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Fine Structure of Flat Bands in a Chiral
Model of Magic Angles

Simon Becker®, Tristan Humbert and Maciej Zworski

Abstract. We analyse symmetries of Bloch eigenfunctions at magic angles
for the Tarnopolsky—Kruchkov—Vishwanath chiral model of the twisted
bilayer graphene (TBQG) following the framework introduced by Becker—
Embree-Wittsten—Zworski. We show that vanishing of the first Bloch
eigenvalue away from the Dirac points implies its vanishing at all mo-
menta, that is, the existence of a flat band. We also show how the multi-
plicity of the flat band is related to the nodal set of the Bloch eigenfunc-
tions. We conclude with two numerical observations about the structure
of flat bands.

1. Introduction

In this article, we study the chiral version [20,25] of the Bistritzer-MacDonald
Hamiltonian [6] describing twisted bilayer graphene:

where U is a real analytic function on C = R?, and

Uz +7) =B (2), Uwz) =wlU(2), U(Z)=-U(-2), w=e>"/3
yeEN=wZB7Z, wK=K%0 mod A*,
4
A = —A, (z,w) :=R(zw). 1.2
7 (z,w) = R(zw) (1.2)
The most studied case is the Bistritzer—MacDonald potential which in
the convention of (1.2) corresponds to

2
U(z) = —%m’Zwlei(z’”lm, K = 3m, (1.3)
=0

Published online: 14 October 2024 ® Birkhduser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-024-01478-3&domain=pdf
http://orcid.org/0000-0002-6703-9511

S. Becker et al. Ann. Henri Poincaré

see the Appendix for the translation of the conventions.

Definition. A value of « is called magical if the Hamiltonian H(«) has a
flat band at zero energy (see (1.6)).

In the physics literature—see [25]—a is a dimensionless parameter which,
modulo physical constants, is proportional to the angle of twisting of the two
sheets of graphene. Hence, large a’s correspond to small angles.

We know from [2] that the set of magic a’s, A, is a discrete subset of
C. In [3] we proved that for the potential (1.3) A is in fact infinite. Existence
and estimates for the first real magic o were obtained by Luskin and Watson
[29] who implemented the method of [25] with computer assistance (see also
Remarks following Theorem 4). We also remark that a rigorous derivation of
the full Bistritzer-MacDonald model was provided in [7,28]

Following the physics literature, we consider (unlike in [2]) Floquet theory
with respect to moiré translations: for u € L2 (C;C?), we put

loc
ei<’YfK> 0 4
L= 0 o= i1 K) u(z+7v), veA, K=3m (1.4)

(Here and elsewhere (z,w) := Rzw, z,w € C.) The action is extended di-
agonally for C* = C? x C? and we use the same notation. We then have
2Z,D(a) = D(a).Z, and £, H(o) = H(a).Z,.
It is then natural to look at the spectrum of H(«) satisfying the following
boundary conditions:
H(a)u = BEu, u€ HY(C/A,C*), Hi(C,C* := Li(C;C* N Hi.(C;C*),
L3(C/A,CY) = {u = L} (C;CY) : Lyu = Fy}. (1.5)

loc

The spectrum is discrete and symmetric with respect to the origin and
we index it as follows (with Z* := Z\{0})
{E]‘((Jé,k‘)}jez*, Ej(a7k> = _E*j(aak)v
OSEl(Oé,k)SEQ(CK,k)S"'7 El(Ol7K):E1(O[,—K):O,
(1.6)
see Sect. 2.2 for more details. The points K, — K are called the Dirac points and
are typically denoted by K and K’ in the physics literature. (See the appendix

to see different K and K’ when different representation of A is used.)
The definition of the set of magical a’s can now be rephrased as follows:

A:={aeC:VkeC, Ei(ak) =0} (1.7)

Remark. We can, equivalently to (1.5), where we study H(«) on L7 (C/A); C*),
conjugate the Hamiltonian by e/%#) to study the equivalent k-parametrized
family of Hamiltonians Hy(a) on LZ(C/A;C?) instead, with

Hy(a) := <D(a(;+k D(a)(; ’ E) :

Since D(«) is a Fredholm operator of index 0 on LZ(C/A;C?), we find that
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0e SpecL%((C/A,(C“)(Hk) — —k € SpeCL(z)(C/A’(CQ)(D(OZ)).

This shows that E1(a, k) = 0 for all k € Cis equivalent to Specz ¢ a c2)(D(@))
=C.

Our first theorem states that if the Bloch eigenvalue vanishes away from
the Dirac points, then it vanishes identically, that is, the band is flat:

Theorem 1. Suppose o € C and E1 (o, k) is defined using (1.5), (1.6) for H(ca)
given by (1.1) with U satisfying (1.2). Then,

k¢ {-K K} +A" E(o,k)=0 < YV keC FE(ok)=0. (1.8)

In other words, zero energy band is flat if and only if the Bloch eigenvalue is
0 at some k ¢ {—K, K} + A*, which is the lattice of conic points (see Fig. 2).

The next theorem gives a useful criterion for simplicity. It is used in [3]
to prove existence and simplicity of the first magic « and also in [5].

Theorem 2. If a € A then, in the notation of (1.5),
Vi>1,keC Ej(a,k)>0 < VkeC dimkerzc/n D(a)=
<— dpeC dimkerLzzj(C/A) D(a) =
(1.9)

In other words, the simplicity of 0 as the eigenvalues of D(«) on L% (C/T';
C*) for all k is equivalent to the simplicity of the zero eigenvalue of D(«a) on
L2(C/A;C?), for any one p.

The symmetries of the potential U imply that U vanishes at the stacking
point of high symmetry: zg :=i/v3 = (v — w?)/3 € A/3:

wzg =25 —1—w=2z25 mod A = U(—zg)=0. (1.10)

(To obtain this conclusion, use (1.2) to see that U(zg + w() = @U(zs + ().)
In the work of Tarnopolsky et al [25], flat bands were characterized by
vanishing of a distinguished element of the kernel of D(«) at the stacking
points +zg. For the potential (1.3), it was claimed that the vanishing of an
eigenvector u € kerpz (D(a) — K) occurs precisely at zs. This is equivalent to
showing that the zero of u € kerp2 . D(«) occurs precisely at zg. We show
that this is indeed true when o € A is simple and formulate it more generally:

Theorem 3. Suppose the equivalent conditions in (1.9) hold. Then, nontrivial
elements of (one dimensional) space ker g1 (c/a,c2) D(@) have zeros of order
one at

V3k

—+A 1.11

47 + ( )
and nowhere else. In particular, for k = —K, the zeros occur precisely at the

stacking points zg + A.
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FiGURE 1. Multiplicity of the flat band for complex values
of a can be double as illustrated here. When the potential is
replaced by Uy(z) = cosU(z) + sint‘)ZiZO whez" —20" the
symmetries (A.1) (we are using coordinates of [2]—see Ap-
pendix A) are preserved but the dynamics of o’s is interesting
when p varies. A movie showing A as 6 varies with multiplici-
ties colour coded can be found at https://math.berkeley.edu/
~zworski/multi.mp4

Remark. We consider the zero at zy to be of order one if 0,u(z) # 0; the
equation implies at zeros d%u = 0 for all /—see Lemma 3.2. This implies that
u(zg + ¢) = Cw(¢, ¢), w(0) # 0 and w is holomorphic near 0 € C2. Theorem 3
is illustrated by Fig. 5.

As a consequence, we find (in Sect. 5.2)

Theorem 4. Ifdimker;z D(a) = 1, then the Chern number associated with the
Bloch function uy, € kerpz (D(a)+k), is equal to —1 (see Sect. 5.2 for a precise
formulation).

