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Safer Gap: Safe Navigation of Planar Nonholonomic
Robots With a Gap-Based Local Planner

Shiyu Feng , Ahmad Abuaish , and Patricio A. Vela

Abstract—This paper extends the gap-based navigation tech-
nique Potential Gap with safety guarantees at the local planning
level for a kinematic planar nonholonomic robot model, leading
to Safer Gap. It relies on a subset of navigable free space from
the robot to a gap, denoted the keyhole region. The region is
defined by the union of the largest collision-free disc centered on
the robot and a collision-free trapezoidal region directed through
the gap. Safer Gap first generates Bézier-based collision-free paths
within the keyhole regions. The keyhole region of the top scor-
ing path is encoded by a shallow neural network-based zeroing
barrier function (ZBF) synthesized in real-time. Nonlinear Model
Predictive Control (NMPC) with Keyhole ZBF constraints and
output tracking of the Bézier path, synthesizes a safe kinematically
feasible trajectory. The Potential Gap projection operator serves
as a last action to enforce safety if the NMPC optimization fails
to converge to a solution within the prescribed time. Simulation
and experimental validation of Safer Gap confirm its collision-free
navigation properties.

Index Terms—Vision-based navigation, collision avoidance,
reactive and sensor-based planning.

I. INTRODUCTION

COLLISION-free performance of a path planner based on
erroneous or uncertain maps is difficult to guarantee, as

map corrections are only available when the robot is in sensing
proximity to incorrectly mapped regions. Hierarchical planners
incorporate an additional, smaller scale, local planning module
whose objective is to correct colliding segments of the global
path and follow safe segments [1], see Fig. 1. Periodic replanning
at the global level ensures consistency between the collision-free
local path and the global go-to-goal path. Collision-free proofs
for hierarchical planners reduce to proving local planner colli-
sion avoidance [2], [3]. An approach based on discovering gaps,
which are convex, line-of-sight free space regions containing the
robot andpassingbetweenobstacles, has formally derived a local
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planning scheme guaranteeing avoidance [2]. The guarantees
hold for holonomic robots moving at low-speed (where momen-
tum effects do not dominate) but not for nonholonomic robots
with control constraints [2], [4]. This paper extends gap-based,
local planning collision-free guarantees to planar nonholonomic
models under control constraints. Key changes are to define an
enlarged, star-convex collision-free region local to the robot, and
to derive a motion control scheme with collision-free forward
invariance.
To that end, themanuscript contributions are: (i) the definition

of a keyhole region of navigable, collision-avoiding free-space
and a data-driven approach to modeling keyhole region con-
straints; (ii) a combined path generation and trajectory execu-
tion approach for safe, kinematically feasible differential drive
navigation within the keyhole region; and (iii) Monte Carlo sim-
ulations and experimental testing scenarios verifying real-time,
collision-free performance. The local planner, called Safer Gap,
is integrated into a hierarchical navigation system as depicted
in Fig. 1. Safer Gap addresses collision, dynamics, and control
constraints to ensure collision-free, real-time navigation while
maximizing local goal attainment.

II. RELATED WORK

In hierarchical navigation systems, the global planner may be
any acceptable planning method. Options include graph search
planners over costmaps like Dijkstra’s algorithm, A�, D�, D�

Lite, andAD� [5], [6], [7], [8], [9] or sample-based planners such
as PRM, RRT, and RRT-X [10], [11], [12], [13]. Global planning
method selection depends on the chosen world representation
and robot motion model.

A. Sensor Driven Local Planning

Local navigation from a global plan through uncertain en-
vironments requires perception modules that efficiently and
accurately describe the sensed scene for safe path planning
and control. Perception models generally break down into al-
locentric and ego-centric implementations [1]. The typical local
planning approach is allocentric as it crops the global map to a
local map equivalent with faster update rates; examples being
EB, DWA, and TEB [14], [15], [16]. However, within the hu-
man’s neural hierarchy, ego-centric processing usually happens
before allocentric estimation. Ego-centric processing requires
fewer memory resources and lower compute costs to represent
and update the local map. Ego-centric equivalents to DWA
and TEB match or best their performance while being more
efficient [1], [17].

