), then (I + K)~! exists as a Neumann
series, and we get P°E0(1+ K)~! = I (a similar argument shows this is a left inverse as
well). O

Lemma 5.3 (Norm of E°). In the notation of (5.2), |E°| < a~1/2.

Proof. By construction, E0 = Y47, (t;)"'e; ® fi, so that |E°| = | E® farer| = (tarer) ™" <
172, O
Lemma 5.4 (Norm of E°). In the notation of (5.2), |[E?| = 1.

Proof. By construction E%(z) = ¥ e; ® §; which has norm 1. O

These lemmas, along with Lemma 4.6, guarantee that if § = O(a/2N~1/2), then P?
is invertible with overwhelming probability. Denote the inverse of P by £° with the
same notation for its components as in (5.2).

Define P% = P + 6G,,. By Schur’s complement formula, if P° - z is invertible,

6 _
det (PR : }3) = det(P® - 2) det(-R, (P® - 2)"'R_).

Writing P°E% = 1, we get that —-R_ = (P? - 2)E9(FE?,)™! and R,E? = 1. Therefore
—R.(P°-2)"'R_=(FE%,)"!, so that
log |det(P? - 2)| = log|det P°(2)| + log | det E°, (2)|. (5.3)

Note that P° -z is invertible if and only if E?, is invertible. Therefore (5.3) holds even
when P° - z is not invertible.

Therefore, to prove Theorem 2, it suffices to show summability of the probability of
the events:

Apx = {|[(N)t(log| det P?| + log | det E°, (2)]) —][ log|z = fo(z)|du| > en
X

=B
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We let ey = N7 for a suitably chosen v = v(d, k) > 0. Expand B = B; + By + B3 where:

By = Ntlog|det P°| - ]€< log|z = fo(z)|du(x), (5.4)
By = N (log | det P?| - log | det P°)), (5.5)
Bs = N"'log|det E,|. (5.6)

Controlling B requires the most work as it requires utilizing the calculus of Toeplitz
operators. However, it is completely deterministic, and remains true for unperturbed
operators. By will be easily shown to be negligible. Proving a lower bound on Bj is
the key ingredient in proving Theorem 2, as it will force the events Ay to sufficiently
small probability. Without a perturbation, B will have no lower bound.

Proving bounds on B, and Bj closely follow [23].
Lemma 5.5 (Bound on E_,). In the notation of (5.2), |E%, | < a.
Proof. By construction, E%, = - ¥1'#;8; ® 6;, so |E, | = |EY, (54)| = ta < Va. O

Lemma 5.6 (Bound on E°). In the notation of (5.2), |E®| < 2a7Y2 with overwhelm-
1ng probability.

Proof. By the Neumann construction, |E°| = |E°(1+6G,E°)~| < 2|E°|| which is
bounded by 2a-/2 by Lemma, 5.3. O

Claim 5.2 (Bound on B,). In the notation of (5.5), By = O(6a ' PNY2) with over-
whelming probability.

Proof. Using Jacobi’s formula, (logdet A)" = Tr(A-1A’), we have that
id
N Bj = log | det P| ~ log | det P| = f —log|det P"|dr
o dr
5 d 5
= f Re (Tr(ET—PT))dT = / Re (Tr(E7G,))dr.
0 dr 0

Taking absolute values and using properties of trace norms

|log| det P°| —log|det P°l| <& sup [ET[ |G, ], < O(6a™ PN |Gul),  (5.7)
7€[0,0]

where we used Lemma 5.6, and Holder’s inequality for the Schatten norm. Recalling
the bound on G, (5.7) is O(da~2N3/?) with overwhelming probability. O

The following theorem about singular values of randomly perturbed matrices is
required for proving a lower bound of Bz. Given a matrix B, let s1(B) > s3(B) >+ >
sn(B) be its singular values.
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Proposition 5.7. If B is an N x N complex matriz and G, is a random matrix with
independent identically distributed complexr Gaussian entries of mean 0 and variance
1, then there exists C' > 0 such that for all 6 >0, t > 0:

