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ABSTRACT 
Bridging the gaps among various categories of stochastic 

microstructures remains a challenge in the design representation 
of microstructural materials. Each microstructure category 
requires certain unique mathematical and statistical methods to 
define the design space (design representation). The design 
representation methods are usually incompatible between two 
different categories of stochastic microstructures. The common 
practice of pre-selecting the microstructure category and the 
associated design representation method before conducting 
rigorous computational design limits the design freedom and 
reduces the possibility of obtaining innovative microstructure 
designs. To overcome this issue, this paper proposes and 
compares two methods, the deep generative modeling-based 
method and the curvature functional-based method, to 
understand their pros and cons in designing mixed-category 
stochastic microstructures for desired properties. For the deep 
generative modeling-based method, the Variational Autoencoder 
is employed to generate an unstructured latent space as the 
design space. For the curvature functional-based method, the 
microstructure geometry is represented by curvature functionals, 
of which the functional parameters are employed as the 
microstructure design variables. Regressors of the 
microstructure design variables-property relationship are 
trained for microstructure design optimization. A comparative 
study is conducted to understand the relative merits of these two 
methods in terms of computational cost, continuous transition, 
design scalability, design diversity, dimensionality of the design 
space, interpretability of the statistical equivalency, and design 
performance.  

Keywords: Stochastic microstructures; Microstructure design; 
Deep generative model; Curvature functional; Design 
representation. 

1. INTRODUCTION
By designing the microstructures of architected materials, a

wide spectrum of properties, such as strength [1-3], ductility [4], 
energy density [5, 6], and thermal conductivity [1, 7, 8], can be 
achieved to meet engineering requirements. Here we focus on 
stochastic microstructures, of which the statistical variations in 
structural characteristics are induced by uncertainties in the 
manufacturing processes [9-11], defects or porosities [12], or the 
inherent randomness at the micro- or nano-scale [13, 14]. In the 
field of engineered architected metamaterials, designers have 
looked into stochastic structure designs to achieve higher energy 
absorption [6, 15, 16], compatibility with traditional 
manufacturing techniques [17, 18], and robustness against 
defects [19].  

In the literature, a variety of statistical characterization and 
stochastic reconstruction-based approaches have been proposed 
for designing stochastic microstructures. Statistical 
characterization is a process that generates statistical descriptors 
and functions of the stochastic microstructure features observed 
from digital images (e.g., microscopic images). Stochastic 
reconstruction is a process that re-generates statistically 
equivalent microstructures based on the input statistical 
descriptors and functions. One simple and straightforward way 
is to characterize microstructures with physically meaningful 
parametric descriptors such as volume fraction, particle/pore 
size, fiber length, fiber orientation, etc. In addition, high 
dimensional statistical functions including N-point correlation 
functions [20-23], spectrum density function [24, 25], and 
random fields [26, 27] have also been applied to describe the 
complex stochastic microstructure morphologies. One major 
limitation of these methods is that each stochastic microstructure 
category requires some unique mathematical and statistical 
representations that are incompatible with other categories. For 
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example, random fiber composites require fiber orientation 
tensor [10, 28], random particle composites require the statistical 
distribution of particle diameters [29, 30], granular alloy 
microstructures require both grain orientation and crystal 
orientation [31], and spinodal-like structures can be described 
with spectrum density function [25]. Therefore, a designer needs 
to decide the microstructure category before defining the design 
space and conducting computational design. The step of pre-
selecting the microstructure category limits the design freedom 
and reduces the possibility of obtaining innovative 
microstructure designs.  

In recent years, deep generative models, such as Variational 
Autoencoders (VAEs), generative adversarial networks (GANs), 
and their variations, have been employed in stochastic 
microstructure reconstruction and design [16, 32-38]. However, 
the aforementioned works only consider a limited number of 
microstructure categories [39] and do not focus on bridging the 
gaps among various categories. In our previous work [40], we 
established a deep generative modeling framework that learns a 
unified microstructure design space based on multiple categories 
of stochastic microstructures (random fibers, random particles, 
random ellipses, random node-edge networks, and random 
amorphous microstructures) and deterministic, periodic 
microstructures (e.g., cellular metamaterials). This framework 
enables a smooth transition between stochastic and deterministic 
structural patterns in the property-driven microstructure design. 
However, this framework only handles 2D microstructure 
images and is demanding on training data and computational 
resources, so its application to 3D microstructure design is 
limited by the curse of dimensionality.  

