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Abstract
We present an adjoint-based optimization method to invert for stress

and frictional parameters used in earthquake modeling. The forward
problem is linear elastodynamics with nonlinear rate-and-state frictional
faults. The misfit functional quantifies the difference between simulated
and measured particle displacements or velocities at receiver locations.
The misfit may include windowing or filtering operators. We derive the
corresponding adjoint problem, which is linear elasticity with linearized
rate-and-state friction and, for forward problems involving fault normal
stress changes, nonzero fault opening, with time-dependent coefficients
derived from the forward solution. The gradient of the misfit is effi-
ciently computed by convolving forward and adjoint variables on the
fault. The method thus extends the framework of full-waveform inver-
sion to include frictional faults with rate-and-state friction. In addition,
we present a space-time dual-consistent discretization of a dynamic rup-
ture problem with a rough fault in antiplane shear, using high-order ac-
curate summation-by-parts finite differences in combination with explicit
Runge–Kutta time integration. The dual consistency of the discretization
ensures that the discrete adjoint-based gradient is the exact gradient of
the discrete misfit functional as well as a consistent approximation of the
continuous gradient. Our theoretical results are corroborated by inver-
sions with synthetic data. We anticipate that adjoint-based inversion of
seismic and/or geodetic data will be a powerful tool for studying earth-
quake source processes; it can also be used to interpret laboratory friction
experiments.

1 Introduction

Earthquake cycle and dynamic rupture simulations with fault dynamics gov-
erned by rate-and-state friction have emerged as promising tools to better under-
stand the processes governing earthquake nucleation and seismicity. Dynamic
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source models are complementary to kinematic source models that express the
seismic wavefield and solid displacements through a convolution of the speci-
fied space-time history of slip with elastic Green’s functions. Kinematic models
are widely used in slip inversions, which can be set up as linear least squares
problems due to the linear relation between slip and the wavefield. However,
kinematic inversions only reveal how faults slip, but not why they slip in a
certain way. Furthermore, the solutions to the inverse problem can violate cer-
tain physical constraints, such as dissipation rather than creation of mechanical
energy during frictional sliding. Dynamic source models go beyond kinematic
source models through the introduction of friction laws that are based on lab-
oratory experiments. These friction laws involve nonlinear relations between
fault shear and normal tractions, slip velocity, and one or more state variables
that capture the dependence of frictional strength on the slip history of the
interface. After specification of the initial stresses and frictional parameters,
dynamic rupture and earthquake cycle models provide both the slip history and
wavefield (or quasi-static solid displacement field) as part of the solution to the
nonlinear problem. Connecting cycle and dynamic rupture simulations to real
data permits determination of the stresses and frictional parameters, which are
otherwise difficult or impossible to constrain. This requires augmenting dynamic
source models with inversion capabilities. The inversion is a PDE-constrained
optimization problem where we seek parameter values that minimize the misfit
between model output and data. We propose a gradient-based optimization
where the gradient of the misfit is computed with only two simulations: one
of the forward problem and one of the adjoint problem. Gradient-based opti-
mization with the adjoint method is the preferred approach in full waveform
inversions (FWI) in seismic tomography and reflection seismology Tromp et al.
[2005], Fichtner [2011], Virieux and Operto [2009].

To date, dynamic rupture inversions have been done either by grid-search
algorithms or Bayesian methods that require running thousands to order of
a million forward models Peyrat and Olsen [2004], Gallovič et al. [2019a,b],
Premus et al. [2022]. Friction inversion for earthquake cycle models has been
posed as a sequential data assimilation problem that is solved, for example, using
the ensemble Kalman filter van Dinther et al. [2019], Hirahara and Nishikiori
[2019]. Frictional properties are treated as part of the state vector and updated
in time. However, these parameters should not be time-dependent and we seek
an alternative formulation that respects this.

In this work, we present an adjoint-based optimization framework for in-
verting rate-and-state frictional parameters and initial stresses from geodetic
and seismic observations. The method presented in this work extends FWI
to include nonlinear rate-and-state friction laws. Similar to FWI, the adjoint
equations are the same linear elasticity equations as the forward equations, but
with fault dynamics governed by what resembles linearized rate-and-state fric-
tion and, for forward problems involving fault normal stress changes, a nonzero
fault opening condition. The adjoint friction law, state evolution equation, and
the opening condition include time-dependent coefficients that are functions of
slip velocity, state, and normal stress from the forward problem. The frame-

2



work is presented for dynamic elasticity but may be straightforwardly adapted
to quasi-static or quasi-dynamic settings, to be used in earthquake cycle or
aseismic slip simulations. We note that a special case of this method has been
derived for quasi-dynamic cycle models, for the spatially discretized problem
with a boundary element discretization of the linear elastic slip-stress change
relation, by Kano et al. Kano et al. [2013, 2015, 2020]. We also draw attention
to new work exploring the use of physics-informed neural networks (PINNs) for
inversion of rate-and-state friction parameters Rucker and Erickson [2024]. Ad-
ditionally, FWI has been applied to seismic source inversion in, e. g. , Sjögreen
and Petersson [2014], with seismic sources modeled as point moment tensor
forcings in the elastic wave equation.

To demonstrate the adjoint-based optimization framework we consider a 2D
dynamic rupture problem with a rough fault in antiplane shear, discretized us-
ing finite difference methods and explicit Runge–Kutta time stepping methods.
High-order finite difference methods satisfying a summation-by-parts (SBP)
property have successfully been applied to linear elasticity with rate-and-state
friction in e. g. , Kozdon et al. [2013], Erickson and Dunham [2014], O’Reilly
et al. [2015], Duru and Dunham [2016], Duru et al. [2019], Harvey et al. [2023],
and extended to poro- and viscoelasticity in Torberntsson et al. [2018], Allison
and Dunham [2018], Heimisson et al. [2019]. In this work, we utilize the recently
developed boundary-optimized second derivative operators of Stiernström et al.
[2023], providing increased accuracy for problems where boundary or interface
effects are of particular importance. The operators are combined with the non-
stiff interface treatment based on characteristic variables presented in Erickson
et al. [2022]. The fault interface conditions are imposed weakly, using simultane-
ous approximation terms (SAT). The resulting spatial SBP-SAT discretization
allows for efficient time integration by means of explicit methods. We prove that
the SBP-SAT discretization of the misfit functional and forward problem is dual
consistent Pierce and Giles [2000], Hartmann [2007], Berg and Nordström [2012],
Hicken and Zingg [2014], Ghasemi Zinatabadi [2019], meaning that in deriving
the semi-discrete adjoint equations one obtains a consistent discretization of
the continuous adjoint problem. As a result, the gradient of the semi-discrete
problem is the exact gradient (to machine precision) of the semi-discrete mis-
fit functional as well as a consistent approximation of the continuous gradient.
Obtaining an exact gradient to the discrete misfit is beneficial from a numerical
point of view, since discretization errors present in the gradient otherwise may
negatively affect the convergence of the optimization algorithm Giles and Pierce
[2000], especially when simulations are carried out on marginally resolved grids.
That the characteristics-based SAT of Erickson et al. [2022], when paired with
an SBP discretization, yields a dual-consistent scheme is to our knowledge a new
result. We extend dual consistency to the fully discrete problem by employing
the standard fourth-order Runge–Kutta time stepping and using the associated
Runge–Kutta quadrature to discretize the time integral in the misfit functional
Sanz-Serna [2016]. While our discretization is based on SBP finite differences,
dual consistency should straightforwardly extend to other methods satisfying
SBP or corresponding discrete integration-by-parts properties. This includes
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discontinuous- and continuous finite element methods as well as finite volume
methods.

Our theoretical findings are corroborated by a series of numerical experi-
ments on model problems using synthetic data. First, the discrete adjoint-based
gradient is compared to a brute-force finite-difference approximation of the gra-
dient. Second, we perform inversions for frictional parameters in an inverse
crime setting, as well as using high-resolution synthetic data, demonstrating
the capabilities of the method.

The article is developed as follows: In Section 2 we establish the notation
used in the continuous and discrete analysis. In Section 3 the equations of lin-
ear elasticity and rate-and-state friction are presented. In Section 4 the inverse
problem is formulated as a PDE-constrained optimization problem. The adjoint-
based gradient of the misfit functional is derived in Section 5. We demonstrate
how filtered and windowed residuals in particle displacement and velocity en-
ter the adjoint equations and discuss well-posedness of the forward and adjoint
problem. In Section 6 we present the dual-consistent SBP-SAT discretization
for dynamic rupture simulations in antiplane shear and use it to invert syn-
thetic data, demonstrating that the method indeed is capable of reconstructing
frictional parameters. Finally, the article is concluded in Section 7.

2 Notation

2.1 Integrals, inner products and index notation

The L2-inner product for scalar functions u, v on Ω is denoted

(u, v)Ω :=

∫
Ω

uvdΩ. (2.1)

Similarly, define the bilinear form for integrating over a surface Γ ∈ ∂Ω as

(u, v)Γ :=

∫
Γ

uvdΓ. (2.2)

The same notation is used when integrating over a space-time domain, i. e. , for
the domain Ω× T with T = [0, T ], we write

(u, v)Ω×T :=

∫ T

0

(u, v)Ω dt, (2.3)

and correspondingly for (u, v)Γ×T .

Vector-valued functions are denoted with a bar, e. g. , ū = [uI ]
d
I=1 where d =

dim(Ω). Throughout the article, we will make use of index notation. Here the
Einstein summation convention is applied to sum over repeated indices I, J,K,L
used to denote spatial components. For instance, (2.3) is extended to vector-
valued functions ū and v̄ as

(uI , vI)Ω×T :=
d∑

I=1

(uI , vI)Ω×T = (ū, v̄)Ω×T . (2.4)
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Furthermore, we will use the notation ∂I := ∂
∂xI

, and the summation conven-
tion then applies to derivatives. For instance, the variable coefficient Laplace
operator is ∂Iµ∂I . In a few places we make use of mixed index and vector no-
tation. For instance, fI(ū), means that the Ith component of the vector-valued
function f̄ is a function of the components of ū.

2.2 Grid functions and discrete operators

Boldface symbols will be used to denote discrete quantities, e. g. , the discrete
grid function approximating the function u(x̄), x̄ ∈ Ω is denoted u and is de-
fined on the grid Ω. Similarly, vector-valued grid functions are denoted with
a bar, e. g. , the grid function restriction of ū is denoted ū. Scalar functions
acting as diagonal operators are denoted with double bars, e. g. , the operator
approximating f(x̄) is ¯̄f := diag(f).

H with appropriate subscripts will be used to denote quadrature rules. For
instance, a quadrature on Ω is denoted HΩ. The notation for inner products is
analogous to the continuous setting. For instance

(u,v)Ω := uTHΩv. (2.5)

For numerical integration along a boundary grid segment Γ, we first introduce
the boundary restriction operators eTΓ , where eTΓu ≈ u(x̄), x̄ ∈ Γ. A discrete
bilinear form approximating (2.2) is then defined as

(u,v)Γ := (eTΓu)
THΓ(e

T
Γv), (2.6)

where HΓ is a quadrature rule on Γ. A bilinear form over the entire boundary
grid ∂Ω is defined by summing over all boundary grid segments, i. e. ,

(u,v)∂Ω :=
∑

Γ⊂∂Ω

(u,v)Γ . (2.7)

In a semi-discrete setting, where time is left continuous, we will also use semi-

discrete inner products, e. g. , (u,v)Ω×T :=
∫ T

0
uTHΩvdt. The summation

convention for I, J,K,L also applies to discrete relations. For instance, for
vector-valued grid functions v̄ and ū the extension of (2.5) is

(uI ,vI)Ω :=
d∑

I=1

(uI ,vI)Ω . (2.8)

3 Linear elasticity with rate-and-state friction

Consider a linear elastic medium Ω = Ω− ∪ Ω+, separated by a frictional fault
Γ = Ω− ∩ Ω+. Let ū denote the displacement vector. From Hooke’s law, the
changes in the stress tensor σ and traction vector T̄ for elastic deformations
about a prestressed reference configuration are

σIJ :=CIJKL∂KuL, (3.1)
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and
TJ :=nIσIJ , (3.2)

where n̄ denotes the outward unit normal and CIJKL is the elastic stiffness
tensor. (We note that these stress changes are sometimes denoted as ∆σIJ .)
Henceforth, superscripts + and − will be used to distinguish between fields on
the + and − sides of the fault. The change in shear traction on the − side of
the fault is the projection of T̄− onto the fault plane, given by

τ̄ :=T̄− − (n̄− · T̄−)n̄−, (3.3)

while the change in compressive normal stress is

σn:=− n̄− · T̄−. (3.4)

We denote the the jump in particle velocity across the fault by

[[ ˙̄u]] := ˙̄u+ − ˙̄u− = Vnn̄
− + V̄ , (3.5)

where the opening velocity Vn and the slip velocity V̄ are defined as the normal
component of [[ ˙̄u]] and the projection of [[ ˙̄u]] onto the fault plane, respectively,
i. e. ,

Vn := n̄− · [[ ˙̄u]], (3.6)

V̄ := [[ ˙̄u]]− Vnn̄
−. (3.7)

Exploiting linearity of the elasticity equations, the total stress on the fault is
the sum of prestress, assumed to be in equilibrium with any external loading, and
changes in stress due to the displacement ū. Denoting the initial compressive
normal stress as σ0

n, the total compressive normal stress is

σtot
n := σ0

n + σn. (3.8)

The total shear traction vector is

τ̄ tot := τ̄0 + τ̄ − ηV̄ , (3.9)

where τ̄0 is the initial shear traction and ηV̄ is the radiation damping term.
The radiation damping term is only used in quasi-dynamic models, where the
coefficient η is the impedance of shear waves radiating away from the fault Rice
[1993]. In the fully dynamic setting, η is set to zero. Although we only perform
experiments with η = 0 in this paper, we include the radiation damping term
in the derivation for completeness.