Remarks 1. Theorem 2 shows that the assumption of Theorem 3 is equivalent
to the minimal multiplicity of the flat band, that is to |E; (e, k)| > 1 for [j] > 1.
2. Numerical results suggest that the first string of complex a’s in A for (1.3)
have higher multiplicities (see Fig.1 where double a’s are indicated) and in
that case the zeros of ux € kery (D(a) + K) appear at —zg + A.
3. In [3], we show that the first real angle (existence of which was first es-
tablished by Watson-Luskin [29]) is in fact simple. For higher real o’s for the
potential (1.3), numerical experiments [2] provide strong evidence of simplicity.
We also make two numerical observations presented in Sect. 5. The first
one is illustrated by Fig.2, and the movie referenced there. We see that the
rescaled first band is nearly constant close to magic angles and its shape is
closed to that of |U| after a linear changes of variables z — k.
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FIGURE 2. Plots of k — Ej(a, k)/(maxy Eq(a, k)) for 0.4 <
o < 0.6 (left) (k = (w*k1 — wko)/V3, |kj| < 2 and we use
the coordinates k;). Although the band becomes flat at the
first magic o ~ 0.586, the rescaled plots remain almost fixed
and close to k — [20,U(—4+/37ik/9)| (right, blue-coloured)
compared with F7(0.58,%) (right, orange-coloured). For an
animated version, see https://math.berkeley.edu/~zworski/
KKmovie.mp4

The second observation concerns the behaviour of the curvature of the
hermitian holomorphic line bundle (somewhat informally) defined by &k +—
uy [14] (with Hermitian structured inherited from L?). We observe that the
curvature peaks at the I' point, that is, in our notation, at k = i—see Fig. 3. It
is also interesting to note that the curvature does not change much at different
magic a’s—see Sect. 5 for definition and computational details.

Comments on an Earlier Version of This Paper. We now concentrate exclu-
sively on the case of simple bands with an expanded discussion of multiplicities
moved to [4]. That paper will also include a modified version of generic mul-
tiplicities. Contrary to our earlier statement, certain double a’s are protected
(for instance the ones marked as double in Fig.1).

We conclude this introduction by discussing relation to some physics
issues.

The Anomalous Quantum Hall Effect. The analysis of the multiplicity of the
flat band has immediate implications on the transport properties of twisted
bilayer graphene. In the case of a simple magic angle, the two bands have
Chern numbers +1 resulting in a net Chern number zero. While this cancel-
lation may sound discouraging at first, it has been recently discovered that
twisted bilayer graphene hosts an anomalous quantum Hall effect when it is
aligned with hexagonal Boron nitride (hBN) [21]. In that case, an additional
sublattice potential of strength m > 0 is added to the Hamiltonian, that is,
the Hamiltonian in (1.1) is replaced by

Ho(o) = (D’}”;) Djjz*) |
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F1GURE 3. Plot of the curvature of the holomorphic line bun-
dle corresponding to the first simple band, defined in (5.6).
The extrema at K,T", K’ follow from Proposition5.3 and the
subsequent discussion

This effective mass splits the two flat bands at zero energy to one at energy m
and one at —m, respectively. It follows then from Theorem 4 that the anoma-
lous Hall conductivity o of any individual flat band at energy m has Chern
number —1 which by the Kubo formula corresponds to a Hall conductivity

62

o=———c1.
For the band at energy —m, the Chern number is +1.

Fractional Quantum Hall Effect. The multiplicity of the flat band has also
implications for other many-body phenomena. Unlike the integer quantum
Hall effect which can be understood in a single-particle picture, the fractional
quantum Hall effect is a many-body effect conjectured to appear in twisted
bilayer graphene [14]. In its original formulation, Laughlin [13] constructed
under the assumption of a sufficiently large gap of the flat bands, a many-
particle wavefunction using the lowest landau levels which was then generalized
by Haldane and Rezayi to the torus [11], see also [10]. Theorem 1 together with
[3, Theorem 3] ensures the existence of such a gap at the first magic angle.
Let us briefly explain the construction in [14]: One defines I'y := %Zm +
%Zmz with Ny := N1 Ny and 7 = Now/Njy. If N, is the number of electrons
occupying the band, then we require m := Ng/N, € 2Ny + 1. The ansatz for
the Laughlin state of the interacting N.-body electron system, depends on the
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multiplicity and zero set of the Bloch function, identified in Theorems 3,
Ne

u(zi)
21,5 2N, ) = F(21,..., 2N,
4 w) = F( " )E 9 (3(zi n zs)/(47rz'w)|w)

F(z1,...,28) = G (2) Hg(zi — zj).

1<j

The Bloch conditions B?]S,Zl)aﬁNzazz/J(zl, oy ZN) = (21, ..., 2n), where £ acts
like .Z on the i-th coordinate z;, is then assumed to hold for each particle and
implies that ¢ has a zero of order m. A Laughlin state is then obtained by
assuming that all zeros occur at the origin which implies, by assuming g to be
holomorphic, that g(2) = 6;(32/(4riNiw)|7)™. An easy computation shows
that this leaves a m-fold degeneracy in the choice of G which is called the
topological order of the Laughlin state.

2. Spectral Theory and Symmetries of the Hamiltonian

In this section, we review symmetries of the Hamiltonian, present a more
detailed discussion of different approaches to Floquet theory, recall the spectral
characterization of magic angles and prove Theorem 1.

2.1. Symmetries Revisited

We already recalled that .2, defined in (1.5) commutes with D(«) and (ex-
tended diagonally) with H(«). The rotation

Qu(z) := u(wz), ue.#'(C;C?),
satisfies
OD(a) =wD(a)S,

and produces a commuting action on H(«a) as follows:

CH(a) = H()¥, €= <§f w%) L2 (CiCY) = LRy (C5CY. (2.1)
We then have
2.0 =097, LC=CL,,, CL = LyE.

The chiral symmetry is given by

v

1 0
0 -1

WEC=CW, LA =WL, (2.2)

We follow [2, §2.1] combine the A and Z3 actions into a group of unitary
action which commute with H(«):

G:=AxZs Z3s>3L:y—ad%, 10 -(V,0)=H+9,(+1),
(7, 0) -u=2L,C, ue L} (C;Ch. (2.3)

H(a)=-#H(a)¥, 7/:( >:C”XC"HC”XC",
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By taking a quotient by 3A, we obtain a finite group acting unitarily on
L?*(C/3A) and commuting with H(«):

Gs:=G/3N = A/3A x Z3 ~ 73 x Zs. (2.4)
In addition to the spaces L? defined in (1.5), we introduce

2 (C/NCY) = {ue LIOC((C; Ch : 2,6 = TPy,
Hk,p = Lj, N Hiy, ke (3A)/AN =75, pels (255)
This streamlines the notation of [2] and concentrates on the most relevant rep-
resentations of Gs. We use the same notation for C? valued or scalar functions

with € replaced by €.
We have the following orthogonal decompositions

L(C/3M)= @ Li(C/A),

keiAx/A=
Li(C/A) = €D L} ,(C/A), ke /A, (2.6)
PEZs
where
K:i={keC:wk=k mod A"} ={K,—K,0} + A" (2.7)

Remark. Decompositions (2.6) do not provide a decomposition of L?(C/3A)
into representations of G3 given by (2.4). In addition to Lkp7 k € K and
p € Z3, we also have two irreducible representations of dimension three—see
[2, §2.2]. These representations appear in keryzc/sa,c2) D(a) when o € A is
simple. Since this observation does not play a role in our proofs we do not
provide details.