To address the aforementioned challenges, here we 
investigate two approaches that have the capability of generating 
a unified design space that embodies various categories of 
stochastic microstructures:  

(i) A data-driven approach based on the deep generative 
model; 

(ii) A mathematics-based approach that is established upon 
the curvature functionals.  

As shown in Figure 1, these two methods are employed in 
design representation to create a parametric design space for 
stochastic microstructure design. With the obtained design space, 
Design of Experiments (DOE), supervised learning of the 
microstructure-property relationship, and property-driven design 
will be conducted to generate new microstructure designs. A 
comparative study will be presented to discuss the pros and cons 
of the two methods. 

The remainder of the paper is organized as follows. Section 
2 introduces a deep generative model-based design 
methodology. Section 3 introduces the curvature functional-
based design methods. In section 4, a microstructure design case 
is presented to compare the two methods. Section 5 presents a 
comprehensive discussion of the comparison of the two methods. 
Section 6 concludes this paper. 

 
Figure 1: Design of mixed-category stochastic microstructures. 
The focus of this paper is to compare the curvature functional-
based and the deep generative model-based methods in the 
design representation. Both methods will be employed to create 
a unified design space that embodies various categories of 
stochastic microstructures for the property-driven microstructure 
design. 

2. DEEP GENERATIVE MODEL-BASED METHOD 
One way to bridge the gap among different microstructure 

categories is to leverage the data-driven approach, e.g., deep 
feature learning, to learn a unified design space based on a large 
and diverse microstructure database that embodies various 
categories of microstructures. We first established a 3D 
stochastic microstructure database by leveraging the stochastic 
reconstruction methods proposed in our previous works, 
including the statistical descriptor-based method [10, 30, 41, 42], 
the space tessellation-based method [9], the spectrum density 
function (SDF)-based random field method [14], etc. This 
database consists of 40,000 microstructural images with a 
resolution of 64×64×64, and the microstructure samples can be 
classified into five categories: random particles, random fibers, 
random ellipsoids, random node-edge networks, and amorphous 
microstructures. Samples from each category are shown in 
Figure 2. The dataset is divided into a training set and a test set 
in a ratio of 9:1.  
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Figure 2: Examples of microstructure samples in the database 
for deep generative modeling. From left to right: random 
particles, random fibers, random ellipsoids, random node-edge 
networks, and amorphous microstructures. 

2.1. Microstructure representation by VAE 
VAE is a deep generative model that consists of two major 

components: an encoder network and a decoder network. The 
encoder network maps the input data to a Gaussian distribution 
in the latent space, which allows for the generation of novel data 
samples through sampling from the learned distribution. The 
decoder network takes the latent representation as the input and 
reconstructs the original data. The key feature of VAE is the 
introduction of a probabilistic approach to encode the input data 
into the latent space. Rather than mapping the input data to a 
single point in the latent space, the VAE maps the input data to a 
probability distribution over the latent space. Compared to other 
generative models, e.g., GAN and diffusion model, VAE 
provides an interpretable latent space, which can be used as a 
low-dimensional design space. The similarity of structural 
features can be measured by the distance in the latent space of 
VAE. Moreover, GAN models suffer from diminished gradient, 
model collapse, and other training instability issues that limit 
their application to complex datasets, such as mix-category 
microstructure datasets. Therefore, VAE is selected in this study. 
A general loss function of a vanilla VAE is expressed as: 
𝐿𝑖(𝜽, 𝝓) = −𝐸𝒛∼𝒒𝜽( 𝒛∣∣𝒙𝑖 )[𝑙𝑜𝑔 𝒑𝝓 ( 𝒙𝑖 ∣∣ 𝒛 )] +

