

Spawning and larval development of *Colossendeis megalonyx*, a giant Antarctic sea spider

Journal:	<i>Ecology</i>
Manuscript ID	ECY23-0706.R1
Wiley - Manuscript type:	The Scientific Naturalist
Date Submitted by the Author:	n/a
Complete List of Authors:	Moran, Amy; University of Hawaii at Manoa, Life Sciences Lobert, Graham; University of Hawaii at Manoa, Life Sciences Toh, Ming Wei; University of Hawaii at Manoa, Life Sciences
Substantive Area:	Animals < Physiological Ecology < Substantive Area
Organism:	Sea spiders < Cheliceriformes < Arthropods < Invertebrates < Animals
Habitat:	Marine < Aquatic Habitat < Habitat
Geographic Area:	Antarctica < Geographic Area
Key words/phrases:	Colossendeis, Pycnogonida, sea spider, Antarctica
Abstract:	

SCHOLARONE™
Manuscripts

1 Journal name: Ecology
2 Manuscript type: The Scientific Naturalist
3
4 Title: Spawning and larval development of *Colossendeis megalonyx*, a giant Antarctic sea spider
5 Author names for publication: Amy L. Moran; Graham T. Lobert.; Ming Wei Aaron Toh
6 Affiliations: School of Life Sciences, University of Hawai'i at Mānoa, 3109 Maile Way,
7 Honolulu, HI 96734
8 Corresponding author: Amy L. Moran, morana@hawaii.edu
9 Open research statement: Data and video are permanently and openly available from the United
10 States Antarctic Program Data Center (USAP-DC) under project USAP-1745130
11 (<https://doi.org/10.15784/601716>)
12
13
14
15
16
17
18
19
20
21
22
23

24 In the austral summer of 2021-2022, we observed spawning, post-spawning behavior, and
25 embryonic development of the common giant Antarctic sea spider *Colossendeis megalonyx*
26 Hoek, 1881. Sea spiders (Class Pycnogonida) are a bizarre and ancient group of marine
27 arthropods that are distributed throughout the world's oceans (Arnaud and Bamber 1988). One
28 characteristic of sea spiders, shared by all taxa whose reproduction was previously known, is that
29 offspring are cared for exclusively by the male parents who brood embryos on specialized
30 "ovigerous legs" from fertilization to hatching and often beyond (Cavanna 1877, Arnaud and
31 Bamber 1988, Arango 2002). Exclusive male care of offspring is the rarest type of parental care,
32 and its evolutionary origins in sea spiders and other taxa pose an intriguing puzzle for
33 evolutionary biologists (Tallamy 2001, Goldberg et al. 2020).

34 While exclusive male care is often considered a feature of the sea spiders as a whole,
35 brooding has never been observed in three of the eleven recognized extant families of
36 pycnogonids, including the family Colossendeidae. Colossendeids include the largest and most
37 conspicuous of sea spiders, with some species reaching leg spans of 40-50 cm (Arnaud and
38 Bamber 1988, Child 1995, Moran and Woods 2012, Shishido et al. 2019), and the family has
39 been collected and studied since the mid-19th century. Despite this long history of and research
40 on colossendeids, up until very recently nothing at all was known about the reproductive
41 ecology, embryology, or larval development of this group (Bain 2003, Arnaud and Bamber 1988,
42 Dietz et al. 2015, Brenneis et al. 2017). To date we know of only one published observation of
43 mating, which was based on fascinating and fortuitous visual evidence of egg production by two
44 individuals of an unknown species of colossendeid from the deep sea (Brenneis and Wagner
45 2023).

46 Over decades of diving in McMurdo Sound, Antarctica, where colossendeids are
47 abundant at SCUBA depths, divers had frequently observed groups of usually two, but
48 sometimes three or four individuals stacked on top of each other (e.g. photos in Brueggeman
49 (1998)) in what is characteristically a mating posture in other sea spiders (Bain and Govedich
50 2004). In the austral summer of 2021-2022, in the hopes that we could observe reproduction of
51 colossendeids in the lab, we hand-collected several mating groups of *C. megalonyx*, transported
52 them to McMurdo Station, kept them in a flow-through seawater system at temperatures between
53 -1.5 and -0.5 °C, and checked them several times a day for egg production. Two of these mating
54 groups produced eggs in the laboratory in 2021, the first on October 25 and the second on
55 October 29. Eggs were first seen as a gelatinous cloud surrounding a single spider that had
56 previously been part of a mating group (Figure 1a). We documented post-spawning care by one
57 parent, which appeared to consolidate the embryos and glue the brood to the substrate (Figure
58 1b). We subsequently also found eggs and adults together in the field on several occasions in
59 2021 and 2022 (Figure 1c). A diver collected material from one of these field masses and
60 brought them back to the lab, where we confirmed they were eggs of the same size and
61 appearance as lab-laid eggs.

