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ABSTRACT 

 
In this paper, we propose and compare two novel deep generative model-based approaches for the 

design representation, reconstruction, and generation of porous metamaterials characterized by complex 
and fully connected solid and pore networks. A highly diverse porous metamaterial database is curated, 
with each sample represented by solid and pore phase graphs and a voxel image. All metamaterial samples 
adhere to the requirement of complete connectivity in both pore and solid phases. The first approach 
employs a Dual Decoder Variational Graph Autoencoder to generate both solid phase and pore phase 
graphs. The second approach employs a Variational Graph Autoencoder for reconstructing/generating the 
nodes in the solid phase and pore phase graphs and a Transformer-based Large Language Model (LLM) for 
reconstructing/generating the connections, i.e., the edges among the nodes. A comparative study was 
conducted, and we found that both approaches achieved high accuracy in reconstructing node features, 
while the LLM exhibited superior performance in reconstructing edge features. Reconstruction accuracy is 
also validated by voxel-to-voxel comparison between the reconstructions and the original images in the test 
set. Additionally, discussions on the advantages and limitations of using LLMs in metamaterial design 
generation, along with the rationale behind their utilization, are provided. 

 
Keywords: Porous Metamaterial; Graph Representation; Graph Neural Network; Large Language Model; 
Variational Graph Autoencoder. 

1. INTRODUCTION 
Various metamaterials have been developed to achieve exceptional mechanical properties, catering to 

diverse applications [1-12]. Their extraordinary mechanical characteristics are attributed to their distinctive 
topological features. The design of porous metamaterials suitable for applications involving fluid-filled 
conditions [13-15] has been relatively overlooked despite a substantial body of research in the field of 
metamaterial research. The use of conventional techniques like parametric design and analytical modeling 
typically restricts the design freedom of metamaterials with fluid-filled porous structures [1-5]. Therefore, 
new approaches enabling the freeform design of porous metamaterials, which satisfy the criterion of 
complete connectivity in both pore and solid phases [16], must be established. “Complete connectivity” 
means that there are no isolated solid parts or pores within the structure. However, detecting and repairing 
such disconnection is challenging, and methods such as texture synthesis [16] and the virtual temperature 
method [17] either, in some cases, cannot guarantee complete connectivity or are computationally 
expensive.  Moreover, earlier studies on the design of porous metamaterial units either restrict design 
possibilities to simple structures like lattices, simplifying connectivity verification or fail to ensure complete 
connectivity in both solid and pore components [18-22].  

A promising solution to this challenge is to employ graph representation for designing metamaterials 
[23-25] and microstructures [26]. Derived from graph theory, the graph representation-based methods are 
computationally efficient in detecting disconnections and isolated parts and creating fully connected 
structures. Graph-based methods have been widely employed in materials science [23, 26, 27], chemistry 
[28], and structure design for mechanical properties [29-33]. In our previous work [34], we showcased the 
efficiency of graph-based representation in creating porous metamaterial structures with complete 
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connectivity in both pore and solid phases. The graph representation of porous metamaterials introduced in 
that study serves as the basis for the study in this paper. 

Graph representation enables the application of graph neural networks (GNNs)[23, 27, 35-37] and large 
language models (LLMs), which require structured data—a feature inherently provided by graph structures. 
Each graph contains nodal end connection information 𝑮 = (𝑽, 𝑬), and the design and fabrication of porous 
metamaterials can be achieved by configuring these nodes and their connections (edges) [23]. A major 
challenge associated with GNN is to predict the edges for a given set of nodes accurately. Zhang [38] 
categorized the edge prediction approaches into two main categories: subgraph-based methods and node-
based methods. The subgraph-based methods, such as learning from Subgraphs, Embeddings, and 
Attributes for Link prediction (SEAL) frameworks [39], necessitate a partially connected graph as the 
starting point to generate connections among the remaining nodes. On the other hand, node-based methods, 
such as the Variational Graph Autoencoders (VGAE) [40, 41], learn the underlying distribution of graphs 
from a given dataset, and generate new graphs following the same distribution. However, VGAE face 
challenges in capturing complex and high-dimensional graph structures due to the information loss in the 
latent space, Additionally, they may struggle to capture long-range dependencies or global structural 
features within the graph due to their inability to account for the relative positions and associations between 
them [38]. 

 
In contrast, Transformer-based LLMs are powerful in predicting edges in graphs because they can 

comprehend long-range dependencies and consider various relationships before establishing connections 
[42, 43]. LLMs have been utilized in various graph-based problems [44-49]. However, despite their 
promising abilities, such as detecting the relation between dataset and zero-shot learning [50-52], their 
successful application in structural design, including the design of metamaterial structures, is still lacking. 
It is important to note that LLMs work best for cases where the data can be represented in a sequential or 
structured format (such as graphs and natural languages) [53]. Hence, we propose to leverage LLM in 
designing graph-represented microstructures in this study.   

Despite these differences, GNN and LLM can be used entangled with each other. LLM can be used as 
an enhancer of GNN[42, 44] by capturing node embeddings containing long-range relations with other 
nodes; GNN can create graph embeddings as fine-tuning inputs for LMM to improve LLM efficiency [42, 
44, 53, 54]. Additionally, these two models can operate in parallel [42, 44]. This highlights the potential of 
LLMs in engineering design problems where structured graph data is involved.   