Force balance across the fault and the condition of no opening or interpen-
etration of the fault walls are stated as

T̄+ = −T̄−, (3.10)

Vn= 0. (3.11)
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The force balance condition (3.10) is what permits the simplified notation in
(3.8) - (3.9), where τ̄ tot and σtot

n , without superscripts + or −, are used to
represent values for shear and normal tractions on the two sides of the fault.
We also restrict attention to problems where σtot

n remains compressive. A more
general problem formulation would allow for fault opening and the transition
to traction-free fault walls when constraining the fault against opening would
lead to tensile σtot

n . This requires enforcing inequality constraints Day et al.
[2005]. It is more common in earthquake modeling to always enforce the no
opening condition, but then to handle tensile normal stresses by setting σtot

n

to zero when evaluating frictional strength Harris et al. [2009, 2018], Erickson
et al. [2023].

Equating shear traction with frictional shear strength yields

τ̄ tot = σtot
n f

V̄

|V̄ |
, (3.12)

where f is the friction coefficient. In this work, we consider rate- and state-
dependent friction coefficients f(|V̄ |,Ψ), where the dimensionless state variable
Ψ is a measure of the interface contact strength related to the past history of
sliding Dieterich [1979], Rice and Ruina [1983], Ruina [1983]. Solving (3.9) and
(3.12) for τ̄ and using tangential components of (3.10) leads to the rate-and-
state friction law, given by

τ̄ = F̄ (V̄ ,Ψ, σn) :=
(
σ0
n + σn

)
f(|V̄ |,Ψ)

V̄

|V̄ |
− τ̄0 + ηV̄ . (3.13)

Note that τ̄ , V̄ and F̄ are three-component vectors. However, since τ̄ and V̄ are
coplanar, one of the three equations implied by τ̄ = F̄ is 0 = 0, and the third
interface condition is given by the no opening condition (3.11).

The state variable Ψ is in turn governed by a state evolution equation

Ψ̇ = G(V̄ ,Ψ, σn, σ̇n). (3.14)

The rate-and-state friction coefficient f(|V̄ |,Ψ) and state evolution equation
G(V̄ ,Ψ, σn, σ̇n) are empirical laws obtained from laboratory experiments Di-
eterich [1979], Linker and Dieterich [1992], Rice and Ruina [1983], Marone
[1998]. They contain parameters which can be difficult to constrain at depths
that are inaccessible to drilling. Even if laboratory friction experiments are
performed on core samples from drilling, the relation between experimental
parameter values and parameter values relevant for large-scale slip remains un-
clear. Examples of such parameters are the direct effect parameter a and the
state evolution parameter b, which we define in a later section. Their differ-
ence, a− b, determines if friction increases or decreases with slip velocity, which
controls the stability of sliding and the possibility of unstable rupture. These
parameters may be spatially variable along the fault, but are time-independent.

We are now ready to state the forward problem. Let Q̄(x̄, t) denote external
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forcings. The governing equations of the forward problem are given by

ρüJ = ∂ICIJKL∂KuL +QJ , x̄ ∈ Ω, t ∈ T ,

ū = ū0, ˙̄u = v̄0, x̄ ∈ Ω, t = 0,

Lū = ḡ, x̄ ∈ ∂Ω, t ∈ T ,

Vn = 0, x̄ ∈ Γ, t ∈ T ,

T̄+ = −T̄−, x̄ ∈ Γ, t ∈ T ,

τ̄ = F̄ (V̄ ,Ψ, σn), x̄ ∈ Γ, t ∈ T ,

Ψ̇ = G(V̄ ,Ψ, σn, σ̇n), x̄ ∈ Γ, t ∈ T ,

Ψ = Ψ0, x̄ ∈ Γ, t = 0,

(3.15)

where the first equation is the momentum balance equation with Hooke’s law
used to replace stress with spatial derivatives of displacement, ū0 and v̄0 are
initial data, and Lū = ḡ(x̄, t) denotes boundary conditions on exterior bound-
aries, for a boundary operator L. The data ū0, v̄0, and ḡ are assumed to be
independent of frictional parameters or initial stress that we later invert for. We
will consider L such that for homogeneous boundary data ḡ = 0̄, the boundary
conditions are of the form

TJ = −αJLu̇L, (3.16)

where αJL = αLJ is positive semi-definite. Note that this includes traction-
free conditions (αJL = 0), rigid-wall conditions (αJL → ∞), and characteristic
non-reflecting conditions Petersson and Sjögreen [2009]. Again, we emphasize
that the friction law τ̄ = F̄ constitutes two equations, such that there is no
overspecification of the fault interface conditions.

4 The inverse problem

Now consider Nrec receivers positioned at x̄ = x̄
(k)
r , k = 1, . . . , Nrec, each with

a time series of measurements m̄
(k)
data(t) of either particle displacements (m̄ = ū)

or velocities (m̄ = ˙̄u). We seek parameter values that minimize the residual
r̄, defined as the difference between model predictions at the receiver locations
(obtained by solving (3.15)) and the measured data, i. e. ,

r̄(k)(t) = m̄(x̄(k)
r , t)− m̄

(k)
data(t). (4.1)

In practice, the residual is often filtered or windowed. We therefore consider
applying linear operators W (k) to obtain the adjusted residuals

R̄(k)(t) = W (k)
[
r̄(k)

]
(t). (4.2)

The notation W (k)
[
r̄(k)

]
means that the linear operator W (k) acts on r̄(k). The

result is the time-dependent adjusted residual. We define the misfit functional
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F as the sum of the L2-norms of the adjusted residuals:

F =
1

2

Nrec∑
k=1

T∫
0

|R̄(k)(t)|2 dt. (4.3)

Weighting of the different terms can be included in the W (k) operator.
For a model parameter p in (3.15), the inverse problem is the PDE-constrained

optimization problem given by

min
p

F subject to (3.15). (4.4)

In this work, we particularly consider the case where p(x̄), x̄ ∈ Γ is a spatially
variable parameter in the rate-and-state friction coefficient f in (3.13) and/or
state evolution equation G in (3.14) (e. g. , the direct effect parameter a). Addi-
tionally, p may also represent initial stresses τ̄0 and σ0

n in (3.13) or initial state
Ψ0. To solve (4.4) using gradient-based optimization algorithms, the misfit gra-
dient δF

δp is required, where δ
δp denotes the functional derivative with respect

to p. However, taking the functional derivative of (4.3) directly requires com-
puting δm̄

δp (see Section 5.2). In a discrete setting, where p is represented by
N degrees of freedom, even the simplest first-order difference approximation of
δF
δp would require (3.15) to be solved numerically N +1 times. This is of course
not feasible for large-scale 3D computations. We therefore seek an alternative
expression through the adjoint-state framework.

5 Adjoint equations and misfit gradient

We begin this section by presenting the adjoint equations and the adjoint-based
gradient of the misfit (4.3) in the form of a theorem. To this end, introduce the
following adjoint variables:

ū† (adjoint displacement),

Ψ† (adjoint state variable),

V †
n := −n̄− · [[ ˙̄u†]] (adjoint opening velocity),

V̄ † := −[[ ˙̄u†]]− V †
n n̄

− (adjoint slip velocity),

T †
J := nICIJKL∂Ku†

L (adjoint traction),

τ̄ † := T̄ †− − (n̄− · T̄ †−)n̄− (adjoint shear traction),

σ†
n := −n̄− · T̄ †− (adjoint normal stress).

(5.1)

The negative signs in V †
n and V̄ † are for notational convenience. As shortly

explained, the adjoint problem will later be phrased in reversed time in which
case V †

n and V̄ † are defined analogously to (3.6)-(3.7). Furthermore, let Q̄†(x̄, t)
be the adjoint source term. It consists of the residuals (4.2) acting as point
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forces at the receiver locations. For a complete description, see Section 5.2. For
now, it is sufficient that Q̄† satisfies the relation(

Q†
J ,

δu̇J

δp

)
Ω×T

=
δF
δp

. (5.2)

We now define the adjoint equations to the inverse problem (4.4) as

ρü†
J = ∂ICIJKL∂Ku†

L +Q†
J , x̄ ∈ Ω, t ∈ T ,

ū† = 0̄, ˙̄u† = 0̄, x̄ ∈ Ω, t = T,

L†ū† = 0, x̄ ∈ ∂Ω, t ∈ T ,

V †
n = H†(V̄ †,Ψ†), x̄ ∈ Γ, t ∈ T ,

T̄ †+ = −T̄ †−, x̄ ∈ Γ, t ∈ T ,

τ̄ † = F̄ †(V̄ †,Ψ†), x̄ ∈ Γ, t ∈ T ,

−Ψ̇† = G†(V̄ †,Ψ†), x̄ ∈ Γ, t ∈ T ,

Ψ† = 0, x̄ ∈ Γ, t = T.

(5.3)

The functions F †, G†, and H† are linear in their arguments. They govern the
fault dynamics of the adjoint problem and are discussed in more detail below.
The adjoint problem is equipped with terminal conditions (imposed at time
t = T ) and is naturally solved in reversed time. It is common to introduce
the change of variables t† = T − t. We utilize this when discretizing (5.3) (see
Section 6.3). Here, for notational convenience, we keep the original time t in the
derivation of the adjoint-based gradient. Note that ∂

∂t = − ∂
∂t†

, and therefore

−Ψ̇† =
∂Ψ†

∂t†
, −[[ ˙̄u†]] =

∂

∂t†
[[ū†]]. (5.4)

Notably, the boundary operator is self-adjoint in reversed time, i. e. , L† = L,
and the adjoint boundary conditions can be formulated as

T †
J = αJLu̇

†
L = −αJL

∂u†
L

∂t†
, (5.5)

(cf. (3.16)). As mentioned in Section 3, (5.5) includes rigid-wall, traction-free,
and characteristic non-reflecting conditions. The relations (5.4) - (5.5) show
that the adjoint problem (5.3), when considered in reversed time, is of the same
form as the forward problem (3.15).

The adjoint friction law and state evolution equation in (5.3) are given by

τ †J =F †
J(V̄

†,Ψ†):=
∂FI

∂VJ
V †
I +

∂G

∂VJ
Ψ†, (5.6)

and

−Ψ̇† =G†(V̄ †,Ψ†):=
∂FJ

∂Ψ
V †
J +

∂G

∂Ψ
Ψ†. (5.7)
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Note that (5.6) - (5.7) resemble the equations of linearized rate-and-state fric-
tion. However, the coefficients are time-dependent and are actually functions of
the forward variables, e. g. ∂FI

∂VJ
= ∂FI

∂VJ
(V̄ ,Ψ, σn). Instead of the no opening or

interpenetration condition (3.11) in the forward problem, the adjoint problem
satisfies an equation for nonzero adjoint opening velocity if the forward problem
involves normal stress changes, given by

V †
n = H†(V̄ †,Ψ†)

:=

[
∂G

∂σ̇n

∂FJ

∂Ψ
+

∂FJ

∂σn

]
V †
J +

[
∂G

∂σn
+

∂G

∂σ̇n

∂G

∂Ψ
− d

dt

(
∂G

∂σ̇n

)]
Ψ†.

(5.8)

With the adjoint problem defined, we are ready to state the first major result
of this paper.

Theorem 5.1. Let V̄ †, Ψ†, satisfy (5.3). Further, let p be a parameter in F̄ or
G, and let Ψ0 be the initial state. Then, the gradient of the misfit in the inverse
problem (4.4) is given by

δF
δp

= −
(
V †
J ,

∂FJ

∂p

)
T
−

(
Ψ†,

∂G

∂p

)
T
,

δF
δΨ0

= Ψ†
0,

(5.9)

where Ψ†
0 = Ψ†(t = 0).

Proof. See section 5.1.