                     𝐷𝐾𝐿(𝒒𝜽( 𝒛 ∣∣ 𝒙𝑖 )|𝒑(𝒛))                                                        (1) 
where 𝜽 and 𝝓 are the parameters of the decoder and encoder, 
respectively, and 𝒙𝑖  is input microstructure image data for our 
case, and 𝒛  denotes the latent vectors. The first term, 
−𝐸𝒛∼𝒒𝜽( 𝒛∣∣𝒙𝑖 )[𝑙𝑜𝑔 𝒑𝝓 ( 𝒙𝑖 ∣∣ 𝒛 )],  is the reconstruction loss that 
measures the pixel-level error between the input and 
reconstruction. The second term, 𝐷𝐾𝐿(𝒒𝜽( 𝒛 ∣∣ 𝒙𝑖 )|𝒑(𝒛)), 

denotes the KL loss and ensures that the learned distribution 𝑞 
follows the true prior distribution 𝑝 . Practically, including the 
KL term in the loss function can avoid overfitting and also 
regularize the latent space to reduce discontinuities in the latent 
space.  

Figure 3 shows our implementation of the VAE to generate 
a parametric latent space representation of the stochastic 
microstructures as the design space. The encoder follows a 
VGG-style architecture, in which the convolution layer blocks 
are followed by the fully connected layers. The dimension of 
latent vectors is set at 256 based on the results of trials, in order 
to balance the reconstruction quality and the time efficiency of 
conducting optimal microstructure search in the latent space.  

We also explored other variants of VAE in this work. 
Literature and our previous work suggest that including a style 
loss term in the loss function typically enhances reconstruction 
quality significantly [40, 43]. However, the small improvement 
in quality comes at the cost of a substantial increase in 
computational complexity due to the tensor permutation process 
on each image. We also tested an architecture that incorporates 
the style loss [43], but did not observe an improvement in the 
reconstruction quality. Furthermore, we experimented with a 
Gaussian-mixture VAE [44], but did not observe any significant 
benefits either. After a thorough exploration of these options, we 
decided to employ a vanilla VAE for its computational efficiency. 
2.2 Property-driven microstructure design and 
generation of functionally graded structure designs by 
VAE 

As discussed in Section 1, we adopt the surrogate model-
based optimization approach to design microstructures for 
desired properties. The latent variables are considered as 
microstructure design variables. DOE is conducted in latent 
space to generate a dataset for training the microstructure-
property surrogate models. Multi-response Gaussian Process 
(GP) regression models are employed to establish the 
relationship between the latent variables and the mechanical 
properties.  

As the computational cost of design evaluation (by surrogate 
model) during the optimization process is not a concern here, we 
select the Genetic Algorithm (GA) to solve the design problem. 
GA, and other evolutionary algorithms, have the advantage of 
avoiding local minima. For multi-objective optimization 
problems, Non-dominated Sorting Genetic Algorithm II (NSGA-
II) [45] is employed as the optimizer.  

 
Figure 3: Architecture of the Variational Autoencoder. The reduced dimensional latent space is employed as the design space. 
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The optimal designs are first obtained in the format of latent 
vector, and the corresponding microstructure images are 
reconstructed by the decoder. The properties of the optimal 
microstructure designs are verified by simulations, as there 
always exist discrepancies between the surrogate model-
predicted properties and the true values. 

In addition to designing microstructure units, we also 
investigate the VAE model’s capability of generating 
functionally graded structure designs. A functionally graded 
structure is characterized by the variation in structure gradually 
over volume, resulting in corresponding continuous changes in 
the properties. A series of  microstructure units are generated by 
conducting spherical linear interpolation [46] between two 
microstructure unit samples in the latent space. A gradual change 
in the microstructure features can be observed in this series of 
designs. A functionally graded structure can be generated by 
assembling those microstructure units sequentially (Figure 4). 
Due to the discrete nature of the microstructure interpolation, 
one outstanding shortcoming is the lack of continuity at the 
interface between two adjacent microstructure units. The 
presence of discontinuities at the interface can lead to local stress 
concentrations that may weaken the overall strength of the 
structure and even cause it to failure. Non-smooth transitions in 
the interfaces can be observed, as shown in the side views in 
Figure 4 (d). 