The gap approach noted earlier is an ego-centric method
to represent local free space based on line-of-sight visibility.
Though published definitions of a “gap” vary [18], [19], [20],
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Fig. 1. Hierarchical navigation system with Safer Gap local planner. Red blocks are perception modules to generate the local obstacle and free-space model
called the egocircle. Blue blocks are local planning modules for Safer Gap. The green block is the control module with a safety filter.

Fig. 2. Composite Bézier path synthesis. p(0) is the robot’s origin. The red
circle is the largest circular free space in the egocircle. lgap and rgap are defined
counter clockwise in the robot’s local frame. lgap has a smaller polar angle than
rgap. Blue lines Ll and Lr are left and right gap sides. Ql and Qr are the left
and right intersection points ofGcirc and gap sides. (·)inf are inflated symbols.

b
(1)
1 and b

(2)
1 are the second and third control points for the first cubic Bézier

curve. Local waypoint pwpt is inside the inflated safe region F inf to guarantee
safety. pcirc is the goal-biased point on Ginf

circ. Dashed lines show the Bézier
polygons. The combination of brown and cyan paths is the final synthesized
path. A gap sector region [2] corresponding to the same scenario is depicted in
the bottom right corner.

[21], [22], [17], [23], the one defined in [2] prioritizes a specifi-
cation with collision-free properties. There, a “gap” is defined to
be a collision-free, robot-centered circular sector, see Fig. 2.Path
planning with gaps emphasizes candidate directions to attract
towards, rather than directions to avoid (e.g. obstacles). Gaps
simplify the local planner of hierarchical navigation systems,
naturally provide multiple distinct path options, and support
safety and traversability. The Potential Gap local planner [2]
has proven safety guarantees for point-mass holonomic robot
models, but not for nonholonomic mobile robots. Additional
algorithmic components were used to improve navigation safety
due to the lost guarantees, i.e., radial extension and projection
operator, but without theoretical support.
The artificial potential field (APF) is an efficient goal at-

traction and obstacle avoidance strategy [24], [25], [26], [27],
[28]. The Potential Gap local planner [2] uses APF ideas to
synthesize safety guaranteed paths for point-mass holonomic
models. The Bézier curve is also a well-known technique for
generating smooth trajectories for different robot models [29],
[30], [31], [32], [33], [34]. Recent work called Bézier Gap [4],

leverages Bézier curve properties to synthesize safe trajectories
for box-shaped holonomic robots. However, safety guarantees
for nonholonomic models are still missing. This paper takes
advantage of gaps and Bézier curves for nonholonomic path
planning to address the weak safety guarantee issue.

B. Nonlinear Model Predictive Control

Model predictive control (MPC) is a receding-horizon con-
troller for generating or tracking trajectories [35]. For tracking,
trajectories are typically generated by a different module that
uses a simplified system model for fast trajectory generation.
From this trajectory, efficient nonlinear MPC (NMPC) for path
and trajectory tracking bynonholonomic robots [36], [37] enable
real-time, local planning. Constraint specification inNMPCuses
either soft [37], [38] or hard constraints [39]. Soft costs act
like potential functions and penalize movement outside of the
safe regions [38]. The MPC-based TEB planner [37] uses soft
constraints to avoid obstacles. However, safety is not guaranteed
with soft constraints. Therefore, applying a solvable hard con-
straint to prevent collisions is necessary for the safe navigation
of nonholonomic mobile robots.

C. Safety and Control

In safe control synthesis, a zeroing barrier function (ZBF)
is a differentiable implicit function whose zero super level-set
defines safe (i.e., collision-free) space.AZBFwith the additional
property of a non-empty admissible control set for all points in
the safe space is termed control barrier function (CBF). Safe,
real-time control synthesis for control affine nonlinear systems,
maybe achieved through anonline point-wise quadratic program
(QP) optimization, referred to as CBF-QP. Employing a ZBF in
the CBF-QP formulation without certification is undesirable.
Certifying a ZBF as a valid CBF is computationally intensive
and often performedoffline. Popularmethods used for construct-
ing and validating CBFs are sum-of-square (SoS) [40], [41]
and Hamilton-Jacobi (HJ) reachability [42]. Recently, machine
learning techniques have been studied [43], [44]. In particular,
there are techniques for online, real-time ZBF synthesis based
on shallow neural networks with data from online environment
measurements [45], [46]. In [45], the outer weights of the neural
network are solved using a linear program (LP). These ideas are
leveraged to build keyhole region ZBFs.
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III. SAFER GAP LOCAL PLANNER