We also recall from [2, §1] the additional symmetry

ED(Q)E* = —D(a), Ev(z) = Jo(—z), Ji= (_? é) , (2.8)

noting that it plays a crucial role in [27]. We have

L r(C/A,€%) 5 12 o(C/A, C) 5 Ly, o(C/A, C),
L3(C/A,C%) & L3,(C/A.C%). (2.9)
Finally, we recall the antilinear symmetries
— o= _ (0 @
Qu(z) =v(—2), LQu(z):= (Q 0) u(z),

QD(0)Q = D(0)*, H(0)2 = 2H(a), (2.10)

and
Q: Lj ,(C/A;C?) — Li _,(C/A;C?),
2: L ,(C/A;CY) — L 41 (C/A;CY, (2.11)
for k € K, p € Zs. For another useful antilinear symmetry, see [5, §3.5].
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FIGURE 4. Bands are the functions k& — FEj(a, k) where
E; are defined in (1.6). On the left the plot the first 45
bands for « = 0.3. defined using the boundary condition
u(z + ) = e¥rFlu(z), v € T, k € C/T'*, corresponding
to the lattice of exact periodicity of D(«), in the conven-
tion of [2] (see Appendix B). The fundamental cell of T'*,
parametrized by (ki, k) — k = (w?ky — wka)/V3, |k;| < 3.
On the right the plot of k& — FE;(0.3,k), defined using the
boundary condition (1.5) for 1 < j < 5, where k in the
fundamental cell of 3%, parametrized by (ki,k2) |k;| < 2.
A movie version of the picture on the right can be found
at https://math.berkeley.edu/~zworski/chiral_bands.mp4. It
is interesting to compare this to the case of the full Bistritzer—
MacDonald model [6] https://math.berkeley.edu/~zworski/
BM_bands.mp4, where in the notation of [1, (1)], we put
w; = «, wyg = 0.7a and ¢ = 0. Remarkably, the low magic
a’s of the chiral model seem to provide a good approximation
for the nearly flat bands of the Bistritzer—MacDonald model.
For completeness, the bands for the anti-chiral model w; = 0,
wp = a, ¢ = 0, can be found at https://math.berkeley.edu/
~zworski/antichiral_ bands.mp4. As shown in [1], there are no
exact flat bands in that case
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2.2. Bloch-Floquet Theory

In [2], the band theory was based on lattice of periodicity of D(«) and H ()
given by 3A (see Appendix A, a translation of notations). That meant that
Bloch eigenvalues were functions of k& € C/3A*, a small torus. Following the
physics literature, we now consider Bloch-Floquet theory based on (1.5), using
the commuting operators .Z,,. The two approaches are equivalent but Fig.4
illustrates the advantages of the latter: the bands have a much cleaner structure
and eigenvalues are functions on a larger torus, C/A*.
We first recall that the eigenvalues in (1.5) are the same as the eigenvalues
of
Hi(a) - HY(C/A;CY) — L3(C/A;CY),
(Hi(@) = Ej(a, k))ej(a, k) =0, ej(a, k) € Hy(C/A;CY),
{2,k i(ak) _ 0 D(a)* +k
Hi(a):=e H(a)e (D(a) Tk 0 .

(2.12)

The eigenvalues of Hy(a) on L3(C/A;C*) (with the domain given by
H}(C/A;C*)—see (1.5)) are given by (1.6). We note that

Ej(a,k+p) =Ej(o, k), pe A, Ej(a,wk)=E;(a,k), keC.
(2.13)

The last property follows from checking that € H,,(«)€¢* = Hy(a), where €
was defined in (2.1). This shows that k — E;(c, k) is either singular or critical
at K,—K,0 (K = 47/3—see (1.2) and the end of Sect.5.2; that is also nicely
seen in the animation https://math.berkeley.edu/~zworski/KKmovie.mp4.).

The key fact used in [25] and [2] is the existence of protected states. We
recall it in the current convention:

Proposition 2.1. For every a € C there exists uv+i (o) € H(C/A;C?) such
that 7(K)uk (0) = e1, 7(—K)u_g(0) = eq,

(D(a) £ K)usg(a) =0, 7(k)v(z) =R y(z), (2.14)
where we note that 7(k) : L — Lf)+k, p,k € C. In addition,
T(ﬂ:K)UiK(O{) S kerHiKvo(C/A;CZ) l)(Oé)7 (215)

and if T(£K)usg (o, 2) = (uf(a, 2),us (o, 2))t then
uf (o, £25) = up (o, £25) =0, z5:=1i/V3, wzg=z25—(1+w). (2.16)

Proof. We decompose ker g1 (c/3a;c4) H () into representation of Gz (see (2.4)
and [2, §2.2] for a review of representations of G3—we only use representation
appearing in (2.6) so that is all that is needed here). From (2.2), we see that
the spectrum of H(«) restricted to representations of Gg is symmetric with
respect to the origin. The kernel of H(0) on H'(C/3A;C*) is given by the
standard basis vectors in C*, e;. They satisfy


https://math.berkeley.edu/~zworski/KKmovie.mp4
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1 1 1 1
e] € HK,07 ey € HfK,O’ e3 HK,l’ ey € HfK,l’

and all these spaces are mutually orthogonal. Since the spectrum of H(a)|.2 i
is even, continuity of eigenvalues shows that dim kerLiK,p Ha)>1,a € C,
p = 0,1 Since 7(FK) : kery1 H(a) — kery, (H(a) £ K), this gives (2.14)
and (2.15).

For (2.16), we give an argument in the case of ug: us(+zg) = us(twzg) =
us(+2s F (1 + w)) and in view of (u1,us)® € L%, the right-hand side is
equal to eF2H(H@)K)y) (424, Since ¢i{1T@K) = ¢3imR(1+w) — ¢, we see that
uz(£zg) = 0. O

As a consequence of Proposition 2.1 we have

Va e C Specpzc/ace) D) D Ko = {K,-K} + A" (2.17)

2.3. Spectral Characterization of Magic Angles

In [25], magic angles were computed by analysing ui (see Proposition2.1)
and identifying A with the zeros of the Wronskian,

v(a) = W(r(K)ug(a), 7(—K)u_g(a)), W(v,w):=det(u,v), u,ve C>.
(2.18)
The function o — v(a) € C was also identified with the physical quantity
called the Fermi velocity [25, (7),(8)]. That led to a rough (three digits) com-
putation of the first five ’s [25] and then a computer assisted rigorous proof
of the existence of the first magic a [29]. Proposition 2.3 shows that we can
choose uk (a) so that v(«) in an entire function.

The approach taken in [1,2] was different and was based on identifying
magic a’s with reciprocals of eigenvalues of a family of compact operators.
Crucially, the eigenvalues are independent of the elements of the family and
that lies behind Theorem 1. We recall this in a form generalizing (1.1):

0

Dy(a):=2Dz+aV(z), V(z)= (U_(z) U+O(Z)> , Us(wz) =wlUi(2),

Us(z+7) = eF0EUL(2), veA. (2.19)

We also define H(a) and note that the results of the previous sections apply
without modification. We define the set A := A(V) by (1.7). Since

((1) —?) Dy(a) ((1) _(D = Dy (~a),

we still have the symmetry A(V) = —A(V).
If in addition to (2.19), we also have

Us(2) = —Us(=2) < V(z) = -V(-2), (2.20)
then we get I'Dy ()T = —Dy (—a), T'v(z) := v(z), and hence A(V) = A(V).
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The following result is a generalized formulation of [2, Theorem 2]. To
state it, we define

R(k):= 2Dz — k)™ *: L;((C/A,(CQ) — Li((C/A; C?), pecC,
k¢ Ko+p, Ko:={K -K}+A" (2.21)
This follows from the fact that (2D; — k)~ : LZ — L3 for k ¢ Ko. We then
have 7(p) : L§ — L2 and 7(—p)R(k)7(p) = R(k — p).

Proposition 2.2. In the notation of (2.19) and (2.21), the following compact
operators are well defined

Ty, := R(k)V : L2(C/A,C*) — L2(C/A,C?), k¢ Ko+ p. (2.22)
Moreover,
Specyz (Ti) = Specp2 (Tw), k¢ Ko+p, K ¢ Ko+aq, (2.23)
AV)={a€C:a'e SpecL%(Tk)}, k¢ép+Ko, peC, (2.24)
and
Spec Dy () = {go g z ﬁggg (2.25)

with simple eigenvalues when o ¢ A(V).

Proof. We first note that the definition of .#, in (1.5) and (2.19) show that
2L,V = V., and hence V : L2 — L2. This and (2.21) give the mapping
property (2.22).