 
Figure 4: Functional graded structure design by the deep 
generative modeling-based method. (a) A series of designs are 

generated along a certain path in two selected dimensions of the 
256-dimensional latent space. (b) Each star in the path is decoded 
into a microstructure unit. (c) A functionally graded structure 
design is created by assembling the microstructure units. (d) Side 
view of the 3D functionally graded structure. The interfaces 
among adjacent units are marked by triangles. Due to the discrete 
nature of the sampling process, non-smooth transitions can be 
observed at the interfaces among microstructure units. 

3. CURVATUAL FUNCTIONAL-BASED METHOD 
3.1. Microstructure representation by curvature 
functionals 

Curvature functionals are capable of generating a variety of 
complex shapes and have been demonstrated as a powerful tool 
for designing bio-mimetic scaffold [47]. Curvature functionals 
employ a phase-field formulation to diffuse an approximation of 
a vast range of shape textures. The resulting approximation is 
used as a loss function, in conjunction with modern automatic 
differentiation optimizers, to generate geometries from a random 
field initialization. When compared to the phase-field [48, 49] 
and statistical functional approaches [25]，such as spinodal 
microstructures generated by Gaussian random field (GRF) [2, 
50], curvature functionals have the ability to generate a broader 
range of topologies. These include laminar, spherical, pearly thin 
wall, and tube shapes, and are governed by seven generation 
parameters 𝒂 = [𝑎2,0, 𝑎0,2, 𝑎1,1, 𝑎1,0, 𝑎0,1, 𝑎0,0]  and 𝑚0 . 
However, the mathematical meaning of the generation 
parameters is yet fully explored which limits the capability in 
directly using this method for inverse design. To address this 
limitation, we utilize the supervised learning method to establish 
the relation between generation parameters and properties to 
enable the property-driven microstructure design. 

Gaussian curvature is a differential geometry measure of the 
curvature of a surface at a given point, which is defined as the 
production of the principal curvatures 𝜅1, 𝜅2 by 

𝐾 =  𝜅1𝜅2                                      (2) 
The complex microstructure surface under constant volume 

is modelled as a curvature functional 
𝑭(𝑆) = ∫ 𝑝(𝜅1, 𝜅2)𝑑𝐴

 

𝑆
                            (3)  

where 𝑝  is the second order polynomial of the principal 
curvatures of the entire surface 𝑆. 𝑝 is restricted at the degree of 
2, as it is efficient to generate topological features. The curvature 
functionals can be expanded as  

𝑭(𝑆) = ∫ (𝑎2,0𝜅1
2 + 𝑎1,1𝜅1𝜅2 + 𝑎0,2𝜅2

2 + 𝑎1,0𝜅1 +
 

𝑆

𝑎0,1𝜅2 + 𝑎0,0)𝑑𝐴 = ∫ (∑ 𝑎𝛼|𝛼|≤2 (𝜅1𝜅2)𝛼)𝑑𝐴
 

𝑆
                         (4) 

Generally, it is convenient to refine this kind of 2D surface 
functionals to scalar fields 𝑢  in 3D volume by diffusion 
approximation. And the matrix field ℳ𝑢

𝜖 is introduced as: 
ℳ𝑢

𝜖 = −𝜖 Hess 𝑢 +
𝑊′(𝑢)

𝜖
𝑛𝑢⨂𝑛𝑢                  (5) 

whose trace is equal to 

Trℳ𝑢
𝜖 = −𝜖∆𝑢 +

𝑊′(𝑢)

𝜖
                           (6) 
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Applied phase-field approximation and further simplification, 
the final representation of the phase-field ℱ𝜖(𝑢) can be written 
as 

ℱ𝜖(𝑢) = ∫ [
𝑎2,0+𝑎0,2−𝑎1,1

2𝜖
‖ℳ𝑢

𝜖‖2 +
𝑎1,1

2𝜖
(Trℳ𝑢

𝜖)2 +
Ω

𝑎2,0−𝑎0,2

2𝜖
Trℳ𝑢

𝜖√(2‖ℳ𝑢
𝜖‖2 − (Trℳ𝑢

𝜖)2)+ +
𝑎1,0+𝑎0,1

2
|∇𝑢|Trℳ𝑢

𝜖 +
𝑎1,0−𝑎0,1

2
|∇𝑢|√(2‖ℳ𝑢

𝜖‖2 − (Trℳ𝑢
𝜖)2)+ + 𝑎0,0𝜖|∇𝑢|2] 𝑑𝑥     (7) 