62 We collected the eggs from the first laboratory spawn for microscopic observation of egg
63 morphology and embryological and larval development, and we left the second mass in place to
64 observe post-spawning parental behavior and developmental ecology. The first mass contained
65 thousands (though we did not count them) of light-colored, small eggs (average diameter 106.9
66 $\mu\text{m} \pm 3.4$ (s.d.) ($n = 17$)) that were embedded in a loose gel. The gel was somewhat sticky but
67 this mass never became compacted or firmly stuck to the substrate. We maintained the embryos
68 in filtered seawater in incubators at -1.8 °C for 11 months and photographed them every two to

69 three weeks under a compound microscope. Development was slow, as is characteristic of
70 Antarctic ectotherms (Moran et al. 2019). Embryos reached the 2-4 cell stage by d 8 (Figure 2a)
71 and the 8- to 16-cell stage by d 10 (Figure 2b). By d 45 a blastocoel was visible (Figure 2c).
72 Buds of limbs were visible on d 83 (Figure 2d) and became more and more defined throughout
73 the rest of development (Figures 2e and 2f). The first hatched larva was observed on June 28,
74 2022, ~ eight months post-spawn; a major hatching event occurred on July 25; and hatching
75 continued through October 2022 when the observations were discontinued.

76 Hatched larvae were negatively buoyant and crawled slowly in the dish. Hatchlings had
77 chelicerae and two other pairs of appendages with a spine extending from the scape of each one
78 (Figure 2g, 2h). The morphology of hatched larvae of *C. megalonyx* aligned with previous
79 descriptions of larvae of other species that were categorized as “typical protonymphons” (Bain
80 2003), and the small egg size and larval morphology were both consistent with the “Type I”
81 pycnogonid larva of Brenneis et al. (Brenneis et al. 2017). This particular combination of egg
82 size and larval morphology pattern is commonly associated with benthic and ectoparasitic
83 development and is prevalent among various sea spider families; notably, Type I larvae are
84 widely distributed within the Pycnogonida and are regarded as the probable ancestral mode for
85 modern pycnogonids (Brenneis et al. 2017).

86 For the second lab event, we left the eggs in place in the sea table so we could observe
87 and film adult behavior around the mass. One adult from the mating group remained on or close
88 to the egg mass for almost three days after the eggs were produced, appearing to groom and
89 manipulate the mass with its ovigers, proboscis, and palps (video link: <https://www.usap-dc.org/view/dataset/601716>, *Colossendeis_behavior_around_egg_mass.mp4*). During this
90 grooming period the mass became compacted and firmly attached to the rock. We think the adult
91

92 that tended the mass was male, and potentially the father, because it was one of the upper
93 animals from the mating stack and because microscopic examination of cross-sections of the
94 adult's lower leg segments did not show the oocytes or the tissue of the vitellaria as is
95 characteristic of female colossendeids (Alexeeva 2021). Post-spawning care of non-brooded
96 embryos in the Colossendeidae is an exciting finding because it may represent an evolutionarily
97 intermediate strategy between free-spawning and the paternal brooding exhibited by most other
98 groups of sea spiders. Our observations of mating stacks of more than two individuals also raise
99 interesting questions about the potential for male competition for fertilization in colossendeids,
100 though more detailed observations and identification of the sex of individuals in mating groups
101 are needed before these ideas can be tested.

102 The second egg mass remained firmly attached to the substrate through February 2022
103 when the seawater system was shut down. At this time, it was overgrown with diatoms and
104 extremely cryptic, though developing embryos could be seen with a stereo microscope. In
105 contrast, the first mass, which was removed from the sea table soon after spawning, did not
106 become compacted or attached. Males of other pycnogonids use secretions from cement glands
107 on their femurs to glue eggs to their ovigerous legs (Arnaud and Bamber 1988, Bain and
108 Govedich 2004), and our observations suggest that adult colossendeids may use chemical or
109 mechanical manipulation to glue their egg masses to the substrate. Brenneis & Wagner (2023)
110 also suggested a role for the ovigerous legs in egg manipulation of a colossendeid. Cement
111 glands are generally considered to be absent in the Colossendeidae (Child 1995, Arango and
112 Wheeler 2007); however, almost 150 years ago Hoek (1881), reporting on the specimens
113 collected by the Challenger expedition, described what he suspected were cement glands in *C.*
114 *megalonyx*. Hoek's (1881) description, along with our observations, mean that the assumption

115 that colossendeids as a family lack cement glands bears reexamination. Together, the
116 observations that (1) development is benthic, (2) hatchlings are negatively buoyant and do not
117 swim, and (3) hatchling morphology is consistent with an ectoparasitic lifestyle, suggest that
118 larvae of *C. megalonyx* have limited potential for long-distance planktonic dispersal.

119 It seems likely that the family Colossendeidae as a whole are non-brooders, in part
120 because no brooding colossendeid has ever been observed but also because sea spiders that brood
121 have conspicuous sexual dimorphism while colossendeids do not (Staples 2007, Sabroux et al.
122 2023). Likewise, the ovigerous legs of both male and female colossendeids are highly
123 specialized for cleaning the cuticle, rather than being modified in males for egg-carrying as in
124 many known brooders (Arnaud and Bamber 1988). Does non-brooded development represent an
125 evolutionary loss by the colossendeids, or could it be the ancestral state from which paternal
126 brooding evolved in modern sea spiders? Phylogenetic evidence suggests that across a wide
127 range of taxa, brooding evolves from non-brooding far more often than the other way around
128 (e.g. (Calloway 1988), (Furness and Capellini 2019), (Gillespie and McClintock 2007)).

