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Dirac points for twisted bilayer graphene with in-plane
magnetic field

Simon Becker and Maciej Zworski

Abstract. We study Dirac points of the chiral model of twisted bilayer graphene (TBG) with
constant in-plane magnetic field. The striking feature of the chiral model is the presence of
perfectly flat bands at magic angles of twisting. The Dirac points for zero magnetic field and
non-magic angles of twisting are fixed at high symmetry points K and K’ in the Brillouin
zone, with I' denoting the remaining high symmetry point. For a fixed small constant in-plane
magnetic field, we show that as the angle of twisting varies between magic angles, the Dirac
points move between K, K’ points and the I point. In particular, near magic angles, the Dirac
points are located near the I" point. For special directions of the magnetic field, we show that the
Dirac points move, as the twisting angle varies, along straight lines and bifurcate orthogonally
at distinguished points. At the bifurcation points, the linear dispersion relation of the merging
Dirac points disappears and exhibit a quadratic band crossing point (QBCP). The results are
illustrated by links to animations suggesting interesting additional structure.

1. Introduction

Twisted bilayer graphene (TBG) is a material obtained from two sheets of graphene
positioned parallel but at a relative twisting angle. It became famous due to an exper-
imentally realised [8] theoretical prediction [6] of a magic angle of twisting at which
TBG acquires special properties. These special properties are due to the existence
of nearly flat bands of the corresponding periodic spectral problem. Tarnopolsky—
Kruchkov—Vishwanath [ 18] showed that in the chiral model of TBG one obtains exact
flat bands with the expectation of a sequence of magic angles converging to 0. That
model possesses many attractive mathematical features and was studied by Watson—
Luskin [20] and Becker et al. [1-3].

In this paper, we consider the effects of a (small) constant magnetic field parallel
to TBG, in other words, of a constant in-plane magnetic field. We follow physics
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papers by Kwan et al. [13] and Qin—MacDonald [15] (see also [16]) and introduce an
additional term B = Bge?™!% to the chiral Hamiltonian. It corresponds to an in-plane
magnetic field of strength By and direction 2776 — see (2.1).

The chiral model of TBG is a Hamiltonian which is periodic with respect to the
moiré length-scale. Thus, one can study the band structure and find that the two bands
closest to zero energy exhibit precisely two Dirac cones at distinguished points in the
Brillouin zone, denoted by K and K’. These points, together with another point that
we call T, are distinguished as fixed points under the 257 /3 rotational symmetry of
the honeycomb moiré lattice modulo lattice translations. For a discrete set of twisting
angles, the so-called magic angles, the bands closest to zero energy become com-
pletely flat which we show does no longer happen once an in-plane magnetic field is
applied. In this work, we demonstrate that under in-plane magnetic fields the Dirac
points are no longer tied to the K and K’ points and study their location and structure
as the constant magnetic field or the twisting angle are changed. The tunability of the
Dirac point locations is particularly rich close to magic angles.

We concentrate on the case of simple magic «’s. (¢ is a dimensionless parameter
roughly corresponding to the reciprocal of the angle of twisting of the two graphene
sheets; see Section 3.7 for the discussion of simplicity.) For the Bistritzer—MacDonald
potential Ugp(z) (see the caption of Figure 1), the real magic angles are expected to
be simple (see Remark (1) after Theorem 2).

We have the following combination of mathematical and numerical observations.

*  We show (Theorem 2) that a small in-plane magnetic field destroys flat bands cor-
responding to simple magic «’s (under an additional non-degeneracy assumption).

* For small magnetic fields, the motion of Dirac points appears quasi-periodic for
o € [a;,aj41]), where o are the magic angles for the Bistritzer—-MacDonald poten-
tial [18]. That is, it is most striking for 8 = 0, % for which the motion is linear —
see Theorem 3 and Figure 6.

* Theorem 1 shows that most of the action takes place near the magic angles (see
Figure 4): the Dirac points get close to I' point (Theorem 2; they meet there for
0 = 0, Proposition 5.1 and 6§ = %, Proposition 5.3) at simple magic angles —
see! for an animation. When the Dirac cones meet, they exhibit a quadratic band
crossing point (QBCP); see Figure 3 and Proposition 5.2 (its formulation requires
introduction of Bloch—Floquet spectra in Section 3.1) — for the discussion of such
phenomena in the physics literature, see [9, 13, 14].

» Figure 2 (right) shows that, for fixed «’s and varying directions of the magnetic
field, we have “fixed points” at I' and K, K’ with “normal crossings” and the

Thttps://math.berkeley.edu/~zworski/magic_billiard.mp4, visited on 10 June 2024.
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Figure 1. We show the movement of Dirac points as « varies in (0, 2.3) for the Bistritzer—
MacDonald potential U(z) = Uy = Zi=0 wke2 GO =20 (left) and « € (0,2.7) and
U(z) = 272 (Upm(z) — Zi=0 a)ke_zak_f‘”k) (right). (Here, we use the convention of [1, 18]
—see (2.4).) The magnetic field is given by B = Boe?™1? with By = 0.1, and curves of differ-
ent colour correspond to different 6 € [0, %]. In the case on the left, o passes two simple magic
«’s; on the right, it passes two double magic ¢’s. The T point corresponds to 0 and K, K’ points
to 4. The boundary of the Brillouin zone, a fundamental domain of A™, is outlined in black.
See” and’ for the corresponding animations.

vertices and middle of points of edges of the boundary of the Brillouin zone.
These points are precisely the intersection of the rectangles (other than I, K, K').

» The situation is more complicated near double (protected) magic angles; see the
right panel in Figure 1: at magic «’s, Dirac points are now close to K and K'.

The paper is organised as follows.

*  We present the Hamiltonian and the definition of Dirac points in Section 2. We
also establish basic symmetry properties of Dirac points and a perturbation result
valid away from magic o’s.

* In Section 3, we review the theory of magic angles following [1, 3] but in a more
invariant and general way.

* In Section 4, we set up Grushin problems needed for understanding the small
in-plane magnetic fields as a perturbation.

*  We then specialise, in Section 5, to directions of the magnetic field for which the
Dirac points move linearly as « changes. In particular, they meet at special points,
and we describe the resulting quadratic band crossing.

*  We conclude in Section 6 with the proofs of the main theorems.

Zhttps://math.berkeley.edu/~zworski/BO1.mp4, visited on 10 June 2024.
3https://math.berkeley.edu/~zworski/BO1_double.mp4, visited on 10 June 2024.
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Figure 2. The dynamics of Dirac points for the Bistritzer—-MacDonald potential U(z) = Uy =
Zi=0 wke2GO*—Z0") Tpe magnetic field given by B = Bge2™'? with By = 0.1 On the
left, different colours correspond to different values of # shown in the colour bar and « varies
between 0.1 and 0.9. (This is a colour map version of the left panel of Figure 1.) On the right,
the colours correspond to different values of o shown in the colour bar and 6 varies. The pre-
dominance of green (corresponding to the range between 0.5 and 0.6) means that most of the
motion happens near the (first) magic alpha — see* for E (a, k)/ maxg E;(«, k) for fixed B as
o varies.