We first consider (2.23) and (2.24) for ¢ = p = 0 and k ¢ Ky (this
spectral characterization was proved in [2] but we include a streamlined proof
using the current convention). For a fixed k ¢ Ko, we define a discrete set
Ay, :={a € C: —a~' €Specyp Ti.}. For a ¢ Ay, the spectrum of D(a) is then
discrete since

D(a) —z=(D(0) —k)(I + K(z)), K(z):=aTlp+ R(k)(k—2), (2.26)

and z — K(z) is a holomorphic family of compact operators with I + K (k)
invertible (since —a~! ¢ Specyz(T})). But that implies (see for instance [9,
Theorem C.8]) that (D(a)—2)~! = (I+ K (z)) ' R(k) is a meromorphic family
of operators, and in particular, the spectrum of D(«) is discrete.

We now put

Q= {a € C\ Ay, : Specyz(D(a)) = Ko with simple eigenvalues},

noting that 0 € 2. We claim that {2 is open and closed in the relative topology
of the connected topological space C\Ai. That will imply that Q = C\ Ag.
To prove the claim, we note that for oy € €2 there exists a neighbourhood
of ap, U, such that for a € U, the spectrum of D(«) is discrete and changes
continuously with a. From Proposition 2.1 we also know that Spec 2 (D(«)) D
Ko. But as it is equal to Ky at @ = g it has be equal to g in U. To see that (2 is
closed, assume that {a;}32, C Q, a; — ag € C\Aj. But this means that there
exists an open neighbourhood of «g, U, such that for @ € U the spectrum is
discrete and hence depends continuously on a. Since Specyz(D(a;)) = Ko, we
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conclude that Spec s D(ag) = Ko (all with agreement of simple multiplicities),
that is, ag € Q.

It remains to show that Ay is independent of k. For that we note that
—a~! € Specpz Ty is equivalent to k € Specya(D()) (see K(k) in (2.26)).
Since k ¢ Ko the spectrum cannot be discrete, as then it would be equal to
Ko. Hence, it has to be equal to C (if there were any points at which D(«) — 2z
were invertible then the compactness of the inverse and an argument similar to
that after (2.26) would show the spectrum is discrete). But that means that any
k" € Specpz(D(a)) and the equivalence above shows that —a~te Specpz (Ty').

In particular, Specz(Tk,) = Specpz(Tk,) for any k; ¢ Ko. To estab-
lish (2.23) we can take ¢ = 0 and note that 7(—p) : L2 — L§ (see (2.14))
T(P) Tk, 7(p) ™" = Thy4p : L2 — L2, k1 ¢ Ko (and hence ky +p ¢ Ko + p).
Hence to see (2.23) with ¢ = 0, we take ko = k" and k1 = k — p. O

Proof of Theorem 1. This is immediate from (2.25): if Fy(a, k) = 0 for k ¢ Ko,
0 € Specpz Hi(a), then kerpi (D(a) + k) or ker g ((D(c) + k)*) are non zero.
Since, D(«) + k is a Fredholm operator of index zero (see [2, Proposition 2.3])
the two statements are equivalent. But ker(D(«) + k) # {0}, k ¢ Ko, implies
in view of (2.25) that Ei(a, k) =0, k € C. O

Combining Propositions 2.1 and 2.2, we obtain a stronger statement about
protected states:

Proposition 2.3. Suppose that D(«) is given by (1.1), with U satisfying (1.2).
Then, for a ¢ A, urk(a) are unique up to multiplicative constants, and we
can choose

u_g () = 7(K)ET(K)ug (). (2.27)

Moreover, o +— usg(a) can be chosen to be holomorphic as a function of
a € C with values in H}(C/A;C?).

Proof. Since for a ¢ A, the eigenvalues of D(«) are simple and the right-hand
side of (2.27) has all the properties of u_ g () in Proposition 2.1, we can choose
it to be u_k ().

To find a holomorphic family a — uk («) we proceed as follows. We first
note that for ag ¢ A, (7(K)ug (ag + ¢),0)* spans ker H(ax, C)‘H}co’

~ - 0 D(ag + ¢)*
H(OéOvC) - <D(O[0 +<—) 00 ) .

Since ¢ — H(ayp, ) is a holomorphic family of operators it follows that we
can choose ¢ — 7(K)ug(ap + ¢) holomorphic in ¢ for |¢| < § (note that
(T(K)uk (o +¢),0)" € ker H(ag + ()| gz ). When ag € A, ¢ = H(ap,() is
a holomorphic family of operators, which is self-adjoint for ¢ € R. Rellich’s
theorem [18, Chapter VII, Theorem 3.9], then shows that an element of the
kernel of H (v, ()|x1. , can be chosen to be holomorphic near ¢ = 0. In view of

simplicity for 0 < [(] < 4, it has to coincide with a choice of T(K)ug (o + ¢).
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The local constructions above and a partition of unity on C show that
we can choose 7(K)ug € C*(C; H11<,0) and it remains to modify it so that it
becomes holomorphic. We have

0 = Ba(D(a) (K )uxc (@) = D(a)(r(K)dauxc(a)):
For a ¢ A the kernel on H} is one dimensional and hence
(Oatix (), ug (@)
Juse ()2
In the formula for f(«), the right-hand side is smooth in & and that shows that
the first formula in (2.28) holds for all « € C. The equation d5F(a) = f(a)
(see for instance [12, Theorem 4.4.6] applied with P = 05 and X = C) can

be solved with F' € C°°(C). This shows that ux(a) = exp(—F(a))ug («) is
indeed holomorphic. O

daiixc () = f(a)iix(a), a¢ A fla)= (2.28)

3. Theta Function Argument Revisited

In [25], a theta function argument was used to explain the formation of flat
bands and in [2] that approach was shown to be equivalent to the spectral
characterisation in Proposition 2.2. We review it here from the point of view
of Sect. 2 and [14], where the holomorphic dependence of eigenvectors on the
Floquet parameter (Bloch pseudo-momentum) k was stressed.

3.1. Theta Functions

To simplify notation, we put (z) := 61 (z|w) ;= —01 1(z|w), and recall that

1
PRI

NIV
S~—"
S~—"

>
—~
|
I
~—
I
|
>
—~
I
S~—"

0(z) = — Z exp(mi(n + 12w+ 2mi(n + 3) (= +
neE”Z
0(z+m)=(—-1)"0(2), 0(z+nw)= (71)”677“”2“’*2“2’"0(2), (3.1)
and that 6 vanishing simply on A and nowhere else see [16].
We now define

Fk,(Z) = e;(Z—Z)ke(Ze_(ZZ)(k))7 Z(k) — %’

Then, using (3.1) and differentiating in the sense of distributions,
Fr(z +m + nw) = e "*Swerinz(b) oy (2) — Fy(2),
(2D; + k) Fi(2) = c(k)do(z), c(k) = 2mif(z(k))/6'(0). (3.3)

This follows from the fact that 1/(72) is a fundamental solution of 9;—see for
instance [12, (3.1.12)]. In other, words, for k ¢ A*, F}; gives the Green kernel
of 2Dz + k on the torus C/A:

z: N*— A (3.2)

(Dz + k)" f(z) = e(k) Fi(z = 2) f(z")dm(2),
C/A

dm(z) = dxdy, z = x + iy. For future use, we record some properties of Fj:
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Lemma 3.1. Foru € C®(C), we have, in the sense of distributions, and in the
notation of (3.3),

_ _ 7}7‘1(2_20)11,2 :7Fq(z—zo) su(z) + ¢ u(z1)6(z — 2
@D: +4- ) (FEZ20(e) ) = = 2dap.0(e) + el )i (3;)»

where z1 = z(p)+ 20 and c(k,p) = 27i0(z(q—+¢)) /0 (0). In particular, by taking
{=0and q=Fk,

(2D + k) (Fi(z — z0)u(2)) = Fi(z — 20)2Dzu(z) + c(k)u(z0)0(z — z0). (3.5)
The following simple lemma is implicit in [25]:

Lemma 3.2. Suppose that w € C*°(C;C?) and that (D(a) + k)w = 0 for some
k and that w(zo) = 0. Then, w(z) = (2 — z0)wo(2), where wy € C*°(C;C?).