129 Unfortunately, the reproduction of two other families of sea spiders, the Rhynchothoracidae and
130 the Austrodecidae, is still a mystery; likewise, current phylogenies of the Pycnogonida are not
131 particularly useful for answering deep evolutionary questions because there is considerable
132 uncertainty about the relationships among families (Sabroux et al. 2023). Nevertheless, our
133 observations provide a first detailed look at the egg handling behaviors, embryology, and larval
134 development of the largest and most conspicuous of the sea spiders, and emphasize the
135 importance of field and laboratory observations for understanding the biology and natural history
136 of these extraordinary animals.

137

138 **ACKNOWLEDGEMENTS**

139 We thank the United States Antarctic Program ASC staff for invaluable help with fieldwork,
140 logistics, and laboratory work in 2019 and 2021. Special thanks go to J. Webber for maintaining
141 and photographing larval cultures after the science team redeployed and to R. Robbins for
142 permission to use the photo in Figure 1C. This project was supported by NSF-OPP-1745130 to
143 A. Moran.

144 **CONFLICTS OF INTEREST STATEMENT**

145 The authors declare no conflicts of interest.

146 **LITERATURE CITED**

147 Alexeeva, N. V. 2021. The morphology and some data on the anatomy of pycnogonids of the
148 family Colossendeidae. *Russian Journal of Marine Biology* 47:440–450.

149 Arango, C. P. 2002. Morphological and molecular phylogenetic analysis of the sea spiders
150 (Arthropoda, Pycnogonida) and taxonomic study of tropical Australian forms. *James Cook*
151 *University*.

152 Arango, C., and W. C. Wheeler. 2007. Phylogeny of the sea spiders (Arthropoda, Pycnogonida)
153 based on direct optimization of six loci and morphology. *Cladistics* 23:255–293.

154 Arnaud, F., and R. N. Bamber. 1988. The Biology of Pycnogonida. Pages 1–96 *Advances in*
155 *Marine Biology*. Elsevier.

156 Bain, B. A. 2003. Larval types and a summary of postembryonic development within the
157 pycnogonids. *Invertebrate Reproduction & Development* 43:193–222.

- 158 Bain, B., and F. Govedich. 2004. Courtship and mating behavior in the Pycnogonida
159 (Chelicerata: Class Pycnogonida): A summary. Invertebrate Reproduction & Development
160 46:63–79.
- 161 Brenneis, G., E. V. Bogomolova, C. P. Arango, and F. Krapp. 2017. From egg to “no-body”: an
162 overview and revision of developmental pathways in the ancient arthropod lineage Pycnogonida.
163 Frontiers in Zoology 14:6.
- 164 Brenneis, G., and D. Wagner. 2023. Mating observation of giant sea spiders (Pycnogonida:
165 Colossendeidae). Marine Biodiversity 53:45.
- 166 Brueggeman, P. 1998, most recent update 2023. Underwater field guide to Ross Island &
167 McMurdo Sound, Antarctica, volume 5: Arthropoda. n.p.
- 168 Calloway, C. 1988. Brooding in the Bivalvia (Mollusca). Harvard University, Cambridge.
- 169 Cavanna, G. 1877. Studi e ricerche sui picnogonidi Parte 1 Anatomia e biologia.
- 170 Child, C. A. 1995. Antarctic and Subantarctic Pycnogonida III. The Family Nymphonidae. Pages
171 1–68 Antarctic and Subantarctic Pycnogonida: Nymphonidae, Colossendeidae,
172 Rhynchothoraxidae, Pycnogonidae, Endeidae, and Callipallenidae. American Geophysical
173 Union (AGU).
- 174 Dietz, L., C. P. Arango, J. S. Dömel, K. M. Halanych, A. M. Harder, C. Held, A. R. Mahon, C.
175 Mayer, R. R. Melzer, G. W. Rouse, A. Weis, N. G. Wilson, and F. Leese. 2015. Regional
176 differentiation and extensive hybridization between mitochondrial clades of the Southern Ocean
177 giant sea spider *Colossendeis megalonyx*. Royal Society Open Science 2:140424.