5.1 Derivation of the adjoint-based gradient

To prove Theorem 5.1, we formulate the Lagrangian cost functional

L = F +
(
u̇†
J , ρüJ − ∂ICIJKL∂KuL −QJ

)
Ω×T

+
(
Ψ†, Ψ̇−G

)
Γ×T

,
(5.10)

where ū† and Ψ† are solutions to (5.3). Note that for any ū and Ψ satisfy-
ing (3.15), L = F and further δL

δp = δF
δp by the Lagrange multiplier theorem

Tröltzsch [2010]. Also note that we are using adjoint velocity ˙̄u† as a Lagrange
multiplier when forming the cost functional. This choice is explained in a re-
mark at the end of this section. Moreover, since initial- and boundary data
in (3.15) are independent of p we may set ū0 = 0, v̄0 = 0 and ḡ = 0 for the
remaining part of the derivation.

Before considering the first variation δL, we rewrite the cost functional by
performing partial integrations to shift derivatives from ū to ū†. Integrating by
parts in time yields (

u̇†
J , ρüJ

)
Ω×T

= −
(
ρü†

J , u̇J

)
Ω×T

, (5.11)
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where terms at t = 0 and t = T vanish due to the initial and terminal conditions
˙̄u = 0 and ˙̄u† = 0 in (3.15) and (5.3). Next, consider the spatial elastic operator
and integrate by parts in space to obtain

−
(
u̇†
J , ∂ICIJKL∂KuL

)
Ω×T

=−
(
u̇†
J , TJ

)
∂Ω×T

+
(
Ṫ †
J , uJ

)
∂Ω×T

−
(
u̇†+
J , T+

J

)
Γ×T

+
(
Ṫ †+
J , u+

J

)
Γ×T

−
(
u̇†−
J , T−

J

)
Γ×T

+
(
Ṫ †−
J , u−

J

)
Γ×T

−
(
∂ICIJKL∂K u̇†

L, uJ

)
Ω×T

,

(5.12)

where we used the major symmetry of the stiffness tensor: CIJKL = CKLIJ .
Integrating by parts in time leads to(

Ṫ †
J , uJ

)
∂Ω×T

= −
(
T †
J , u̇J

)
∂Ω×T(

Ṫ †±
J , u±

J

)
Γ×T

= −
(
T †±
J , u̇±

J

)
Γ×T

(5.13)

and

−
(
∂ICIJKL∂K u̇†

L, uJ

)
Ω×T

=
(
∂ICIJKL∂Ku†

L, u̇J

)
Ω×T

, (5.14)

where, again, terms at the initial and final times vanish due to the initial and
terminal conditions ū = 0, ū† = 0. We have now derived(

u̇†
J , ρüJ − ∂ICIJKL∂KuL

)
Ω×T

=−
(
ρü†

J − ∂ICIJKL∂Ku†
L, u̇J

)
Ω×T

−
(
u̇†
J , TJ

)
∂Ω×T

−
(
T †
J , u̇J

)
∂Ω×T︸ ︷︷ ︸

BText

−
(
u̇†+
J , T+

J

)
Γ×T

−
(
T †+
J , u̇+

J

)
Γ×T︸ ︷︷ ︸

BT+
fault

−
(
u̇†−
J , T−

J

)
Γ×T

−
(
T †−
J , u̇−

J

)
Γ×T︸ ︷︷ ︸

BT−
fault

.

(5.15)

To simplify this expression, we first note that the exterior boundary terms BText

vanish. To see this, we use that the forward and adjoint boundary conditions
satisfy (3.16) and (5.5), and αJL = αLJ , such that

BText =
(
u̇†
J , αJLu̇L

)
∂Ω×T

−
(
T †
J , u̇J

)
∂Ω×T

=
(
αJLu̇

†
L − T †

J , u̇J

)
∂Ω×T

= 0.
(5.16)
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This naturally holds for self-adjoint boundary operators L = L†. Second, for the
fault terms BT±

fault , we use the forward and adjoint force balances, T̄+ = −T̄−

and T̄ †+ = −T̄ †−, to obtain

BT+
fault +BT−

fault =
(
[[u̇†

J ]], T
−
J

)
Γ×T

+
(
T †−
J , [[u̇J ]]

)
Γ×T

. (5.17)

Next, we decompose tractions and jumps in particle velocity into fault-parallel
and fault-normal components:

[[u̇J ]] = VJ + Vnn
−
J , T−

J = τJ − σnn
−
J ,

−[[u̇†
J ]] = V †

J + V †
nn

−
J , T †−

J = τ †J − σ†
nn

−
J .

(5.18)

Using the decomposition, together with the forward and adjoint friction laws
τJ = FJ and τ †J = F †

J and the no opening condition Vn = 0, allows us to write

BT+
fault +BT−

fault = −
(
V †
J , FJ

)
Γ×T

+
(
F †
J , VJ

)
Γ×T

+
(
V †
n , σn

)
Γ×T . (5.19)

The last term in the Lagrangian cost functional (5.10) containing the state
evolution equation can be rewritten, using integration by parts in time,(

Ψ†, Ψ̇−G
)
Γ×T

= −
(
Ψ̇†,Ψ

)
Γ×T

−
(
Ψ†, G

)
Γ×T +

(
Ψ†

0,Ψ0

)
Γ
, (5.20)

where Ψ†
0,Ψ0 are the state variables at t = 0. The corresponding term at t = T

vanishes due to the terminal condition Ψ(t = T ) = 0 in (5.3). We have derived

L = F −
(
ρü†

J − ∂ICIJKL∂Ku†
L, u̇J

)
Ω×T

−
(
u̇†
J , QJ

)
Ω×T

−
(
V †
J , FJ

)
Γ×T

+
(
F †
J , VJ

)
Γ×T

+
(
V †
n , σn

)
Γ×T

−
(
Ψ̇†,Ψ

)
Γ×T

−
(
Ψ†, G

)
Γ×T +

(
Ψ†

0,Ψ0

)
Γ
.

(5.21)

We are now ready to derive the first variation of L. First, δQJ = 0 since
external forces do not depend on frictional parameters or initial stresses. Second,
by the chain rule,

δFJ =
∂FJ

∂VI
δVI +

∂FJ

∂Ψ
δΨ+

∂FJ

∂σn
δσn+

∂FJ

∂p
δp, (5.22)

δG =
∂G

∂VI
δVI +

∂G

∂Ψ
δΨ+

∂G

∂σn
δσn +

∂G

∂σ̇n
δσ̇n+

∂G

∂p
δp. (5.23)
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The above considerations together with the relation (5.2) lead to

δL =−
(
ρü†

J − ∂ICIJKL∂Ku†
L −Q†

J , δu̇J

)
Ω×T

−
(
V †
J ,

∂FJ

∂VI
δVI +

∂FJ

∂Ψ
δΨ+

∂FJ

∂σn
δσn+

∂FJ

∂p
δp

)
Γ×T

+
(
F †
J , δVJ

)
Γ×T

+
(
V †
n , δσn

)
Γ×T

−
(
Ψ̇†, δΨ

)
Γ×T

−
(
Ψ†,

∂G

∂VI
δVI +

∂G

∂Ψ
δΨ+

∂G

∂σn
δσn +

∂G

∂σ̇n
δσ̇n+

∂G

∂p
δp

)
Γ×T

+
(
Ψ†

0, δΨ0

)
Γ
.

(5.24)
For the term involving δσ̇n, integrating by parts in time yields

−
(
Ψ†,

∂G

∂σ̇n
δσ̇n

)
Γ×T

=

(
∂G

∂σ̇n
Ψ̇† +

d

dt

(
∂G

∂σ̇n

)
Ψ†, δσn

)
Γ×T

, (5.25)

where we used that Ψ†(t = T ) = 0 and δσn(t = 0) = 0 due to the terminal and
initial conditions. Using the adjoint state evolution equation (5.7) to substitute
Ψ̇† yields

−
(
Ψ†,

∂G

∂σ̇n
δσ̇n

)
Γ×T

=

−
(

∂G

∂σ̇n

∂FJ

∂Ψ
V †
J +

[
∂G

∂σ̇n

∂G

∂Ψ
− d

dt

(
∂G

∂σ̇n

)]
Ψ†, δσn

)
Γ×T

.

(5.26)

The volume term in (5.24) vanishes due to the adjoint momentum balance
in (5.3). Gathering the remaining terms leads to

δL =

(
F †
J − ∂FI

∂VJ
V †
I − ∂G

∂VJ
Ψ†, δVJ

)
Γ×T

−
(
Ψ̇† +

∂FJ

∂Ψ
V †
J +

∂G

∂Ψ
Ψ†, δΨ

)
Γ×T

+

(
V †
n −

[
∂G

∂σ̇n

∂FJ

∂Ψ
+

∂FJ

∂σn

]
V †
J −

[
∂G

∂σn
+

∂G

∂σ̇n

∂G

∂Ψ
− d

dt

(
∂G

∂σ̇n

)]
Ψ†, δσn

)
Γ×T

−
(
Ψ†,

∂G

∂p
δp

)
Γ×T

−
(
V †
J ,

∂FJ

∂p
δp

)
Γ×T

+
(
Ψ†

0, δΨ0

)
Γ
.

(5.27)
The first two terms vanish due to the adjoint friction law (5.6) and state evo-
lution equation (5.7), while the third term vanishes due to the adjoint opening
equation (5.8). We have arrived at

δL = −
(
Ψ†,

∂G

∂p
δp

)
Γ×T

−
(
V †
J ,

∂FJ

∂p
δp

)
Γ×T

+
(
Ψ†

0, δΨ0

)
Γ
. (5.28)
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Since δF
δp = δL

δp and δ
δp (v, wδp)Γ×T = (v, w)T , (5.9) follows. This proves Theo-

rem 5.1.

Remark. Note that in the Lagrangian cost functional (5.10) we have taken the
inner product with adjoint particle velocity ˙̄u†, rather than particle displacement
ū†. This choice significantly simplifies the adjoint friction and state evolution
equations. If one instead were to use adjoint displacement, the equations would,
in addition to the current terms, depend also on forward particle accelerations,
adjoint slip and adjoint state rate.

Remark. Interestingly, the adjoint rate-and-state equations and the adjoint-
based gradient do not depend on the adjoint normal stress σ†

n. This is due to
the no opening condition (3.11). If the fault in the forward problem instead
satisfied an opening condition Vn = H, with H a function of a forward variable
and/or a frictional parameter, then σ†

n would appear in the adjoint rate-and-
state equations and/or the gradient.

5.2 Misfits and adjoint sources

This section details how misfits of particle displacement and velocity enter the
adjoint problem (5.3), i. e. , how the different types of misfits translate to the
adjoint source term Q̄†.

Consider the adjusted residuals R̄(k) in (4.2). We will refer to the linear op-
erators W (k) as filters, although they could equally well be windowing operators.
It is understood that the W (k) may be different for each component of r̄(k), but
to simplify the presentation we avoid explicit notation for this. Furthermore,
we first consider a single receiver at x̄ = x̄r and will temporarily drop the (k)
superscript. Since W is linear, the first variation of RJ can be expressed as

δRJ = W [δrJ ] =

∫
Ω

W [δmJ ]δ̂x̄r dx̄, (5.29)

where δ̂x̄r
(x̄) := δ̂(x̄ − x̄r) is the shifted Dirac delta function. Let W † denote

the Hilbert adjoint of W with respect to the L2-inner product, such that

T∫
0

q(t)W [s](t) dt =

T∫
0

W †[q](t)s(t) dt ∀q, s ∈ L2(T ). (5.30)

Note that windowing operators of the formW [r](t) = w(t)r(t), for some function
w, are self-adjoint (W † = W ), while a general filter might not be self-adjoint.

Now consider the first variation δF of the misfit functional (4.3) with a single
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receiver. Carrying out the chain rule for the first variation yields

δF =

T∫
0

RJδRJ dt =

T∫
0

∫
Ω

RJW [δmJ ]δ̂x̄r
dx̄ dt

=

T∫
0

∫
Ω

W †[RJ ]δ̂x̄r
δmJ dx̄ dt =

(
W †[RJ ]δ̂x̄r

, δmJ

)
Ω×T

.

(5.31)

For a velocity misfit where m̄ = ˙̄u, we note that Q†
J = W †[RJ ]δ̂x̄r

satisfies
(5.2), which was used to derive the adjoint-based gradient. In the case of a
displacement misfit, i. e. , m̄ = ū, introduce the time-integrated quantity

R̂J(t) =

t∫
0

W †[RJ ](t
′) dt′ + R̂J,0, (5.32)

where the constant R̂J,0 is selected such that R̂J(T ) = 0. By (5.32), R̂J satisfies
the ODE

˙̂
RJ = W †[RJ ]. (5.33)

Using integration by parts in time, it therefore follows that

δF =
(
W †[RJ ]δ̂x̄r , δuJ

)
Ω×T

= −
(
R̂J δ̂x̄r , δu̇J

)
Ω×T

, (5.34)

where the term at t = 0 vanishes because of the initial condition uJ = 0 (or in
general the p-independence of the initial data) and the term at t = T vanishes
because R̂J(T ) = 0. Considering multiple receivers again, the adjoint source
function at receiver k is thus

S
(k)
J (t) =

{
−R̂

(k)
J (t) mJ = uJ (displacement),

W (k)†[R
(k)
J ](t) mJ = u̇J (velocity).