To implement the phase-field ℱ𝜖(𝑢)  to generate 
microstructure geometries given a random initialization, a mass-
preserving flow can be defined as  

𝑢̇ = ∆
𝜕Ƒ𝜖

𝜕𝑢
                                       (8)  

This form can also be repressed as  
𝑢 = ∇ ∙ 𝐴 + 𝑚0                                 (9) 

where 𝐴: Ω → ℝ3 is a periodic vector field, and 𝑚0 ∈ ℝ  is the 
desired value of the average 𝑢̅  which also approximates the 
volume fraction by 𝑚0+1

2
. Finally, an energy function is defined 

as: 
𝐺𝜖(𝐴) = ℱ𝜖(∇ ∙ 𝐴 + 𝑚0)                      (10) 

with a gradient of  
𝜕𝐺𝜖

𝜕𝐴
(𝐴) = −∇

𝜕Ƒ𝜖

𝜕𝑢
(𝑢)                         (11) 

This energy function is used as the loss function with an 
auto-differentiation tool that iteratively optimizes 𝑢 to evolve a 
random vector field 𝐴0  until the energy function meets the 
convergence criterion. Empirically, 𝐴0  can be drawn from a 
uniform distribution. Random initialization of the structure 
image in the curvature functional method results in diverse yet 
statistically equivalent stochastic reconstructions of 
microstructures that share the same input generation parameters 
𝒂 and 𝑚0. Therefore, the generation variables can be considered 
as a quantitative representation of an infinite set of random but 
statistically equivalent microstructures, which makes this 
method suitable for generating random but statistically 
equivalent stochastic microstructure designs. Several examples 
of statistically equivalent microstructure samples generated from 
the same 𝒂 vector are shown in Figure 5 (a~d). 
3.2 Property-driven microstructure design and 
generation of graded functional structure designs by 
curvature functionals 

Following the flowchart in Figure 1, we propose a surrogate 
model-based optimization approach for microstructure design. 
The surrogate model of the relationship between the generation 
parameters  𝒂  and material property is established using GP 
regression. It is to be noted that random but statistically 
equivalent microstructures will be generated for a given set of 
design variables. Therefore, we generated ten samples from ten 
fixed random initializations (𝐴) for the same design variable 
vector, and then simulated the mechanical properties of all ten 
samples. We generated a total of 20,000 samples using 2,000 sets 
of generation parameters. Similar to the method presented in 

Section 2, we adopt GA and NSGA-II as the optimizer to solve 
the property-driven design problem. In the last step, the digital 
images of the microstructure designs are reconstructed based on 
the design variable vector 𝒂.  

Here we also investigated the curvature functional-based 
method’s capability of generating functional graded structure 
designs. One advantage of the curvature functional method is 
that a smooth transition between different categories of 
microstructures can be easily obtained by varying the values of 
the generation parameters continuously. Figure 5(e) shows a 
functional graded design generated based on continuous 
functions of the generation parameters 𝒂 along the longitudinal 
direction. 

 
Figure 5: (a)~(d) Design variable vectors and the corresponding 
statistically equivalent microstructure samples. Each row shows 
three stochastic samples of the same microstructure design and 
the corresponding generation parameters. (e) A functionally 
graded structure obtained by the curvature functional-based 
method. It is created from continuous functions of the generation 
parameters 𝒂. 
4. A COMPARATIVE STUDY WITH A DESIGN FOR 

STIFFNESS PROBLEM 
In this section, we present a design case to compare the deep 

generative model-based and the curvature functional-based 
design representation methods in two aspects: the accuracy of 
the microstructure-property regressor and the performance of the 
optimal designs obtained with each method. 