P(sy(B +6G,) < 0t) < CNt2.
Proof. See [23, Theorem 23|, which is a complex version proven by Sankar, Spielmann
and Teng in [15, Lemma 3.2]. O

Claim 5.3 (Bound on Bg). In the notation of (5.6), By obeys the probabilistic upper
bound

P(N'log|det E2,| <0)>1—-e™N, (5.8)
for N > 1. And Bs obeys the probabilistic lower bound: there exists there exists C' >0
such that for all 6 >0

P (N 'log|det B2, > AN ' log(6t)) > 1 - CN#2 - eV,
Proof. First, by the Neumann series construction and choice of §, with overwhelming
probability,
B2 < 125, - B0, ]+ |2, - | B9 - 66,E°) 466, B2 + | £2.|
<2[0G,| +a'? < Call?.

So, in this event, |E?, || < Cal/?2 < 1 for N > 1, and therefore log|det E?,| < 0 proving
(5.8).

For the lower bound, first note that

A
log|det E°,| = > logs;(E°,) > Alogsa(E°,).
1

For a matrix B, let t;(B) be the smallest eigenvalue of VB*B, so s4(E°,) =t;(E°,).
Assume that P - z is invertible. Using that (E°,)~' = -R,(P - 2) 'R_ and properties
of singular values of sums and products of trace class operators, we get

(t(E2) 7 = s1((E2) ) < si(R)s1(R)si((P=2)7") = [Re| [R-] s1((P = 2)7)
=s1((P-2)7) = (t(P-2)) " =sx((P-2)7).
For 6 = O(N~12a/2), this holds for E?, (the event of a singular matrix has probability

zero and the singular values depend continuously on 6) so s4(E?%,) = t1(E%,) > sy (P +
dG., — z) with overwhelming probability.

Using Proposition 5.7, in the event that |G, | < CANY? (overwhelming probability)
and sy (P -z +0G,) > ot (probability at least 1 - CNt2?), we have that sa(E?,) > ot
with probability greater than 1 - CNt2 - eN. Therefore

log|det E°,|> Alogsa(E°,) > Alog(ét)
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with probability > 1 — eV - CNt2. O

6. BOUND ON B;

This section is devoted to estimating B; (as in (5.4)) which involves computing the
trace of a function of a Toeplitz operator belonging to an exotic symbol class. This
closely follows [23], however several simplifications arise partially due to requiring
weaker bounds, and several modifications are required as we are working with Toeplitz
operators.

Claim 6.1 (Bound on B;). For P defined in (5.1),

log| det PY| = N ][ log | fo() = 2[2 dj + O(N4nCos(1-20) 165 ().
X

Proof. Let’s first consider some preliminary reductions in computing log|det P°|. By
Schur’s complement formula, |det P°? = |det(P - z)|?|det E°,|~2. The first term is:

N
|det(P - 2)|* =det@Q =]
i=1

Because EY, = —¥1'¢;0; ® §; (recall A is the largest integer such that 3 < ), the
second term is

A -2
aecs2 = (1)
=1

therefore
N N
|det P2 = J] t7=a [ 1a(t?) = a " det 1,(Q)
i=A+1 i=1

where 1, = max(z,a). If x is a cut-off function identically 1 on [0, 1], and supported
in [-1/2,2], then z + (a/4)x(4z/a) < 1,(z) < x + ax(z/a) for x > 0. Therefore

det (Q +47 oy (Q/(4’1a))) <det(1,(Q)) < det (Q + ax(Q/a)). (6.1)

Now fix 1> a; > «, so that logdet(Q + ax(Q/«)) can be written

B [aal % logdet(Q + tx(Q/t)) dt +log det(Q + a1 x(Q/en)). (6:2)

First the integrand is estimated. Let ¢ (t) = (t —tx'(t))(1+ x(¢))~! so that

log(r + tx(wf1)) = ()
for t >0 and ¢ € C°(Ryo). Therefore, by Jacobi’s identity,

% log det(Q +tx(Q/t)) = Tr(t7 ' (Q/1)).
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While morally the same, here we diverge from [23]’s proof to handle this trace term,
and must rely on Section 3. The main issues are that () is the composition of Toeplitz
operators, which may no longer be a Toeplitz operator (but is modulo O(N~-*°) error),
@/t belongs to an exotic symbol class so to compute 1 (Q/t) requires an exotic calculus,
and the trace formula (Proposition 3.6) has weaker remainder than for quantizations
of tori.