- 178 Furness, A. I., and I. Capellini. 2019. The evolution of parental care diversity in amphibians.
- 179 *Nature Communications* 10:4709.
- 180 Gillespie, J. M., and J. B. McClintock. 2007. Brooding in echinoderms: How can modern
- 181 experimental techniques add to our historical perspective? *Journal of Experimental Marine*
- 182 *Biology and Ecology* 342:191–201.
- 183 Goldberg, R. L., P. A. Downing, A. S. Griffin, and J. P. Green. 2020. The costs and benefits of
- 184 paternal care in fish: a meta-analysis. *Proceedings of the Royal Society B: Biological Sciences*
- 185 287:20201759.
- 186 Hoek, P. P. C. 1881. Report on the Pycnogonida, dredged by H.M.S. Challenger during the years
- 187 1873-76. Report on the scientific results of the voyage of H.M.S. Challenger during the years
- 188 1873-76 3:1–167.
- 189 Moran, A. L., M. G. Harasewych, B. A. Miller, H. A. Woods, B. W. Tobalske, and P. B. Marko.
- 190 2019. Extraordinarily long development of the Antarctic gastropod *Antarctodomus thielei*
- 191 (Neogastropoda: Buccinoidea). *Journal of Molluscan Studies* 85:319–326.
- 192 Moran, A. L., and H. A. Woods. 2012. Why might they be giants? Towards an understanding of
- 193 polar gigantism. *Journal of Experimental Biology* 215:1995–2002.
- 194 Sabroux, R., L. Corbari, and A. Hassanin. 2023. Phylogeny of sea spiders (Arthropoda:
- 195 Pycnogonida) inferred from mitochondrial genome and 18S ribosomal RNA gene sequences.
- 196 *Molecular Phylogenetics and Evolution* 182:107726.
- 197 Shishido, C. M., H. A. Woods, S. J. Lane, M. W. A. Toh, B. W. Tobalske, and A. L. Moran.
- 198 2019. Polar gigantism and the oxygen–temperature hypothesis: a test of upper thermal limits to

- 199 body size in Antarctic pycnogonids. Proceedings of the Royal Society B: Biological Sciences
200 286:20190124.
- 201 Staples, D. A. 2007. A new species of Colossendeis (Pycnogonida: Colossendeidae) together
202 with records from Australian and New Zealand waters. Memoirs of Museum Victoria 64:79–94.
- 203 Tallamy, D. W. 2001. Evolution of exclusive paternal care in arthropods. Annual Review of
204 Entomology 46:139–165.

205 **FIGURE CAPTIONS**

206 Figure 1. a. First egg mass of *C. megalonyx* observed in the laboratory, with adult standing amid
207 the gel cloud. b. Second egg mass observed in the lab, partially consolidated onto the rock, with
208 adult standing over it. The mass extends from the proboscis of the adult to approx. half-way
209 across the bryozoan colony in the upper right of the figure. c. Two adults of *C. megalonyx* in the
210 field in mating posture, with eggs underneath. em = egg mass. Scale bars = 3 cm (a), 2 cm (b). a,
211 b, taken in the Crary Laboratory at McMurdo Station, Antarctica, on 10/25/21 and 10/29/21,
212 respectively. c, taken by R. Robbins at the Cziko Seamount dive site, McMurdo Sound,
213 Antarctica, on November 15, 2022 and used with permission.

214 Figure 2. Embryos and hatched larvae of *C. megalonyx*. a. Eggs. b. 2-4 cell embryos, 8 d after
215 spawning. c. Blastulae, 45 d post-spawning. d. Five months after spawning, showing limb buds.
216 e. Six months post-spawning. f. Unhatched individuals eight months after spawning. g & h,
217 newly hatched larvae. pr = proboscis, ch = chelicera, pa = palp, o = oviger, s = spine. Scale bar in
218 a-f = 100 μ m; scale bar in g,h = 50 μ m. Photos in e-g taken by J. Webber at McMurdo Station,
219 Antarctica and used with permission.

1 Journal name: Ecology
2 Manuscript type: The Scientific Naturalist
3
4 Title: Spawning and larval development of *Colossendeis megalonyx*, a giant Antarctic sea spider
5 Author names for publication: Amy L. Moran; Graham T. Lobert.; Ming Wei Aaron Toh
6 Affiliations: School of Life Sciences, University of Hawai'i at Mānoa, 3109 Maile Way,
7 Honolulu, HI 96734
8 Corresponding author: Amy L. Moran, morana@hawaii.edu
9 Open research statement: Data and video are permanently and openly available from the United
10 States Antarctic Program Data Center (USAP-DC) under project USAP-1745130
11 (<https://doi.org/10.15784/601716>)
12
13
14
15
16
17
18
19
20
21
22
23

24 In the austral summer of 2021-2022, we observed spawning, post-spawning behavior, and
25 embryonic development of the common giant Antarctic sea spider *Colossendeis megalonyx*
26 Hoek, 1881. Sea spiders (Class Pycnogonida) are a bizarre and ancient group of marine
27 arthropods that are distributed throughout the world's oceans (Arnaud and Bamber 1988). One
28 characteristic of sea spiders, shared by all taxa whose reproduction was previously known, is that
29 offspring are cared for exclusively by the male parents who brood embryos on specialized
30 "ovigerous legs" from fertilization to hatching and often beyond (Cavanna 1877, Arnaud and
31 Bamber 1988, Arango 2002). Exclusive male care of offspring is the rarest type of parental care,
32 and its evolutionary origins in sea spiders and other taxa pose an intriguing puzzle for
33 evolutionary biologists (Tallamy 2001, Goldberg et al. 2020).