Proof. The conclusion of the lemma is equivalent to (2D;)‘w(z) = 0 for
all £. Since (2D;)“w(z) = (2Dz)*"1 [(U — k) w] (2) that follows by induction
on /. =

These two lemmas are the basis of the theta function argument in [25]
(see also [8] for an earlier version of a similar method). Suppose D(a)u = 0
u € Hy. and u(zp) = 0. Lemma 3.2 shows that near zg, u(z) = (z — 20)w(z)
w € C*°. But then (3.5) shows that

b
)

(D() + k) (Fi(z — z0)u(2)) =0, Fi(z — 20)u(z) € Hy,

and from an element of the kernel of u on H} we obtained eigenfunction in
H} for all k. (Strictly speaking we do not even need Lemma 3.2 since elliptic
regularity guarantees smoothness of z — Fj(z — z9)u(z).)

We will also need the properties of Fy when k is translated, this will allow
us to define a natural hermitian line bundle over C/A studied in Sect. 5.2:

Lemma 3.3. For p € A*,

Fisp(2) = ep(k) 17 () Fi(2),
o) = G = (P,

where z(p) = m + nw, n,m € Z.

Proof. Since, for k ¢ A*, (2Dz + k + p)7(p) ~te(k) 1 Fy = 6o and (2D + k +
p)c(k + p) "1 Fry,p = &0, the uniqueness of the kernel of the resolvent of 2D;
shows that

c(k+p) 0(z(k +p))
c(k) 0(z(k))

and (3.6) follows. O

Fpp(2) = [r(p) ™ F)(2) = [7(p) " Fil(2),
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3.2. Flat Bands and Theta Functions

We now reformulate the characterization of magic angles using the vanishing
of ug («) (in [2] this was established only for « € R):

Proposition 3.4. Let o — ug(a) € kergi(c/a,c2)(D(@) + K) be a smooth fam-
tly given in Proposition 2.3. Then,

a€ A = Feec{£1} ug(a,ezs) =0, z5:=i/V3

(3.7)
<— Jzp ur(a,zp) =0.

Proof. Suppose first that there exists zp at which ux («) vanishes. Since (D(a)+
K)ug = 0, we then see that for every k' € C

(D(a) + K + k') (Fy (2 — 20)uk (2)) = 0, (3.8)
and the solution of this elliptic equation is automatically in H{ (since ux € H{
and the scalar valued function F} is periodic by (3.3)).

Hence, Spec;z D(a) = C. Using (2.27) and putting ugx = (u1,u2)t, the
Wronskian (2.18), which is constant (apply 9z to both sides and use periodic-
ity), is given by

u1(20)u1(—20) + u2(—20)u2(z0) =0,
= — + i —
v(0) = wn(sJun(-2) + ua(-ua(s) = { “ENC )

where we used (2.16). Hence, ug has to vanish at either zg or —zg.

It remains to show that if ux(zs)ux(—zs) # 0, then o ¢ A. That is
equivalent to the Wronskian, v(«) # 0 in which case we can express (D(«) —
k)~' k ¢ K using ux and u_x—|2, Proposition 3.3]. a

4. Proofs of Theorems 2 and 3

The theta function argument of [25] which we reviewed in the previous section
relies on vanishing of both component of ux € L3(C/A;C?), (D(a) + K)ux =
0, or equivalently of vanishing of u_x = 7(K)&7(K)ux—see Proposition 3.4,
Fig. 5 and the movie referenced there.

We start with a general fact:

Lemma 4.1. Suppose that u € kerrz D(a)\{0}, p € C, has k zeros (counted
with multiplicity). Then,
dimpz ker D() > k.
Proof. Define a holomorphic function F(z) := ?:1
see that
F(z+7) = ey (2)F(2), e1(z) = (-1)7, eu(z) = P72,

where 3 := —7i(nw+1)p—2mip Z’;:l zj, and where z — e, (z) satisfies (B.1).
For this, e, defines

G :={Ge0(C):G(z+7) =ey(2)G(z), vyeA}

0(z — z;). From (3.1), we
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FIGURE 5. On top/bottom, the first/second components of
log |ue| for ¢ = K, —K,0, respectively, where u, spans the
kernel of D(a) — e on L3(C/A;C?), and « is the first real
magic angle for (1.3); ux,u_x,up vanish at —zg, zg (marked
by e), and 0, respectively. We also indicate (—) the hexagon
spanned by +25+A. The states u4 i exist for all a’s (Proposi-
tion 2.3) and, in the case of a simple o € A have zeros at +zg
(Theorem 3); see https://math.berkeley.edu/~zworski/magic.
mp4 for the plot of log |u_k| as « changes

which can be interpreted as the space of holomorphic sections for the line
bundle defined using the multiplier e, (see (B.2)). The dimension of the vector
space ¢ is given by p—see [24, Proposition 7.9] for an elementary argument.
(This can be seen from the Riemann—Roch theorem.)

Lemma 3.2 shows that for F' above and any G € ¥,

€ kerzz D(a).

Hence, the dimension of that kernel is at least p. O

Proof of Theorem 2. We first note that if Ej(a,p) > 0 for j > 1 and a €
A then Ei(a,p) = 0 is a double eigenvalue of Hp(a). But that means that
D(a) +p on L} is one dimensional (see the Proof of Theorem 1 in Sect. 2).


https://math.berkeley.edu/~zworski/magic.mp4
https://math.berkeley.edu/~zworski/magic.mp4
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Hence, we need to show that if @ € A and dim kerLg((c/p;@) D(a) =1, for
a fized p € C then E;(a, k) > 0 for all k and j > 1. To do that we proceed by
contradiction and suppose that there exists k such that Eq(a, k) = Eqo(a, k).

First consider the easy case of k = p and we have two independent v;,
j =1,2 in kerpz2(D(a) + p). Then, v;(z) = 7(p)v;(2) satisfy D(a)v; = 0 and
vj € L? = Lf,, which gives the desired contradiction.

Now assume that k # p. Propositions 2.3 and 3.4 give a nontrivial ux €
L3 such that ug(e2g) = 0 where € € {£1}. Put 2 := €25, ux(20) = 0. Using
(3.5), we define

v(2) := Fy_k(z — 20)ur, v € L3(C/T;C?), (D(a)+k)v=0. (4.1)

Since Fa(a,k) = 0, there exists w € L3, independent of v and such that
(D(a) + k)w = 0. If v = (¢1,92) and w = (¢1,12), we form the Wronskian
W := @199 — 2101 which satisfies

2Dz +2)W =0, W(z+7v)=W(z), v€A. (4.2)

(Since Zu = u, p1(z+7) = e K (2) and pa(z +7) = K py(2), and
similarly for 11 and 9. That shows periodicity of W.) The definition of Fj_x
in (3.2) shows that

Fr_x(z1 —20) =0, 2z :=2 +z2(k—-K), (4.3)

so that (4.1) gives v(z1) = 0. This implies that W(z1) = 0. If 2k ¢ A*, W =0
since 2D;+2Fk is invertible. Otherwise, we note that W (z) = e~ "2*=201} () =
0.

Since W =0,

w(z) = g(z)v(z), g€ C®(Q), d:9la =0, glz+7)=g(2), z€A, (4.4)

where Q := C{z : v(z) = 0}. Also g # 1 as v and w are independent. We
claim that g is a meromorphic function on C/A. For that fix any z € C and
write w = (w1, w2)t, v = (v1,v2)". Then, g = wy /vy = wa/ve, and wi(z+ () =
G1(¢,€), vi(—z — ¢) = G2(¢, (), where G; : Be2(0,8) — C are holomorphic
functions (this follows from real analyticity of w and v, which is a consequence
of the ellipticity of the equation and analyticity of U—see [12, Theorem 8.6.1]).
The definition of g and the fact that d;g = 0 away from zeros of v shows that
G1((,€) = g(z + ()Ga(¢, €). We can then choose & such that G2((, &) is not
identically zero (if no such &, existed, v; = 0, and hence, from the equation,
v = 0). But then ¢ — g(z + () = G1((,&)/G2(¢, &) is meromorphic near
¢ = 0 and, as z was arbitrary, everywhere.