Let p; be such that ¢t = N=2¢t. By Proposition 3.3, @ = Tnqg + O(N->), where the
principal symbol of ¢ is |fy — 2|?. For each t, Q/t is (modulo O(N~=)) a Toeplitz
operator with symbol in S, (m;) where m; = go/t + 1, by Claim 3.1. And so, by
Proposition 3.5, there exists ¢; € S,,(m; '), such that ¥(Q/t) = Ty (g) + En(t). Where
¢: has principal symbol 1(q/t) and En(t) = O(N->) (with estimates uniform over t).
Therefore

[ Srosden(@+ ix@iyar= [T v(@p) i

_ [ T T (T (q0) + En(2)) dt.

67

The error term is
f e Tr(En(t))dt = O(N™*)
because Ey(t) is uniformly O(N~-°°). While for each ¢, Proposition 3.6 shows that

d
(T(a)) = (3-) [, olaoft) duaCo) + O

because m~! is bounded. Therefore

/aal %logdet(Q+tX(Q/t))dt: faal (L(%)dﬁld)(%/t} dﬂd(z)_i_t—QO(Nd—l))dt

() [ ostan + x|

" du(z) + O(N1a).

Next the second term of (6.2) is computed. Because «; is fixed, /a; has symbol in
S(1). Therefore, by Proposition 3.5, Q+a;x(Q/ay) = Tnr+Ex (with |[Ex|| = O(N~->))
where r € S(1) with principal symbol g + a3 x(go/a1). Let vt =tr+ (1-t) € S(1), so
that

1
logdet(Q + arx(Q/a1)) = fo %logdet(TNrt +tEy)dt
1
= f TI‘((TNT’t-l-tEN)_l (%TNTt+EN))dt.
0

The principal symbol of r* is r} = t(go + a1x(qo/c1)) + (1 - t). Note that when x > 0,
then x + ayx(x/ay) > aq > 0. Therefore (14) > a; .
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Lemma 6.1. There exists s(t) € S(1) (with bounds uniform in t) such that (Tyrt +
tEN)t =Tns(t) + O(N=), and the principal symbol of s(t) is (r§)~ .

Proof. By Proposition 3.4, there exists a symbol ¢ = £(t) € S(1) which inverts (modulo
O(N-*) error) Tyrt, and has principal symbol (r§)~!. But then

(TN’I"t + tEN)TNg =1+ K

with K = O(N~*°), using that tEy = O(N~*°) and Tv/¢ has norm bounded independent
of N. By Neumann series, for N > 1, (1 + K) is invertible, so that:

(TNTt + tEN)(TNg)(l + K)_l =1.
(Tyl)(1+ K)=! will be a Toeplitz operator, modulo a O(N-*) term, with symbol ¢

which has principal symbol (rf)~!. By repeating this argument, but left-composing by
Tnt, we get the lemma. O

Clearly 4Tyrt = Ty(r — 1) so using Lemma 6.1, we get that
t 1(d t
(TNT + tEN) ETNT + EN

is (modulo O(N-=)) a Toeplitz operator with principal symbol (rf)~*(4rt). So by
Proposition 3.6

Tr ((TNTt +tEy) " (%TNrt + EN)) = (%)d L(ré)‘l (%rﬁ) dpg(z) + O(NTT)

which when integrated from ¢ =0 to ¢t = 1 becomes:

(%)d fx log(rg)daz + O(N41) = (%)d fx log(qo + a1 x(qo/e)) dpa(x) + O(N).