Here we define a multi-objective microstructure design 
problem that maximizes the Young’s moduli along X-, Y-, and 
Z- directions. Design constraints are defined to guarantee close-
to-isotropic designs, i.e., the differences between the 
maximum/minimum modulus and the median modulus of the 
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three directions are within 3%. Therefore, the optimization 
problem can be formulated as 

max  𝐸𝑖(𝒛)  or max  𝐸𝑖(𝒂, 𝑚0 ), 𝑖 = X, Y, Z         (12) 
subject to: 

|𝐸highest −𝐸𝑚𝑒𝑑𝑖𝑢𝑚|

𝐸𝑚𝑒𝑑𝑖𝑢𝑚
< 3%                    (13) 

|𝐸lowest−𝐸𝑚𝑒𝑑𝑖𝑢𝑚|

𝐸𝑚𝑒𝑑𝑖𝑢𝑚
< 3%                    (14) 

If using the curvature functional-based method, additional 
constraints are needed to guarantee the convergence of 
microstructure image reconstruction:  

max(𝑢) > 0.1                              (14) 
min(𝑢) <  −0.1                            (15) 

discrepancy(𝑢) < 0.75                      (16) 
where the discrepancy is a measurement of how much the scalar 
fields 𝑢 deviate from a tanh profile phase field function [47]. As 
this research focuses on investigating the influence of 
microstructure morphology on the properties, the volume 
fraction is set as a constant (0.4).   

As a preparation for exploring the relationship between 
microstructure and the property of interest, in this case, elasticity,  
we performed finite element simulations on all microstructure 
samples by ABAQUS. The 0-1 matrices that represent the binary 
microstructure images are transformed into hexahedral meshes. 
The elastic modulus and Poisson’s ratio of the 1 phase in the 
microstructure are 𝐸𝐵𝑜𝑟𝑜𝑛 = 379300 MPa  and 𝛾Boron = 0.1 , 
whereas 𝐸Aluminum = 68300 Mpa , 𝛾Aluminum = 0.3  for the 0 
phase. The Young’s moduli (𝐸𝑥, 𝐸𝑦, 𝐸𝑧) in the X-, Y-, and Z-
direction are calculated from the compliance matrix. The 
infinitesimal displacement boundary conditions are shown in 
Figure 6. 

 

Figure 6: Elasticity property analysis on a microstructure for the 
maximum in-plane strain and the maximum von Mises stress in 
(a) X-direction, (b) Y-direction, and (c) Z-direction. 

The dimensionality of the design space has a strong impact 
on the predictability of the GP regressors. The design space 
generated by VAE has a dimensionality of 256. By contrast, the 
design space of the curvature functional-based method is only 7. 
More input variables indicate a potentially better capability to 
capture complex microstructure features, but practically, a high 
dimensional input space poses a significant challenge to 
establishing the design variable-property relationship by 
surrogate modeling because a lot more training data points are 
required to fully cover the input space. In Table 1, we present a 
comparison of three GP models: VAE latent space-based GP 
model with a dataset of 40000 samples, VAE latent space-based 
GP model with a dataset of 20000 samples, and curvature 
functional-based GP model with a dataset of 20000 samples. In 
each training, the dataset is split into a training set (90%) and a 
test set (10%). The model accuracy, R2, is evaluated based on the 
test set. The curvature functional-based GP model has a higher 
accuracy, even when comparing with the VAE-based GP model 
that uses twice as many training data points.  

Table 1: Prediction accuracies of the GP regression models with 
the design spaces generated by the VAE-based method and the 
curvature functional-based method. 

Model (size of the 
dataset) 

R2 score 
𝐸𝑥 𝐸𝑦 𝐸𝑧 

GP w/VAE (40000) 0.743 0.681 0.746 
GP w/VAE (20000) 0.686 0.620 0.688 

GP w/ curvature functional 
(20000) 

0.811 0.803 0.775 

 Another point worth noting is that some combination of 
generation parameters in the curvature functional method may 
generate ill-posed geometric which may have zero level set and 
floating fragments, where such fragments can lead to unrealistic 
microstructures in composite material and porous material from 
both design and manufacturing perspectives. Therefore, three 
criteria, max (𝑢), min (𝑢), and discrepancy ratio, are required to 
identify ill-posed phase-field 𝑢 during the optimization process. 
These three criteria must be included as inequality constraints in 
optimization to ensure successful reconstructions of the final 
microstructure designs. Experimentally, we observe that these 
three constraint functions limit the number of feasible designs 
significantly. 