This section introduces a gap-based local planner, called Safer
Gap, designed to sense environmental elements, accomplish
obstacle avoidance, and guarantee safe navigation for planar
nonholonomic mobile robots. A gap (sector) is an open region
between two obstacles based on line-of-sight visibility, as shown
inFig. 2. For ground robots, it is generated from the egocircle [2],
which is an ego-centric circular fieldwith spatial information [1].
To address nonholonomic constraints, a larger collision-free key-
hole region is introduced and defined here. Safemotion planning
synthesizes smooth paths within collision-free keyhole regions
using composite Bézier curves. Nonlinear Model Predictive
Control (NMPC) addresses kinematic, Keyhole ZBF safety, and
control constraints feasibility during curve tracking.

A. Collision-Free Space Generation: Keyhole Regions

Each gap requires defining a collision-free spaceF local to the
robot. In [2], [4], the points lgap/rgap define line segments from
the robot position whose collision-free space lies to the left/right
of obstacles identified from the egocircle. This gap sector region
is limiting when the robot has one side close to an obstacle [4],
or the robot is nonholonomic [2]. A more expansive definition
of the collision-free space is defined here, formed by the union
of the largest robot-centered disc and the region between the gap
lines. Given the safe region resemblance to a keyhole, it is called
a keyhole region.
Start with the largest circular collision-free spaceGcirc within

the egocircle L, e.g., the red circle in Fig. 2. Now connect
the two gap points, lgap/rgap, to the tangent points of Gcirc,
leading to raw gap sides. The tangent point corresponding to
lgap always has a smaller polar angle than that of rgap in the
robot’s local frame. If obstacles obstruct raw gap sides, inward
rotations are applied around lgap (clockwise) and rgap (counter
clockwise) until there is no obstruction. See Ll in Fig. 2 for
an example. By definition of a gap, the maximum rotation
cannot pass the center of Gcirc (i.e., the robot position). The
left and right gap sides (Ll/Lr) are finalized after rotations,
shown as blue line segments in Fig. 2. They represent safe
region-maximizing linear connections between the gap points
andGcirc. These intersection points are denoted byQl/Qr. The
four points (lgap, rgap,Ql,Qr) define a collision-free polygon
Gpoly. The full, star-convex, obstacle-free space F is

F = Gpoly ∪Gcirc. (1)

To consider robot geometry, obstacle space is inflated so that
F inf ⊂ F based on a robot size parameter sinf, as depicted by
dark gray in Fig. 2. sinf can be radii for circular robots and
equivalent passing lengths for non-circular robots [4]. The robot
simplifies to a pointwhen planning inF inf. In Fig. 2, superscripts
(·)inf are added to symbolically represent the gap circle, gap
points, and gap sides under inflation. Intersected points after
inflation are denoted as Qinf

l and Qinf
r . Any path P within the

inflated collision-free space P ∈ F inf guarantees safety for the
robot geometry.

B. Composite Bézier Path Planning

Given keyhole region(s) local to the robot, the next step is
to identify a candidate path traversing each keyhole region and
crossing its gap arc, after which one is chosen to follow.
1) Composite Bézier Curves: Dual segment composite

Bézier curves serve as the chosen path parametrization. The first

segment is a cubic Bézier curve parameterized by u:

B1(u) =
n=3∑
i=0

Ç
n

i

å
(1− u)n−iuib

(i)
1Ç

n

i

å
=

n!

i!(n− i)!
, 0 ≤ u ≤ 1 (2)

where b(i)1 is the ith control point of B1. In Safer Gap, selecting
control points inside Ginf

circ defines the first curve within Ginf
circ;

see the brown, solid curve in Fig. 2.
Since the gap is detected in the robot’s local frame, the robot

center is the first control point b(0)1 = p(0). An intermediate
point pcirc is defined on the arc between Qinf

l and Qinf
r , serving

as the last control point b(3)1 , defined later. The other two control
points are established from the initial orientation θ(0), linear
velocity ν(0), and acceleration �a(0) of the nonholonomic robot.
The vector b

(1)
1 − b

(0)
1 is co-linear with the unit orientation

vector �o(0) = [cos(θ(0)), sin(θ(0))]. Curve velocities and ac-
celerations are obtained from the first and second derivatives of
the cubic Bézier curve,