Therefore (6.2) becomes:

(%)dfxlog(%+Ozx(q0/0z))dlud+0(Nd1a1).

A calculus lemma is required to estimate [ log(go + ax(go/c)) d.

Lemma 6.2. Given g€ C(X;Ry) such that pg ({x e X :q(x) <t})=0(tr) ast -0
for k€ (0,1], and x € C*((-1/2,2);[0,1]) identically 1 on [0,1]. Then

fX log(g + ax(q/a)) dpa = fX log(q) dpg + O(a”).
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Proof. Let g(t) = log(t + ax(t/a)) and m(t) = pg({x € X : q(x) <t}). Then, letting
g1 = maxq + 2q,

[ tox(a +ax(afa)) ~log(@) dua= [ o(a(x) ~g0)apa= [ [*7 0yt
zﬂmgwléwmwmzﬂmﬂw@mxymm»m
= vol(X)(g(a) - log(@)) = [ g'(Om(t)a.

So that:

| tota+ ax(afa) dyua = vol(X)g(a) = [ g'(ym(@) . (6.3)

Similarly, if g(t) =log(t), we get an analogous expression as (6.3), that is:

| 1oa(@) dna=vol(X)a(a) - [ 7 (Oym(t)dt.
Note that g(q1) = §(q1). Therefore:

fX log(q +ax(q/a)) -log(q) dua

-| [ @ -gomea
) fotn (1 1 +X’(t/a)))m(t)dt‘

t t+ax(t/a)

:‘/“”(l_liliﬁ)m@ayu

s s+x(s)
/(;2 s'm(sa)ds

2
<af / s lds < ar.
0

N

Here we use that x(0) = 1 to get a lower bound on |s + x(s)|, and the fact that
x(s) = sx'(s) is supported in (0, 2). O

Applying this lemma, we get:
N d
log det(Q + ax(Q/a)) = (5] [ 1o8(@) dua(a) + O(a) + OV 120)
w) Jx
Recalling that (N/2m)¢N 1 = vol(X)~' + O(N-1), we get that:

logdet(Q + ax(Q/a)) = (N +O(N™)) ][ log(q) dpa + O(N©E200). (6.4)

[ log(q) dpig can be uniformly bounded in z, so that the O(N~1) term can be absorbed
into O(N4-(1-20)). By (6.1), we get the following lower bound by replacing a by a/4:

logdet(Q + ax(Q/a)) > N][ log(q) dpg + O(NU-20)), (6.5)
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Lemma 6.3 (Bound on A). The number of eigenvalues of Q that are less than « is
O(NdN—min(me,(l—Qp)))'

Proof. Let ¢ € C*([-1/2,3/2];[0,1]) be identically 1 on [0,1]. It then suffices to
estimate Tr(¢(Q/«)). By Proposition 3.5, (Q/a) = Ty 4, + O(N~°), where g5 € S,(1)
with principal symbol ¥ (g/a).

Then by Proposition 3.6
Tr((Q/a)) = Tr(Tg, + O(N™))
- (N[2m)? [ (gfa) dpa(a) + O(N0-20)
< Ndan + Nd—(l—?p) — O(NdN—min(2p5,1—2p)).

Therefore, putting everything together, we get that

log |det P°| = %log(| det PY)?) = %log(ofA det 1,(Q)) = élog(l/a) + élog det(1,Q)).

(6.4) and (6.5) provide upper and lower bounds of 2= logdet(1,(Q)). Then using that
2711og qo = | fo — 2| and Lemma 6.3 we get:

10g|det730|_N][10g|f0—2|dud S Alog(1/a) + o + N4-(1=20)
X

< Nd—min(2pn,(1—2p)) IOg(N) n N—2pn n Nd—(1—2p)
< Ndfmin(an,(172p)) 10g(N)

Recall N'B; =log|det P°| - N f log|z = fo(x)| dpa, so that
Bl — O(N— min(2pk,(1-2p)) IOg(N))

7. SUMMABILITY OF Ay
Recall that Ay = {|B(N)| >en}, where B(N) = By + By + B3 with:
By = Ntlog|det P°| - ][ log|z = fo(z)| dpa(z),

By = N7 (log | det P?| - log | det PY|),
Bs = N"llog|det E°|.