The remainder of this paper is organized as follows. Section 2 introduces the proposed methodologies 
based on VGAE and LLM, for design representation, reconstruction, and generation of porous 
metamaterials. Section 3 presents a case study to quantitatively assess the effectiveness of the proposed 
methodologies. Section 4 discusses the advantages of employing LLM in porous metamaterial design 
problems. Section 5 concludes this work. 

 
2. METHODOLOGY: GENERATIVE MODEL-BASED APPROACHES FOR GENERATING 
POROUS METAMATERIAL STRUCTURES 

Two new approaches are proposed for design representation, reconstruction, and generation of porous 
metamaterials. As discussed in Section 2.1, porous metamaterial samples have been generated based on a 
solid phase graph and a pore phase graph in order to guarantee complete connectivity in both phases. The 
first approach, presented in Sections 2.2 and 2.3, employs a Dual Decoder Variational Graph Autoencoder 
(DVGAE) for predicting both nodes and edges of the graphs that represent the solid and pore phases in the 
porous structure. The second approach, presented in Section 2.4, uses VGAE as the node generator and a 
fine-tuned LLM as the edge generator. A comparative study of the two approaches will be presented in 
Section 3. Section 2.1 introduces the approach for graph-based representation and generation of diverse 
training samples, which are porous metamaterial units with complete connectivity in both pore and solid 
phases. 
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Figure 1: Proposed approaches for generating complex porous metamaterial designs. (a) Dual Decoder 
Variational Graph Autoencoder (DVGAE) for generating both nodes and edges and (b) A hybrid approach 
that integrates VGAE and LLM (LLM model architecture presented by Vaswani et al. [43]). 

 

2.1 TRAINING DATASET: POROUS METAMATERIAL SAMPLES WITH COMPLETE 
CONNECTIVITY IN BOTH SOLD AND PORE PHASES 

We proposed a graph-based approach for generating complex porous microstructures with complete 
connectivity in both solid and pore phases (refer to [34] for details). This approach involves constructing 
the porous metamaterial unit from two “interwoven” graphs that represent the solid phase and the pore 
phase, respectively. As shown in Figure 2, this approach consists of the following steps. 

 
Figure 2: The proposed approach for generating complex porous metamaterial unit samples with complete 
connectivity in both solid and pore phases-demonstrating using one of the most complex samples. 

In the first step, a graph representing the skeleton of the solid phase is created ("solid phase graph"). 
The nodes of the solid graph are randomly selected, and then connected based on a distance-based logic. 
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This logic connects neighboring nodes within a specific distance until all nodes are interconnected, in the 
case of isolated node clusters, long-range connections will be established to achieve a single connected 
graph. The nodes and edges of the graph are then mapped onto a voxel grid to create the voxel skeleton of 
the solid phase.  

The second step is to create the “pore phase graph” in a similar way. When creating the voxel skeleton 
of the pore phase, if the path between a pair of nodes is blocked by a voxel in the solid skeleton, a rerouting 
strategy based on the Manhattan method [55] is conducted to bypass the blocking voxel.   

In the third step, the two skeletons are merged into the same space (1/8 of the entire 3D space), and 
mirror operations are conducted to create a symmetric structure.   

In the last step, the remaining unlabeled voxels in the 3D image are assigned to either the solid phase 
or the pore phase by the approximate K-nearest neighbor-based clustering using a K-Dimensional tree (K-
D tree) [56], after merging the two skeletons into one voxel image and mirroring along all three axes to 
create a symmetric metamaterial unit structure.  

Both solid and pore phases in the created metamaterial design are inherently fully connected, which is 
a major advantage of this approach. It does not need any additional post-processing to remove “enclosed 
voids” or “disconnected materials”. In this study, by controlling the distance-based connection radius, two 
sets of graph samples with different levels of complexity have been created. By randomizing the locations 
of the input nodes, highly diverse metamaterial unit datasets are generated (Figure 3). This database 
includes three datasets (Table 1). Dataset 1 has 130,961 samples of simple graphs with a fixed number of 
nodes, which is 15 in this case. Dataset 2 has 300,000 samples of complex graphs with a fixed number of 
nodes, which is 15 in this case too. Dataset 3 has 500,000 samples of complex graphs with a varying number 
of nodes, ranging from 12 to 60 nodes. The “complexity” of the graph is measured by the metric of average 
eccentricity [57]. Dataset 1 (simple graphs) has an average eccentricity of 2.78, while Datasets 2 and 3 
(complex graphs) have average eccentricity values of 5.75 and 8.36, respectively. 