Ḃ1(u) = 3
2∑

i=0

Ç
2

i

å
(1− u)2−iui(b

(i+1)
1 − b

(i)
1 ) (3)

Ḃ1(0) = 3(b
(1)
1 − b

(0)
1 ) (4)

B̈1(u) = 6
1∑

i=0

Ç
1

i

å
(1− u)1−iui(b

(i+2)
1 − 2b

(i+1)
1 + b

(i)
1 )

(5)

B̈1(0) = 6(b
(2)
1 − 2b

(1)
1 + b

(0)
1 ). (6)

The curve parameter u ∈ [0, 1] should be scaled to time t ∈
[0, T1] through t = T1u. The final time T1 is estimated by
||pcirc − p(0)||/νd, where νd is the robot’s desired linear ve-
locity. The scaled Bézier path is Bs

1(t) = B1(t/T1), with

Ḃs
1(t) =

1

T1
Ḃ1

Å
t

T1

ã
and B̈s

1(t) =
1

T 2
1

B̈1

Å
t

T1

ã
. (7)

Assign ||Ḃs
1(0)|| = ν(0), which needs ||b(1)1 − b

(0)
1 || =

T1ν(0)/3 from (4) and (7). Setting B̈s
1(0) = �a(0), b

(2)
1 is

calculated by (6) and (7). With these assignments, all control
points for the segment B1(u), u ∈ [0, 1] are uniquely defined

b
(0)
1 = p(0)

b
(1)
1 = p(0) +

T1ν(0)

3
�o(0)

b
(2)
1 =

T 2
1

6
�a(0)− b

(0)
1 + 2b

(1)
1

b
(3)
1 = pcirc (8)

The second path segment (cyan path in Fig. 2) is generated from
a quadratic Bézier curve

B2(u) = (1− u)2b
(0)
2 + 2(1− u)ub

(1)
2 + u2b

(2)
2 , (9)

where pcirc is chosen as b(0)2 , the start point of the curve.
G1 or tangency continuity (i.e., the tangent vectors are the

same at the joining point of two connected curves) maintains a
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geometrically smooth connection betweenBézier curves. There-
fore, the direction vector �v should satisfy the equality:

�v =
b
(1)
2 − b

(0)
2

||b(1)2 − b
(0)
2 ||

=
b
(3)
1 − b

(2)
1

||b(3)1 − b
(2)
1 ||

, (10)

where b(2)1 and b
(3)
1 are known by (8). The derivative and time-

scaled version of quadratic Bézier curve are

Ḃ2(u) = 2(1− u)(b
(1)
2 − b

(0)
2 ) + 2u(b

(2)
2 − b

(1)
2 ) (11)

Ḃ2(0) = 2(b
(1)
2 − b

(0)
2 ) (12)

Ḃs
2(t) =

1

T2
Ḃ2

Å
t

T2

ã
(13)

where T2 = ||pwpt − pcirc||/νd given a customized linear veloc-
ity νd. pwpt is the local terminal waypoint attached to the gap for

the robot, so that b(2)2 should be pwpt.

Similarly, set ||Ḃs
2(0)|| = νd, which requires ||b(1)2 − b

(0)
2 || =

T2νd/2 from (12) and (13).Whenpcirc is close toLinf
l orLinf

r ,b(1)2
is possible to be outside of the inflated gap sides after scaling. A
length scale number λ ∈ (0, 1] is calculated to bound b(1)2 inside

F inf. Finally, b(1)2 is computed by (10). All control points for the
second Bézier path segment B2(u) are constrained

b
(0)
2 = pcirc

b
(1)
2 = pcirc + λ

T2νd
2

�v

b
(2)
2 = pwpt (14)

The local waypoint pwpt for each gap is initially found based on
the global plan [2] and then bounded by F inf. All gaps share a
local goal p∗ defined from the global path. If p∗ ∈ F inf, then
pwpt = p∗. Otherwise, it is shifted to the inflated gap point,
linfgap or rinfgap, nearest to the local goal p∗ with a further offset
added to ensure the robot can safely move past the gap. The

intermediate point pcirc starts at the midpoint of the arc ˚�Qinf
l Qinf

r .
Then a perpendicular line is calculated from the point pwpt to the
line segment connecting the midpoint and either Qinf

l or Qinf
r ,

depending on which is closer to pwpt. If the perpendicular line

intersects the arc ˚�Qinf
l Qinf

r , pcirc is moved to that intersection
point. If pwpt is within Ginf

circ, then pcirc = pwpt, and only the
first Bézier segment is computed. The final Bézier-based path is