The following table summarizes the bounds on Bj, By, and Bs.
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Bound Probability of Bound | Reference

By = O(N~-min(2p,(1-2p)) Jog(N)) 1 Claim 6.1
By = O(6a~12PN1/?) >1-exp(-N) Claim 5.2

Bz > N-1Alog(td) >1-CNt?-exp(-N) | Claim 5.3

B3 <0 >1-exp(-N) Claim 5.3

Recall that p € (0,min(1/2,¢)) and a = N=2¢. Theorem 2 will follow if Y P(Ay) < oo
for ey = N77. Recall that § = O(N-4/2-¢) = O(N-42a1/2). Fix 0 <y < min(e-p, 2pk, 1 -
2p).

Then P(Ay) =P(B > N7)+P(B < -N~7). The first term is:

P(B>N")=P(B;>N" - By-By).

Because v < € — p and By = O(N*=¢) (with overwhelming probability), we see that
By = O(N~7) (with overwhelming probability). Similarly, because of the bound on B;
and the choice of v, By = O(N~7). Soif N is sufficiently large, N-7-By—-B; > CN~7 > 0.
But then by Claim 5.3, P(B > N-7) <e™N" for N > 1.

Similarly, for N sufficiently large, there exists Cy € (0,1/2) such that, |By|+ |Bs| <
CoN=,s0 P(B<-N")<P(B3<-(1-Cy)N7)=1-P(B3>—-(1-Cy)N~). By the
choice of v, bound on A from Lemma 6.3, and selecting t = N'=2/4-1/2_ we get for large
enough N: —(1-Cy)N-7 < N-1Alog(dt) as long as:

~N77(1-Cy) < N ' Alog(d).

This requires that § > e~ for § = min(2pk, 1 -2p) —7 € (0,1). In this case, by Claim

=

0.3,

P(Bs>-N"7)>P(Bs > AN 'log(dt))
>1-CNt?-eN
=1-CN 14 eV,

Therefore P(B < -N=) < CN-2+ e N for N > 1.

With this, Y%, P(Ax) = C + Y xs1 P(AN) € C + Xys1 (N2 + 2e7N") < 0o which
proves Theorem 2.

Note that if ¢ > (2(k + 1)), then we can select p = (2(k + 1))~! and choose ~
arbitrarily small, so that 5 = k(xk + 1)7! =~. While if ¢ < (2(x + 1)), then the
maximum [ can be is 2¢x. Therefore we have:

ﬁ<{251‘€ if€<m

£ ife> L

K+1 2(Kk+1)
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8. GENERAL RANDOM PERTURBATIONS

In this section we provide a discussion about how to modify the proof of Theorem
2 (Gaussian random perturbations) to prove Theorem 3 (more general random per-
turbations). We also deduce Theorem 1 (stated in the introduction) from Theorem
3.

Proof. Under the assumptions of W,, (see Definition 2.3), we have the following prob-
abilistic norm bound:

E[|W.|’] Z E[|(W.)i "] = ON?), (8.1)

1,7=1

as well as the following anti-concentration bound (from [22, Theorem 3.2]): for v > 1/2,
Ag > 0, there exists a ¢ > 0 such that if M is a deterministic matrix with |M| < N0
then

P(sn (M +W,,) S N-EAr0) < o (N4 + P(IW, | 2 A™)). (8:2)

Recall, for an N x N matrix A, we denote s; > s5 > --- > sy(A) the singular values of
A.