2. In-plane magnetic field

Adding a constant in-plane magnetic field [13, 15] with magnetic vector potential
A - ZJ_B X éZL?

where z, is the coordinate perpendicular to the two-dimensional plane of TBG and
¢, the unit vector pointing in that direction, to the chiral model of TBG [18] results
for layers at positions z; = =+1, in the Hamiltonian Hp («) in (2.5), built from non-
normal operators

Dp(@):=D(@)+ Bos., D(a)= (af]f_fz) “zlg?), 03 = ((1) _01), @1

where we make the following assumptions on U':

Uz 4+ y)=e2KU(2), Uwz)=wUz), UG =-U(-z2), w=e>"/3,

i
yeN=wZ ®7Z, wK=K#0modA*, A*:=%A, (z, w):=Re(zw).
2.2)

“https://math.berkeley.edu/~zworski/first_band.mp4, visited on 10 June 2024.
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Figure 3. When B is real (in the convention of (2.1)), two Dirac cones approach I" point as
o — a* =a + O(B3) (o asimple real magic parameter) on the line Imk = 0 (left). For & = a*,
the quasi-momentum k at which the bifurcation happens are the boundary of the Brillouin zone
and the T'-point which is shown in the figure (right). The animation® shows the motion of Dirac
points in this case.

In this convention, the Bistritzer—MacDonald potential used in [1, 18] corresponds to
4 2 ¢
__r £,i{z,0'K) _
U(z) = 3711 ;_Oa) e , K=-m.

For a discussion of a perpendicular constant magnetic field in the chiral model of
twisted bilayer graphene, we refer to [5].

Remark. We adapt here a more mathematically straightforward convention of coor-
dinates than that of [1, 2], where we followed [18] (with some, possibly also mis-
guided, small changes; our motivation comes from a cleaner agreement with theta
function conventions). The translation between the two conventions is as follows: the
operator considered in [1] and rigorously derived in [7, 19] was

~ . ZDE alUp(0) =
D(a) := (ozUo(—Z) 2z |’ Uo(5) = Uo(0),

. 2.3)
Uo(z + 7 o +a2w2)) — 3R0E), Up(wl) = 0Us(0).

We then have a (twisted) periodicity with respect to %1" and periodicity with respect
to

1
V3

I :=4ni(wZ + 0*7Z) = 4wiA such that T* := (WZ ® 0?7) =

A
NG

>https://math.berkeley.edu/~zworski/Rectangle_1.mp4, visited on 10 June 2024,
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This means that to switch to (twisted) periodicity with respect to A we need a change
of variables:

4 1 4 1 \" 3
= _miz, -T'=_miA, 3T =(-T') =+V3A=_—"-A" 24
¢ 3Tz 3 37 (3 ) V3 o (2.4)

Then,

~ 3 2D;  aU(2) 4 4 .
D(@) = ——— , Uz):=—=mily| = .
© =1 (aU(—z) 2D; (2) = =37ilio| 37iz
The twisted periodicity condition in (2.3) corresponds to the condition in (2.2) since
U1+a2 = gilaotae? K) g — 4ri(—1 — 24)/:/3 = 47/3. See the caption of Fig-

ure 1 for examples of Uy(z) in the coordinates of [1, 18].
The self-adjoint Hamiltonian built from (2.1) is given by

_ 0 Dp(a)*
Hp(x) = <D3(a) 0 ) , 2.5)

and the Dirac points are given by the spectrum of

Dp(a): Hy — L},
L= {ue L} (C:C):u(x +y) = diag(e 'K e KDy (x)},

loc

2

2 with H,!.) — see Section 3.1 for a sys-

with a similar definition of H| (replace L
tematic discussion and explanations.

We recall (see Section 3.4) that there exists a discrete set 4 C C such that

(K+A )UK +A%), adnh

Spec;2(Dg(a)) =
pec;2(Do(@) {C o

The elements of # are reciprocals of magic angles and the real ones are of physical
interest. As recalled in Proposition 3.3, elements of A are characterized by the con-
dition that ! € Spec L2 Ty, where C \ {K, —K} > Ty is a (holomorphic) family of
compact operators given in (3.18). (The spectrum is independent of k, and so are its
algebraic multiplicities.) In this paper, we will use the following notion of simplicity
(see also Section 3.7):

a € A is said to be simple < 1/« is a simple eigenvalue of Ty. (2.6)

Here, simplicity of an eigenvalue is meant in the algebraic sense.
The first result is a consequence of simple perturbation theory and of symmetries
of Dp ().
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—1

Figure 4. Dirac point dynamics for B = 0.1¢27%? with 6 € [0, 1/2]. Close to the first two magic
angles (¢ &~ 0.585,2.221), the dynamics spreads out in space.

Theorem 1. Suppose that @ € C \ A is an open set. Then, there exists § = §(2)
such that for | B| < § there exists a — kp(a) € C®(R2) such that

Spec,2(Dp (@) = (kp(@) + A*) U (=kp(a) + A™),
and k(o) = K 4+ O(B). In addition, for «, B € C,
SpecL(z) Dyp(a) =w SpecL(z) Dp(a),
Spech Dp(—a) = SpecL% Dp(a) = — SpecL(z) Dp(x), 2.7
Spec;2 Dp(@) = W-

Proof of Theorem 1. Proposition 3.3 shows that for & € Q the spectrum of D(«) is
given by £ K + A™* and for small B we have two eigenvalues for Dpg(«). The struc-
ture of D(«) implies that

ED(@) = —D(@)E, &v(z):=Ju(~z), J:= ((1) _ol)’

and since Jo3 B = —o3BJ, we also have
E(Dp(a) +k)E* = —(Dp(a) —k);

that is, the spectrum is invariant under reflection k — —k.
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Since RD () R* = wD(a), Ru(z) := u(wz), we have RDp(a)R* = wDgp ()
which gives the first identity in (2.7). We now recall the following antilinear symmet-

ries: -
FD()F = D(—«), Fuv(z):=v(-2),

(o T (2 0
QD(@)Q = D(—a)", Qu(z) :=v(-z), 9Q:= (0 —Q)'

Since e03B = 03B*e, ¢ = F Q, we have
F(Dz(—a@) —k)F = (Dp(a) —k) = Q(Dp(—)* —k)Q, QP =F>=1,

which shows that (since the spectrum is invariant under k +— —k)

Spec, 2 (Dp (@) = Spec,2(D (—@)) = Spec;2 (Dp(—a)),
and that gives the rest of (2.7). [ ]

We now state a result valid near simple o € .

Theorem 2. Suppose that a € A is simple and go(a) 7 0, where g is defined in (4.5).
Then, there exists 8o > 0 such that, for 0 < |B| < 8¢ and |a — a| < 8¢, the spectrum
of D(a) on L% is discrete and

|SpecL(z)(DB(a)) NC/A*| =2, (2.8)

where the elements of the spectrum are included according to their (algebraic) mul-
tiplicity. In addition, for a fixed constant ag > 0 and for every ¢, there exists § such
that, for 0 < |B| <6, |@ —a| < aed|B]|,

SpecL(z)(DB(oz)) C A* + D(0,9), 2.9)

where D(z,68) :={{ € C : |z — | < §}. We also recall that elements of A*, in par-
ticular 0, correspond to the T point.