P(u) =

ßB1(u), pwpt ∈ Gcirc

B1(u) ∪ B2(u), otherwise (15)

From the above design, the first Bézier polygon for B1(u) is
always within Ginf

circ. The second Bézier polygon is within the
convex region Ginf

poly . The composite Bézier path is guaranteed
to be within the inflated collision-free space [47], P(u) ⊆ F inf.
Safety and traversability of the keyhole region are achieved for
nonholonomic motion, in the absence of control constraints.
Each gap generates one composite Bézier path, which requires
≤ 2ms (on an Intel i7-8700). Total path synthesis time is linear
in the number of gaps.
2) Path Scoring: A scoring function is computed for each

composite Bézier path to choose a single local path P∗ to
follow. It improves on the scoring in [2] by adding an orientation

Fig. 3. Composite Bézier paths for all gaps. Blue is egocircle L. Yellow are
five detected gaps. Green points are local waypoints pwpt. The black paths are
the synthesized Bézier paths P . The red path is the selected P∗ based on the
scoring equation.

cost. Paths with lower deviation from the robot’s orientation are
preferable since nonholonomic robots cannot rotate instanta-
neously. It also helps to pick the correct path when a final goal
point is on the other side of a wall.

J(P) =
∑
x∈P

C(d(x,L)) + w1||xend − p∗||+ w2|θend − θ(0)|

where C(d) =

⎧⎨
⎩
cobse

−w3(d−rins), d > rins
0, d > rmax

∞, otherwise

d(x,L) is the distance from path pose x = [x1, x2, θ]T to the
nearest point on L. ||xend − p∗||measures the distance between
the end pose ofP and the local goal p∗ from a global plan. Only
one local goal is created in every planning step [2]. |θend − θ(0)|
is the angle difference between the end pose and the initial pose.
rins and rmax are proportional to the robot radius to control the
safe distance. w1, w2, w3 and cobs are tunable weights. Each
time, the best path P∗

i compares with the previous path P∗
i−1

to decide whether to switch to the new one. An example is in
Fig. 3. The best path (red) is selected from a set of Bézier path
candidates.

C. Keyhole ZBF Synthesis

The inflated collision-free space F inf is captured by the zero
super level-set of the Keyhole ZBF. A shallow, two hidden-layer
neural network with rectified linear units (ReLU) describes the
barrier function. To keep the network shallow and minimal
involves leveraging the geometry of the keyhole region, i.e.,
the straight lines and the circle. The complete expression of the
Keyhole ZBF is

h(x) = α1R1 + α2R2 + α3R3 + α4Rc + α5R1R2

+ α6RcR1 + α7RcR2 + α8RcR3

+ α9R1R2R3 + α10R1R4R5 + α11R2R4R5

+ α12RcR1R4 + α13RcR2R4 + α14RcR1R2

+ α15RcR1R2R3 + b (16)

where, x = [x1, x2]T , Ri = ReLU(cTi x+ di), Rc = ReLU
(r2 − (x− xc)

T (x− xc)), ReLU(z) = max(0, z). ci and di
are the coefficients for the straight lines, and xc and r are the
center and radius of Ginf

circ, respectively.
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Fig. 4. Keyhole diagram with virtual lines. Blue and orange dots are safe and
unsafe samples. The distance between unsafe and safe samples is small and is
exaggerated for visual purposes. .

All points in the domain are mapped onto the level sets of the
line and circle equations (layer 1) and their polynomial com-
binations (layer 2). Any input that maps to negative (level-set)
values is set to zero by the ReLU function. As shown in (16)
by the subscripts of R, three additional straight lines 3, 4, and 5
are added. Fig. 4(a) shows an illustrative example of the keyhole
shape with line 3, which connects points Qinf

l and Qinf
r . Lines

4 and 5 were added to address a special keyhole configuration
shown in Fig. 4(b).