34 While exclusive male care is often considered a feature of the sea spiders as a whole,
35 brooding has never been observed in three of the eleven recognized extant families of
36 pycnogonids, including the family Colossendeidae. Colossendeids include the largest and most
37 conspicuous of sea spiders, with some species reaching leg spans of 40-50 cm (Arnaud and
38 Bamber 1988, Child 1995, Moran and Woods 2012, Shishido et al. 2019), and the family has
39 been collected and studied since the mid-19th century. Despite this long history of and research
40 on colossendeids, up until very recently nothing at all was known about the reproductive
41 ecology, embryology, or larval development of this group ([Bain 2003](#), Arnaud and Bamber 1988,
42 [Dietz et al. 2015](#), [Brenneis et al. 2017](#), [Zehnpfennig et al. 2022](#)). To date we know of only one
43 published observation of mating, which was based [on](#) fascinating and fortuitous visual evidence
44 of egg production by two individuals of an unknown species of colossendeid from the deep sea
45 ([Brenneis and Wagner 2023](#)).

46 Over decades of diving in McMurdo Sound, Antarctica, where colossendeids are
47 abundant at SCUBA depths, divers had frequently observed ~~two or more individuals~~groups of
48 usually two, but sometimes three or four individuals stacked on top of each other (e.g. photos in
49 (Brueggeman (1998)) in what is characteristically a mating posture in other sea spiders (Bain and
50 Govedich 2004). In the austral summer of 2021-2022, in the hopes that we could observe
51 reproduction of colossendeids in the lab, we hand-collected several mating groups ~~of two to four~~
52 ~~individuals~~ of *C. megalonyx*, transported them to McMurdo Station, kept them in a flow-through
53 seawater system at temperatures between -1.5 and -0.5 °C, and checked them several times a day
54 for egg production. Two of these mating groups produced eggs in the laboratory in 2021, the first
55 on October 25 and the second on October 29. Eggs were first seen as a gelatinous cloud
56 surrounding a single spider that had previously been part of a mating group (Figure 1a). We
57 documented post-spawning care by one parent, which appeared to consolidate the embryos and
58 glue the brood to the substrate (Figure 1b). We subsequently also found eggs and adults together
59 in the field on several occasions in 2021 and 2022 (Figure 1c). A diver collected material from
60 one of these field masses and brought them back to the lab, where we confirmed they were eggs
61 of the same size and appearance as lab-laid eggs.

62 We collected the eggs from the first laboratory spawn for microscopic observation of egg
63 morphology and embryological and larval development, and we left the second mass in place to
64 observe post-spawning parental behavior and developmental ecology. The first mass contained
65 thousands (though we did not count them) of light-colored, small eggs (average diameter 106.9
66 $\mu\text{m} \pm 3.4$ (s.d.) ($n = 17$)) that were embedded in a loose gel. The gel was somewhat sticky but
67 this mass never became compacted or firmly stuck to the substrate. We maintained the embryos
68 in filtered seawater in incubators at -1.8 °C for 11 months and photographed them every two to

69 three weeks under a compound microscope. Development was slow, as is characteristic of
70 Antarctic ectotherms (Moran et al. 2019). Embryos reached the 2-4 cell stage by d 8 (Figure 2a)
71 and the 8- to 16-cell stage by d 10 (Figure 2b). By d 45 a blastocoel was visible (Figure 2c).
72 Buds of limbs were visible on d 83 (Figure 2d) and became more and more defined throughout
73 the rest of development (Figures 2e and 2f). The first hatched larva was observed on June 28,
74 2022, ~ ~~seven-eight~~ months post-spawn; a major hatching event occurred on July 25; and
75 hatching continued through October ~~2023-2022~~ when the observations were discontinued.

76 Hatched larvae were negatively buoyant and crawled slowly in the dish. Hatchlings had
77 chelicerae and two other pairs of appendages with a spine extending from the scape of each one
78 (Figure 2g, 2h). The morphology of hatched larvae of *C. megalonyx* aligned with previous
79 descriptions of larvae of other species that were categorized as “typical protonymphons” (Bain
80 2003), and the small egg size and larval morphology were both consistent with the “Type I”
81 pycnogonid larva of Brenneis et al. (Brenneis et al. 2017). This particular combination of egg
82 size and larval morphology pattern is commonly associated with benthic and ectoparasitic
83 development and is prevalent among various sea spider families; notably, Type I larvae are
84 widely distributed within the Pycnogonida and are regarded as the probable ancestral mode for
85 modern pycnogonids (Brenneis et al. 2017).

86 For the second lab event, we left the eggs in place in the sea table so we could observe
87 and film adult behavior around the mass. One adult from the mating group remained on or close
88 to the egg mass for almost three days after the eggs were produced, appearing to groom and
89 manipulate the mass with its ovigers, proboscis, and palps (video link: <https://www.usap-dc.org/view/dataset/601716>, *Colossendeis_behavior_around_egg_mass.mp4*). During this
90 grooming period the mass became compacted and firmly attached to the rock. We think the adult
91

92 that tended the mass was male, and potentially the father, because it was one of the upper
93 animals from the mating stack and because microscopic examination of cross-sections of the
94 adult's lower leg segments did not show the egg storage tissueoocytes or the tissue of the
95 vitellaria as is characteristic of female colossendeids (Alexeeva 2021). Post-spawning care of
96 non-brooded embryos in the Colossendeidae is an exciting finding because it may represent an
97 evolutionarily intermediate strategy between free-spawning and the paternal brooding exhibited
98 by most other groups of sea spiders. Our observations of mating stacks of more than two
99 individuals also raise interesting questions about the potential for male competition for
100 fertilization in colossendeids, though more detailed observations and identification of the sex of
101 individuals in mating groups are needed before these ideas can be tested.