Remarks. (1) Existence of the first real magic angle
a ~ 0.585

was proved by Watson—Luskin [20] and its simplicity (including the simplicity as an
eigenvalue of the operator T defined in (3.18)) in [2], with computer assistance in
both cases. Numerically, the simplicity is valid at the computed real elements of 4
for the Bistritzer—MacDonald potential used in [18].

(2) The constant go () can be evaluated numerically (and its non-vanishing for
the first magic angles could be established via a computer assisted proof), and here
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Magic angle @ | 0.585 2.221 3.751 5276 6.794 8.312 9.829
lgo(a)| =~ 7e-02  5e-04 7Te-04 2e-05 3e-05 9e-07 6e-06
lg1 ()| ~ 1.3035 0.2881 0.0880 0.0252 0.0068 0.0017 1.7326e-04

Table 1. Values of go(«) defined in (4.5); their non-vanishing is a condition in Theorems 2
and 3. Values g1 (o) = £1(0, @), defined in (4.7), appear in the perturbation theory in the para-
meter «. Their non-vanishing is a consequence of the non-vanishing of go(«) as shown in the
proof of Proposition 5.1.

are the results for the (numerically) simple magic angles for the potential Upys in
Table 1.

(3) The combination of Theorems 1 and 2 shows that for any U € (C \ ) U {a}
(with o satisfying the assumptions of Theorem 2) there exists § = §(U) such that
0 < |B]| < 4, the spectrum of Dp () is discrete, and

|SpecL%(DB(a)) NC/A*| =2.

From the symmetries in (2.7), we conclude that for special values of 8 = 0, :I:%
the spectrum of D p () has a particularly nice structure as « varies. We state the result
for 6 = 0, as we can use the first identity in (2.7) to obtain the other two.

Theorem 3. For0 < B K 1,

2
Spec; 2 (Dp (@) C R = 2m (iR +Z) U %(R FiZ), aeR\ A (2.10)
Moreover, if the assumptions of Theorem 2 are satisfied at o € R, then for every ¢ > 0
there are 8¢y, 81 > 0 such that

R\ |J Doy |J  Specpa(Dp@) C R 0<B <8 (21D

keXKg a—8)<a<a+8|

Here, D(z,8) :=={¢ € C :|z—-¢| <8} and Ko ={K,—K} + A*, K = %n, the
set of protected states in the Brillouin zone for the non-magnetic model, defined in
Proposition 3.2. In addition, for every k € R\ UkeJCo D(k, ¢e), there is a unique
a€(ad—0 <o <a+ ) suchthatk € SpecL(z)(DB(a)).

Remarks. (1) A more precise statement about the behaviour at R is given in Propos-
itions 5.1 and 5.3 — the implicit formulas for A = 1/« in terms of k and B describe
a bifurcation phenomenon. In particular, when B is real, the bifurcation of the eigen-
values of Dp (o) at O (at the specific value of &) is given by (5.5). For the bifurcation
at the vertices of the boundary of the Brillouin zone, see (5.12).
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Figure 5. Dirac point trajectory for B = 0.1 (left) and B = 0.1w (right). The bifurcation happens
at I" and one additional point (modulo A *) in each figure, respectively. The colours indicate the
position of the Dirac cones for given values of «. The exclusion of K and K’ points in the
statement of Theorem 3 seems to be a technical issue, as shown in® (for the case of the figure
on the right).

(2) The inclusion (2.10) means that the spectrum lies on a grid of straight lines
parallel to the x- and y-axes —see’ and Figure 5. To obtain the sets of other rectangles,
we use the first identity in (2.7); that is, take B = w By, By > 0.

3. Review of magic angle theory

We start with a general discussion of operators arising in chiral TBG models.

3.1. Bloch-Floquet theory

We recall that
. Ari
AN=Z®oL, o= wA=A A" =LA,
V3
(The dual basis of {1, )} is given by {—4miw/~/3,4mi/~/3}.)
We then consider a generalisation of (2.1):

D(@):=2Dz +aV(2) : Hio(C:C") > Li(C:C™). - H(w):= (D(()a) D(g)*),

®https://math.berkeley.edu/~zworski/Rectangle_2.mp4, visited on 10 June 2024,
7https://math.berkeley.edu/~zworski/Rectangle_1.mp4, visited on 10 June 2024.
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where V(z) := C®(C;C" @ C"). Let p: A — U(n) be a unitary representation and
assume that
V(z+y) = p()” ' V(2)p(y). 3.1)

We note that without loss of generality (amounting to a basis change on C”) we can
assume that

p(y) = diag[(xk; W))i=1]. ki € /A", yi(y) ==exp(i(y.k)).  (3.2)

If in the corresponding basis, V(z) = (Vi;(2))o<i,j <k then (3.1) means that

Vij(z +y) = exp(i(y. kj — ki) Vij (2). (3.3)
If we define
o(z) := diag[(ei(z’k-"))?ﬂ],
then
Voz +7) =V,(2), Vo(2) = p(2)V(2)p(2)~"!
and

p(2)D(@)p(z)™" = Dy(@),  Dy(a) := diag[(2D;z —k;)j_i] + Vo(2), (3.4)

which is a periodic operator. In view of this standard, Bloch—Floquet theory applies,
which can be presented using modified translations:

Lyu(z) := p(Y)u(z +y), £L,:8(C,C") — & (C,C").
We have
Ly, D(a) = D(a)L,,.
Thus, we can define a generalised Bloch transform

Bu(z, k) := Z ei<2+y’k)Lyu(z),
yeA

o3Bu(z.k + p) = ¢!®PlosBu(z. k), peA*, ued),

Loy Bu(e, k) = Zei<z+a+y’k)£)a+yu(z) =o03Bu(e, k), acA
¥

such that (extending the actions of £, and 03B to C" x C"-valued functions diagon-
ally)

03BD() = (D(a) —k)o3B, D(a) —k = e'%K) D(a)e 7K,
o03BH (o) = H(x)o3 B,

. ilzk) —i{zk) _ 0 D(a)* —k
Hy(x):=e H(a)e = (D(a)—k 0 )

3.5)
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We check that
/ / |agBu(Z,k)|2dm(z)dm(k) = |(C/A*|/ |u(z)|2dm(z),
C/A JC/A* C

and that
Cu(z) = |(C/A*|_1/ v(z, k)e 1R dm(k)
C/A*

is the inverse of 03 B. We now define
Hj = H3(C;C*):={ue HS (C;C*): Lyou=u, ye A}, Li:=HQ k=n2n.
We have a unitary operator identifying L3 with L2(C/A)

WUou(z) := p(z)u(z), Uo:Lj— L*(C/A;C"), UoD(a)Uj = Dp(a),

where we used the notation of (3.4).
In view of this, Spec L2 (Hy (a)) (with the domain given by H_) is discrete and

Specp2(cic2ny(H(@)) = U SpecL% Hi(a).
keC/A*

Since, for p € A*,
w(p): Ly — L2, [t(pul(z) := ' @Plu(z), w(p)™ =(p)* (3.6)

and
t(p)*D(a)t(p) = D(a) + p,

we have
SpecL% D(a) = SpeCL% D(x) + A*.
Finally, we use (3.4) and Spec; 2(c/a.c)(2Dz) = A* (with simple eigenvalues) to see

that (for p given by (3.2)) we have the disjoint union

n
Spec;2(2D;z) = | J(A* —k;). Domain of 2D; = Hj). (3.7)
j=1

3.2. Rotational symmetries

We now introduce
Qu(z) :=u(wz), ues8(C;C"),

and in addition to (3.1) assume that

V(wz) = oV(z). 3.8)
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(We do not have many options here as Q2 D; = wD3£2.) Then,
QD(x) = wD(x)2,
and

Q 0

CH(x) = H®)C, C:= _ :8(C;C"xC") — 8§/(C;C" x C™).
0 w

We have the following commutation relation:
LyQu(z) = p(y)u(w(z +y)) = p(y —oy)plwy)u(wz + wy)
= p(y — 0y)QLyyu(z).