The synthesis process for the ZBF (i.e., training of the neural
network) employs a linear program (LP) construction tech-
nique [45]. The LP-based synthesis formulation requires two
sets of unsafe and safe sample points, X u and X s, respectively.
As shown in Fig. 4(a), the unsafe points (orange) are sampled
along the inflated gap sides and egocircle edge, excluding the arc
between the gap sides. The safe points (blue) are generated from
the unsafe points by pushing them along the gradient inwards a
small ε distance, e.g., 3% of the circle radius. The linear program
for learning outer weights αi and bias b of the neural network is

min
α,b

�1Tα− b

s.t. h(xi) ≤ 0, ∀xi ∈ X u

h(xj) ≥ 1, ∀xj ∈ X s

b ≤ 0, αk ≥ 0, ∀k = 1, . . . , 15 (17)

where �1 = [1, . . . , 1]T and α = [α1, . . . , α15]
T . The constant

value 1 in the safe point constraints is arbitrary and affects the
scaling of the weights, similar to support vector machines. The
choice of the cost function is not unique, as the goal of the LP
is to determine αi and b that satisfy the constraints. Though
a cost-free LP will generate a feasible solution, most LP soft-
ware packages take longer to converge for cost-free programs.
Consequently, αi and b were added to the cost function, which
forms aL1 regulation penalty due to the positivity and negativity
constraints onαi and b. As a result, not only does theLP compute
time improve, but the solutions are sparse, which allows for
pruning the neural network to improve compute time.

D. NMPC Trajectory Tracking

To address control constraints, an NMPC problem is de-
fined to compute a safe tracking control for the planar non-
holonomic robot based on the composite Bézier path P∗ from
§III-B. Assume a unicycle nonholonomic model with state

Fig. 5. Keyhole ZBF examples. Blue shapes are obstacles. Red boundaries are
Keyhole ZBFmodelingF inf. (a)Keyhole ZBF synthesis with scattered obstacles;
(b) Keyhole ZBF synthesis in a hallway.

x = [x1, x2, θ]T and control u = [ν, ω]T ,⎡
⎣ẋ1ẋ2
θ̇

⎤
⎦ =

[
cos(θ) 0
sin(θ) 0

0 1

] ï
ν
ω

ò
. (18)

P∗ is potentially–but not confirmed to be–dynamically feasible
under control constraints. The near-identity trajectory [48] is
utilized to create a nonholonomic time-varying trajectoryxref(t)
given the path P∗ and a desired linear velocity νd. The time
stamps and the velocity profile uref are assigned to the dy-
namically feasible trajectory reference. However, xref(t) may
deviate from the original Bézier path P∗ and impact safety.
Safety constraints are necessary. Naively using distance as soft
constraints with obstacles/raw points leads to slow computation
and large memory consumption when the environment has a
large quantity of obstacles/raw points [16], [37]. The same holds
for hard constraints. The Keyhole ZBF is a single function to
model collision-free regions, see Fig. 5, and serve as a safety
constraint in NMPC. The scheme is formulated at current time
t with the initial state x(t) and control u(t):

min
u(t),...,u(t+N−1)

J(t) =
N∑

k=0

||x(t+ k)− xref(t+ k)||Q

+
N−1∑
k=0

||u(t+ k)− uref(t+ k)||R

s.t. x(t+ k + 1) = f(x(t+ k),u(t+ k))

ulb ≤ u(t+ k) ≤ uub

alb ≤ |u(t+ k + 1)− u(t+ k)|/Δt ≤ aub

h(x(t+ k)) ≥ 0 (19)

where ||m||A = mTAm. ulb, alb, uub, and aub are the lower
and upper bounds of velocities and accelerations to maintain
smooth motions.N is the number of time steps in the prediction
horizon. Q and R are the state and control weights. h(x) is
the Keyhole ZBF, which represents the inflated collision-free
spaceF inf. For someenvironmental configurations,F inf is a non-
convex region. Directly using Ginf

circ and Ginf
poly is impossible to

model the entire collision-free space. TheKeyhole ZBF provides
a consistent function to describe both convex and non-convex
scenarios. It reflects safety and traversability for gap-based non-
holonomic navigation. Feasible solutions are highly likely to be
collision-free local paths, subject to time-discretization artifacts.
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E. Projection Operator

In some situations, the NMPC solver with Keyhole ZBF con-
straint may not be feasible in continuous time or fail to converge
to a solution within the prescribed time (empirically, ∼4% of
optimizations). For the latter, the control from the previous
optimized NMPC horizon is applied. In both cases, the safety
guarantee is void. The projection operator from [2] serves as a
safety filter to prevent collisions; it provides a similar correction
as a CBF [49]. Define variables for nonholonomic case, x̂ =
[x(1),x(2)]T = [x1, x2]T and û = [ν cos(θ), ν sin(θ)]T . The re-
shaped control u′ is.