(5.35)

Note that both types of signals involve the application of an adjoint filter opera-
tor. The complete adjoint source term is obtained by summing over all receivers,

Q†
J(x̄, t) =

Nrec∑
k=1

S
(k)
J (t)δ̂(x̄− x̄(k)

r ). (5.36)

In this work, the misfit functionals are considered to measure either displace-
ment or velocity exclusively. It is straightforward to extend the derivation to
a linear combination of displacement and velocity misfits. We briefly comment
on extending the misfit to other types of measurements. Measurements to con-
sider include strain rate from fiber optics cables, pressure from hydrophones,
or snapshot measurements of the displacement of Earth’s surface through In-
SAR. If the resulting misfit can be cast in the form of (5.2), the expression for
the adjoint-based gradient in Theorem 5.1 follows directly. The difference will
only be in the adjoint source term. In the case of an InSAR measurement, we
anticipate that the adjoint source term consists of a surface forcing in space,
multiplied by a Heaviside function in time activating at the snapshot time.
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5.3 Well-posedness

For Theorem 5.1 to be valid, both the forward and adjoint problems need to be
well-posed. A problem is well-posed if a solution a) exists, b) is unique, and c)
depends continuously on boundary and initial data (also referred to as stability)
Gustafsson et al. [2013]. Well-posedness results for linear elastodynamics with
rate-and-state friction are incomplete, and we provide a brief review of known
results below. For the adjoint problem, well-posedness is tied to that of the
linearized forward problem, i. e. , the adjoint problem is well-posed if and only
if the linearized forward problem is Bui-Thanh [2023].

For linear initial-boundary value problems, conditions for well-posedness
may be established using the energy method, in which an energy estimate for
the problem is derived. By prescribing appropriate boundary and interface con-
ditions, the energy estimate shows that the solution is bounded in terms of data,
ensuring stability Gustafsson et al. [2013]. Uniqueness can then be established
by applying the the energy method to the difference of two solutions. Existence
further requires that a minimal number of initial, boundary, and interface con-
ditions are specified Nordström [2013]. For the forward problem (3.15), where
non-linearity is limited to the friction law, the energy method leads to conditions
on the friction law, required for stability and uniqueness, as discussed below.

Energy estimates for problems with general friction laws were established
decades ago Kostrov [1974], Rudnicki and Freund [1981]. Dissipation (rather
than creation) of mechanical energy during slip is guaranteed when the frictional
shear traction is coplanar with and opposite to slip velocity and the normal stress
remains compressive. In Kozdon et al. [2012], the energy method was applied to
2D antiplane shear problems with purely velocity-dependent nonlinear friction
and no prestress. For scalar friction laws of the form τ = F (V ), the stability
condition of frictional energy dissipation reads F (V )V ≥ 0. Additionally, the
authors showed that a sufficient condition for uniqueness is dF

dV ≥ 0. In Kozdon
et al. [2010], the results were extended to full 3D elastodynamics assuming that
fault normal stress remains compressive. Here, the stability condition reads
FJVJ ≥ 0 and the sufficient uniqueness condition is that the Jacobian of the
friction law is symmetric-positive definite, i. e. , ∂FI

∂VJ
= ∂FJ

∂VI
, and VI

∂FJ

∂VI
VJ ≥ 0.

Moreover, existence was shown using the method of characteristics, thereby
proving well-posedness for this particular class of problems with purely velocity-
dependent friction and no prestress.

In Duru et al. [2019], the analysis of 2D antiplane shear problems was ex-
tended to rate-and-state friction with prestress. In addition to the previously
mentioned constraints on F , it was further established that well-posedness re-
quires that the state evolution law G(V,Ψ) is such that ∂G

∂Ψ is bounded and such
evolution laws were termed admissible1. Well-posedness results for general 3D
elastodynamics with rate-and-state friction are to the best of our knowledge
currently lacking.

There have been many studies of linearized rate-and-state friction, as sum-

1It suffices that ∂G
∂Ψ

is bounded almost everywhere, i. e. , G(V,Ψ) is Lipschitz continuous
in Ψ.
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marized by Rice et al. [2001]. With a few exceptions Ray and Viesca [2017],
Viesca [2023], these studies have been limited to linearization about a state of
steady sliding on a planar fault with constant frictional parameters (making
this a constant coefficient problem). Sliding occurs between between two ho-
mogeneous elastic half-spaces though some studies have considered other (e.g.,
layered) geometries Ranjith [2009, 2014], Aldam et al. [2016]. Of particular
note are so-called bimaterial problems, where sliding occurs between dissimi-
lar elastic solids. Spatially nonuniform sliding alters the fault normal stress
and therefore frictional strength. This feedback can destabilize steady sliding.
Compromises to the full rate-and-state formulation, such as removing the direct
effect so that the friction coefficient satisfies ∂f

∂|V | = 0, are known to render the

problem ill-posed Ranjith and Rice [2001], Rice et al. [2001].
To summarize, the adjoint problem (5.3) is well-posed if and only if the

forward problem (3.15) with linearized rate-and-state friction is well-posed. The
latter is determined by the stability of the linearized rate-and-state friction
laws, for which well-posedness results are currently incomplete. Studying the
stability of linearized rate-and-state friction is thus of interest also for adjoint-
based optimization. Finally, we note that the 2D antiplane shear numerical
studies presented herein are performed using the typical rate-and-state friction
coefficient (6.2) together with the slip law (6.4). No blow-ups of the adjoint
solution have been observed, and the results therefore indicate that the adjoint
equations are well-posed, at least in this setting.

6 Dynamic rupture in antiplane shear

We now proceed to demonstrate the method applied to dynamic rupture sim-
ulations in 2D antiplane shear. Consider the domain Ω with a frictional fault
along Γ, as illustrated in Figure 6.1. In the semi-discrete setting, the discretiza-
tions will be carried out blockwise in Ω±. For this reason, quantities on the
respective domain will be denoted with the subscripts + and −, or compactly
when the equations apply to both domains individually by ±. Note that this
use of + and − differs slightly from the continuous setting in Sections 3 and 5
where it was used only when referring to quantities on the fault; here it is used
for both the entire volumes including boundaries and the fault. The notation
should be clear from context. Letting (x1, x2) = (x, y) ∈ Ω be the in-plane
coordinates, the only nonzero component of particle displacement, u = uz, is in
the antiplane direction x3 = z, with all fields being functions only of x and y.
Slip, slip velocity, and shear traction are scalars, and the fault normal stress is
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unaltered by slip. In this setting, the governing equations (3.15) reduce to

ρ±ü± = ∂Iµ±∂Iu±, x̄ ∈ Ω±, t ∈ T ,
u± = u0±, u̇± = v0±, x̄ ∈ Ω±, t = 0,
τ± + Zu̇± = 0, x̄ ∈ ∂Ω± \ Γ, t ∈ T ,
τ± = ∓F (V,Ψ), x̄ ∈ Γ, t ∈ T ,

Ψ̇ = G(V,Ψ), x̄ ∈ Γ, t ∈ T ,
Ψ = Ψ0, x̄ ∈ Γ, t = 0.

(6.1)

Here, we use τ± = µ±∂n±u± to denote shear traction on the boundaries of Ω±
as well as the two sides of the fault, while in Section 3 τ̄ was only defined for the
− side of the fault. The equation τ± = ∓F (V,Ψ) therefore specifies both the
friction law and force balance on the fault. On the exterior boundaries ∂Ω± \Γ
characteristic non-reflecting conditions Engquist and Majda [1977] are imposed.
On the fault, we consider a typical rate-and-state friction coefficient Rice et al.
[2001]

f(|V |,Ψ) = a sinh−1

(
|V |
2V0

e
Ψ
a

)
, (6.2)

where a is the dimensionless direct effect parameter and V0 an arbitrarily cho-
sen reference velocity. The direct effect parameter is positive (a > 0), which
ensures that the instantaneous response of the fault to perturbations is of
velocity-strengthening character (∂F/∂V > 0). This is well supported by exper-
iments and also expected on a theoretical basis Rice et al. [2001]. Furthermore,
some studies referenced in Section 5.3 suggest it to be a requirement for well-
posedness. In addition, an external loading τL(x̄), x̄ ∈ Γ is added to the fault to
initiate the rupture at a pre-specified location, such that the friction law reads

F (V,Ψ) = σ0
nf(|V |,Ψ)

V

|V |
− τ0 − τL. (6.3)

The external loading could of course be included directly in τ0, but is kept
separate here since we later will perform inversions for τ0 with a known τL.
State evolution is governed by the slip law Marone [1998], Lapusta et al. [2000]

G(V,Ψ) = −|V |
Dc

(f(|V |,Ψ)− fss(|V |)) , (6.4)

where fss(|V |) = f0 + (a − b) ln (|V |/V0) is the steady state friction coefficient
Rice et al. [2001]. Here b is the state evolution parameter, Dc the state evolution
distance and f0 is the reference coefficient for steady sliding at velocity V0.
The fault is velocity-strengthening where a − b > 0 and velocity-weakening
where a − b < 0; the latter is required for unstable slip and sustained rupture
propagation Marone [1998].

In the following sections, we introduce a dual consistent Hicken and Zingg
[2014] space-time discretization based on SBP difference operators combined
with weakly enforced boundary and interface conditions through characteristics-
based SAT and explicit Runge–Kutta time integration. Based on this discretiza-
tion we present a discrete counterpart to Theorem 5.1 for dynamic rupture in
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antiplane shear. While the discretization of the forward problem was developed
previously in Duru et al. [2019], Erickson et al. [2022], Harvey et al. [2023],
Stiernström et al. [2023], its space-time dual consistency is to the best of our
knowledge a novel result.

-10 0 10

-10

0

10

-

+

Figure 6.1: Domain with the fault Γ separating Ω+ and Ω−

6.1 SBP finite difference discretization

Discretizations of (6.1) using SBP finite differences, with weak enforcement of
fault and boundary conditions through the simultaneous-approximation-term
(SAT) method have been presented in e. g. Erickson and Dunham [2014], Duru
et al. [2019], Erickson et al. [2022], Harvey et al. [2023]. Here, we utilize
the boundary-optimized SBP difference operators presented in Mattsson et al.
[2018], Stiernström et al. [2023] to discretize the scalar wave operator on the
physical grid Ω. The physical grid is obtained through transfinite interpolation
of the coordinate mapping between Ω and a two-block Cartesian reference do-
main. See e. g. Almquist and Dunham [2020, 2021], Stiernström et al. [2023] for
further details on the finite difference discretization of the scalar wave operator
and the discretization of Ω.

Let DII(µ±) ≈ ∂Iµ±∂I be the SBP finite difference approximation of the
variable coefficient Laplace operator on the physical domains Ω±. Then, the
discretization of the scalar wave equation in (6.1) is given by

¯̄ρ±ü± = DII(µ±)u± + SAT±, t ∈ T ,
u± = u0±, u̇± = v0±, t = 0,

(6.5)

where SAT± weakly enforces boundary and interface conditions. Imposing the
non-linear rate-and-state friction law through a standard traction SAT (e. g. as
in Almquist and Dunham [2020]) may lead to significant stiffness in dynamic
rupture problems. To resolve the issue, we use the non-stiff SAT presented
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in Erickson et al. [2022], Harvey et al. [2023], enforcing boundary and interface
conditions through characteristic variables. Since the characteristics-based non-
stiff SAT is a recent development for second-order wave equations it is described
in detail below, for the sake of completeness.

Consider first a single block Ω (either Ω+ or Ω−). On a boundary segment
ζ (either an exterior boundary or the fault interface), the non-stiff SAT is given
by

SAT(u,u∗, τ ∗) = H−1
Ω

(
eHζ(τ

∗ − τ )−TTHζ(u
∗ − u)

)
, (6.6)

where u, u∗, and τ ∗ all are evaluated on ζ. Here, HΩ and HΓ are the SBP
quadratures on Ω and ζ, while eT is the boundary restriction operator. More-
over, T is the boundary traction operator such that τ := Tu ≈ µnI∂Iu(x̄),
x̄ ∈ ζ, while u∗ and τ ∗ are target values (or fluxes) for displacement and
traction. The target values are required to preserve the outgoing grid-based
characteristic variables,

w∗ := Zu̇∗ − τ ∗ = Zu̇− τ̃=:w, (6.7)

where Z =
√
ρµ is the shear impedance and τ̃ is the modified traction

τ̃ = τ + γ(u∗ − u). (6.8)

The parameter γ is the semi-bounded Dirichlet penalty parameter of Almquist
and Dunham [2020]. Note that the units of γ are such that γ(u∗ − u) has the
units of traction. Moreover, u∗ and τ ∗ should satisfy the boundary or fault
conditions.