The nontrivial meromorphic function ¢g has to vanish at some point, say
z9. Hence w(zz) = 0. We define z3 (unique mod A and not congruent to zp)
so that Fj_ g (22 — 2z3) = 0. Hence, the following functions are smooth,

() = T(?j o (= ;O)z‘))v(z), @(z) = T(?: i (= ;53)111(2), (4.5)
and
D(a)o =0, D(a)w=0, v, we L (C/T;C?). (4.6)
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Consequently, since we assumed that dim ker 2 D(a) = 1, there exists ¢ € C
such ¥(z) = cow(z). Lemma (4.1) shows that ¥(z) has a unique simple zero.

Returning to (4.5) we conclude that z3 = zp and that v(z) = cow(z). In other
words, dimkery: D(a) = 1. O

Proof of Theorem 3. We will rely on Lemma 3.2 in several places. We write
u(z) = 1(=K)u_g = (Y1(2),92(2)) € kerpz _ (c/aic2) D(a) and assume that
u(zp) = 0. We recall from Proposition 2.3 that « has to vanish at zg or at —zg.

We first show that zyp = +zg. Suppose otherwise and that, in addition,
2o # 0. In that case, w/zy are three distinct points on C/A adding up to 0.
Hence, there exists a A-periodic meromorphic function g,, with simple poles
at w’zp + A which satisfies g.,(wz) = g.,(2). This is a general fact (see [16,
§1.6]), and we can take

2

zuﬂ + zo
Gz ( | I
° 0(zw7 — zp)
j=

But this means that @(z) := g.,(2)u(z) satisfies D(a)u = 0 (see Lemma 3.2)

and u € LQ—K,O(C/F)7 u /| w. Since we assumed simplicity, this is impossible.
We now need to eliminate the possibility that zg = 0. From the vanishing

of the Wronskian (2.18) (a € A) and (2.27) and we see that &u(z) = f(2z)u(z)

where
P2(—2)

(4.7)

This function satisfies

flety) =0 fz), yed, flw2)=f(2), f(2)f(=2)=~1. (48)

In fact, the holomorphy away from the zeros of ¢; follows from calculating
D:f the equations for ¢; and the vanishing of the Wronskian (2.18). The
latter also shows the functional equation for z — —z and from the fact that
u € L? ;¢ o(C/A) we deduce quasi-periodicity and invariance under z — wz.
We also see that f is meromorphic using the same argument as in the proof
of Theorem 2 (see (4.4)). In particular, the functional equation shows that f
is regular at 0.

With this in place, we now show that a zero at zp = 0 is impossible. We
claim that

1(0) =0 = %041 (0) =0, k<2, £>0. (4.9)
This implies that if 11 (0) = 0 then ¢;(z) = 231%-(2). But this means that
U(z) = ¢/ (z;w,1)u € L% ;. ,(C/T3), (4.10)

and satisfies D(«)u = 0. Projective uniqueness of u (uniqueness up to a mul-
tiplicative constant) shows that this is impossible. (Here p(z;w1,ws) is the
Weierstrass p-function—see [16, §1.6]. It is periodic with respect to Zw; + Zws
and its derivative has a pole of order 3 at z = 0. For w = €27/3

o (wz;w, 1) = p'(z;w,1).)

we also have



S. Becker et al. Ann. Henri Poincaré

To prove (4.9) we consider expansions at (z,z) = (0,0): denoting by =
congruency modulo 3 and using properties of U and ¥ (wz) = 11 (z), we obtain
= Zakgzkéz, U(z) = Z bpePZe, f(—2) = kazk. (4.11)
k=t p=q+1 k=0
The equation 2Dzt (2) + aU(2) f(—z)11(—2) = 0 then becomes

DY [CTLTIEES RO 5 p) W PWREESLY] J

k=t p>1q>07r>0

The vanishing of the coefficients of 2#z’ then gives (with the convention that
are =0 for k <0or ¢ <0)

kL
a’k,é-’rl = Z grsa’f'87 (412)
r<k—1,s</t

where gF¢ are some constant depending on k, [, and s. By assumption agp = 0
and from (4.11), a1p = a9 = 0. Hence, (4.12) shows that ag = 0 for k < 2
and all ¢, proving (4.9).

Hence, u(zp) = 0 implies that zp = £zg5. We now see that the zero can
occur at only one of the two points. Indeed, if u vanishes at both —zg and zg
then (note that z2(K) = —zg)

w(z) = Fr(z — z9)F_k(z + z5)u(z)

s 0(z)" (4.13)
i(zs—zs)K I ] D
0(z — 25)0(z + Zs)u(z) ckerpz  (c/ac?) (@),

and ¥ 4| w. But this contradicts simplicity.
To show that u has to vanish at zg, we analyse f (defined in (4.7)) near
+2zg. From (4.8) and the fact that wzg = zg — (1 + w), we obtain (see (4.8)),

flzs +¢) = flwzs +w() = flzs =1 —w —w() = wf(zs +w(),

that is f(zs + w() = @f(zs + ¢), and, in view of the functional equation in
(4.8), f(—zs + wC) =wf(—zs + ¢). Hence, there exists ko € Z such that

flmzs+Q) = Y ¢, flas =0 =D M forogn = —1.
k>—ko ko
(4.14)
We also note that (2.16) and the definition of u = 7(—K)u_x = (¢1,2)*

gives
U1(2) = f(2) " a(—2) = —f(=2)¥a(~2), ¥a2(Fzs) =0. (4.15)

Suppose that u(zg) # 0 (which is equivalent to u(—zg) = 0). Then, (4.15)
shows that f(z) has a pole at —zg. The expansion (4.14) implies that the pole
is of order at least 2. But using (4.15) again shows that —zg is a zero of order
at least 2 of the function 1, in the sense that 1y (—zg+¢) = (2U,(¢), ¥ € C¥,
near ¢ = 0. Moreover, (4.8) shows that zg is a zero of order at least 2 of f and
from 11 (—2) = — f(2)1b2(2), we deduce that ¥ (—25+¢) = (?¥1((), ¥; € C¥.
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We have therefore proved that ( ~2u(—zs + ¢) is smooth near 0. But this
implies that
u(2) = p(z + zs;w, Du(z) € L? (C/T) (4.16)
which solves D(a)u = 0, and u /|| u, a contradiction. This implies that u
vanishes only at the point z = zg.
We want to show that d.u(zs) # 0. Since u € L? i, we check that

VY1(zs +wC) = P1(zs + (), a(wzs + () = 0Pa(zs + ().

Since u(—zg) # 0 and ¥o(—2zg) = 0, we see that 11(—zg) # 0. We con-
clude from (4.15) that f vanishes at —zg, so that using (4.14), f(—zs—() =
2 k>0 F1.¢*3F. We then have

Ualzs +C) = f(=2s — Ohr(—2s — ) = | D FuC"* | (v + O(C))),

k>0
v = t1(—z5) # 0.

We conclude that if ,u(zs) = Ocu(zs + ()|c=0 = 0 then Fj = 0. Since we also
have

Ui(zs +¢) = —f(—2s = Ovha(—25 — ) = — [ D_ Fu¢'*¥* | ¢ha(—25 — (),

k>0

we conclude that (3u(zg +¢) is smooth near 0. But this gives a contradiction
as in (4.10).

The final conclusion (1.11) follows from (3.8) applied with ¥ — K =
k, zo = zg, and the fact that Fj/(z — zg) vanishes simply and uniquely at
zs + 2(K') = z(k) = V/3k/4mi + A (see (3.2)). O

Remark. Rather than considering the vanishing of 7(—K)u_x € L* Ko We
could look at ug, keryz(D(a)) = Cug, o € A. One can easily show (see [5,
Proposition 3.6]) that ug € L§, and that &ug = Fiug (see (2.9) and note
that Specy2(&) = {i,—i}). That implies that uo vanishes at zero and that
other zeros are symmetric with respect to the origin. But 0 is the only zero
as the same argument as in (4.13) would contradict simplicity. Since, again
by simplicity, 7(—K)u_xg = co7(—K)F_k(z)ug, that gives a different (and
perhaps simpler) proof that 7(—K)u_ g vanishes only at zg.