A natural case to consider is given by

p(y) = p(wy), Vy €A, (3.9)

which implies that
p(y)* = p(y + wy + w?y) = p(0) = Icn.
In the notation of (3.2), condition (3.9) means that
4mi 1

_ " 2
a)kj Ekj mod A ¢>kj e K .= %({O,i(g + ga))} +A).

We see that JC/A* is the subgroup of fixed points of multiplication @ : C/A* —
C/A* and it is isomorphic to Z3.
Since (3.9) implies that

L,Q2 = QLyy. L£,€=CLyy. CL, =LyC,

we follow [1, Section 2.1] and combine the two actions into a group of unitary action
which commute with H («):
G :=AxZs, 2335:)/_)0—)@%
0 =y +3Y L+ 1), (3.10)
() -u=L,C, wuelL?(C:C"xCM.

loc

By taking a quotient by 3A, we obtain a finite group which acts unitarily on L2(C/3A),
and that action commutes with H («):

Gs:=G/3A = AJ3A X\ 73 ~ 73 x ZL3.
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By restriction to the first two components, G and G3 act on C”-valued function
and use the same notation for those actions.
The key fact (hence the name chiral model) is that

1 O

H(@) = ~WH(@W, W:= (0 O

:C"xC" - C"xC",
(3.11)

WeE =W, L,W=WL,.

3.3. Protected states

We now make the assumption (3.9) and consider the question of protected states. We
are looking for the set Ky C C such that

VeeC, keXKy O0c¢€ SpecL% Hy (o). (3.12)
This condition is equivalent to
ke SpecL% D(a) < k € Specy2(c)n.cny Dp(@),

where we used the notation of (3.4). Putting « = 0, we see that Ko C K.
The following simple lemma is used a lot. To formulate it, we introduce the fol-
lowing spaces:

H} = {u € H(C/3A;C? x C?): Lyu= ei(k’y)u}, ke X/AN*~73 pelZ?
(3.13)
(with the corresponding definition of L7).

Lemma 3.1. Suppose that k, k' € K and t(k) is defined as in (3.6). Then, in the
notation of (3.13), t(k) : H}, — Hl§’+k and

T(k) : kerg1(D(a) + k) — kerg1 D(a),
0 g (3.14)
(k) : kerH(; H_p(x) — kerH/l H(x).
Proof. We have t(k) = el (k.z) (as a multiplication operator), and for u € H;,,
L, (k) (z) = %2 Lou(z) = %) 2 (kyu(z),
which proves the mapping property of 7(k). Also,
D(@)w = &' #K(D(a) + k) (e ' 1#Fw).

Hence, if (D () + k)u = 0 and £,u = u, then w := e!*¥ly € H1(C/3A;C?"),
D(@)w = 0, and Lyw = Ly(ei(z’k)u) = ei(z+y’k>Lyu = ¢!kl y: that is, w €
Hkl. ]
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We are interested in the case of n = 2 and obtain the following reinterpretation of
earlier statements about protected states — see [18].

Proposition 3.2. Ifn = 2 (in the notation of (3.2) and (3.12)) and ky # k» mod A*,
kj e K, then Koy = {—kl,—kz} + A*.

Proof. We use (3.14) and decompose kerg1(c/3a;c4) H () into representations of
G3 given by (3.10). From (3.11), we see that the spectrum of H(«) restricted to a
representation of G3 is symmetric with respect to the origin. If (see [1, Section 2.2]
for a review of representations of G3)

Hf = {u e H (C/3A:C*x C?): £,Clu = ' *") P u), (3.15)

k € KX/AN* ~ 73, p € Z3, (with the corresponding definition of L,zC p)- then the con-
stant functions (given by the standard basis vectors in C*#) satisfy

1 1 1 1
e] (S Hk],O’ 62 (S sz’o, 63 (S Hk],l’ 64 (S sz,l’

and since k1 # k, mod A*, all these spaces are different. The spectrum of H ()] L2
D
is even (see (3.11)) and kerH/i H(0) =Cejt2p.j = 1,2, p =0, 1. Continuity of
P

eigenvalues shows that

dimker;, H@ =1, aeC, j=12 p=01,
j-P

which in view of Lemma 3.1 concludes the proof. ]

Remark. Under the assumptions of Proposition 3.2, the corresponding —k1, —k, €
C/A* are called the K and K’ points in the physics literature. The remaining element
of K /A* is called the I" point.

Existence of protected states shows that we have a natural labelling for the eigen-
values of H (k) on L3:

Spec;2(H(k)) = {Ej(a.k)}jez=. Ej(e.k) = —E_j(.k),
0 E El(a’k) E Ez(ask) E M) E:I:l(a,_k]) = E:l:l(ay _k2) = O?

(3.16)

where the eigenvalues are included according to their multiplicities (and Z* := Z \

{0).

3.4. Magic angles

We recall the main result of [1], the spectral characterisation of magic angles. See
also proof of [3, Proposition 2.2].
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Proposition 3.3. Suppose that n = 2 and that the condition (3.9) holds. Then, in the
notation of Proposition 3.2, there exists a discrete set A such that

Ko, (07 ¢A,

Spec;2 D(x) =
pecs (@) {(C, o€ A

Moreover,
aeAs k¢ Ky, ale Spec;z T < Yk ¢ Ko. ale Specz Tk (3.17)
where Ty is a compact operator given by

Ty := R(k)V(z): L — L3, R(k):= (2D; —k)™". (3.18)

3.5. Antilinear symmetry

We will make the following assumption:

0 T

AD(a) = —D(a)*A, A:= (—r 0

), Tv(z) = v(2). (3.19)

A calculation based on the definition of £, gives

ALy = L2k ikyp k€K, pels. (3.20)

In particular, if (as we assume) k1 % ko, mod A* and kg ¢ {k1,k>} + A*, then
—ko + k1 + ko = ko mod A¥,

and consequently,

ALy ,— Ly, _p P EZs. (3.21)

Since (we put & = 1 to streamline notation; that amounts to absorbing « into V)

Vii 0 —Var 0
A =_ — | A,
( 0 sz) ( 0 _Vll)

for (3.19) to hold we need Vi1 = —V5, =: Wj. From (3.3), we see that W; is A-
periodic and there exists A-periodic Wy such that

2Dz +W 0 _[eM® 0 2D; 0 \[e W@
0 2D:-Wy )\ 0 W@\ 0 2D; 0 W@ |

2D5W0=W1, W()(C()Z) = W()(Z).
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(From (3.8), we see that W; (wz) = wW;j(z) and hence the integral of W; over C/A is
equal to O; this shows that we can find Wy, which is unique up to an additive constant.)
We conclude that if we insist on (3.19), then we can, without loss of generality, assume

that
_ 0 V12(2)
Ve = (VZI(Z) 0 ) ’

Vif(z + ) = TN 2), ke e Kk # ke,
Vij(@z) = Vi (2).