u′ =

⎧⎨
⎩
u if ψ(x̂) < 0

u if ψ(x̂) ≥ 0 ∧ g(x̂, û) > 0

u− γψ(x̂)g(x̂, û)f(x̂) if ψ(x̂) ≥ 0 ∧ g(x̂, û) ≤ 0

where f(x̂) =
∇ψ(x̂)

‖∇ψ(x̂)‖ , g(x̂, û) = 〈f(x̂), û〉 (20)

The potential function ψ(x̂) [2] is the distance to the near-
est obstacle point within the egocircle region. A higher value
represents proximity to an obstacle, while a negative potential
indicates farness from obstacles. It constructs a smooth safety
boundary. The controls are reshaped when the robot is close
enough to the boundary and moving towards it. γ represents a
tunable diagonal gain matrix. When active, the robot will slow
down and steer away from obstacles. The projection operator is
also active when Ginf

circ is too small, causing the robots to move
from dead zones and improve planning traversability.

IV. EXPERIMENTS

A. Ablation Study in Simulation

1) Configurations: Benchmarking the Safer Gap local plan-
ner in ROS utilizes the move_base hierarchical navigation sys-
tem. An ablation study is performed on STDR and Gazebo
simulators. STDR uses a 1st order circular nonholonomic model
with a 360◦ Field-of-View (FoV) laser scanner. Gazebo employs
a Turtlebot as the 2nd order nonholonomic mobile robot with a
limited 60◦ FoV Kinect depth camera. There are four bench-
marking scenarios [1]: sector, dense, campus, and office. They
simulate multiple navigation environments, e.g., hallways, open
areas with obstacles, campus roads, etc. Unknown obstacles
are randomly spawned with a 1m minimum distance between
each other. The robot’s start and end poses are also randomly
chosen in designated areas. Ground truth robot poses are used
for navigation. 500 Monte Carlo runs were initially run for each
planner to quantitatively compare navigation performance.
Table I summarizes the configuration of the seven tested

planners. PG is the potential gap with radial extension and
tuned feedback gains [2], while CB is the composite Bézier
path planner with the same feedback following controller. To
adapt to different kinematics, a trajectory synthesis module is
added to generate time-varying trajectories. PG+M and CB+M
useNMPCwithKeyholeZBF for trajectory tracking. POadds the
projection operator as a final safety module. A custom recovery
behavior is triggered to safely move the robot away from the
nearest obstacles when the planner cannot generate a solution.
SG is the proposed work Safer Gap and includes all modules.
PG+PO does not have the custom recovery behavior to preserve
the original implementation [2]. Details of the recovery behavior
and parameters used can be found in the public repository [50].

TABLE I
CONFIGURATIONS OF ALL PLANNERS IN THE ABLATION STUDY

2) Evaluation Metric: Success, abort, and collision rates are
collected to represent navigation performance. Success: the
robot can reach the goal; Abort: the robot cannot generate any
motion plans to reach the local goals after invoking a recovery
behavior. Collision is counted whenever it occurs.
3) Simulation Results: Fig. 6 presents the results of the abla-

tion study. Per Table I, PG and CB in the first block employ pose
feedback controllers with tuned path following gains. Among
these, CB achieves significantly lower collision rates (0.4% and
0.2%) compared to PG (2.4% in STDR and 2.6% in Gazebo).
This indicates that the composite Bézier path planning stage of
Safer Gap better accommodates nonholonomic dynamics and
enhances safety over the potential vector field approach used in
Potential Gap. However, feedback controllers have limitations
in explicitly assigning desired robot velocities. Adjusting gains
may result in robot velocities that meet desired values but
compromise navigation performance.
Integrating time-varying trajectory synthesis, as discussed in