 
Table 1: Number of samples, number of nodes for constructing graphs, and graph complexity of the samples 
in the three datasets 

 

Case Number of samples Number of nodes for 
constructing graphs Graph Complexity 

Dataset 1 130,961 15 2.78 
Dataset 2 300,000 15 5.75 
Dataset 3 500,000 12-60 8.36 

 
 
Both DVGAE and Hybrid models will be trained and tested on all 3 datasets. For Dataset 1, 129,961 

samples are used for training and 1,000 samples are used for testing; For Dataset 2, 295,000 samples are 
used for training and 5,000 samples are used for testing, and for Dataset 3, 495,000 samples are used for 
training and 5,000 samples are used for testing. This dataset was used exclusively for the training and 
validation of DVGAE and Hybrid models, while the rules used to create it remain unknown to both VGAE 
and LLM models. The ingenuity of this work lies in its ability to generate structures without knowing the 
rules which means these models can capture the generation rules of any dataset and regenerate the structure.  
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Figure 3: Diversity of the training samples: several examples of metamaterial units, the voxel image, and 
the graph representation of 1/8 of the cube, in the created database. (a) A sample from Dataset 1 – simple 
graphs. (b) A sample from Dataset 2 – complex graph. (c) Samples from Dataset 3 – complex graphs and 
varying number of nodes. 

 
2.2 Dual Decoder Variational Graph Autoencoder (DVGAE) for Both Node and Edge Feature 
Learning 

Graph autoencoder (GAE) and its variations (e.g., VGAE [58], adversarial regularized graph 
autoencoder [59], deep attention embedding graph autoencoder [60], etc.) to learn latent representations of 
graphs using an autoencoder framework have been widely used to generate new graphs. DVGAE [61] is 
employed in this work to generate node attributes and graph structures (edges) simultaneously. Furthermore, 
by employing a variational framework, our aim is to more accurately capture the inherent distribution of 
graph data, thereby improving the model’s capacity to generate novel graphs. A DVGAE comprises the 
following four major components: 
(1) Graph Convolutional Encoder, 𝑞(𝐳|𝐗, 𝐀), which can be expressed as: 

𝑞(𝐳|𝐗, 𝐀) = Π𝑖=1
𝑁 𝑞(𝐳𝑖|𝐗, 𝐀)                                                        (1) 

𝑞(𝐳𝑖|𝐗, 𝐀) = 𝑁(𝐳𝑖|𝝁𝑖 , diag(𝝈𝑖
2))                                                (2) 

where we define an undirected, unweighted graph 𝐺 = (𝑣, 𝜀) with 𝑁 = |𝑣| nodes. 𝐗 is the node features 
matrix of the graph 𝐺, 𝐀 is the adjacency matrix of the graph 𝐺, and 𝐃 is the normalized degree matrix of 
𝐺. 𝐳𝑖 represents a latent variable, and the latent vector 𝐳 is an 𝑁 × 𝐹 matrix, where 𝐹 is the dimension of 
the latent vectors to which each node is mapped. 𝐗 represents the node features matrix with a dimension of 
𝑁 × 𝐷. The mean (𝝁𝑖) and variance (𝝈𝑖

2) of the latent variables for each node are computed using two 
GCN layers: one for the means (𝛍 = GCN𝝁(𝐗, 𝐀)) and another for the log variance (log𝛔 = GCN𝝈(𝐗, 𝐀)). 
During the GCN operation, for each graph, given the node feature matrix 𝐗 and the edge feature matrix 𝐀, 
we then have 𝐇 = 𝐀′𝐗𝐖, where 𝐖 is the trainable weight matrix, and 𝐀′ = 𝐃−

1

2𝐀𝐃
1

2.  
(2) Inner Product Decoder, which is constructed with fully connected layers, takes the latent vector 𝐙 as 
input to reconstruct the original graph 𝐺. The underlying assumption of this decoding strategy is that if two 
nodes are similar in the latent space (i.e., their latent vectors are close to each other), they are more likely 
to be connected in the graph. The reconstructed adjacency matrix 𝐀̃ is reconstructed as:  

𝐀̃ = 𝜎(𝐙𝐙𝐓)                                                                     (3) 
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where 𝜎(∙) is the logistic sigmoid function, which ensures that the output values are in the range (0,1), 
interpretable as probabilities. 

(3) Graph Convolutional Decoder, which consists of a graph convolutional layer followed by a node-wise 
softmax operation to reconstruct node features 𝐗̃. The graph convolutional decoder is defined as: 

𝐗̃ = 𝑓(𝐙, 𝐀) = 𝐀 𝑅𝑒𝐿𝑈(𝐀𝐙𝐖(0))𝐖(1)                                            (4) 

where 𝐀  is the adjacency matrix. 𝐙  represents the latent representation obtained from the encoder. 
ReLU(∙) = (0; ∙)  is a nonlinear activation function. 𝐖 represents the trainable weight matrix. The structure 
of the node and edge features is utilized through the entire encoding-decoding process, owing to the usage 
of the graph convolutional layers in both the encoder and decoder. 