102 The second egg mass remained firmly attached to the substrate through February 2022
103 when the seawater system was shut down. At this time, it was overgrown with diatoms and
104 extremely cryptic, though developing embryos could be seen with a stereo microscope. In
105 contrast, the first mass, which was removed from the sea table soon after spawning, did not
106 become compacted or attached. Males of other pycnogonids use secretions from cement glands
107 on their femurs to glue eggs to their ovigerous legs (Arnaud and Bamber 1988, Bain and
108 Govedich 2004), and our observations suggest that adult colossendeids may use chemical or
109 mechanical manipulation to glue their egg masses to the substrate. Brenneis & Wagner (2023)
110 also suggested a role for the ovigerous legs in egg manipulation of a colossendeid. Cement
111 glands are generally considered to be absent in the Colossendeidae (Child 1995, Arango and
112 Wheeler 2007); however, almost 150 years ago Hoek (1881), reporting on the specimens
113 collected by the Challenger expedition, described what he suspected were cement glands in C.
114 *megalonyx*. Hoek's (1881) description, along with our observations, mean that the assumption

115 that colossendeids as a family lack cement glands bears reexamination. Together, the
116 observations that (1) development is benthic, (2) hatchlings are negatively buoyant and do not
117 swim, and (3) hatchling morphology is consistent with an ectoparasitic lifestyle, suggest that
118 larvae of *C. megalonyx* have limited potential for long-distance planktonic dispersal.

119 It seems likely that the family Colossendeidae as a whole are non-brooders, in part
120 because no brooding colossendeid has ever been observed but also because sea spiders that brood
121 have conspicuous sexual dimorphism while colossendeids do not (Staples 2007, Sabroux et al.
122 2023). Likewise, the ovigerous legs of both male and female colossendeids are highly
123 specialized for cleaning the cuticle, rather than being modified in males for egg-carrying as in
124 many known brooders (Arnaud and Bamber 1988). Does non-brooded development represent an
125 evolutionary loss by the colossendeids, or could it be the ancestral state from which paternal
126 brooding evolved in modern sea spiders? Phylogenetic evidence suggests that across a wide
127 range of taxa, brooding evolves from non-brooding far more often than the other way around
128 (e.g. (Calloway 1988), (Furness and Capellini 2019), (Gillespie and McClintock 2007)).
129 Unfortunately, the reproduction of two other families of sea spiders, the Rhynchothoracidae and
130 the Austrodecidae, is still a mystery; likewise, current phylogenies of the Pycnogonida are not
131 particularly useful for answering deep evolutionary questions because there is considerable
132 uncertainty about the relationships among families (Sabroux et al. 2023). Nevertheless, our
133 observations provide a first detailed look at the egg handling behaviors, embryology, and larval
134 development of the largest and most conspicuous of the sea spiders, and emphasizes the
135 importance of field and laboratory observations for understanding the biology and natural history
136 of these extraordinary animals.

137

138 **ACKNOWLEDGEMENTS**

139 We thank the United States Antarctic Program ASC staff for invaluable help with fieldwork,
140 logistics, and laboratory work in 2019 and 2021. Special thanks go to J. Webber for maintaining
141 and photographing larval cultures after the science team redeployed and to R. Robbins for
142 permission to use the photo in Figure 1C. This project was supported by NSF-OPP-1745130 to
143 A. Moran.

144 **CONFLICTS OF INTEREST STATEMENT**

145 The authors declare no conflicts of interest.

146 **LITERATURE CITED**

147 Alexeeva, N. V. 2021. The morphology and some data on the anatomy of pycnogonids of the
148 family Colossendeidae. *Russian Journal of Marine Biology* 47:440–450.

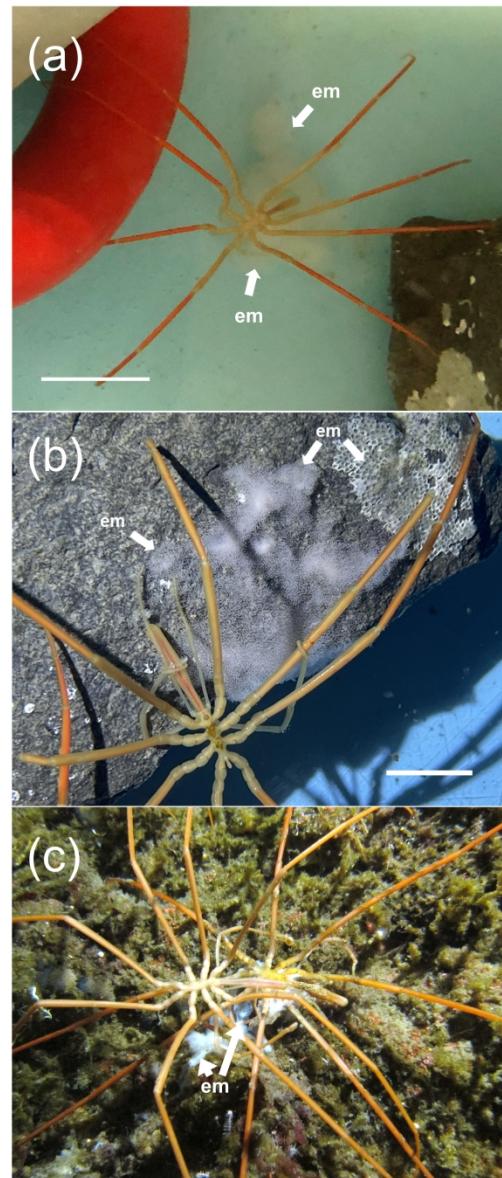
149 Arango, C. P. 2002. Morphological and molecular phylogenetic analysis of the sea spiders
150 (Arthropoda, Pycnogonida) and taxonomic study of tropical Australian forms. *James Cook*
151 *University*.