On an exterior boundary, the boundary conditions are conveniently ex-
pressed by introducing a reflection coefficient R, such that we may write the
ingoing characteristic as Zu̇∗ + τ ∗ = Rw∗. This together with (6.7) results in

τ ∗ =
R− I

2
(Zu̇− τ̃ ), (6.9)

u̇∗ =
R+ I

2
(u̇−Z−1τ̃ ). (6.10)

Here I is an identity matrix with dimensions matching the number of boundary
points. Then, rigid-wall (Dirichlet), traction-free (Neumann) or characteristic
non-reflecting boundary conditions are imposed by setting

R = −I (rigid-wall),
R = I (traction-free),
R = 0 (non-reflecting),

(6.11)

along the corresponding boundary segment. On the outer boundaries, charac-
teristic non-reflecting conditions are specified, and we therefore set R = 0.

On the fault, the target tractions instead satisfy the fault condition

τ ∗
± = ∓F(V∗,Ψ), (6.12)
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where F is considered to apply point-wise. From (6.7) and (6.12) the target slip
velocity V∗ can be shown to satisfy

κV∗ + F(V∗,Ψ) = −τℓ, (6.13)

where κ = Z+Z−
Z++Z−

and τℓ = Z+w−−Z−w+

Z++Z−
. For non-linear F , solving (6.13)

requires employing a root-finding algorithm. Note that Ψ is held fixed while
solving (6.13). Let Ṽ∗(τℓ) denote the solution to

F(Ṽ∗,Ψ) = −τℓ, (6.14)

which can be solved analytically with our friction coefficient (6.2). As noted in
Erickson et al. [2022] one can show that V∗ ∈ [Ṽ∗(τℓ), 0] for τℓ ≥ τ 0 + τL and
V∗ ∈ [0, Ṽ∗(τℓ)] for τℓ < τ 0 + τL. Since FV > 0 for admissible friction laws,
there exists a unique solution V∗.

From (6.7) it directly follows that u̇∗
± on the fault is given by

u̇∗
± = u̇± −Z−1

± (τ̃± − τ ∗
±). (6.15)

Note that the characteristic boundary and fault conditions require the target
displacements u∗

± to be regarded as additional unknown grid functions, evolved
together with u± and Ψ through (6.10) and (6.15). For notational purposes we
introduce

u̇∗
± = L∗(u̇±, τ̃±) =

{
R+I
2 (u̇± −Z−1

± τ̃±) (exterior boundaries),

u̇± −Z−1
± (τ̃± − τ ∗

±) (fault),
(6.16)

with τ ∗
± given by (6.12). Similarly, the linear operator for the right-hand-side

of (6.5) is denoted

L(u±,u
∗
±, τ

∗
±) := DII(µ±)u± +

∑
ζ

SAT(u±,u
∗
±, τ

∗
±), (6.17)

The semi-discretization of the state evolution equation (6.4) is

Ψ̇ = G(V∗,Ψ), t ∈ T ,
Ψ = Ψ0, t = 0,

(6.18)

where G is evaluated pointwise. Note that V∗ is used in evolving Ψ. This
will be of importance when deriving the gradient to the discrete optimization
problem in Section 6.2.

Finally, the SBP-SAT semi-discretization of (6.1) is given by

¯̄ρ±ü± = L(u±,u
∗
±, τ

∗
±), t ∈ T ,

u̇∗
± = L∗(u̇±, τ̃±) t ∈ T ,

u± = u0±, u̇± = v0±, t = 0,
u∗
± = eT∂Ω±

u0±, t = 0,

Ψ̇ = G(V∗,Ψ), t ∈ T ,
Ψ = Ψ0, t = 0.

(6.19)
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In Duru et al. [2019], Erickson et al. [2022] it is shown (by using the SBP
properties in Appendix A) that the scheme is energy stable and that the semi-
discrete energy rate is a consistent approximation of the continuous energy rate.

With the forward problem discretized in space, the semi-discretization of the
optimization problem (4.4) reads

min
p

F subject to (6.19), (6.20)

where the semi-discrete misfit is given by

F =
1

2

Nrec∑
k=1

∫ T

0

|r(k)(t)|2dt, (6.21)

and the semi-discrete residuals are

r(k)(t) =
((

δ̂
x̄
(k)
r

,m(t)
)
Ω
−mdata(t)

)
, (6.22)

for a measured field m. We refrain from including filtering operators W in the
semi-discrete presentation since no filtering is used in the numerical experiments

performed in Section 6.5. The discrete Dirac delta δ̂
x̄
(k)
r

≈ δ̂(x̄− x̄
(k)
r ) presented

in Petersson et al. [2016] is used to restrict the measured field to the receiver

location x̄
(k)
r . The number of moment conditions used when constructing δ̂ is

the same as the order of the SBP difference operators. No smoothness conditions
are used.

6.2 Adjoint scheme and semi-discrete gradient

Analogously to the forward problem, the adjoint equations (5.3) reduce to

ρ±ü
†
± = ∂Iµ±∂Iu

†
± +Q†

±, x̄ ∈ Ω±, t ∈ T ,

u†
± = 0, u̇†

± = 0, x̄ ∈ Ω±, t = T,

τ †± − Zu̇†
± = 0, x̄ ∈ ∂Ω± \ Γ, t ∈ T ,

τ †± = ∓F †(V †,Ψ†), x̄ ∈ Γ, t ∈ T ,

−Ψ̇† = G†(V †,Ψ†), x̄ ∈ Γ, t ∈ T ,
Ψ† = 0, x̄ ∈ Γ, t = T.

(6.23)

In the semi-discrete setting, we start by defining

w†∗ := −Zu̇†∗ − τ †∗ = −Zu̇† − τ̃ †=:w†, (6.24)

which are the outgoing characteristic adjoint variables on a boundary segment
after time reversal, where τ̃ † is defined analogously to (6.8). On an exterior
boundary, τ †∗ and u̇†∗ then satisfies

τ †∗ =
R− I

2
(−Zu̇† − τ̃ †), (6.25)

−u̇†∗ =
R+ I

2
(−u̇† −Z−1τ̃ †). (6.26)
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Similarly, on the fault

τ †∗
± = ∓F†(V†∗,Ψ†) = ∓( ¯̄FV V

†∗ + ¯̄GV Ψ
†), (6.27)

−u̇†∗
± = −u̇†

± −Z−1
± (τ̃ †

± − τ †∗
± ), (6.28)

where FV (V
∗,Ψ) ≈ ∂F

∂V and GV (V
∗,Ψ) ≈ ∂G

∂V are evaluated point-wise. The
adjoint target slip velocity now satisfies

κV†∗ + F†(V†∗,Ψ†) = −τ †
ℓ = −

Z+w
†
− −Z−w

†
+

Z+ +Z−
. (6.29)

Note that F † is linear in V †, such that (6.29) reduces to a time-dependent linear
equation in V†∗. The semi-discrete adjoint state evolution equation is simply

−Ψ̇† = G†(V†∗,Ψ†) = ( ¯̄GΨΨ
† + ¯̄FΨV

†∗), t ∈ T ,
Ψ† = 0, t = T.

(6.30)

Again, GΨ(V
∗,Ψ) ≈ ∂G

∂Ψ and FΨ(V
∗,Ψ) ≈ ∂F

∂Ψ are evaluated point-wise.
Adopting the notation for the operators L and L∗ in (6.17) and (6.16), the

adjoint equations are then discretized according to (6.19), resulting in

¯̄ρ±ü
†
± = L(u†

±,u
†∗
± , τ †∗

± ) +Q†
±, t ∈ T ,

−u̇†∗
± = L∗(−u̇†

±, τ̃
†
±) t ∈ T ,

u†
± = 0, u̇†

± = 0, t = T,

u†∗
± = 0, t = T,

−Ψ̇† = G†(V†∗,Ψ†), t ∈ T ,
Ψ† = 0, t = T.

(6.31)

The adjoint residual source term is given by Q†
± =

∑Nrec

k=1 S(k)δ̂
x̄
(k)
r

where

S(k)(t) =

{
−r̂(k)(t), m = u,

r(k)(t), m = u̇,
(6.32)

with r̂(k)(t) =
∫ t

0
r(k)(t′)dt′ + r̂

(k)
0 , with r̂

(k)
0 chosen such that r̂(k)(T ) = 0.

See Appendix B for a derivation of the residual source term. As mentioned
in Section 6.1 energy stability of the forward scheme (6.19) was established
in Duru et al. [2019], Erickson et al. [2022]. Since the adjoint scheme (6.31)
only differs in the source term and the rate-and-state equations, the stability of
the adjoint scheme follows directly from the stability of the continuous adjoint
rate-and-state equations.

We may now state the gradient to (6.20). It is given by the following Lemma
which is the semi-discrete counterpart to Theorem 5.1 for antiplane shear.

Lemma 6.1. Let V†∗, Ψ†, satisfy (6.31). Further, let p be the fault grid
function of a parameter in F or G, and let Ψ0 be the initial state. If V∗ is
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computed exactly from (6.13), then the gradient of the misfit in the semi-discrete
inverse problem (6.20) is given by

∂F
∂p

= −
∫ T

0

HΓ

(
¯̄FpV

†∗ + ¯̄GpΨ
†
)
dt,

∂F
∂Ψ0

= HΓΨ
†
0,

(6.33)

where Fp(V
∗,Ψ) ≈ ∂F

∂p and Gp(V
∗,Ψ) ≈ ∂G

∂p are evaulated point-wise and

Ψ†
0 = Ψ†(t = 0).

Proof. See Appendix C.

Note that (6.33) is a consistent approximation of (5.9). In proving Lemma
6.1 we further show that the forward scheme (6.19) is dual consistent Hicken and
Zingg [2011], Berg and Nordström [2012], Hicken and Zingg [2014], Ghasemi Zi-
natabadi [2019], i. e. , that the adjoint scheme (6.31) is the adjoint of (6.19).
This implies that the semi-discrete gradient (6.33) is the exact (to machine
precision) gradient to (6.21), and that it is a consistent approximation of the
continuous gradient. The condition on the accuracy of V∗ is discussed in the
remark at the end of Appendix C. In summary, errors in V∗ translate to an
error in the gradient.

6.3 Time integration and the discrete gradient

To integrate the forward and adjoint schemes (6.19), (6.31) in time, the standard
fourth-order accurate Runge–Kutta method (RK4) will be used. To this end,
introduce v± = u̇± such that (6.19) may be rewritten to first-order in time as

dU(t)
dt = A(t,U), t ∈ T ,

U = U0, t = 0,
(6.34)

where

A(t,U) =

A−(t,U−)
A+(t,U+)
G(V∗,Ψ)

 , U =

U−
U+

Ψ

 , (6.35)

and

A±(t,U±) =

 v±
¯̄ρ−1
± (L(u±,u

∗
±, τ

∗
±) +Q±(t))

L∗(v±, τ̃±)

 , U± =

u±
v±
u∗
±

 . (6.36)

The ODE system (6.34) is then integrated in time using RK4, where in each
step (6.13) is solved for V∗ using bisection.
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To integrate the adjoint scheme (6.19) the reversed time t† = T − t is intro-
duced. Then, the adjoint ODE system is

dU†(t†)
dt†

= A†(t†,U†), t† ∈ T ,

U† = U†
0, t† = 0.

(6.37)

Here

A†(t†,U†) =

A†
−(t

†,U†
−)

A†
+(t

†,U†
+)

G†(V†∗,Ψ†)

 , U =

U†
−

U†
+

Ψ†

 , (6.38)

A†
±(t

†,U†
±) =

 v†
±

¯̄ρ−1
± (L(u†

±,u
†∗
± , τ †∗

± ) +Q†
±(T − t†))

L∗(v†
±, τ̃

†
±)

 , U†
± =

u†
±

v†
±

u†∗
±

 ,

(6.39)
where for each t† (6.29) is solved for V†∗. Note that the forward variables V∗

and Ψ entering as variable coefficients in F† and G†, also are evaluated at time
T − t†.

To evaluate the integrals over time in (6.21) and (6.33), the Runge–Kutta
quadrature is utilized. That is, for time interval n with step size ∆tn, the
Runge–Kutta quadrature weight at substage s ∈ [1, 4] is given by HT ,4n+s =
∆tnbs, where b = [1/6, 1/3, 1/3, 1/6] Butcher [2016]. Then for N time steps,
the 4N × 4N diagonal matrix HT is a quadrature on the temporal grid T . The
fully discrete optimization problem reads

min
p

F subject to (6.34) solved using RK4, (6.40)

where

F =
1

2

Nrec∑
k=1

N−1∑
n=0

4∑
s=1

HT ,4n+s|r̂(k)4n+s|2. (6.41)

with the discrete residual given by

r̂
(k)
4n+s =

(
δ̂
x̄
(k)
r

, m̂
(k)
4n+s

)
Ω
−m

(k)
data(tn + cs∆tn). (6.42)

Here m̂(k) is the measured field at receiver k for all Runge–Kutta stages between
t = 0 and t = T , c = [0, 1/2, 1/2, 1] are the RK4 stage nodes, and t0 = 0. Note

that for each index i, m̂
(k)
i is a grid function.