As suggested by Mengxuan Yang, we can then see directly that the wug
vanishes simply at 0 (which then implies that u_x vanishes simply at zg).
For that consider u; € C*°(C) such that ug(z) = zui(z) (this follows from
Lemma 3.2). But then D(«)(zuy(2)) = zD(a)ui(z) = 0, and as u; is smooth,
D(a)ui(z) = 0 for z € C. Hence, if u;(0) = 0 then Lemma3.2 shows that
uw(z) = 2u1(2) = 2%ua(2), ug € C(C), and the p-function argument (see
(4.16)) contradicts simplicity in L3.

We opted for a direct discussion of 7(K)ug (and the proof of simplicity
of the zero) as that protected state which exist for all « and its zero were
central in the original physics presentation [25].
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FIGURE 6. Normalized 0, E;(a, k) at first magic angle. The
protected zero energy states at the K and K’ points are pre-
served, the maximum is attained at the I'-point

5. Theorem 4 and Two Numerical Observations

Here, we present two numerical observations about the structure of flat bands
and compute the Chern number of the flat band.

5.1. Fixed Shape of the Rescaled Flat Band

We define rescaled bands as follows:
Ej (Oé, k;)

_ R. 1
maxy, F1(a, k)’ @c (5-1)

Ej(a, ki) =

and notice that for o near a’s near elements of Ag,

Er(ak) ~ [U(=(R))],  2(k) = ffk AT A (5.2)

see Fig.2 and, for an animated version https://math.berkeley.edu/~zworski/
KKmovie.mp4. We note that the |U(z(k))| is the simplest function with sym-
metries of Fy(k) and conic singularities at +K.

The following heuristic explanation was suggested by Ledwith et al. [15].
Assuming that the flat band is simple consider perturbation theory of Hy ()
near & € Ag:

~ [(Viu, vi)| > ( 0 U(Z))
0o Fr(a, k) = —+——,  wug,v € Ly, V(z):= ,
R T 1 I Al /S R
(D(@) = k)ur, =0, (D(@)" — k)v, =0, (5:3)
where using (2.10) we can take vy := Qug. A numerically evaluated graph
of k — 9,F1(a,k) is shown in Fig.6. Since ux = Fyuo, keryz D(«a) = wy,
the theta function factors act in some sense as an FBI/Bargmann transform
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FIGURE 7. Cross section of curvature for k, = 0 for the
first seven magic angles in increasing order. The extrema at
K, T, K’ follow from Proposition 5.3 and the subsequent dis-
cussion

(see [30, Chapter 13]). A (very formal) application of stationary phase method
could then reproduce the potential U.

5.2. The Chern Connection and Curvature

The second numerical observation concerns the behaviour of the curvature of a
connection on the natural hermitian bundle associated to the flat band. Since
the bundle is holomorphic we use the Chern connection but, as is always the
case, the resulting curvature is the same as the Berry curvature—see (5.11)
for a direct verification in our case.

The numerical observation is shown in Fig. 3 (a three dimensional plot of
the curvature for one magic angle) and Fig.7 (the two dimensional plots for
the first magic angles). We note that the absolute maximum appears at the
I' point, that is the centre of the k-space hexagon spanned by translates of K
and K’ (equal to —K in our coordinates), and the minima at K and K’'—the
vertices of the hexagon (the Dirac points). This is supposed to correspond
to the fact that the bands are closest at I' and farthest apart at the Dirac
points (see the movie linked to Fig. 2). So far, we only show that I';, K and K’
(that is K—see (2.7)) are critical points for the curvature which follows from
Proposition 5.3.

To describe the objects involved, we need to define the hermitian holo-
morphic line bundle associated to the flat band. For general definitions and
basic facts we refer to the self-contained appendix.

We assume that oy € A is simple in the sense of Theorem 3: dim
kerzz(D(ag) + k) = 1 for all k € C. We remark that in [3, Theorem 3] we
established simplicity of the first real magic « for the potential used in [25].
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Numerical calculations suggest that all real magic «’s for that potential are
indeed simple.
We recall from Sect. 3 (see (3.8)) that

kerpz2(D(ap) + k) = CFy_r (2 — 25)ur(2).
We then put
[w(k)|(2) = u(k,2) = Fr_x(z — zg)u(z), Lyu(k)=u(k), veA. (54)
We also note that (3.6) implies
u(k +p) = ep(k) 1 (p) " ulk). (5.5)
Following the standard construction (see for instance [17, §2.1]), we define
L= {[k, ] € (C x L(C/A;C2))/ ~r 0 € kerpaeynicey(Dlao) + B}
kool = [k, 0], <= (k,v)~, (K,v) < dApe Ak =k+p,
v =71(p) " w. (5.6)
We have

Lemma 5.1. Definition (5.6) gives a holomorphic line bundle over C/A,
f:L—C/A, f:k,v],— [k] € C/A.
The corresponding family of multipliers in (B.1) is given by k — ep(k).
Proof. The action of the discrete group A, X : (k,v) — (k + p,7(p)v) on the
(trivial) complex line bundle
L:={(k,ku(k)) : ke C, reC}~CyxC,, (5.7)

(where u(k) is defined in (5.4)) is free and proper, and the quotient map is
given by 7, (k, ku(k)) = [k, ku(k)],. Hence, its quotient by that action, L, is a
smooth complex manifold of dimension 2.

The map (p, k) — e, (k) satisfies conditions in (B.1),

epip (k) = 0(=(k)) _ 0(z(k+p)) 0(z(k))
p+p 0z(k+p+p)) 0(z(k+p+p)) 0(z(k+p))

= €p (k + p)ep(k),

, and for p € A, we define ¢, : L — L as in (B.1): op(k, ku(k)) = (k+
p,ep(k)ru(k)), K € C. We then have 7 (¢, (k, ku(k))) = m(k,ep(k)ru(k))
and this gives L the structure of a complex line bundle over C/A O

Remark. As is implicit in the above proof, the multiplier e, (k) is the multiplier
of the antiholomorphic theta line bundle over C/A*.

The hermitian structure is inherited from L?(C/A) and the resulting
hermitian structure on L of (5.7). In coordinates (k,x) on L, we get

hk) = [lu(k) |72 (c/a)»

where we note that (5.4) shows that u(k) is well defined on L3(C/A). This
gives us also a hermitian structure on L: from (5.5), we see that

h(k) = |ep(k)|*h(k +p), p€Z® WZ. (5.8)
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To h, we associate the Chern connection (B.5) and the curvature €, (B.6). The
general formula (B.8) then reproduces the calculation from [14] (where (5.8)
was used directly):
L)=— Q=-1

a(l) 27 Jejzwen (5.9)
This proves Theorem 4.
Remark. We should stress that & — (k) is not a holomorphic section of L.
In fact, as indicated by the Chern number, the line bundle L does not have
any holomorphic sections. The dual line bundle corresponding to the kernel
D(a)* + k has the Chern number equal to 1, and hence has holomorphic
sections which can be expressed using theta functions.