152 Arango, C., and W. C. Wheeler. 2007. Phylogeny of the sea spiders (Arthropoda, Pycnogonida)
153 based on direct optimization of six loci and morphology. *Cladistics* 23:255–293.

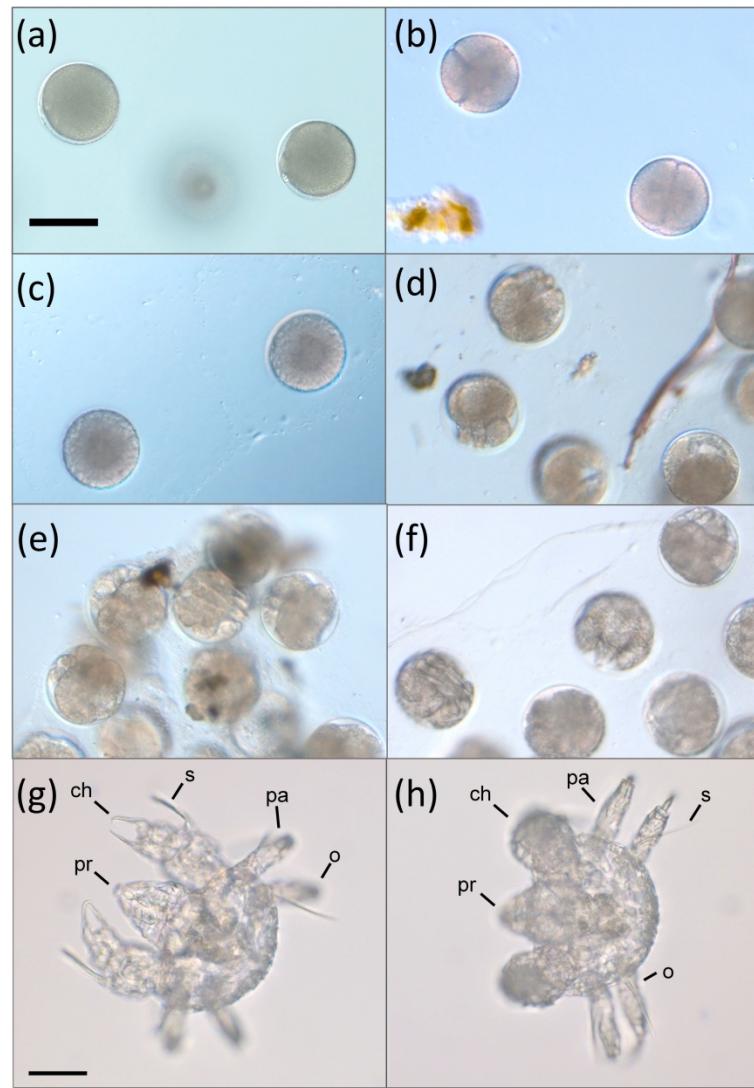
154 Arnaud, F., and R. N. Bamber. 1988. The Biology of Pycnogonida. Pages 1–96 *Advances in*
155 *Marine Biology*. Elsevier.

156 Bain, B. A. 2003. Larval types and a summary of postembryonic development within the
157 pycnogonids. *Invertebrate Reproduction & Development* 43:193–222.