Section III-D, allows for the assignment of desired robot veloci-
ties and smoothmotions. The inclusion ofNMPCwith aKeyhole
ZBF constraint, denoted as PG+M and CB+M in the second
block, ensures safe tracking of time-varying trajectories while
meeting velocity requirements. This integration optimizes plan-
ning and control strategies to improve safety and traversability.
It is important to note that PG+M and CB+M cannot be directly
compared with methods in the first block, as they represent
two distinct navigation schemes (i.e., trajectory tracking and
path following). According to the results, CB+M exhibits lower
collision and abort rates than PG+M in both simulators. Failures
typically occur when NMPC or Keyhole synthesis cannot find
solutions within the prescribed time (around 4% of invocations),
leading to collisions in the absence of a safety guard. Abort sce-
narios also arise when NMPC fails to generate any motion after
all recovery behaviors are exhausted. The conflicting demands
between trajectory tracking and obstacle avoidance in PG+M
result in higher failure rates for NMPC and Keyhole synthesis,
which in turn increases collision and abort rates. Therefore,
the consistent design of Keyhole safe regions in both the path
planning and trajectory tracking stages ofSaferGapoutperforms
the simpler combination of PG and NMPC.
To improve collision avoidance, a PO safety filter is incorpo-

rated in case optimization fails, completing the design of Safer
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Fig. 6. Ablation study results in STDR and Gazebo simulators.

Fig. 7. Real experiment top view. Three environment densities are shown. The green paths are real robot traces. It starts from the left to the right.

Gap. It “pushes” away from obstacles and helps the robot avoid
problematic dead zones, thereby reducing abort rates. Compared
to PG+M+PO, SG achieves 0% collision and abort rates in both
simulators, demonstrating enhanced safety and traversability.
Due to the low failure rates, STDR and Gazebo benchmark runs
were extended to 4500 and 3000, respectively. SG maintained
0% collision rates, 99.9% and 100% success rates, and 0.09%
abort rates in STDR, while PG+PO had collision rates of 0.11%
and 0.17%, and abort rates of 0.18% and 0.07% in STDR and
Gazebo. Fisher’s exact test [51] reveals p-values of 0.0311 for the
collision rates between the twomethods, indicating a statistically
significant difference. SG outperforms PG+PO.
4) Computational Efficiency: Google OR-Tools [52] solves

the Keyhole ZBF LP of (17). A timing study is performed on
an Intel E5-2680 workstation. CasADi optimization framework
with IPOPT is used to solve NMPC. The horizon number is set
to N = 6. The total time of each control loop is averaged as
69 ms with a standard deviation (std) of 30, including com-
posite Bézier path synthesis (mean: 13 ms, std: 5), keyhole
generation (mean: 1.6 ms, std: 1.4), NMPC optimization (mean:
53 ms, std: 29), and projection operator (mean: 6 μs, std: 0.03).
Real-time application is achievable. Tests of the state-of-the-art
solver ACADOS [53] on the proposed NMPC problem had a
processing time average of 75 ms (std: 25). It also supports
real-time implementation, here defined to be at least 5 Hz.

B. Real Experiments

The simulation ablation study quantitatively compares the
navigation performance of Safer Gap with Potential Gap, and
shows that the former achieves the desired, collision-free out-
comes. This section reports the results of the Safer Gap imple-
mentation on a real platform, a LoCoBot, for navigation through
unknown environments. The robot base is differential drive. The
robot’s odometry provides pose information. The depth images

from aRealSenseD435i depth camera are converted to laserscan
measurements [54].
Testing involves five scenarios with varying obstacle densi-

ties, ranging from low to high (see Fig. 7). Top-view figures
depict the traces of robot navigation. Two runs are repeated for
each configuration to demonstrate consistent results. A 100%
success rate across the 10 trials provides evidence that the Safer
Gap local planner supports navigation safety and traversability
for (nonholonomic) differential drive robots.

V. CONCLUSION

The Safer Gap local planner is a constructive safe naviga-
tion policy for differential drive mobile robots. It generates
guaranteed safe, kinematically valid, composite Bézier paths
within collision-free, keyhole regions defined by gaps. NMPC
tracks the reference paths under constrained nonholonomic (dif-
ferential drive) control with the synthesized Keyhole ZBF as
a safety constraint. A projection operator enhances safety and
traversability at the lowest navigation level when the optimiza-
tions fail to converge in time. The full local planner construc-
tion ensures forward invariance within a collision-free region.
Ablation studies and real experiments confirm safe navigation
without compromising gap traversability. Future work includes
testing different robot dynamics and environment complexities
for robustness. The current design ensures safety for static
obstacles only, leaving open the extension to moving obstacles.
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