(4) Loss Function, which consists of two parts: the reconstruction loss and the Kullback-Leibler divergence 
loss. The reconstruction loss comes from both the inner product decoder and the graph convolutional 
decoder. The inner product decoder reconstructs the adjacency matrix, and the associated loss function is 
defined as: 

ℒ𝑎𝑑𝑗 = E𝑞(𝐙|𝐗, 𝐀)[log 𝑝(𝐀|𝐙)]                                                      (5) 

where 𝑞(𝐙|𝐗, 𝐀) is the posterior inference, which can be recognized as performing posterior inference over 
all the data points in the dataset, where: 

𝑝(𝐀|𝐙) = Π𝑖=1
𝑁 Π𝑗=1

𝑁 𝑝(A𝑖𝑗|𝐳𝑖 , 𝐳𝑗)                                                        (6) 
𝑝(A𝑖𝑗 = 1|𝐳𝑖 , 𝐳𝑗) = 𝝈(𝐳𝑖

T𝐳𝑗)                                                           (7) 

The graph convolutional decoder reconstructs the node feature matrix, and the associated loss function 
is defined as: 

ℒ𝑋 =
1

2
||𝐗 − 𝐗̃||

2
                                                                      (8) 

The VGAE model is trained to optimize the variational lower bound 𝐿: 

ℒ𝑉𝐺𝐴𝐸 = 𝜆1ℒ𝑎𝑑𝑗 + 𝜆2ℒ𝑋 + 𝜆3ℒ𝐾𝐿 = E𝑞(𝐳|𝐗, 𝐀)[log 𝑝(𝐀|𝐳)] +
1

2
||𝐗 − 𝐗̃||

2
− KL[𝑞(𝐳|𝐗, 𝐀)||𝑝(𝐳)]              

(9) 

where KL[𝑞(∙)||𝑝(∙)]  is the Kullback-Leibler divergence between 𝑞(∙)  and 𝑝(∙) . We use Gaussian prior 
𝑝(𝐳) = Π𝑖𝑝(𝐳𝑖) = Π𝑖𝑁(𝐳𝑖|0, 𝐈). To optimize the parameters of the Gaussian distribution, we perform mini-
batch gradient descent and leverage the reparameterization trick [62]. 𝜆1 , 𝜆2  and 𝜆3  are coefficients to 
balance different loss terms to achieve better accuracy. In this work, we use 𝜆1 = 𝜆2 = 𝜆3 = 1.  

To show the advantages of using the DVGAE model, we compared it to a baseline model that is 
constructed using dense layers in a dual-decoder VAE (DVAE) frame instead of using graph layers. 
 
2.3 DVGAE Model Training 

For the metamaterial samples in our dataset, both solid and pore phases are represented by a 15-node 
graph. The node feature matrix 𝐗 contains the coordinates (𝐗𝑥, 𝐗𝑦, 𝐗𝑧) of each node, and the edge feature 
matrix 𝐀 representing the connection between nodes. For model training, we use the PyTorch Geometric 
library. The models are trained on Nvidia RTX8000. Adam is used as the optimizer for parameter 
optimization. The training and test datasets are introduced in Section 2.1.  

 
2.4 Hybrid approach: VGAE for node generation and LLM for edge generation. 

The proposed hybrid approach utilizes VGAE to generate the node features of the graph and establishes 
connections among the nodes using LLM. The VGAE for node generation follows the same methodology 
as presented in Section 2.1. 
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The remarkable capabilities of LLMs in processing structured data have inspired the utilization of 
LLMs in graph-based problems [44]. As described in our previous work [34] and Section 2.1, the porous 
structure is represented by two graphs, one for the solid phase and the other for the pore phase. In each 
graph, the nodes represent the joints in the solid/pore networks, and the edges represent the 
conduits/connections between neighbor joints. The reason behind employing LLM lies in the 
conceptualization of the solid phase and pore phase graphs as sequential data, where node connections are 
determined by distances. Therefore, sequence-to-sequence (seq2seq) learning [63, 64] is employed to get 
nodes’ positional information as input and predict the nodes’ connections as the output. 

In this paper, the byt5 model has been utilized as the LLM for edge prediction [65, 66]. ByT5 is a pre-
trained LLM, which offers better generalizability compared to task-specific transformer models, enabling 
fine-tuning with a smaller number of graph data [67]. ByT5, similar to other variants of the Text-to-Text 
Transfer Transformer (T5) model, has an Encoder-Decoder architecture [68]. The encoder-decoder 
framework is well-suited for seq2seq tasks due to its capability to maintain effective attention on both 
source and target sequences [69]. By having an attention mechanism [43] in both decoder and encoder, it 
can detect hard-to-detect dependencies, which, given the fact that the connection of a graph could be a 
difficult task, makes it crucial. Furthermore, Wang et al. [50] demonstrated that models employing an 
encoder-decoder structure, when fine-tuned on multiple tasks, exhibit the highest zero-shot capabilities. 
This implies that while the database has been created with a fixed number of nodes, the LLM model 
possesses the flexibility to accept an arbitrary number of nodes as input and generate their connections, a 
capability often termed as zero-shot learning [48, 70].  

 
Figure 4: The approach for fine-tuning the byt5-base model for the task of predicting node connections in 
graphs that represent the solid and pore phases in porous metamaterials (The Hugging Face logo is 
provided by the Hugging Face: https://huggingface.co/brand). 

Among the different variations of T5, ByT5 stands out as a byte-level transformer model, also known 
as a token-free model. This approach interprets sequences as UTF-8 bytes, and according to Xue et al. [65], 
it performs particularly well in tasks involving numerical reasoning and those at the byte level. This model 
could be advantageous for training on graph data containing positional information, as it necessitates 
numerical reasoning to establish node connections. For byt5 to be able to do accurate predictions, it needs 
to be trained on graph data as the downstream task. Furthermore, employing a dataset with varying numbers 
of nodes in training the byt5 model enhances both accuracy and generalizability in zero-shot learning 
scenarios [71, 72]. In the proposed approach, as depicted in Figure 4, the following steps are undertaken. 
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In the first step of finetuning the LLM model, the graph data as a downstream task will be imported. 
Since the LLM requires text input data, using a standard process the graph will be turned into text where 
compression can be applied to enhance performance while reducing memory and computational 
complexity[66]. This compression is necessary to increase performance when leveraging attention 
mechanisms, which typically have a complexity of 𝑂(𝑛2) [43, 66, 73].  