We also have an explicit formula for © in terms of u(k):

Q= H(k)dk Adk, dk A dk = 2idRk A dSk,
H(k) = 9,0; log h(k)
= ()~ (luk)[2[ra(k) > — [Dru(k), u(k)?) > o,
(5.10)

and (unlike u(k)) H € C*°(C/A;R). We note that this is equivalent to the
standard formula for the Berry curvature [23] (valid also in non-holomorphic
situations):

H(k) = =30k, p(k), Or, 0(k)) 2(c.c/30), - (k) == u(k)/|lu(k)|.  (5.11)
(This is a special case of a general fact.) We also recall the well known inde-
pendence of H (k) of the phase of ¢:

Lemma 5.2. Suppose that y(k) € C°°(C;R) and that ¢(k) € C°°(C; L3(C/A;
C?), lle(k)|l2c/asc2y = 1. Then, putting ky = Rk, ke = Sk,

{0k 9 (k), Or, 0 (k) = S(Or, (7 Dp(k)), Opy (" Pp(R)).  (5.12)
Proof. The difference the two sides in (5.12) is given by
S (Vo1 Vo {25 ) + 171 (0, Pha) — 1002 (k15 0)) = 5 (VO 011 = 12O o 1?)
and this vanishes as ¢ (k) is L?-normalized. O
Simplicity of ag has the following consequence:

Proposition 5.3. Suppose that H is given by (5.10) with u(k) defined in (5.4).
Then,
H(wk) = H(k). (5.13)

Proof. Since [D(a)u](wz) = wD(a)[u(we)](z),

0 =[(D(a) = ku(k))(wz) = w(D(a) — wk)[u(k)(we)] (),
and simplicity shows that u(wk, z) = p(k)u(k,©z), and |ju(wk)|| = |p(k)|||u(k)|l,
h(wk) = |p(k)|*h(k). In particular, |p(k)| > 0 and, as a function on C,
p(k)/|p(k)| = e7®) for some v € C>°(C;R). The conclusion then follows from
Lemma 5.2 and (5.11). O
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This proposition shows that elements of K (that is, I', K and K'—see
(2.7)) are critical points of H: suppose that p € K; then (since wp = p mod A*
and H is A*-periodic),

H(p+r) = H(wp +wk) = H(p+ wk),

which implies that OpH(p) = wipH(p), OrH(p) = @0;H(p), that is that
diH (p) = 0. This provides a partial explanation of Figs.3 and 7.
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Appendix A: Translation Between Different Conventions

We compare the coordinates use (1.2) to those in [2], and implicitly in the
physics literature—[25]. One of the advantages of using the lattice A is the
more straightforward connection with 6 functions.

In [2], we considered the following operator built from the potential Uy:

Dla) = (ajol(’go agfgf)), Tol0) = Uo(©),

Uo (¢ + F(arw + azw?)) = @ T2 Up(¢), Up(w() =wlp(¢). (A.1)

We then have periodicity with respect to
I := 47mi(wZ + W?Z) = 4miA
and twisted periodicity with respect to I'/3. The dual lattices are given by

M= L(WZ@w’Z) = A, (3T)" =30" = V3A.

This means that to switch to (twisted) periodicity with respect to A we need
a change of variables:

(= %mz, %F = %m/\, 3 = (%F) =V3A = RA . (A.2)
Then,
~ . 3 2D aU(z) A r o4
D(a) = i (aU(z) 2D, > , U(z) == —3mily (gmz) . (A3)

The twisted periodicity condition in (A.1) corresponds to the condition in (1.2)
since

—ai+as _ pi{aiwtasw?® K) _ 4 1 2 _ 4
@ =e , K—\/gm( 5 — sW) = 3T

Floquet theory using .Z, defined in (1.5) is equivalent to the Floquet
theory based on £, used in [25]: for u € L _(C;C?),

loc

—~ wataz 4. 9 1
Lau = 0 1 u(C+a), a=3mi(wa; +waz)€ 3l a;j €Z. (A4)

The Floquet theory based on L3 defined using Za gives different values of
k € 3I'* for protected states. That is easily seen by considering the spectrum
of 2D; on that L which is given (modulo 3I'*) by

~ 3

K=-"K=—i K =0,
47

with the T point corresponding to 7 (see also [5, Proposition 3.2]).
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Appendix B: Holomorphic Line Bundles Over Tori

Suppose A is a lattice Z @ wZ, Sw > 0 (for us it will be w = >™/3). A
holomorphic line bundle L, f : L — C/A can be described using a pullback by
the canonical projection 7 : C — C/A, that is a (trivial) line bundle 7* L over
C for which the following diagram commutes:

m™L —— L

l g

C —"— C/A

We can identify 7* L with Cx C and write its elements as (z, ¢). Every line
bundle over C/A is associated with an entire non-vanishing function z — ey (z)
such that

oA(2,0) = (z+ A ea(2)0), exyan(2) =ex(z+Nea(z), AN €A,

E2DN
L —/—— 7w*L

l l (B.1)

L 4.7

In other words, L is the set of equivalence classes, [(z,()]a, where
(2,0) ~ (7,¢) <= FAEA (,0) =par(7,().
We then have
C®(C/AN L) =2 {ue C®(C): YA€ A, u(z+ X)) =exr(z)u(z)}. (B.2)

Holomorphic sections are defined by replacing C*°(C) with &'(C), the space of
entire functions on C.

The functions ey(z) are not unique: if ¢ € @(C) then ey(z) :=
eIt Ve, (2)e=9(%) gives the same line bundle.
Remark. The Appell-Humbert theorem completely characterizes the allowed
functions ey(z). Here, we will concentrate on the specific ey(z) arising from
the eigenfunctions.
B.1 Hermitian Structure and the Chern Connection

Hermitian structure provides a notion of length on the fibres of L, p~'(2)
locally described by (with |(|? = (¢, ¢ € C),

¢z, O = h(2)IC I,
11z, O = lllea(z, O = h(z) = h(z + Nlea(z)[*.  (B.3)
Conversely any positive smooth function h(z) satisfying the condition in (B.3)
defines a Hermitian metric on L.
Connections on L are identified with connections on 7*L ~ C x C. The
latter are given by n € C°°(C,T*C) so that we can define the actual connec-
tion:

D,s=ds+sne C>*(C,T*C), se C>(C,C).
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This gives a connection on L provided that
d(s(z + X)) +n(z + N)s(z + A) = ex(2)(ds(z) + n(z)s(2)),

that is when

(2 +X) =n(z) —ex(2)'ed(2)dz. (B.4)
The Chern connection is defined by
n(z) = d(logh(z)) = h(z)"'0.h(2)dz, (B.5)

(here, we denote by df = 0, f(z)dz, the (1,0)-differential) and we easily check
(B.4) using (B.3) and the holomorphy of z — ex(2):

n(z+A) = 0. logh(z+ N)dz = 9.(—log(ex(z)exr(2)) + log h(z))dz
=n(z) = ex(2) " eh(2)dz.
B.2 Curvature and Chern Numbers

In this simplest case, the curvature is just the differential of n and it is a well
defined (unlike 1) (1, 1)-differential form on C/A:

Q = 0n = 99(log h(2)) = 0:0.(log h(z))dz A dz. (B.6)
Indeed, the holomorphy of z — e)(z) gives
9:0.log h(z + ) = 05 (0. log h(z) — ex(2) '€ (2)) = 0:0. log h(z).
The Chern number (since we are in complex dimension one) is defined as
1
(L) = — QeZ. B.7
=g [ (B.7)

To see that ¢q(L) is an integer, we choose a fundamental domain of A, F', and
apply Stokes’s theorem: we can take F' = [0,1) 4+ w[0, 1),

a(L) = /88 loghdz/\dz——. 0. log h(z)dz
27 Jor
% (8z log h(t) + wd. log h(1 + tw) — 9 log h(w + t) — w0, log h(tw)) dt
Now,
w0, log h(1 + tw) = 0 (log h(tw) — loge; (tw)) ,
0, log h(w +t) = 0; (log h(t) — logey(t)),
and
e ( / O (log e, (t) —log ey (wt)) dt
27T
= 277 (log e, (1) — log e, (0) + loger (0) —log ey (w)), (B.8)

where we choose entire functions logey(z), which are determined up to an
integral multiple of 2mi. From (B.1), we see that e,(1)e;(0) = e, 4+1(0) =
e1(w)e,(0), and that implies (by taking logarithms) that the right-hand side
of (B.8) is an integer. (We note that 0 can be replaced by any z € C.)

The Hermitian metric on L is called strictly positive if Alogh < 0, that
is, the locally defined function — log h is strictly subharmonic. In this case, 2
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also defines a Kéhler structure (of course in the very special one dimensional
case):

g = —0:0. log h(z)|dz|*.
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