From (8.1), and Markov’s inequality, we get
P(IW.| 2 N¥1) = O(N?)

therefore if 6 = N=¢ then ¢ [W,|| = O(N-1) with probability at least 1 - CN=2. From
this, Claim 4.2 (the supports of the random empirical measures being contained in a
bounded set for N > 1) will follow by an identical argument.

Next, with probability at least 1 —C'N=2, we have § [W, | a!/? « 1. In this event, we
can build our perturbed Grushin problem the same way as in Section 5

Next, we have to modify the estimate of B, which was estimated in Claim 5.2. For
this, we simply modify (5.7) with a weaker estimate on the probability |W,| is small.
Specifically, we see there exists C' > 0 such that

P(By=0O(a™?N1))>1-CN2.

The final modification is in estimating Bz = N~'log|det E°,|. We see, by the same
argument presented in Section 5, that

P(B3<0)>1-CN™2,
To prove a lower bound, we go through the same argument, to get that:

log|det E°,| > Alog |sa (T f -z +6W,)|.
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Next, let
Ky := Sup |Tnf -z =0(1)
(recall A is a neighborhood of f(X)). By (8.2) (with 7y =1 and A, = 2), we have (for
N>1)
P(snr (T f =2+ 6Wa) S NT7) = P(sp (07 Ko (T f - 2) + Ko Wa) < (N)(Aortie
< (N2 L P(| KW, | > N79))
<cN72

Here we use that |61 K (T f - 2)| < N9 With this, we can proceed as in Section 7,
with weaker probabilistic estimates. We choose p € (0,1/2), and 0 < vy < min(2pk, 1 -
2p). Writing P(Ay) =P(B > N-7) +P(B <-N77), we see that

P(B>N"7) < CON~?
for N > 1. Similarly, in the event sy (T f -2z +dW,,) > N7 we have (for N > 1)
Alog |sa (Tnf -z +6W,)| < N&7
so that
P(B3>-N")>P(Bs > AN tog|sy(Tnf -2+ W,)|) 21 -CN2

Therefore P(B < -N-7) < CN~2 for N >» 1. With this, X7 P(Ay) < oo, and
we have almost sure weak convergence of the empirical measures of T f + W, to

vol(X) ™' (fo) «a- O

Proposition 8.1. Theorem 3 implies the probabilistic Weyl law (Theorem 1) stated
in the introduction.

Proof. For A c C given in the hypothesis, let Ay = (vol(X)/N)# {Spec(Tn f + N=¥W,) nA}.
It suffices to show that for each £ > 0

]P’(limsup|AN —pa(fe)| > 5) =0.

N—oo

We may assume A is bounded. If not, let A be an open, bounded neighborhood of
f(X). Recall that almost surely Spec(Tyf + 0W,) ¢ A for N > 1. Therefore if
Ay = (vol(X)/N)# {Spec(Tn f + N="W,) n An A}, then

P(limsup|AN —pa(feN)|> 5) = ]P’(limsup\le—ud(f eN)|> 5).
N—o0 N—o0

Now relabel An A as A. Let o, 9 € Cg(C;]0,1]) be such that suppyp c A, ¢(z) =1
for dist(xz,0A) > ¢, (x) =1 for x € A, and ¥ () = 0 for dist(x,0A) > e (here OA is the
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boundary of A). Therefore we have

vol(X)
N

N, vo N,
;w(xi) <Ay < IJS/X) ;w(m. (8.3)

By Theorem 3, the lower bound of (8.3) convergences almost surely to

L) (@2) = pa ] € 1)+ O(").

And similarly the upper bound of (8.3) converges almost surely to uq(f € A) + O(e®)
(where the constant in O(e*) is deterministic). Therefore there exists C' > 0 such that

P(limsup |An = pa(f € A)| > C’e”“) =0.
N—o0

Because ¢ > 0 is arbitrary, this implies Ay converges almost surely to uq(f € A).
Then, because N = vol(X)(N/27)? + O(N¥1), (N/27)?vol(X)N-TAy converges al-
most surely to pq(f € A). O
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