(3.22)

To verify the latter, we check that, with w = (w1, w»),
2D§ V12 Aw = 2D§FU)2 — Vlzrwl _ F(—ZDZU)Z — 171211)1)
Vo1 2Dz —2D:;T'w; + Vo1 T'ws F'2D;wy + Va1ws)
_ 0 r 2D, w; + 172111)2 — A 2D; Via w
B - 0 2D, wy + Vlzwl o Vo1 2Ds
Remarks. (1) The antilinear symmetry is closely related to the C,,T symmetry in

the physics literature.
(2) In the case when V51 (z) = Vi2(—2z), we have another antilinear symmetry:

Qu(z) := —A&v(z) = v(-z), OD(x)Q = D(a)*.
The mapping property is simpler than (3.20):

Q:L; ,(C/A:C*) — L _,(C/A:C?).

3.6. Theta functions
We now review some properties of theta functions. To simplify notation, we put

0(z) == 0,1(z|w) := —9%’1 (z|w),

[N

and recall that

2
0(z)=— Zexp(m’ (n + %) w+2mi (n—l—%) (z—i-%)) 0(—z)=—0(z)

nez

0(z + m)=(—1)"0(z), 0(z + nw) = (—1)e~Tin*o=2mizng ) (3.23)

and that 0 has simple zeros at A (and no other zeros) — see [12].
We now define

i 0z —z(k)) V3k
— ,5@z-k\2 = \RMJJ ._
Fr(z) =e O z(k) := o
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Then, using (3.23) and differentiating in the sense of distributions,

Fi(z +m +nw) = ek mee2mm2 O F(z) = Fi(z),

(3.24)
(2D + k)Fi(2) = c(k)8a(2), c(k) := 27i6(z(k))/0'(0).

(Here, §5(z) := ZYGA 89(z — y) and we used the fact that if f and g are holo-
morphic, g({) has a simple zero at 0 and f(0) # 0, then, near 0, 8E(f(2j)/g(§)) =
7(f(0)/g'(0))80(¢) — see, for instance, [11, (3.1.12)].)

The following Lemma is now immediate. It reinterprets the theta function argu-
ment in [18].

Lemma 3.4. Suppose that p € K and u € kerHI} (D(a) + k). Then,

(D(a) +k+k"Y(Frr(z—z(K")u(z))=c(k'=k")8, e (2)u(z(k")), k,k'.k"eC,
(3.25)
where c(k) is given in (3.24). In particular, if u(z(k”)) = 0, then

Fo(z —z(k")u(z) € kerp1(D(a) + k + k'.

3.7. Multiplicity one

The definition of the set of magic «’s based on Proposition 3.3 does not involve the
notion of multiplicity. Here, we will discuss the case of multiplicity one®. One natural
definition of multiplicity of magic angles is given in terms of eigenvalues of Hy (o)
in (3.16). We first note that

ae€AhS VkeC/AN*, Eii(a,k)=0. (3.26)
We then say that the magic angle o € # is simple/has multiplicity one if and only if
VkeC, j>1, Ej(xk)>0. (3.27)

As stated in (2.6), we use a stronger definition in this paper.
The operators
C?>3 (a,k) — D(a) + k : HO1 — L%

form a continuous family of Fredholm operators of index 0. (This follows from the
ellipticity of D(«), the continuity of the index and then fact (3.26) implies that D(«) —
k is invertible for some k and «.) In particular,

dimker(D () + k) = dim coker(D(a)* + k) = dimker(D(a)* — k),

8 A more general discussion is presented in [4] — generic simplicity presented there is mod-
ified in view of protected multiplicity two magic angles — see the proof of Proposition 3.6.
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and hence,
(3.27) & Vk € C, dimkeer (D(x) + k) = 1.
In [3, Theorem 2], we proved that
Proposition 3.5. Suppose that (3.22) holds and that
ko € X \ {k1,ka}, ki % kymod A*.
Then, for o € A, we have
(3.27) & Tk # ky,k, mod A¥, dimkerﬂg (D(a) + k) =1.
In particular, a € C is a simple magic angle (in the sense of (3.27)) if and only if
dimkerH(; (D(a) + ko) = 1. (3.28)

We recall that the proof is based on Proposition 3.3 and theta function arguments
reviewed in Section 3.6.
A symmetric choice of p in (3.2) is given by

o= (L2 d— K k= —K =2 kg =0
= — — — = —JT = s = — = -7, = U.
VS R 3 2 300

This corresponds to I' = 0 in the physics notation. In [1], we followed [18] and used a
non-symmetric (equivalent) choice. This corresponds to the assumptions in (2.2) with

ki =K.
Proposition 3.6. Suppose that (3.28) holds. Then, in the notation of Lemma 3.1,

kery1 (D(a) + ko) = Cr(ko)*uo, ||140||L% =1, Quo = wuo; (3.29)
0

that is, in the notation of (3.15), ugy € leco . In addition,
up(z) = zw(z), we C®(C;C?), wO)#0, up(z)#0, z¢A. (3.30)

Remark. The key insight in [18] was to use vanishing of u € kerg, i D(«) for magic
o’s at a distinguished point zg to show that SpecH(} (D(x)) = C.In[1, Theorems 1],
this was shown to be equivalent to the spectral definition based on Proposition 3.3.
Here, we take a direct approach: only at magic a’s we have kery i D(a) # {0}
and (3.29) shows that its elements have to vanish at 0. Equation (3.25) then implies
vanishing of other eigenfunctions.
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Proof of Proposition 3.6. From Lemma 3.1 and (3.28), we conclude that

kerH]l D(a) = Cuy
0

and as Lio = @]2-20 L,zCO ; wecan decompose the kernel using these subspaces. Since
D(0) + ko : Hy — L% is invertible (see (3.7)), (3.14) shows that

.l 2
D(0) : Hy — Li,
is invertible with the inverse given by R(0). It then follows that (see (3.18))

I +aTy=RO)D() : Ly, ; = Li, ;- keerlogj D(a) = kerLzO'j R(0)D(c).

(We do use ellipticity of D(«) here: the element of the kernel on L? must automatic-
ally be smooth.) Hence, if kerL% (R(0)D(a)) # {0}, j = 0,1, then
c0.J

ker2  (D(@)*R(0)%) # {0},
0./
and there exists w € L,ZCO ; such that D(a)*R(0)*w = 0. We now note that

RO : Ly ;= LE iy (3.31)

In fact, 2D; = D(0) : HklO — L,zCO is invertible by Propositions 3.2 and 3.3 and
R(0) : Ly, — Hy, C Ly,

is its inverse. Since
2D:[u(0'2)] = (@)'[2Dzu](w'2).

if u(wtz) = @*?, then [2Dsu](w'z) = @*@~1. Hence, in terms of definition (3.15),
2D;: Hklo i Ltho ;—1- Consequently, R(0) : Lio i
to L, , (using the L? pairing) is given by L, (3.31) follows.