The compressed data will be tokenized using the byT5 special tokenizer, converted into tensors of the 
same length via a collator, and then the byt5-base model will be fine-tuned using the seq2seq trainer, all 
from the Hugging Face library [66, 74, 75]. It is notable that, as demonstrated in Figure 4, the compressed 
input sequence follows the format "node1;;node2;;…", while the compressed output sequence adopts the 
format "node j@node k;; node i@node m;;...". Additionally, each node is characterized by three dimensions 
"X𝑥; X𝑦; X𝑧", which also needs to be within a reasonable range.  

During the fine-tuning process, all model parameters are retrained on the new graph data (in this study, 
they are the metamaterial structures in graph representation introduced in Section 2.1). The objective of the 
fine-tuned model is to predict node connectivity by feeding nodal information to the LLM, facilitating the 
creation of fully connected complex porous materials. The remarkable aspect of this model is its capability 
to predict edge connections without prior knowledge of a partially connected graph. Only node features are 
needed as the input for edge generation.  

The LLM predicts all the connections of the given nodes in a single computational process. Also, it 
should be noted that the LLM also learns the graph generation, extraction, and saving rules. In this study, 
the NetworkX library [76] was used to archive our training dataset and the LLM, due to its “black box” 
[77] nature seems to learn the underlying rules behind graph generation, extraction, and archiving. 
Consequently, the current fine-tuned model is not invariant to the ordering of input nodes, even though no 
specific ordering was enforced in the training data. Further investigation into fine-tuning an LLM that is 
invariant to ordering is needed in our future works. Figure 5 presents a comparison between the graph 
predicted by an LLM, illustrated in green, and the original graph derived from the test dataset, illustrated 
in blue, with respect to the connections among the nodes. This comparison reveals a high accuracy in edge 
prediction when utilizing the LLM can be achieved. 

 
Figure 5: Demonstrating Graph Prediction: (a) A ground truth graph from the test set and (b) the predicted 
graph by LLM. 
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One inherent capability of LLMs is zero-shot learning, allowing the model to make accurate predictions 
even without prior exposure to a dataset [50-52]. This capability offers two advantages in porous 
metamaterial modeling. Firstly, although trained on solid phase graphs, the model can accurately predict 
pore phase graphs, which are generated following the same logic as the solid phase graph. Secondly, in the 
case that the training dataset comprises a fixed number of nodes, the LLM model can predict outputs even 
with an arbitrary number of input nodes. The resulting connections adhere to the same logic as those 
generated in Section 2.1, enhancing the flexibility in design generation by adding different number of nodes 
during the design. Consequently, an LLM-based generative model can be employed for metamaterial 
structure generation.  

To demonstrate the accuracy and predictive capabilities of fine-tuned models and ensure that the 
appropriate model has been selected for fine-tuning, two additional models are explored and compared. 
These include another byt5-base model with a prompt including an input node, an example node, and an 
edge to generate the link without fine-tuning, as well as another encoder-decoder model, BART [78], fine-
tuned with the same dataset. Detailed information regarding the new LLM model and its comparison with 
the proposed Byt5 model can be found in the Appendix. 

 

3. RESULTS OF COMPARATIVE STUDIES 
3.1 Reconstruction Accuracy of the Baseline VAE Model 

The accuracy of the DVAE model on three datasets is presented in the tables below. Reconstruction of 
node locations is a relatively simple task, while the major challenge is to reconstruct the edges accurately, 
which is the focus of the following comparative studies. 

The accuracy of the DVAE model is evaluated based on two criteria: the accuracy of the reconstructed 
node features map and the reconstructed adjacency matrix. The accuracies of reconstructing node features 
map 𝐗̃ and adjacency matrix 𝐀̃ are evaluated by calculating the coefficient of determination (R2) values [79, 
80], which measures the degree of agreement between the original and reconstructed samples: 

R2 = 1 −
∑(𝐘𝑖−𝐘𝑖)

2

∑(𝐘𝑖−𝐘𝑖̅)2                                                                      (10) 

where 𝐘𝑖  represents the true response of the 𝑖𝑡ℎ  sample, 𝐘̃𝑖  represents the predicted response of the 𝑖𝑡ℎ 
sample, and 𝑛𝑠𝑎𝑚𝑝𝑙𝑒  represents the total number of sample points. 𝐘𝑖̅ is the averaged value of 𝐘𝑖(𝑡𝑟𝑢𝑒) and 
𝐘𝑖̅ =

1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒
∑ 𝐘𝑖. The accuracy of edge prediction is measured by assessing each possible pair of nodes 

within the graph and determining if there is a link (edge) between them. The accuracy of link predictions is 
then measured as the percentage of pairs that the model predicted correctly which matches the actual 
presence of an edge in the graph from the test dataset. The results reveal that DVGAE successfully 
reconstructs 𝐗̃, but totally fails to reconstruct 𝐀̃. 
 