We now arrive at one of the major results of this work, namely the discrete
counterpart to Theorem 5.1 for dynamic rupture inversions in antiplane shear.

Theorem 6.2. Let V̂†∗, Ψ̂†, be the space-time solutions (including Runge–
Kutta substages) to (6.37) solved using RK4. Further, let p be the fault grid
function of a parameter in F or G, and let Ψ0 be the initial state. If in each
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time step V∗ is computed exactly from (6.13), then the gradient of the misfit in
the discrete inverse problem (6.40) is given by

∂F
∂p

= −
N−1∑
n=0

4∑
s=1

HT ,4n+sHΓ

(
¯̄Fp,4n+sV̂

†∗
4n+s +

¯̄Gp,4n+sΨ̂
†
4n+s

)
,

∂F
∂Ψ0

= HΓΨ̂
†
0,

(6.43)

where Fp(V̂
∗, Ψ̂) ≈ ∂F

∂p , Gp(V̂
∗, Ψ̂) ≈ ∂G

∂p are evaluated point-wise using the
Runge–Kutta stage approximations.

Proof. RK4 is self-adjoint with respect to HT under time reversal, see Sanz-
Serna [2016], Matsuda and Miyatake [2021]. Therefore, by Lemma 6.1, the
result follows.

The combination of RK4 with the SBP-SAT discretization thus results in a
space-time dual-consistent discretization. Specifically, this means that (6.43) is
the exact gradient to (6.41) and a consistent approximation of the continuous
gradient. Again, errors in the non-linear solve of V∗ will result in an error in
∂F
∂p , see the remark at the end of Appendix C.

To summarize, when solving the optimization problem (6.40), the gradient
of (6.41) is obtained through the following procedure:

1. Solve (6.34) using RK4, storing the Runge–Kutta stage approximations

V̂∗, Ψ̂ and r̂.

2. Solve (6.37) using RK4, with V̂∗, Ψ̂ and the residuals r̂(k) in Q† reversed
in time. Use the time steps from the forward solve in reverse. Store the
Runge–Kutta stage approximations V̂†∗, Ψ̂†.

3. Reverse V̂†∗, Ψ̂† in time and compute the gradient according to (6.43).

6.4 Lower-dimensional parameter representation

The misfit functional in the inverse problem (6.40) is typically non-convex with
many local minima. As a way to regularize (6.40) by reducing the discrete solu-
tion space, a lower-dimensional parameter representation of p may therefore be
beneficial. Examples of such lower-dimensional representations are polynomials
or splines Samareh [2001], Bader et al. [2023]. Here we make use of a coarse grid
representation of the parameters and move between the lower-dimensional pa-
rameter grid and the higher-dimensional computational grid using interpolation
operators.

Denote an inversion parameter on the coarse fault grid by pC and let IC2F

be an interpolation operator from the coarse grid to the fine computational grid.
Using superscript F for fault grid functions on the computational grid, pF is
given by

pF = IC2FpC . (6.44)
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The gradient expressions in (6.43) are derived with respect to pF , and are of
the form

∂F
∂pF

= HF
ΓΦ

F , (6.45)

where ΦF is a combination of forward and adjoint fields. By the chain rule, the
gradient with respect to pC is

∂F
∂pC

=
∂F
∂pF

∂pF

∂pC
. (6.46)

Differentiating (6.44) stated in index notation (where i, j, k denote components
in the matrices and vectors and the summation convention applies) leads to

∂pF
i

∂pC
k

= IC2F
ij δjk = IC2F

ik = (IC2F )Tki. (6.47)

Hence,
∂F
∂pC

= (IC2F )THF
ΓΦ

F . (6.48)

If IC2F is any interpolation operator, it is not guaranteed that (IC2F )T is a
consistent approximation of interpolation of fields from the fine to the coarse
grid. Thus, it is not guaranteed that ∂F

∂pC is consistent with the continuous

gradient. However, by requiring that IC2F is constructed such that

IF2C := (HC
Γ )

−1(IC2F )THF
Γ (6.49)

is a consistent interpolation operator from the fine grid to the coarse, then (6.48)
reads

∂F
∂pC

= HC
Γ I

F2CΦF . (6.50)

This corresponds to first interpolating ΦF to the coarse grid and then applying
the coarse fault quadrature. In Almquist et al. [2019] interpolation operators

satisfying (6.49) are shown to exist, provided HC,F
Γ are accurate quadratures.

Here, we use intermediate glue grids to construct interpolation operators for the
boundary-optimized SBP difference operators, see Kozdon and Wilcox [2016],
Stiernström and Almquist [2022].

Remark. Replacing (IC2F )T in (6.48) with any accurate interpolation operator
IF2C would result in consistency with the continuous gradient and an approxi-
mation of (6.45) to the order of accuracy of IF2C . The resulting gradient com-
putation would then correspond to a continuous-adjoint approach Hicken and
Zingg [2014]. The additional requirement (6.49) guarantees that the continuous-
adjoint approach is equivalent to the discrete-adjoint approach, meaning that we
obtain the exact gradient of (6.41) while remaining consistent with the contin-
uous gradient. In other words, the interpolation preserves the dual consistency
of the forward scheme (6.19). The property (6.49) states that IF2C = (IC2F )†
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in the HΓ norm. It is termed SBP or inner product preserving and is com-
monly used to couple SBP schemes across non-conforming interfaces Mattsson
and Carpenter [2010], Nissen et al. [2015], Lundquist et al. [2018], Kozdon and
Wilcox [2016], Almquist et al. [2019], Lundquist et al. [2020]. Interestingly, the
property is useful also in the present setting.

6.5 Numerical studies

In this section, we corroborate our theoretical results and present inversions for
friction parameters and initial stresses in dynamic rupture simulations using syn-
thetic data. The experiments are performed on the domain in Figure 6.1, where
the two elastic blocks are separated by a rough (band-limited self-similar fractal)
fault Dunham et al. [2011], Fang and Dunham [2013]. The parameter set used
for synthetic data is listed in Table 6.1. Here ΓVW = {x̄ ∈ Γ, x ∈ [−5, 6] km}

Table 6.1: Parameter values used in reference problem setup, divided into ma-
terial parameters, frictional parameters, and initial conditions.

Parameter Symbol Value
Density ρ± 2.6700 g/cm3

Shear modulus µ± 32.0381 GPa
Initial stress σ0

n 120 MPa
σ0
yz 72 MPa

Reference friction coefficient for steady sliding f0 0.6
Direct effect parameter a 0.009 x̄ ∈ ΓVW ,

0.013 otherwise
State evolution effect parameter b 0.011
State evolution distance Dc 0.2 m x̄ ∈ ΓVW ,

1.0 m otherwise
Reference slip velocity V0 10−6 m/s
Initial displacement u0± 0
Initial velocity v0± ±5×10−13 m/s
Initial state Ψ0 0.7243

denotes the central velocity-weakening (VW) region of the fault, i. e. , the part
of the fault where a(x̄) − b(x̄) < 0. Almost all slip occurs in this region. In
contrast, the region where a(x̄)− b(x̄) > 0 is velocity-strengthening (VS), which
serves to arrest the rupture. The initial stress tensor is such that the normal
stress σ0

n is constant while the shear traction varies along the fault according
to τ0(x̄) = σ0

yzn̂
−
y (x̄), where n̂−

y (x̄) is the (spatially variable) y-component of
the fault normal on the − side of the fault, and σ0

yz is a constant remote shear
stress (and σ0

xz = 0). A one-dimensional Gaussian distribution centered about
xc = 3 km, with amplitude A = 25 MPa and standard deviation d = 2 km is

added as loading to the fault, i. e. , setting τL(x̄) = Ae−
(x−xc)

2

2d2 in (6.3). The
problem setup is such that the external loading will cause an earthquake to
nucleate at x̄c = (xc, yc) where yc = −0.896 km is the y-coordinate on the fault
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at xc. The stress and friction conditions are chosen so that rupture nucleates
gradually over the first few seconds of the simulation, before transitioning to a
propagating rupture. Left- and right-going rupture fronts propagate along the
fault at a speed slightly lower than the shear wave speed until they reach the
VS region where rupture arrests.

Usingm grid points in the x-direction, the domain is discretized such that the
grid spacing is approximately equal in both directions, resulting in m× (m+1)
grid points in total across the multiblock grid Ω = Ω− ∪ Ω+. The number of
grid points used for lower-dimensional parameter representations is denoted mp.
8th-order accurate boundary-optimized SBP operators are used for the spatial
discretization. In Stiernström et al. [2023] it was shown that these operators
provide an efficient alternative for wave propagation problems where boundary
or interface effects are significant. The non-linear equation (6.13) for target
slip velocity V∗ is solved using bisection, specifying an absolute tolerance 10−13

m/s.
Snapshots of the velocity field from a forward simulation using m = 1001

and ∆t = 0.0005 s up to T = 6 s are presented in Figure 6.2, illustrating the
nucleation, propagation, and arrest of the rupture. The velocity field is nonzero
within a circular wavefront known in seismology as the starting phase. It has
peaks at the two rupture fronts and is discontinuous across the parts of the fault
that are actively slipping. Additional circular wavefronts emanate from the fault
as the rupture accelerates or decelerates in response to the spatially variable
initial stress and complex fault geometry. Additional larger amplitude waves
are produced by rupture arrests that bring the particle velocity back toward
zero; these are known as stopping phases. Finally, wave reflections from the
right boundary are visible, as the outflow boundary condition is only effective
at absorbing normally incident waves. In Figure 6.3 plots of slip velocity V∗

and fault slip [[u]] are presented. This setup will be used in Section 6.5.3 to
generate high-resolution synthetic data used for inversion.

In the inversions, receivers are placed in a cut-out rectangle such that the
region closest to the VW part of the fault is excluded. An example of Nrec = 88
receivers placed in the cut-out rectangle with outer boundary −9 ≤ x ≤ 9,
−9 ≤ y ≤ 9, and inner boundary −7 ≤ x ≤ 7, −3 ≤ y ≤ 3, spaced 2 km
apart, is shown in Figure 6.4a. In Figure 6.4b an example of recorded synthetic
velocity data from the high-resolution simulation described above is shown, with
receivers ordered according to the radial distance r to the hypocenter x̄c. From
Figure 6.4b it is clear that the wavefield is densely sampled and that the receivers
record the radial moveout of the high-amplitude waves generated as the rupture
front expands.

6.5.1 Verification of discrete gradient

To verify Theorem 6.2 we compare with a first-order finite difference approxi-
mation of the gradient. Consider the parameter-normalized norm

∥v∥p = ∥¯̄p−1v∥∞, (6.51)
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(a) t = 2.00 s (b) t = 3.00 s

(c) t = 4.50 s (d) t = 5.00 s

Figure 6.2: Velocity (m/s) at different points in time, showing rupture propa-
gation and arrest.
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Figure 6.3: (a) Space-time plot of slip velocity V∗ (m/s). (b) Slip [[u]] (m)
plotted every t = 0.25 s.
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Figure 6.4: (a) Position of Nrec = 88 receivers spaced 2 km apart (×). Velocity-
weakening part of fault (- -). (b) Synthetic velocity data (m/s) at receivers, or-
dered according to the radial distance r between the receiver and the hypocenter
x̄c. r < 0 refers to receivers in Ω− while r > 0 to receivers in Ω+.

where v is a fault grid function on the parameter grid (i. e. , of size mp×1). We
then define the relative error in the gradient as

e(∆p) =
∥∂F

∂p −D+F(∆p)∥p
∥∂F

∂p ∥p
, (6.52)

where ∂F
∂p is the adjoint-based gradient and D+F(∆p) is the first-order finite

difference approximation, with the ith component given by

(D+F(∆p))i =
F(p+∆pei)−F(p)

∆p
. (6.53)

Here, ei is a vector with a 1 at the ith entry and zeros elsewhere, such that
D+F(∆p) is computed by individually perturbing each element in p by ∆p.
Synthetic data is generated up to T = 6 s using the parameter values in Table
6.1, and discretization parameters m = 101, mp = 11 and ∆t = 0.005 s. Note
that the grid is too coarse for accurate dynamic rupture simulations but the
setup is still useful in verifying that the correct discrete gradient is obtained
since any approximation errors in the gradient should be clearly visible. To
interpolate between the computational and the parameter grid we construct
interpolation operators based on the 8th-order accurate boundary-optimized
norm, and the second-order accurate traditional SBP norm on an equispaced
grid. This means that the interpolation is second-order accurate. The reason
for using a lower-order accurate interpolation is that it reduces oscillations when
interpolating non-smooth parameters. Nrec = 88 receivers are used, positioned
as illustrated in Figure 6.4a.
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Initializing a from 1.1a(x̄) as given by Table 6.1, the error e(∆a) is then
computed for ∆a decreasing from 10−5 to 10−12. The results are presented
in Figure 6.5 where it can be observed that e(∆a) decreases with a first-order
rate with decreasing ∆a until e(∆a) ≈ 2.3×10−6, at ∆a = 10−8.3 with a dis-
placement misfit and e(∆a) ≈ 2.2× 10−5, at ∆a = 10−9 with a velocity misfit.
At these points, cancellation errors in the first-order approximation D+F(∆a)
take effect after which e(∆a) increases linearly (although oscillatory) as ∆a is
further decreased. Note that if ∂F

∂a included an approximation error ε then the
error curve would become horizontal at e(∆a) = ε, provided ε is larger than
cancellation errors in D+F(∆a). Since no such piecewise constant parts of the
error curves are observed, we conclude that (6.43) indeed is the gradient of F ,
and that errors in computing V∗ are negligible. A Matlab script and related
code for reproducing Figure 6.5 is available in Stiernström and Almquist [2024].
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Figure 6.5: Relative error e(∆a) between the adjoint-based gradient and the
first-order finite difference gradient, as a function of ∆a.