The Pareto frontiers obtained with the two methods are 
compared in Figure 7. The performances of the design points in 
these plots are the true values obtained from verification 
simulations. Due to the predicted errors of the microstructure-
property model, some of the optimal designs violate the design 
constraints on isotropicity. For the VAE-based method, only 
10% of the optimal designs in the Pareto frontier satisfy the 
design constraints. Among the feasible designs, we can hardly 
find designs that rank in the top 10% compared to the samples in 
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the microstructure database, with respect to the properties of 
interest.  

On the other hand, more than 70% percent of optimal 
designs found by the curvature functional approach are isotropic, 
according to the results of verification simulations. Furthermore, 
almost all of the feasible solution rank in the 10% compared to 
the samples in the microstructure database. Figure 8 (a)~(d) 
show several examples of the optimal designs obtained by the 
curvature functional-based method, and Figure 8 (e) and (f) 
show the optimal designs obtained by the VAE-based method. 

 

Figure 7: Pareto frontiers obtained by both design approaches. 
As there are three design objectives, one 3D view and two 2D 
views of the performance space are provided. The design 
objective is to maximize 𝐸𝑥 , 𝐸𝑦 , and 𝐸𝑧 . The feasible design 
points are in dark colors and the infeasible design points are in 
light colors. 

 
Figure 8: (a)~(d) Optimal designs from the curvature 

functional-based optimization approach. (a) 𝒂 = [1, 4.0, 0.3, 75, 
200, -2060] and 𝑚0  = -0.26. (b) 𝒂 = [1, 3.93, 3.79, 36, 194, 
2998] and 𝑚0 = -0.43. (c) 𝒂 = [1, 3.99, 0.34, 45, 197, 1422] and 
𝑚0 = -0.19. (d) 𝒂 = [1, 3.98, 0.22, 40, 198, 1431] and 𝑚0 = -
0.30. (e) and (f) Two optimal designs from the VAE-based 
design approach. 

 
5. UNDERSTANDING THE PROS AND CONS OF THE 

TWO DESIGN REPRESENTATION METHODS 
As summarized in Table 2, the pros and cons of the deep 

generative modeling-based method and the curvature functional-
based method are discussed in terms of seven criteria: 
computational cost, continuous transition in functionally graded 
structure design, scalability of the microstructure design, design 
diversity, dimensionality of the design space, and design 
performance. 

Computational cost: To obtain a design space that embodies 
various categories of microstructures, the deep generative 
modeling-based approach requires significant computing 
resources for data generating and model training. On the other 
hand, the curvature functional-based method incurs minimal 
costs in defining the design space, while computing the viability 
constraints (Equation 14~16) during the optimization process is 
relatively computationally expensive. 

7 Copyright © 2023 by ASME



 

Continuous transition in functionally graded structure 
design: When creating functionally graded structure designs, the 
curvature functional-based method can guarantee a smooth 
transition among various microstructure patterns. With the deep 
generative model-based method, the functionally graded 
structure design is created by assembling a series of 
microstructure units, which correspond to discrete points in the 
latent space. Therefore, a smooth transition between 
microstructure units cannot be guaranteed. This issue could 
potentially be mitigated (but not resolved) by applying circular 
spatial padding to the transposed convolutional layer in the deep 
generative model [51], but the impacts on reconstruction quality 
and computational complexity need further investigation. 

Scalability of the microstructure design: The deep 
generative models, which are trained on the images directly, 
cannot generate images with a wide range of sizes and 
resolutions. By contrast, the curvature functional-based method 
can easily map the design variables to an arbitrary domain size 
(Figure 9). 

Design diversity: The deep generative models have the 
advantage over the curvature functionals. Theoretically, the deep 
generative models can be extended to embody any type of 
microstructure (e.g., microstructures with triangular inclusions) 
as long as the training data are available. The curvature 
functionals can only generate microstructures with curved 
surfaces. 

Dimensionality of the design space: The curvature 
functional-based method has the advantage in generating a low 
dimensional design space. Although we can also set the 
dimensionality of the VAE latent space to a very low value (e.g. 
8, the same as the design space of the curvature functional 
method) by modifying the fully connected layers in encoder, in 
practice, it will lead to a much poorer reconstruction accuracy. 
The high dimensionality of the VAE latent space poses a 
significant challenge to establishing the microstructure-property 
relationship, as well as searching for the optimal microstructure 
designs in the design space.  