Table 2: Reconstruction Accuracies of both solid phases and pore phases with simple graphs (Dataset 1). 

Phase  𝐗̃ 𝐀̃ 

Link 
Prediction 
Accuracy 

Solid Training 0.999 -424865 0.35% 
Test 0.999 -427562 0.11% 

Pore Training 0.999 -412085 0.42% 
Test 0.999 -425529 0.21% 
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Table 3: Reconstruction Accuracies of both solid phases and pore phases with complex graphs (Dataset 2). 
 

Phase  𝐗̃ 𝐀̃ 
Link 

Prediction 
Accuracy 

Solid 
Training 0.999 -427562 0.13% 

Test 0.999 -431185 0.09% 

Pore 
Training 0.999 -430215 0.11% 

Test 0.999 -436521 0.10% 
  
Table 4: Reconstruction Accuracies of both solid phases and pore phases with complex graphs (Dataset 3). 

Phase  𝐗̃ 𝐀̃ 
Link 

Prediction 
Accuracy 

Solid Training 0.999 -421526 0.24% 
Test 0.999 -430425 0.14% 

Pore Training 0.999 -429850 0.18% 
Test 0.999 -430114 0.13% 

 
3.2 Reconstruction accuracy of the DGVAE Model 

The accuracy of the DVGAE model is also evaluated based on the accuracy of the reconstructed node 
features map and the accuracy of the reconstructed adjacency matrix. The reconstruction accuracies of both 
solid phase and pore phase graphs for all three datasets are shown in Table 5-7. 

The results reveal that DVGAE successfully reconstructs 𝐗̃ , but fails to reconstruct 𝐀̃  accurately. 
Compared with the DVAE model, the prediction accuracy of 𝐀̃ is slightly higher. This is because the dense 
layers do not inherently capture the graph structure and the relationships between nodes and edges; they 
treat the input data as a flat, unstructured collection of features. The failure of reconstruction of 𝐀̃ could be 
attributed to the DVGAE's limited ability to fully comprehend the complex structure of the graph. The 
objective of the inner product decoder for edge reconstruction is to establish connections between nodes 
while adhering to the logic used in generating the training data. The logic does not solely depend on 
neighbor distance to link nodes. As we discussed in Section 2.1, long-range connections are also established 
between isolated node clusters. Therefore, capturing this intricate connection rule presents a challenge for 
DVGAE. 
 
Table 5: Reconstruction Accuracies of both solid phases and pore phases with simple graphs (Dataset 1). 
 

Phase  𝐗̃ 𝐀̃ 

Link 
Predictio

n 
Accuracy 

Solid Training 0.999 -1.924 7.32% 
Test 0.999 -8.152 2.58% 

Pore Training 0.999 -1.936 7.22% 
Test 0.999 -8.235 2.74% 
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Table 6: Reconstruction Accuracies of both solid phases and pore phases with complex graphs (Dataset 2). 
 

Phase  𝐗̃ 𝐀̃ 
Link 

Prediction 
Accuracy 

Solid Training 0.999 -1.243 12.76% 
Test 0.999 -6.461 6.33% 

Pore Training 0.999 -1.276 12.53% 
Test 0.999 -6.319 6.71% 

  
Table 7: Reconstruction Accuracies of both solid phases and pore phases with complex graphs (Dataset 3). 
 

Phase  𝐗̃ 𝐀̃ 
Link 

Prediction 
Accuracy 

Solid  Training  0.999 -2.014 8.77% 
Test  0.999 -7.364 3.48% 

Pore  Training  0.999 -2.078 8.68% 
Test  0.999 -7.268 3.66% 

  
 
3.3 Reconstruction Accuracy of the LLM Model 

 
Compared with DGVAE, byt5 exhibits better prediction accuracies in edge prediction. The edge 

prediction average accuracies of both solid and pore phase graphs are shown in Table 8. It is observed that 
increasing the complexity and number of nodes in a well-fine-tuned model like byt5 will decrease the 
accuracy of link prediction in the same class of graphs, but it will increase the generalizability (refer to 
section 3.4). For comparison, we also conducted link prediction using the base byt5 model without fine-
tuning [74] and a fine-tuned BART model [81] (refer to Appendix for additional information). Both models 
demonstrated suboptimal performance, failing to follow a predictable trend. 

 

Table 8: Edge Prediction accuracy using LLMs on the test set 

Case Phase Link Prediction 
Accuracy (Base Byt5) 

Link Prediction Accuracy 
(Fine-tuned BART) 

Link Prediction Accuracy 
(Fine-tuned Byt5) 

Simple 
Graphs 

(Dataset 1) 

Solid Phase 
~0 % 

The base-byt5 
prediction, given a 

prompt requesting the 
link, yields a highly 

unpredictable outcome 
that cannot be reverted 

to a graph 
representation. 