6.5.2 Inverse crimes

We now proceed to perform inversions in an inverse crime setting, i.e., we aim
to reconstruct parameters based on synthetic velocity data generated from a
forward simulation using the same spatio-temporal resolution. There are no
model errors or differences in the fault geometry, boundary conditions, or prob-
lem parameters (except for the parameters selected as model parameters in the
inversions). The wavefield is densely sampled. Thus these inversions are not rep-
resentative of conditions that might be encountered in real-world applications;
instead they serve to test our methodology and to demonstrate the possibility of
adjoint-enabled gradient-based optimization for this class of problems. We also
perform inversions for a single parameter (i.e., the direct effect parameter a(x̄)
or the initial shear stress τ0(x̄)) rather than doing inversions for multiple param-
eters simultaneously. This avoids having to develop regularization schemes to
handle parameter trade-offs that will inevitably arise in real-world applications.

The optimization problem (6.40) is solved using the quasi-Newton limited-
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memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm provided by
the Matlab function fmincon. The forward and adjoint solves are performed
using m = 251 and ∆t = 0.003 s, with mp varying depending on the parameter
considered for inversion. As before, synthetic data are generated using the
parameters in Table 6.1 as the true values.

Inverting for the direct effect parameter a(x̄) we set mp = 26, and initialize a
identically to 0.0135, which corresponds to a 50% error in the VW region. This
choice of initial a makes the entire fault velocity-strengthening, so in the initial
iteration, rupture immediately arrests. Again, the Nrec = 88 receiver setup
illustrated in Figure 6.4a is used. Figure 6.6 presents a plotted for different
iterations; the value of b is also shown to help delimit VW and VS parameter
values. After the first 5 iterations, we observe that a has been decreased close
to its true value at the hypocenter xc = 3 km. This allows for the earthquake
to nucleate, radiating waves and thereby reducing the misfit for first-arrival
waves. However, since a − b > 0 outside of the hypocenter, the rupture will
not propagate. In subsequent iterations, a is adjusted to account for the spatial
extent of the rupture. After 200 iterations, a has decreased close to its true
value, such that the fault becomes VW within the central region where slip is
nonzero (Figure 6.3). Note that the difference in a in the first and final iterations
is negligible in the VS parts of the fault. This part of the fault started VS, so
that the rupture arrests there, and no adjustments are required for consistency
with the seismograms at the receivers because without slip this part of the fault
does not radiate. Thus there is a very low sensitivity (small value of ∂F

∂a ) in
the VS region. In contrast, matching the timing and amplitude of wave arrivals
from the interior slipped part of the fault is only possible when a is close to
its true value. A Matlab script and related code for performing the inversion,
reproducing Figure 6.6d, is available in Stiernström and Almquist [2024].

To illustrate the effect of the parameter resolution mp on the optimization
procedure, we perform the same inversion using mp = 51 and mp = 101. The
computed values of a after 200 iterations, and the misfit histories are presented
in Figures 6.7. Increasing the resolution on the parameter grid, setting mp = 51,
we see larger oscillations about the hypocenter xc. This shows that reducing
the discrete parameter space may be beneficial for faster convergence of the
misfit, and for reducing the number of local minima. The oscillations around
the hypocenter observed for higher mp could likely be remedied by introducing
regularization to the misfit, for instance by penalizing large gradients in a.
Finding a suitable regularization is however out of the scope of this paper.

Next, we invert for the shear traction τ0(x̄) = σ0
yzn̂

−
y (x̄), setting mp = 51,

and starting from τ 0 given by σ0
yz = 68 MPa corresponding to approximately

5% initial error. The smaller error in the initial guess is due to inversions of
τ0(x̄) proving to be significantly more difficult for this problem setup, with a
higher likelihood of incorrectly converging to a local minimum. This choice of
initial guess reduces the initial stress below the true value, to the point where the
rupture with the initial parameter values quickly arrests. The inversion must
therefore increase τ 0 to produce a propagating rupture. Two inverse-crime
inversions are performed, one with the receiver distribution in Figure 6.4a and
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Figure 6.6: Direct effect parameter a at different iterations for mp = 26.
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Figure 6.7: Direct effect parameter a and misfit history for different mp.

one where the number of receivers is increased by placing them 1 km apart and
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decreasing the inner bounding box to −6 ≤ x ≤ 7, −2 ≤ y ≤ 2, for distances in
km, totaling Nrec = 325. In Figure 6.8, τ 0 obtained with Nrec = 88 is plotted
for different iterations. Again, the first 10 iterations adjust the parameter at
the hypocenter, while subsequent iterations adjust for the spatial extent of the
rupture. However, in this case, the optimization stagnates at a local minimum
after about 100 iterations, as illustrated by the misfit history shown in Figure
6.9b. A comparison of the results at 200 iterations with Nrec = 88 and Nrec =
325 is shown in Figure 6.9. The result using Nrec = 325 matches the true
value well in the VW region. The increased receiver density as well as having
receivers closer to the fault provides more constraints on the shorter wavelength
and shorter timescale parts of the rupture process, which manifests as improved
resolution of τ 0.
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Figure 6.8: Shear traction τ 0 at different iterations using Nrec = 88.

Remark. Numerical experiments (not presented here) indicate that the inversion
is more robust when initializing the inverted parameter such that no nucleation
occurs. As observed, this causes the inversion to adjust the parameter to create
radiation in order to reduce the misfit, which is done by first adjusting the
parameter at the hypocenter and subsequently for the full spatial extent of the
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Figure 6.9: Comparison of shear traction τ 0 at 200 iterations for Nrec = 88 and
Nrec = 325.

rupture. Conversely, starting from parameters causing truly stable parts of the
fault to rupture, e. g. , if initially a − b < 0 in parts of the fault that truly are
VS, the inversion is very likely to converge to an incorrect local minimum.

6.5.3 Inversion using high-resolution synthetic data

Slightly increasing the difficulty of the optimization problem, we perform inver-
sions using the same setups as in Section 6.5.2, but use high-resolution velocity
data generated from the forward simulation presented at the beginning of this
section (illustrated in Figures 6.2 - 6.4). In this setting, we effectively have no
modeling errors (other than the perturbed parameters considered for inversion),
but the data contain features that are not resolvable on the computational grid.
When inverting for a(x̄) we use mp = 26 and Nrec = 88 receivers (i. e. , data as
shown in Figure 6.4b), while for τ0(x̄), we set mp = 51 and Nrec = 325. The
results after 200 iterations are presented in Figures 6.10 - 6.11. In this setting, a
oscillates around the true value in the VW region, while τ 0 seems to interpolate
the true value fairly well. From the misfit in Figure 6.10b it is clear that the
optimization for a has stagnated at a local minimum.

Figure 6.12 shows the velocity field at t = 5 corresponding to: the true
parameter set on (a) the computational grid and (b) the high-resolution grid,
(c, e) the inverted parameters, and (d, f) the initial parameters. Comparing
Figures 6.12a and 6.12b it is clear that spurious oscillations due to lower spa-
tial resolution are present in the velocity fields on the computational grid. The
oscillations observed in a in Figure 6.10a are therefore likely a result of numer-
ical errors in the forward and adjoint fields being mapped into the parameter.
Increasing the number of receivers to Nrec = 325 had no significant effect, and
the results are therefore omitted. To further improve the results, a combination
of regularization and filtering of the misfit residual is likely needed.
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Figure 6.10: Inversion for direct effect parameter a using high-resolution data
and Nrec = 88.
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Figure 6.11: Inversion for shear traction τ 0 using high-resolution data and
Nrec = 325.

7 Conclusion

This work presents an adjoint-based optimization framework for earthquake
modeling with rate-and-state friction. The main contributions are two-fold.
Firstly, the continuous adjoint equations to linear elasticity with rate-state fric-
tional faults are derived, considering displacement and velocity misfit function-
als. The adjoint equations satisfy the equations of linear elasticity in reversed
time, together with an adjoint friction law and state evolution equation. The
adjoint friction law and state evolution equation resemble those of linearized
rate-and-state friction but with time-dependent variable coefficients from the
forward problem. Additionally, for forward problems involving fault normal
stress changes, the adjoint equations include a nonzero fault opening condition,
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(a) True parameters, computational grid (b) True parameters, high-resolution grid

(c) a 200 iterations (d) a initial parameters

(e) τ 0 200 iterations (f) τ 0 initial parameters

Figure 6.12: Comparison of velocity (m/s) at t = 5 using the true parameter
sets on (a) the computational grid, (b) the high-resolution grid, (c, e) a and τ 0

obtained after 200 L-BFGS iterations and (d, f) initial parameter values. Note
the difference in scales using the initial parameter values.

also with time-dependent variable coefficients from the forward problem. By
convolving the adjoint fields with derivatives of the friction law and state evolu-
tion equation, the gradient of the misfit with respect to the inversion parameter
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is obtained.
Secondly, we present SBP-SAT finite difference discretizations of the forward

and adjoint equations in antiplane shear, utilizing the non-stiff interface treat-
ment in Erickson et al. [2022] and the high-order accurate boundary-optimized
SBP operators of Stiernström et al. [2023]. SBP-preserving interpolation allows
the use of a lower-dimensional parameter representation while maintaining dual
consistency. In combination with RK4 time integration, a fully discrete gra-
dient expression is presented. Due to the self-adjointness of RK4 Sanz-Serna
[2016], Matsuda and Miyatake [2021], the space-time discretization is dual con-
sistent, meaning that the gradient expression is the true gradient of the discrete
misfit and consistent with the continuous gradient. This claim is corroborated
by numerical experiments in a dynamic rupture setting, presented in Section
6.5.1. Dual consistency has been shown to be beneficial in other applications,
see e. g. Hartmann [2007], Hicken and Zingg [2014], where dual consistent dis-
cretizations leads to superconvergent approximations of integral functionals in
fluid dynamics. The practical benefits of dual consistency for the type of inverse
modeling considered herein are yet to be determined.

We then proceed with inversions of model problems in increasingly complex
settings in Sections 6.5.2 - 6.5.3. To start with, inverse-crime inversions are
performed. Here, we are able to reconstruct the direct effect parameter and fault
shear traction fairly accurately in the velocity-weakening region of the fault with
appreciable slip. In the velocity-strengthening region that has negligible slip, the
parameter sensitivity is close to zero, due to a lack of radiation from this region.
Next, inversions utilizing synthetic high-resolution data are performed. For the
direct effect parameter, a local minimum is found, which exhibits oscillations in
the parameter around the true value. Inversions for shear traction interpolate
the true value fairly well. We conclude that regularization, likely in combination
with filtering of the misfit and adjoint source signals, is required to further
improve the results.

An additional issue which will arise in real-world applications is the likely
trade-off between model parameters when doing inversions for both friction pa-
rameters and initial stresses. The wavefield that is measured by the receivers,
which the inversion attempts to match, is controlled by the fault slip history.
Slip is controlled by the reduction in stress from the initial shear stress to the
residual strength, the product of dynamic friction and normal stress. Parameter
trade-offs will likely exist between a−b, which determines dynamic friction, and
the initial shear stress. Additional trade-offs can be anticipated by examina-
tion of the crack tip equation of motion, which balances the energy release rate
with the fracture energy Freund [1998]. Garagash [2021] provides expressions
for fracture energy in terms of rate and state frictional parameters and normal
stress, and the energy release rate is a functional of the shear stress drop his-
tory. Parameter combinations that produce similar rupture histories will not be
uniquely constrained.

The primary future research direction is thus to investigate suitable regu-
larizations of the misfit functional, which might be designed by anticipating
trade-offs through knowledge of dynamic fracture mechanics. In addition, we
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will extend the adjoint framework to include other types of measurements, e. g. ,
strain rate from fiber optics cables, pressure from hydrophones, and InSAR mea-
surements of surface displacement.
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A Summation-by-parts properties

Integration by parts (IBP) is key in deriving energy balances and showing con-
servation properties of the continuous equations. SBP operators allow us to
mimic the analysis in the discrete setting. It is shown in Almquist and Dunham
[2020, 2021] that DII(µ) satisfies SBP properties on Ω, consistent with the
continuous IBP property for ∂Iµ∂I on Ω. The results are summarized below.