Interpretability of statistical equivalency among stochastic 
microstructure designs: It is a unique requirement for stochastic 
microstructure design. From the perspective of statistical 
characterization and stochastic reconstruction, one “design” 
actually represents an infinite number of microstructure samples 
that are random but statistically equivalent. The design 
representation by curvature functional parameters can provide 
this capability. By contrast, in the latent space learned by the 
deep generative model, each point corresponds to one specific, 
unique microstructure image. The distance between the points is 
a measurement of the pixel-to-pixel similarity of the two images, 
instead of the similarity in the statistical sense. As shown in 
Figure 10, two statistically equivalent random particle 
microstructure samples are far apart in terms of the Euclidean 
distance in latent space, while the random particle microstructure 
#1 is closer to the quasi-random microstructure. Therefore, it is 
not possible to define statistical equivalency purely based on the 
distance in the latent space. We acknowledge the possibility of 
generating random but statistically equivalent microstructures by 

introducing empirical statistical descriptors into the loss function 
of deep generative models (e.g., GAN) [52], but then again, it 
loops back to our original research question: how to select proper 
descriptors for describing stochastic microstructures without 
compromising the design freedom.   

Design performance: The performances of the optimal 
designs are influenced by two factors: the accuracy of the 
microstructure-property surrogate model, and the effectiveness 
of design exploration/searching in the design spaces generated 
by each method. Although the curvature functional-based 
method demonstrates better performances in the presented case 
study, we should be cautious to make a conclusion. In our 
previous work [40] and literature [53], it has been demonstrated 
that training the VAE and the latent variable-property regressor 
simultaneously can improve the property prediction accuracy. 
This paper focuses on the capability of learning a unified design 
space, so the simultaneously training of the latent space and the 
property repressor is out of scope and not included.  
 

 
Figure 9: Scalability of the curvature functional-based method: 
microstructure designs generated from the same design variable 
vector 𝒂 = [1, 2.8, 2, -10, -10, 25] and 𝑚0 = -0.25 with sizes of 
(a) 643 (b) 1283 (c) 2563 voxels by the curvature functional-based 
method.  

 
Figure 10:  2D t-SNE representations of VAE latent space. It is 
observed that the distance between two statistically equivalent 
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random particle microstructures is larger than that between a 
random particle microstructure and an amorphous 
microstructure. Therefore, the Euclidean distance in the latent 
space cannot be used to identify statistically equivalent 
microstructures. 

Table 2: Overview of the comparison between the deep 
generative model-based and curvature functional-based methods 
in the design representation. The criterion with * is only valid for 
the methods and case study presented in this paper and further 
investigations are needed for other cases. “+” means better, “-” 
means worse. 

Criteria 
Deep generative 

model-based 
method 

Curvature 
Functional-

based method 

Computational Cost − + 

Continuous transition − + 

Design scalability − + 

Design diversity + − 

Dimensionality of the 
design space − + 

Interpretability of 
statistical equivalency  − + 

Design performance* − + 

 
6. CONCLUSION AND FUTURE WORK 

In this paper, we proposed and compared two methods for 
generating a unified design space that embodies various 
categories of stochastic microstructures: the deep generative 
model-based method and the curvature functional-based method. 
For the deep generative model-based method, the latent space 
learned from a highly diversified microstructure database is 
employed as the microstructure design space. For the curvature 
functional-based method, the generation parameters in the 
functionals are used as microstructure design variables. We 
established surrogate models to predict the relationship between 
microstructure design variables and the properties of interest, 
and conducted surrogate model-based optimization to design 
microstructures for desired properties. Furthermore, we applied 
the two methods to generate functionally graded structure 
designs. We present a comprehensive discussion and comparison 
of each method, outlining their respective advantages and 
drawbacks. This discussion serves to inform the design process 
for architecture and composite materials, aiding in the selection 
of an appropriate method based on the desired outcomes. 

In our future work, we plan to test both methods on more 
engineering case studies to deepen our understanding of the 
strengths of each method. We are also aiming to extend both 

methods to the design of 3D mixed-stochasticity microstructural 
systems that embody both deterministic and stochastic 
microstructure units. 
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