- 158 Bain, B., and F. Govedich. 2004. Courtship and mating behavior in the Pycnogonida
159 (Chelicerata: Class Pycnogonida): A summary. Invertebrate Reproduction & Development
160 46:63–79.
- 161 Brenneis, G., E. V. Bogomolova, C. P. Arango, and F. Krapp. 2017. From egg to “no-body”: an
162 overview and revision of developmental pathways in the ancient arthropod lineage Pycnogonida.
163 Frontiers in Zoology 14:6.
- 164 Brenneis, G., and D. Wagner. 2023. Mating observation of giant sea spiders (Pycnogonida:
165 Colossendeidae). Marine Biodiversity 53:45.
- 166 Brueggeman, P. 1998, most recent update 2023. Underwater field guide to Ross Island &
167 McMurdo Sound, Antarctica, volume 5: Arthropoda. n.p.
- 168 Calloway, C. 1988. Brooding in the Bivalvia (Mollusca). Harvard University, Cambridge.
- 169 Cavanna, G. 1877. Studi e ricerche sui picnogonidi Parte 1 Anatomia e biologia.
- 170 Child, C. A. 1995. Antarctic and Subantarctic Pycnogonida III. The Family Nymphonidae. Pages
171 1–68 Antarctic and Subantarctic Pycnogonida: Nymphonidae, Colossendeidae,
172 Rhynchothoraxidae, Pycnogonidae, Endeidae, and Callipallenidae. American Geophysical
173 Union (AGU).
- 174 Dietz, L., C. P. Arango, J. S. Dömel, K. M. Halanych, A. M. Harder, C. Held, A. R. Mahon, C.
175 Mayer, R. R. Melzer, G. W. Rouse, A. Weis, N. G. Wilson, and F. Leese. 2015. Regional
176 differentiation and extensive hybridization between mitochondrial clades of the Southern Ocean
177 giant sea spider *Colossendeis megalonyx*. Royal Society Open Science 2:140424.


- 178 Furness, A. I., and I. Capellini. 2019. The evolution of parental care diversity in amphibians.
- 179 *Nature Communications* 10:4709.
- 180 Gillespie, J. M., and J. B. McClintock. 2007. Brooding in echinoderms: How can modern
- 181 experimental techniques add to our historical perspective? *Journal of Experimental Marine*
- 182 *Biology and Ecology* 342:191–201.
- 183 Goldberg, R. L., P. A. Downing, A. S. Griffin, and J. P. Green. 2020. The costs and benefits of
- 184 paternal care in fish: a meta-analysis. *Proceedings of the Royal Society B: Biological Sciences*
- 185 287:20201759.
- 186 Hoek, P. P. C. 1881. Report on the Pycnogonida, dredged by H.M.S. Challenger during the years
- 187 1873-76. Report on the scientific results of the voyage of H.M.S. Challenger during the years
- 188 1873-76 3:1–167.
- 189 Moran, A. L., M. G. Harasewych, B. A. Miller, H. A. Woods, B. W. Tobalske, and P. B. Marko.
- 190 2019. Extraordinarily long development of the Antarctic gastropod *Antarctodomus thielei*
- 191 (Neogastropoda: Buccinoidea). *Journal of Molluscan Studies* 85:319–326.
- 192 Moran, A. L., and H. A. Woods. 2012. Why might they be giants? Towards an understanding of
- 193 polar gigantism. *Journal of Experimental Biology* 215:1995–2002.
- 194 Sabroux, R., L. Corbari, and A. Hassanin. 2023. Phylogeny of sea spiders (Arthropoda:
- 195 Pycnogonida) inferred from mitochondrial genome and 18S ribosomal RNA gene sequences.
- 196 *Molecular Phylogenetics and Evolution* 182:107726.
- 197 Shishido, C. M., H. A. Woods, S. J. Lane, M. W. A. Toh, B. W. Tobalske, and A. L. Moran.
- 198 2019. Polar gigantism and the oxygen–temperature hypothesis: a test of upper thermal limits to

- 199 body size in Antarctic pycnogonids. Proceedings of the Royal Society B: Biological Sciences
200 286:20190124.
- 201 Staples, D. A. 2007. A new species of Colossendeis (Pycnogonida: Colossendeidae) together
202 with records from Australian and New Zealand waters. Memoirs of Museum Victoria 64:79–94.
- 203 Tallamy, D. W. 2001. Evolution of exclusive paternal care in arthropods. Annual Review of
204 Entomology 46:139–165.


205 **FIGURE CAPTIONS**

206 Figure 1. a. First egg mass of *C. megalonyx* observed in the laboratory, with adult standing amid
207 the gel cloud. b. Second egg mass observed in the lab, partially consolidated onto the rock, with
208 adult standing over it. The mass extends from the proboscis of the adult to approx. half-way
209 across the bryozoan colony in the upper right of the figure. c. Two adults of *C. megalonyx* in the
210 field in mating posture, with eggs underneath. em = egg mass. Scale bars = 3 cm (a), 2 cm (b). a,
211 b, taken in the Crary Laboratory at McMurdo Station, Antarctica, on 10/25/21 and 10/29/21,
212 respectively. c, taken by R. Robbins at the Cziko Seamount dive site, McMurdo Sound,
213 Antarctica, on November 15, 2022 and used with permission.

214 Figure 2. Embryos and hatched larvae of *C. megalonyx*. a. Eggs. b. 2-4 cell embryos, 8 d after
215 spawning. c. Blastulae, 45 d post-spawning. d. Five months after spawning, showing limb buds.
216 e. Six months post-spawning. f. Unhatched individuals eight months after spawning. g & h,
217 newly hatched larvae. pr = proboscis, ch = chelicera, pa = palp, o = oviger, s = spine. Scale bar in
218 a-f = 100 μ m; scale bar in g,h = 50 μ m. Photos in e-g taken by J. Webber at McMurdo Station,
219 Antarctica and used with permission.

181x242mm (600 x 600 DPI)

165x220mm (600 x 600 DPI)