For scalar functions u and v, the variable coefficient Laplace operator satisfies

(v, ∂Iµ∂Iu)Ω = (v, τu)∂Ω − (∂Iv, µ∂Iu)Ω , (A.1)

where τu = µ∂n̂u. Integrating by parts once more yields

(v, ∂Iµ∂Iu)Ω = (v, τu)∂Ω − (τv, u)∂Ω + (∂Iµ∂Iv, u)Ω , (A.2)

In the discrete setting letDI ≈ ∂I onΩ be a first-derivative SBP operator, based
on the same SBP norm H as DII . Then, DII(µ) satisfies the SBP property

(v,DII(µ)u)Ω = (v, τu)∂Ω − (DIv, ¯̄µDIu)Ω − vTR∆u, (A.3)

where τu = Tu, with T ≈ µ∂n̂ and R∆ = RT
∆ ≥ 0, R∆ ≈ 0. Thus (A.3) is

a discrete counterpart to the IBP property (A.1). Applying the SBP property
once more yields

(v,DII(µ)u)Ω = (v, τu)∂Ω − (τv,u)∂Ω + (DII(µ)v,u)Ω , (A.4)

For details on how DI and T are constructed see Almquist and Dunham [2020,
2021], Stiernström et al. [2023].

The SBP property (A.3) facilitates the derivation of a discrete energy rate
for scalar wave equations. This is achieved by replacing v by u̇, in which case
the volume terms (·, ·)Ω contribute to the discrete potential energy rate. The
discrete energy rates are then useful for guiding the enforcement of boundary or
interface conditions, such that an energy-stable scheme may be obtained. See,
e. g. , Duru et al. [2019], Wang and Petersson [2019], Almquist and Dunham
[2020, 2021], Erickson et al. [2022]. The property (A.4) states that DII(µ)
augmented with suitable boundary or interface treatment is self-adjoint with
respect to HΩ.

B Semi-discrete adjoint sources

To derive the semi-discrete gradient we seek an adjoint source Q† satisfying(
Q†,

∂u̇

∂p

)
Ω×T

=
∂F
∂p

. (B.1)

Consider the gradient of the misfit (6.21) with a single receiver. For convenience,
we drop the superscripts. By the chain rule, it follows that

∂F
∂p

=
∂

∂p

(
1

2

∫
T
r2dt

)
=

∫
T
r

(
δ̂,

∂m

∂p

)
Ω

dt =

(
rδ̂,

∂m

∂p

)
Ω×T

. (B.2)
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If m = u̇, we have ∂F
∂p =

(
rδ̂, ∂u̇

∂p

)
Ω×T

, which is of the desired form (B.1). If

m = u, introduce r̂(t) =
∫ t

0
r(t′)dt′ + r̂0 with r̂0 = −

∫ T

0
r(t′)dt′ and integrate(

rδ̂, ∂u
∂p

)
Ω×T

by parts in time to obtain ∂F
∂p =

(
−r̂δ̂, ∂u̇

∂p

)
Ω×T

. Thus,

∂F
∂p

=

(
S,

∂u̇

∂p

)
Ω×T

, S(t) =

{
−r̂(t)δ̂(x̄− x̄r), m = u,

r(t)δ̂(x̄− x̄r), m = u̇.
(B.3)

Summing S over all receivers results in Q† in (6.31).

C Derivation of the semi-discrete gradient

To derive the gradient of (6.21), the procedure in Section 5 is followed. Omitting
external forcing (since it does not contribute to the gradient) the Lagrangian
misfit functional to (6.21) reads

L = F +
(
u̇†, ¯̄ρü− L(u,u∗, τ ∗)

)
Ω+×T

+
(
u̇†, ¯̄ρü− L(u,u∗, τ ∗)

)
Ω−×T

+
(
Ψ†, Ψ̇−G

)
Γ×T

,

(C.1)

where we omit subscripts ± of the grid functions since they are implied by the
inner products. Consider first

(
u̇†,L(u,u∗, τ ∗)

)
Ω+×T . By (6.6) it follows that(

u̇†,L(u,u∗, τ ∗)
)
Ω+×T =(

u̇†,DII(µ)u+ SAT(u,u∗, τ ∗)
)
Ω+×T =(

u̇†,DII(µ)u
)
Ω+×T +

(
u̇†, τ ∗ − τ

)
∂Ω+×T −

(
τ̇ †,u∗ − u

)
∂Ω+×T .

(C.2)

Swapping forward and adjoint variables yields(
u̇,L(u†,u†∗, τ †∗)

)
Ω+×T =(

u̇,DII(µ)u
†)

Ω+×T +
(
u̇, τ †∗ − τ †)

∂Ω+×T −
(
τ̇ ,u†∗ − u†)

∂Ω+×T .
(C.3)

Next, using the SBP property (A.4) and IBP in time it follows that(
u̇†,DII(µ)u

)
Ω+×T =

−
(
DII(µ)u

†, u̇
)
Ω+×T +

(
u̇†, τ

)
∂Ω+×T −

(
τ̇ †,u

)
∂Ω+×T ,

(C.4)

where terms evaluated at t = 0 and t = T vanish due to the initial and terminal
conditions (6.19) and (6.31). Due to the p-independence of data, we assumed
homogeneous initial conditions for the forward problem, since such terms would
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vanish in the gradient expression regardless. Using (C.4) in (C.2) together with
(C.3) yields(

u̇†,L(u,u∗, τ ∗)
)
Ω+×T =

−
(
DII(µ)u

†, u̇
)
Ω+×T +

(
u̇†, τ ∗)

∂Ω+×T −
(
τ̇ †,u∗)

∂Ω+×T =

−
(
u̇†,L(u,u∗, τ ∗)

)
Ω+×T +BT

(C.5)

where
BT =

(
τ †∗ − τ †, u̇

)
∂Ω+×T −

(
u†∗ − u†, τ̇

)
∂Ω+×T

+
(
u̇†, τ ∗)

∂Ω+×T −
(
τ̇ †,u∗)

∂Ω+×T

=
(
τ †∗ − τ †, u̇

)
∂Ω+×T +

(
u̇†∗ − u̇†, τ

)
∂Ω+×T

+
(
u̇†, τ ∗)

∂Ω+×T +
(
τ †, u̇∗)

∂Ω+×T

(C.6)

with the last equality obtained by IBP in time. Next we perform a change of
variables in the term

(
u̇†∗ − u̇†, τ

)
∂Ω+×T from τ to τ̃ using (6.8)(

u̇†∗ − u̇†, τ
)
∂Ω+×T =

(
u̇†∗ − u̇†, τ̃ − γ(u∗ − u)

)
∂Ω+×T =(

u̇†∗ − u̇†, τ̃
)
∂Ω+×T +

(
γ(u†∗ − u†), u̇∗)

∂Ω+×T −
(
γ(u†∗ − u†), u̇

)
∂Ω+×T ,

(C.7)
where IBP in time was used to obtain the last equality. Combining the result
with (C.6) and substituting τ̃ † results in

BT =
(
τ †∗ − τ̃ †, u̇

)
∂Ω+×T +

(
u̇†∗ − u̇†, τ̃

)
∂Ω+×T

+
(
u̇†, τ ∗)

∂Ω+×T +
(
τ̃ †, u̇∗)

∂Ω+×T .
(C.8)

Next we use (6.7) and (6.24) to obtain

τ̃ = τ ∗ + Z(u̇− u̇∗),

τ̃ † = τ †∗ − Z(u̇† − u̇†∗).
(C.9)

Substituting (C.9) into (C.8) and eliminating terms yields

BT =
(
u̇†∗, τ ∗)

∂Ω+×T +
(
τ ∗†, u̇∗)

∂Ω+×T . (C.10)

Since the target values satisfy the boundary conditions, BT vanishes on all
boundaries but the fault. This is straightforwardly seen on rigid-wall or traction-
free boundaries, where u∗ and u†∗, or τ ∗ and τ †∗, respectively, are zero. On
non-reflecting boundaries, substituting (6.9), (6.10), (6.25), (6.26) with R = 0
into (C.10) yields the result. Adding contributions of (C.10) from Ω− yields

IT = BT+ +BT− =
(
τ †∗
+ ,V∗

)
Γ×T

−
(
V†∗, τ ∗

+

)
Γ×T . (C.11)

where it is assumed that V∗ = [[u̇∗]] and V†∗ = −[[u̇†∗]].
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By (C.1) and (C.5) it then follows that

L = F −
(
¯̄ρü† − L(u†,u†∗, τ †∗), u̇

)
Ω+×T

−
(
¯̄ρü† − L(u†,u†∗, τ †∗), u̇

)
Ω−×T

− ST − IT,

(C.12)

where
ST =

(
Ψ̇†,Ψ

)
Γ×T

+
(
Ψ†,G

)
Γ×T −

(
Ψ†

0,Ψ0

)
Γ
, (C.13)

is obtained from IBP in time, where the term at t = T vanishes due to the
terminal condition in (6.31).

We will now derive the gradient ∂L
∂p . Combining (B.1) with the adjoint

scheme (6.31), the gradient of the volume terms vanishes such that ∂L
∂p =

−∂ST
∂p − ∂IT

∂p . First, consider the inversion for a parameter in either F or G.
Since

∂τ ∗
+

∂p
= −

(
¯̄FV

∂V∗

∂p
+ ¯̄FΨ

∂Ψ

∂p
+ ¯̄Fp

∂p

∂p

)
, (C.14)

and

∂ST

∂p
=

(
Ψ̇†,

∂Ψ

∂p

)
Γ×T

+

(
Ψ†, ¯̄GV

∂V∗

∂p
+ ¯̄GΨ

∂Ψ

∂p
+ ¯̄Gp

∂p

∂p

)
Γ×T

, (C.15)

we obtain

∂IT

∂p
=

(
τ †∗
+ ,

∂V∗

∂p

)
Γ×T

+

(
V†∗, ¯̄FV

∂V∗

∂p
+ ¯̄FΨ

∂Ψ

∂p
+ ¯̄Fp

∂p

∂p

)
Γ×T

(C.16)

and
∂ST

∂p
+

∂IT

∂p
=

(
τ †∗
+ + ¯̄FV V

†∗ + ¯̄GV Ψ
†,
∂V∗

∂p

)
Γ×T

+

(
Ψ̇† + ¯̄FΨV

†∗ + ¯̄GΨΨ
†,
∂Ψ

∂p

)
Γ×T

+

(
¯̄GpΨ

† + ¯̄FpV
†∗,

∂p

∂p

)
Γ×T

.

(C.17)

Using the discrete friction law (6.27) and state evolution equation (6.30), we
arrive at

∂ST

∂p
+

∂IT

∂p
=

(
¯̄GpΨ

† + ¯̄FpV
†∗,

∂p

∂p

)
Γ×T

. (C.18)

Similarly, if inverting for the initial state Ψ0

∂τ ∗
+

∂Ψ0
= −

(
¯̄FV

∂V∗

∂Ψ0
+ ¯̄FΨ

∂Ψ

∂Ψ0

)
, (C.19)
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while

∂ST

∂Ψ0
=

(
Ψ̇†,

∂Ψ

∂Ψ0

)
Γ×T

+

(
Ψ†, ¯̄GV

∂V∗

∂Ψ0
+ ¯̄GΨ

∂Ψ

∂Ψ0

)
Γ×T

−
(
Ψ†

0,
∂Ψ0

∂Ψ0

)
Γ

,

(C.20)

such that
∂ST

∂Ψ0
+

∂IT

∂Ψ0
= −

(
Ψ†

0,
∂Ψ0

∂Ψ0

)
Γ

. (C.21)

Since (in index notation)
∂pj

∂pi
= δij (and similarly for Ψ0) (6.33) follows.

Remark. To reach (C.18) and (C.21) we have assumed V∗ = [[u̇∗]] and V†∗ =
−[[u̇†∗]]. This is true for V†∗, since the adjoint scheme satisfies (6.29) exactly,
due to F † being linear in V † such that the solve is trivial. However, due to the
non-linear solve required in (6.13),

[[u̇∗]] = V∗ + ε. (C.22)

When adding the contributions from the interface terms, this leads to

IT =
(
τ †∗
+ ,V∗ + ε

)
Γ×T

−
(
V†∗, τ ∗

+

)
Γ×T , (C.23)

such that
∂F (ε)

∂pi
=

∂F
∂pi

+

(
τ †∗
+ ,

∂ε

∂pi

)
Γ×T

(C.24)

is the resulting gradient. Thus, the error in the non-linear solve results in an
error in the semi-discrete gradient. However, since F is invertible and monotone
on the interval [Vmin, Vmax], the root can bracketed, i. e. , V∗ ∈ [Vmin,Vmax]
Erickson et al. [2022]. Therefore we can control ε arbitrarily through the toler-
ance in a bracketed root finding algorithm, e. g. bisection.
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