: .72 2
This and A : Lk(),j—l — Lko’_jJrl (see (3.21)) show that

2
,—~ L ko.j and as the dual space

D(@)ARO0)'w =0, ARO0)*w e Ly ;4 # Ly, ; whenj=0,1.

This means that dim ker ! D(a) > 1, contradicting the simplicity assumption. The

simplicity and uniqueness of the zero of u¢ (3.30) follow from [3, Theorem 3]. [ ]

For an o € 4, we assume that (3.28) holds. In that case, Proposition 3.6 and
Lemma 3.4 show that

F
Kerys (D(@) + k) = Cu(k), u(k) = IIFiZZH' (3.32)
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Using (3.19), we see that (since A% = —1)
(D(@)* + k)A = —A(D(@) - k),

which implies that
kerpy) (D(a)* + k) = CAu(—k). (3.33)

Remark. From [3, (6.6)], we see that (note the difference of notation: u (k) there is
not normalised), for the basis of A* satisfying z(e;) = 1, z(e2) = w, we have, for
p = mey +ney € A*,

u(k + p) — ep(k)_lt(p)u(k), ep(k) = e—%ninz-l—ni(k—l—lg)n(_])n—i—m,

where the unitary operator t(p) was defined in (3.6).

4. Grushin problems

In this section, we construct Grushin problems (see [17] and [10, Section C.1]) which
allow us to treat small in-plane magnetic fields as perturbations. In Section 5, we
combine that with the spectral characterisation of magic angles (Proposition 3.3) to
analyse the behaviour at the I" point and at the vertices of the boundary of the Brillouin
zone.

4.1. Grushin problem for Dp ()

Suppose that o € #A is simple, in the sense that (3.28) holds. We then put, in the
notation of (3.32) and (3.33),

Dp(a.k) = (Dlg%)(lgk R‘O(k)) + (023 8) :Hy xC — L xC,
R_(Ku— =u*(k)u—, Ry(k)u = (u,u(k)), 4.1

(D@ +kuk) =0, Ju®l =1, u*(k)=Au(-k).

We have

Dp(a. k)™ = (EB(k) Ef(k))

EB(k) EZB_(k)
where
E%vy :=ulk)vy, E%v:= (v,u*(k)), E°, =0,

0 1 . . “4.2)
E% := ((D(@) + k)| (cutyL>cur L) @ — (v, u*(k)u*(k)).



S. Becker and M. Zworski 500

We now apply [10, Lemma C.3] to obtain
EB, = —E_03BE4 + O(B?) = —c(k)c*(k)B(G(k) + O(B)),
G(k) = (c(k)e™ (k)™ ((ur(k), ui (k) — (uz(k), u3 (k))),

and if ug = (¥, )", and u(k) = (u1(k), uz(k))*, then

4.3)

ur(k)=c(k)Fey, us(k)=c(k)Frp, uj(k)=c*(k)F_rp, us=—c*(k)F_,

where ¢(k), c* (k) > 0 come from L2-normalisations of u and u*.
Hence,

G(k) = 2/@/1\ Fi(2) F-i (2)p(2) ¥ (2)dm(z).

In fact, G(k) is a multiple of (z(k))? which follows from a theta function identity
(see [12, (4.7a)])

0(z +u)0(z —u)02(0)* = 02(2)03 (u) — 63(2)0%(u).  62(2) := 9(2 * %) @)
Since (from u € Hol,z)

/ oY ()dm(z) = / o)V (@) dm(z) = o [ oY ()dm(2).
C/A C/A C/A

this integral vanishes, and (4.4) gives

G(k) = go

2
0(z(k))? l) Mdm(z). (4.5)

9(%)2 ) gong(g)ZZ/(C/A 9(Z+2 9(2)2

Numerical evidence, see Table 1, suggests that, for the Bistritzer—MacDonald poten-
tial and the first magic angle,

lgo| = 0.07 # 0.

(The number g is determined up to phase which we can choose arbitrarily by modi-
fying 1o — ¢'?uq.) Table 1 shows approximate values of |gg| for higher magic angles
for the same potential.

Remark. We also see that the Grushin problem (4.1) remains well posed with o
replaced with o, |@ — | < 1. The effective Hamiltonian (4.3) has to be modified by
term (obtained again using [17, Proposition 2.12])

EB (k,a) = EB (k) — (« — @) f2(k, B, a),

(4.6)
folk.0.a) = ga(k.0) = ~E2(K) (U(Ez) Uff)) EY k),
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where and in the notation following (4.3),
gl(k,g)¢Z[C/A(U(—Z)u1(k,Z)ul(—k,Z) —UQ@)uz(k, 2)uz(—k, z))dm(z)
=[C/A Fi(2) Foe(2)(U(=2)¥(2)? = U(2)p(=2)*)dm(2). 4.7

An indirect argument presented in the proof of Proposition 5.1 shows that if go () #
0, then g1(0, @) # 0. This can also be verified numerically — see Table 1.

4.2. Grushin problem for the self-adjoint Hamiltonian

We now turn to the corresponding Grushin problem for H ,f (o) given in (3.5) (note
the irrelevant change of sign of k):

HE (0. 2):= (H'%(f‘()k)_ z R‘O(k)) L HU(C/A; €% x €2 = L2(C/A; CH x C2,
By 0 Dp(@)* +k
Hy ()= (DB(a) +k 0 ) (48)

Rl(k)z(RO R*“‘)), Rotk) = R_(o)",

where Ry (k) are the same as in (4.1). The operator Jf,f (o, z) is invertible for all k,
|B] € 1, |a —a| < 1, and |z] < 1. We denote the components of the inverse by
EB(k,a,z), and we have

0 E%k)

Eg(k,g,o):(m(k)* 0 ) E%(k,a,00=EY (k,a,0)*, E°, (k,a,0)=0.

Using [10, Lemma C.3] again, we see that (in the notation of (4.6))

z EB, (k, a))
zZ

2 2 2

Ei_(k,a,z) = (
(Here, we used the fact that E? (k) E2 (k)* = 1and E (k)* EQ (k) = 1 which follows
from (4.2) and normalisation of u (k) and u*(k).)

Hence, z = ElB (k,a) = —Efl (k, B) (the eigenvalues of H]f () closest to 0) for
k close to 0 are given by solutions of

det EB(k,00,2) =0 =

(4.9)
z=%[y1BK* + yola —) + O(IB* + |a — o + [k|*)

’
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Figure 6. Bifurcation for B = 0.1. (Top): the colour-coding indicates the position of the Dirac
points for given values of « € R. The right figure illustrates the bifurcation at I' and the left
figure at a non-equivalent (modulo A*) bifurcation point that is a vertex of the boundary of the
Brillouin zone; see Figure 1.

where (under the assumption that go () # 0) yo # 0, 1 # 0. (The exact symmetry
of signs follows from the extension of the chiral symmetry (3.11) to the Grushin
problem (4.8) which shows that det E8 (k, , z) = det EB (k, 2, —2).)