5.42 % - mostly 
disconnected 98.51 % 

Pore Phase 5.49 % - mostly 
disconnected 98.72 % 

Complex 
Graphs 

(Dataset 2) 

Solid Phase 6.46 % - mostly 
disconnected 73.75 % 

Pore Phase 6.43 % - mostly 
disconnected 73.88 % 

Complex 
Graphs 

(Dataset 3) 

Solid Phase 4.46 % - mostly 
disconnected 69.53 % 

Pore Phase 5.62 % - mostly 
disconnected 69.41 % 
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The base byt5 model without fine-tuning produced highly unpredictable outcomes, which in most cases 
cannot be reverted to a meaningful graph representation. Similarly, the fine-tuned BART model, given the 
same amount of training data, exhibited very low accuracy and generated text that could not be converted 
into a desired graph representation, often resulting in disconnected graphs with low accuracies. These 
results highlight the importance of selecting the appropriate LLM. Henceforth, due to the reasonable 
prediction ability of the fine-tuned byt5 model, only this model will be used in the following steps of 
metamaterial unit generation. Consequently, any reference to a LLM in the remainder of the paper will 
pertain exclusively to our fine-tuned byt5 model. Figure 6 shows the prediction accuracy of the fine-tuned 
byt5 model for all samples from the test dataset for dual phases. Here, each point represents the accuracy 
of edge predictions for each graph sample, which encompasses multiple nodes and edges. 

 

 
Figure 6: The fine-tuned byt5 model’s prediction accuracy of test samples. (a) Solid phase graphs in 
Dataset 1. (b) Pore phase graphs in Dataset 1. (c) Solid phase graphs in Dataset 2. (d) Pore phase graphs 
in Dataset 2. (e) Solid phase graphs in Dataset 3. (f) Pore phase graphs in Dataset 3. 

 
 
As depicted in Figure 6, some of the reconstructions exhibit low accuracy, which can be attributable to 

the inherent non-determinism of the LLM model [82]. This non-determinism occasionally results in 
suboptimal outcomes. This issue can be mitigated by adjusting the temperature, a hyperparameter in charge 
of the randomness of prediction, or implementing the synthesizer [83, 84] to validate predictions against 
problem requirements and detect discrepancies. This scenario is illustrated in Figure 7, where the LLM 
model generates three different predictions for a given set of nodes, each yielding varying accuracies. 
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Certain predictions, like Prediction 1 in Figure 7, might not fulfill the connectivity requirement. 
Therefore, a synthesizer can evaluate the problem’s requirements and selectively accept predictions that 
meet these requirements. Nevertheless, even with a synthesizer, the model’s prediction can have different 
accuracy, as seen in Predictions 2 and 3. 

 
3.3 Generation of metamaterial designs in voxel format 

 
By integrating the VGAE as node generator, the LLM as edge predictor, and voxel labeling by the 

approximate K-nearest neighbor-based clustering (Step 4 in Figure 2), we showcase the capability of 
generating voxel images of porous metamaterial samples in the training and testing dataset. The accuracy 
of reconstructing voxel images of porous structures is validated by comparing the reconstructions with the 
original image in the test set. The voxel-to-voxel reconstruction accuracy is measured by the coefficient of 
determination (𝑅2) is illustrated in Table 9.  

Table 9: Voxel-to-voxel reconstruction accuracy measured by 𝑅2 score 

Coefficient of determination (𝑅2) 
Dataset 1 Dataset 2 Dataset 3 

0.98 0.57 0.51 

 

 
Figure 7: Illustration of LLM model’s non-determinism: three realizations in predicting node connection with same set of nodes 

Prediction 1
Edge prediction accuracy: 87.5%

Prediction 2
Edge prediction accuracy: 81.25%

Prediction 3
Edge prediction accuracy: 90.6%

Ground truth
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Figure 8: Reconstruction results of the proposed generative model for generating voxel images of porous 
metamaterials: (a) original samples in the training dataset and (b) reconstructions. 

3.4 Generation of unseen porous metamaterial designs  
We demonstrate that the fine-tuned LLM can connect nodes based on the logic learned from the 

training dataset, even when an arbitrary number of nodes is provided as input (zero-shot learning 
capability). To evaluate the effectiveness of zero-shot learning, the model trained on Datasets 3 has been 
employed. Figure 9 shows a “ground truth” graph generated according to the logic outlined in Section 2.1 
but with number of nodes as 75, which is not available in the training samples (Dataset 3), alongside a graph 
generated by the fine-tuned LLM (Dataset 3). The graph reconstructed by LLM has 63.15% accuracy in 
predicting the ground truth. This achieved accuracy can be attributed to the model's enhanced 
generalizability [71, 72], enabling more accurate predictions of unseen data.  

 
Figure 9: Demonstration of the zero-shot learning capability of a fine-tuned LLM for edge reconstruction for 
a sample with 75 nodes 

 

4. DISCUSSION 
The graph-based representation of porous metamaterials facilitates the utilization of both GNNs and 

LLMs in design generation. As demonstrated by the results of the computational experiments, GNNs, such 
as VGAEs, excel in reconstructing node features but may struggle to capture the underlying logic governing 
connections between nodes. On the other hand, Transformer-based LLMs excel in comprehending long-
range dependencies [85] and diverse relationships, making them well-suited for tasks such as edge 
prediction in graph-based problems. Additionally, because of their multi-head attention mechanism [43], 
LLMs have the capability of parallel processing in linking nodes, as opposed to sequential processes like 
Long short-term memory (LSTM) and recurrent neural network (RNN), making LMM models faster and 
more efficient in capturing longer-range dependencies [86, 87]. Despite their effectiveness in detecting 
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relationships and ability to do zero-shot learning [50-52], the application of LLMs in structural design, 
including metamaterials, remains limited mainly due to their “black box” [77] and non-deterministic [82] 
nature. Nevertheless, the integration of LLMs and GNNs presented a promising method in metamaterial 
structural design [42, 44]. 