5. Bifurcation

This section is devoted to showing (2.11) and giving a stronger version of Theorem 3.
We first observe that for £B — k ¢ Ko ={K,—K} + A*, K = %71 > 0,

(2D:z —k)Ic2 +03B)™' 1 L§ — Hy,

and we can define

Ty (B) := (2D; —k)Ic2 + 03B) ™! (U((iz) U(()Z)) . (5.1

It then follows that, for £+ B — k ¢ Ko = {K,—K} + A*,
k € SpecL(z)(DB(a)) & l/a e SpecL%(Tk(B)). (5.2)

In particular, this characterisation holds when k € C \ (K¢ + D(0,6)) and |B| < %8 .
However, in Figure 8, we will show and discuss the spectrum of Ty (B) when k € K
and B # 0.

Combining the spectral characterisation with the result of Section 4, we can obtain
a rather precise characterisation of the behaviour of eigenvalues of 7y (B).
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Proposition 5.1. Suppose that A is a simple eigenvalue of Ty, = Ti(0) and that
assumptions of Theorem 2 hold for o« = 1/A. Then, for every ¢ > 0, there exist § > 0
and a holomorphic function A(k, B) such that A(k, B) is a simple eigenvalue of Ty, (B)
and
(k,By—> A(k,B), keQ.,:=C\(Ko+ D(,g)), B e D(,0)
Mk + p,B)y=Ak,B), peA*, kk+peQ, BeDOSJ),
Ak, B) = —A(k, B) = Mwk,wB) = A(—k, B),
A(k,0) = A, 3pdzA(0,0) € R\ {0}.

(5.3)

In particular, for B € D(0,6) C C,
Ak, B) = A + c1Bk? + L1(B*)B? + O(B*k?) + O(B*k*) + O(Bk®), (5.4)
where ¢; € R\ {0}, A1(z) = A1(2).

Remarks. (1) It follows from the proof that the constant c¢; can be computed using
the constants go() and g; («) defined in (4.5) and (4.6), respectively:

300 g0l
16726(3)% g1(@)

C1

(2) In view of (5.2), (5.4) shows that when ¢ is magical and A = 1/« satisfies the
assumptions of Proposition 5.1, then for 0 < |B| < 1,k € SpecL(z) Dp(x) N D(0,3),
0 < § « 1, if and only if

Bk*(1 + O(k®) + O(B?) + O(Bk?) = c;'(1 —a/a + B3A1(B?). (5.5

In particular, when B and « are real, then the eigenvalues of Dp(«) bifurcate k = 0
when « is chosen so that the right-hand side of (5.5) vanishes. (We recall from (5.4)
that c; € R\ {0} and A;(B?) is real for B real.) We see the same bifurcation for
B = Bge®?7/3 By > 0, obtained using (2.7).

(3) Numerical evidence suggests (see Figure 7) that

d3A(0,0) <0

for the Bistritzer—MacDonald potential. If B = Bye?™?, that means the I" point (cor-
responding k = 0) is in the spectrum of Dg(«), @ € R, only if § € %Z.

Proof of Proposition 5.1. Let U € C \ Ky be an open set. Then, fork € U, Ty (B) =
T (0) + O(B)L%_)L%, and if 0 < g9 < 1, then the projection,

Mk, B) := (2mi)~! / (€ — Te(B)de.

dD(4,£0)
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Figure 7. Plot of the B — A (B) of Proposition 5.1 for the first (left) and second-to-fourth
magic angles (right).

is holomorphic in k and B and has a fixed rank. We assumed that T} (0) has a simple
eigenvalue at A (independent of k — see (3.17)), which then implies that the rank is
one, and T (B) has a simple eigenvalue A = A(k, B). Since

Alk, B) = (T (B)I1(k, B)),

it follows that A(k, B) is holomorphic in k and B.
From (2.7) and (5.1), we conclude that

Spec2 (T (B)) = SpeCLg(T;;(E)) = Specy2(T—x(B)) = Spec2(Twk (@ B)),

This gives

Ak, B) = A(—k, B) = A(k, B) = AM(wk, wB). (5.6)
Definitions (5.2) and (3.6) give Tx4,(B) = ©(p)Tx(B)t(p)*, p € A*, and hence,
Atk + p,B) = A(k,B), peA* (5.7

provided that k,k + p € U. This allows an extension of A(k, B) to 2, in the statement
of the proposition, provided that | B| < § for some sufficiently small §. The properties
of the expansion (5.4) come from the fact that individual terms in the Taylor expansion
satisfy the symmetries (5.6):

apgk? BY = apy(—1)Pk? BY = Gpyk? BY = ap,w? kP BY,

apg #0=ap, €R, p=2{, LeN, g=~{mod3.
This proves (5.3) and (5.4) except for c; #0, that is, the non-vanishing of 0 8]26/\(0, 0).
To establish that, we compare the expansion of A (k, B) with the effective Hamilto-

nian (4.6):
AMk,B)=A & EB (k,a)=0, a=21""
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We now define u by
A=A01—pd), A=A =Aw) T = AT 4 4 0.

Using (4.6) and (4.3), E§+ (k, ) = 0 becomes

Bk? 4 ag'pgi(k, ) + O(u?) + O(B*) + O(Bk>) =0, (5.8)
ao := —ago(e)f(3)72(6'(0)) # 0, which is then equivalent to (5.4):

—p = &1bk? + O(B3) + O(Bk®), & :=A"%¢c. (5.9)
Inserting (5.9) into (5.8) gives
Bk? = ay'g1(k,a)é1 Bk + O(B?*) + O(BK?),

which should hold for (k, B) near (0,0) (since u = u(k, B) = A~' — A7%A(k, B)).
But that is possible only when g1 (0, @)¢; # 0. (We used here the numerically estab-
lished assumption that go(«) # 0.) Hence, 838,2()&(0, 0) = %cl = %&261 2 0 and, as
promised after (4.6), g1(0,a) # 0. u

At the bifurcation point, the Bloch eigenvalues exhibit a quadratic well; see Fig-
ure 3.

Proposition 5.2. Under the assumptions, and in the notation, of Proposition 5.1
and (5.5), let o™ be the solution to

a* =a +a*(B)*Ai(B?)

so that 0 € SpecL% Dpg(a*). Then, the two Bloch eigenvalues ELq of HkB () closest
to zero, defined in (3.16), satisfy

Exy(a* k) = £y B[+ O(B> + |[k[*).,  y1 > 0.
Proof. This follows from (4.9) and (5.5). [ ]

The next proposition deals with the vertices of the boundary of the Brillouin zone.
In view of (5.7), it is enough to consider one of the vertices, say,

ky:=2mi/V3, z(k,) = % (5.10)

We will crucially use the following properties of the theta function defined in (3.23):

9(%) £ 0, 9’(%) =0, 9”(%) £0. (5.11)
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The first property follows from the fact that the only zeros of 8 lie on A. The second
one comes from A(—z) = —6(z) and 8(z + 1) = —6(z) so that w 9(% + w) is an
even function. The last claim can be obtained from taking the logarithmic derivatives
of [12, (2.10b)] or by a rigorous numerical verification based on fast convergence of
the sum in (3.23).