5. CONCLUSION 
The purpose of this work is to establish an approach for generating porous metamaterial units based on 
certain rules, which are unknown and must be learned from an observational dataset. Based on the graph 
representation of porous metamaterial designs, two new approaches are proposed for the representation, 
reconstruction, and generation of porous metamaterials. The first approach utilizes a DVGAE for predicting 
both nodes and edges of the graphs representing the solid and pore phases in the porous structure. The 
second approach employs a VGAE as the node generator and a fine-tuned LLM as the edge generator. In 
the comparative study, we observe that LLM demonstrates significant strength in reconstructing the edges 
in graphs. The selection of an appropriate LLM is crucial for achieving high prediction accuracy. 
Additionally, we demonstrate the zero-shot learning capability of our proposed model by generating 
structural patterns that were not included in the observational dataset. 

In future works, we intend to enhance the model by utilizing strategies like Low-rank adaptation [88] 
and parameter-efficient fine-tuning [89, 90]. These methods aim to boost the model’s accuracy and enable 
the use of a more complex and efficient model than current LLMs. Additionally, the current model is not 
invariant to ordering. We plan to investigate further to achieve ordering invariance, which may enable us to 
create a new synthesizer, resulting in predictions with higher accuracy. We will also establish a porous 
metamaterial design framework based on the deep generative models proposed in this work. 
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Appendix 
Here we introduce a second LLM for comparison with the fine-tuned Byt5. As suggested in section 2.4, the 
encoder-decoder framework is ideal for seq2seq tasks. Therefore, BART, which is a denoising autoencoder 
designed to pretrain on sequence-to-sequence tasks and incorporates the encoder-decoder framework, has 
been chosen. BART utilizes a bidirectional decoder and an autoregressive decoder [78]. The process of 
fine-tuning this model is similar to the Byt5 model in Figure 4. The base model and tokenizer are available 
in the hugging face’s Bart-base repository [81]. Table 10 demonstrates a graph ground truth, predicted 
output, and extracted graph via both models.  

Table 10: Comparison between the encoder-decoder structured LLMs 
Ground Truth 

LLM Input Nodes 

 

['(24, 31, 21)', 
'(24, 31, 18)', 
'(31, 21, 31)', 
'(12, 21, 31)', 
'(13, 30, 30)', 
'(28, 10, 11)', 
'(31, 30, 15)', 

'(11, 1, 0)', 
'(10, 7, 1)', 
'(1, 0, 14)', 
'(16, 10, 0)', 
'(0, 25, 4)', 
'(29, 2, 6)', 
'(1, 15, 25)', 
'(7, 31, 5)'] 

Byt5 
Byt5 output 

 

['24;31;21&24;31;18;;24;31;21&31;21;31;;24;31;21&12;21;31;;24;31;
21&13;30;30;;24;31;21&28;10;11;;24;31;18&31;30;15;;12;21;31&10;
7;1;;12;21;31&13;30;30;;12;21;31&1;15;25;;28;10;11&10;7;1;;28;10;
11&29;2;6;;11;1;0&10;7;1;;11;1;0&1;0;14;;10;7;1&16;10;0;;10;7;1&

0;25;4;;10;7;1&29;2;6;;10;7;1&1;15;25;;0;25;4&7;31;5;;'] 

Predicted Graph (Accuracy = 77.77%) 
[((24, 31, 21), (24, 31, 18)), 
((24, 31, 21), (31, 21, 31)), 
((24, 31, 21), (12, 21, 31)), 
((24, 31, 21), (13, 30, 30)), 
((24, 31, 21), (28, 10, 11)), 
((24, 31, 18), (31, 30, 15)), 
((12, 21, 31), (10, 7, 1)), 

((12, 21, 31), (13, 30, 30)), 
((12, 21, 31), (1, 15, 25)), 
((28, 10, 11), (10, 7, 1)), 
((28, 10, 11), (29, 2, 6)), 
((10, 7, 1), (11, 1, 0)), 

((10, 7, 1), (16, 10, 0)), 
((10, 7, 1), (0, 25, 4)), 
((10, 7, 1), (29, 2, 6)), 
((10, 7, 1), (1, 15, 25)), 
((11, 1, 0), (1, 0, 14)), 
((0, 25, 4), (7, 31, 5))] 

BART 
BART output  

 

['24;31;21&24;30;18;;24;29;21;21;;26;31;;31;18;31&12;21 
wing31;;12;1;0&16;10;0;;10;7;1&0;25;4;;10&29;7&28;27;15;;0;15;2

5&1;15 considerably25;;'] 
Predicted Graph (Accuracy = 0%) 

[((24, 31, 21), (24,30,18)), 
((12, 1, 0), (16, 10, 0)), 

((10,7,1), (0,25,4))] 
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