Proposition 5.3. Suppose that A is a simple eigenvalue of Ty = Ty (0) and that
assumptions of Theorem 2 hold for o = 1/A. Then, for k near k given in (5.10),

Mk, B) = A+ BA2(B) + c2B(k —k)* + OBk —k, ).
where ¢, A2(0) € R \ {0}.
Remark. We again have a bifurcation result similar to (5.5) but less precise:
B(k —k)*(1 + O(B)) = ¢; '(1 —a/a) — BA2(B). (5.12)

For B real, we see a bifurcation at ay = o + BA,(B), with similar bifurcations for
B = Bge®27/3 By > 0, obtained using (2.7).

Proof of Proposition 5.3. From (5.6), (5.7) and the fact that
2ky = 4mi//3 € A¥,
we conclude that
Ay +2.B) = A(~k; —2.B) = Ak, — 2. B)
= A(~% —k;.B) = Ak, — 2. B).

We also note that, for k ¢ Ko + D(0,¢), A(k,0) = A (since k € SpecL% Do(a) only
ata = o = 1/A). Hence, as in (5.9) and with the same definition of u,

—u = BAy(B) + &Bw? + O(B*w?), w:=k,—k

5.13
&= A2, A2(0) € R. G139

We now proceed as in the proof of Proposition 5.1 and use (4.6) and (5.11):

1\* 1
O(z(k)))? = 0(5) + 9”(5)11)2 + Ow*).
This gives the following equation:
a1B + a, Bw? + azp + O(u?) + O(B?) + O(Bw*) =0, ayax #0. (5.14)

Substituting (5.13) into (5.14) shows that a3 # 0 and ¢, # 0. [
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6. Proofs of Theorems 2 and 3
Combining the results of previous of sections, we can now prove the main results of
this paper.

Proof of Theorem 2. In the notation of (4.6), we see the effective Hamiltonian for
Dp(«) for B small:

EB (k,a) = —Bc(k)c* (k) (cof(z(k))* + O(B)) + O(@ —a).  (6.1)

Since 0(z(k)) # 0 for k ¢ A* (see Section 3.6), there exists a constant a; such that if
lo — | < ay|B|, then EB (k) is not identically O (provided that B is small enough).
This shows invertibility at some k and hence discreteness of the spectrum (by the
analytic Fredholm theory applied to k — (Dp(a) — k)~! — see, for instance, [10,
Theorem C.8]) for

(B,a) € Q1 :={(B, &) : |B| <81, [la —af <a1|B}.

On the other hand, we can put k = 0 and recall from the proof of Proposition 5.1 (see
(4.6)) that

EZ, (0.0) = col@ —a)(1 + O(a — &) + O(B)) + O(B?), co #0.
Hence, EB (0, &) does not vanish if, for some constant 41, and small §; > 0,
(B.a) € Q= {(B,a) : 41|B]* < |a —a| < &}.

Again, that implies discreteness of the spectrum. We now note that there exists 69 > 0
such that
(D(0,80) \ {0}) x D(a, o) C 21 U Q,

and this proves discreteness of the spectrum of Dp () for 0 < |B| < §p and |o — | <
50.

We also see that (6.1) implies (2.9): for U € C, for any epsilon, there exits p > 0
such that |0(z(k))?| > pforz € U\ (A* + D(0, €)). But then,

|EZ, (k.a)| > coc(k)c* (k)| Blp — O(B?) — O(la — ) > 0.

if0 <|B| <p/C and | — | < p|B|/C for some (large) constant C.

It remains to prove (2.8). Let F be a fundamental domain of A* containing 0 such
that there are no eigenvalues on dF (that can be arranged as under our assumptions
the spectrum of D pg(w) is discrete and periodic with respect to A*). Then,

1
Specyz (Dp(@) N F| = 2 [ (6= Dpt@)ag,
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As long Dp(a) has no eigenvalue on dF for (B,a) € K C C2, this value remains
constant for (B, «) € K. Choosing a small ¢ and § needed for (2.9) and putting K =
{(B.a) : |B| <4, |l —a| <agd|Bl|}, we see that (using [17, Proposition 4.2])

1 N _ -1
Etr/w(é— D)t = o - ”/au(o,s)@ Dp(@)'d¢
_ B 1, 1B
= 57 o, EEO 0
1
= [ @+om)aromya
Tl aD(0,e)
—240(B) =2,

provided B is small enough. (Depending on ¢, note that « = « in the calculation; the
answer has to be an integer.)

We now need to account for the possibility that D g () has an eigenvalue on 0F.
Periodicity of the spectrum shows that if k1 € Spec Dp(a) N JF, then k1 + y € oF
for a finite number of y € A* (from the definition of a fundamental domain). Only one
of these points can be in the fundamental domain F and a small deformation includes
it in the interior of (the new) F, while excluding all others from dF. The previous
argument shows that the number of eigenvalues remains 2. ]

Proof of Theorem 3. When B, «a € R, then the last identity in (2.7) gives
Spec;z D(e) = —Specyz D (o) = W. 6.2)
From Theorem 1, we know that, for o ¢ A,
Spec,2(Dp (@) = {d(@), —d(a)} + A%,
(we fix B € R here) and (6.2) shows that
d() = d(e) mod A* or d(a) = —d(e) mod A*.

Since A* = A*, this means that Spec;z Dp(@) C (R + A*) U (iR + A¥) which is
the same as (2.10).

To prove (2.11), we recall that C x (C \ Ko) 2 (B, k) > Ty (B) is a holomorphic
family of compact operators with simple eigenvalue u = 1/a € Spec(7%(0)). We
define K := R\ Uprex, D(k', €); then by periodicity of the spectrum of Dp(a),
it suffices to restrict us to a fundamental domain: since K/A* is a compact set, the
spectrum of X > k + Ty (B) is uniformly continuous in B on compact sets. Thus, for
0 < |B| < 8o small enough, the operator Ty (B) has precisely one eigenvalue in a §;
neighbourhood of u for every k. This implies that for every k € K/A* there is pre-
cisely one puy such that uy € Spec(Ty (B)) and |pgx — | < 81. From Propositions 5.1
and 5.3, we conclude that u; € R and the result follows. [
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Figure 8. Top figure showing « € C such that 1/« € SpecL% (Tk(B))orK € SpecL(z) (Dp(a)).
We see that indeed for B € R \ {0} the trajectory of Dirac points passes through K, K’. Bottom
figure showing o € C such that 1/ € SpecL(z)(TK(B)) or K € SpecL(z) (Dp(w)). For general

B ¢ R, the trajectory of Dirac points for varying & € R does not pass through K between
successive real magic angles.

Remark. While our proof does not show that for B € R \ {0} the points K, K’ are
also in the spectrum of Dp(«) for some real @ between successive magic angles, the
bottom figure in Figure 8 shows that this is indeed the case. For general B ¢ R, this is

however false, as the top figure in Figure 8 shows. Both figures exhibit an interesting
universal pattern for |«| large.
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