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ABSTRACT

Bridging the gaps among various categories of stochastic
microstructures remains a challenge in the design representation
of microstructural materials. Each microstructure category
requires certain unique mathematical and statistical methods to
define the design space (design representation). The design
representation methods are usually incompatible between two
different categories of stochastic microstructures. The common
practice of pre-selecting the microstructure category and the
associated design representation method before conducting
rigorous computational design limits the design freedom and
reduces the possibility of obtaining innovative microstructure
designs. To overcome this issue, this paper proposes and
compares two methods, the deep generative modeling-based
method and the curvature functional-based method, to
understand their pros and cons in designing mixed-category
stochastic microstructures for desired properties. For the deep
generative modeling-based method, the Variational Autoencoder
is employed to generate an unstructured latent space as the
design space. For the curvature functional-based method, the
microstructure geometry is represented by curvature functionals,
of which the functional parameters are employed as the
microstructure  design  variables.  Regressors of the
microstructure design variables-property relationship are
trained for microstructure design optimization. A comparative
study is conducted to understand the relative merits of these two
methods in terms of computational cost, continuous transition,
design scalability, design diversity, dimensionality of the design
space, interpretability of the statistical equivalency, and design
performance.

Keywords: Stochastic microstructures; Microstructure design;
Deep generative model; Curvature functional, Design
representation.

1. INTRODUCTION

By designing the microstructures of architected materials, a
wide spectrum of properties, such as strength [1-3], ductility [4],
energy density [5, 6], and thermal conductivity [1, 7, 8], can be
achieved to meet engineering requirements. Here we focus on
stochastic microstructures, of which the statistical variations in
structural characteristics are induced by uncertainties in the
manufacturing processes [9-11], defects or porosities [12], or the
inherent randomness at the micro- or nano-scale [13, 14]. In the
field of engineered architected metamaterials, designers have
looked into stochastic structure designs to achieve higher energy
absorption [6, 15, 16], compatibility with traditional
manufacturing techniques [17, 18], and robustness against
defects [19].

In the literature, a variety of statistical characterization and
stochastic reconstruction-based approaches have been proposed
for  designing  stochastic  microstructures.  Statistical
characterization is a process that generates statistical descriptors
and functions of the stochastic microstructure features observed
from digital images (e.g., microscopic images). Stochastic
reconstruction is a process that re-generates statistically
equivalent microstructures based on the input statistical
descriptors and functions. One simple and straightforward way
is to characterize microstructures with physically meaningful
parametric descriptors such as volume fraction, particle/pore
size, fiber length, fiber orientation, etc. In addition, high
dimensional statistical functions including N-point correlation
functions [20-23], spectrum density function [24, 25], and
random fields [26, 27] have also been applied to describe the
complex stochastic microstructure morphologies. One major
limitation of these methods is that each stochastic microstructure
category requires some unique mathematical and statistical
representations that are incompatible with other categories. For
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example, random fiber composites require fiber orientation
tensor [10, 28], random particle composites require the statistical
distribution of particle diameters [29, 30], granular alloy
microstructures require both grain orientation and crystal
orientation [31], and spinodal-like structures can be described
with spectrum density function [25]. Therefore, a designer needs
to decide the microstructure category before defining the design
space and conducting computational design. The step of pre-
selecting the microstructure category limits the design freedom
and reduces the possibility of obtaining innovative
microstructure designs.

In recent years, deep generative models, such as Variational
Autoencoders (VAEs), generative adversarial networks (GANs),
and their variations, have been employed in stochastic
microstructure reconstruction and design [16, 32-38]. However,
the aforementioned works only consider a limited number of
microstructure categories [39] and do not focus on bridging the
gaps among various categories. In our previous work [40], we
established a deep generative modeling framework that learns a
unified microstructure design space based on multiple categories
of stochastic microstructures (random fibers, random particles,
random ellipses, random node-edge networks, and random
amorphous microstructures) and deterministic, periodic
microstructures (e.g., cellular metamaterials). This framework
enables a smooth transition between stochastic and deterministic
structural patterns in the property-driven microstructure design.
However, this framework only handles 2D microstructure
images and is demanding on training data and computational
resources, so its application to 3D microstructure design is
limited by the curse of dimensionality.

To address the aforementioned challenges, here we
investigate two approaches that have the capability of generating
a unified design space that embodies various categories of
stochastic microstructures:

(i) A data-driven approach based on the deep generative

model;

(i1) A mathematics-based approach that is established upon

the curvature functionals.

As shown in Figure 1, these two methods are employed in
design representation to create a parametric design space for
stochastic microstructure design. With the obtained design space,
Design of Experiments (DOE), supervised learning of the
microstructure-property relationship, and property-driven design
will be conducted to generate new microstructure designs. A
comparative study will be presented to discuss the pros and cons
of the two methods.

The remainder of the paper is organized as follows. Section
2 introduces a deep generative model-based design
methodology. Section 3 introduces the curvature functional-
based design methods. In section 4, a microstructure design case
is presented to compare the two methods. Section 5 presents a
comprehensive discussion of the comparison of the two methods.
Section 6 concludes this paper.

Design representation

Unified design space

» Curvature functional-based method

+ Deep generative modeling-based method

* Embodying various categories: random particles,
random ellipsoids, random fibers, random node-
edge networks, amorphous microstructures, etc.

Design evaluation

Microstructure-property Relationship

+ Design-of-Experiments
» Supervised learning

v Design synthesis

Pererty driven Functional graded structure
microstructure A
2 design
design

Figure 1: Design of mixed-category stochastic microstructures.
The focus of this paper is to compare the curvature functional-
based and the deep generative model-based methods in the
design representation. Both methods will be employed to create
a unified design space that embodies various categories of
stochastic microstructures for the property-driven microstructure
design.

2. DEEP GENERATIVE MODEL-BASED METHOD

One way to bridge the gap among different microstructure
categories is to leverage the data-driven approach, e.g., deep
feature learning, to learn a unified design space based on a large
and diverse microstructure database that embodies various
categories of microstructures. We first established a 3D
stochastic microstructure database by leveraging the stochastic
reconstruction methods proposed in our previous works,
including the statistical descriptor-based method [10, 30, 41, 42],
the space tessellation-based method [9], the spectrum density
function (SDF)-based random field method [14], etc. This
database consists of 40,000 microstructural images with a
resolution of 64x64x64, and the microstructure samples can be
classified into five categories: random particles, random fibers,
random ellipsoids, random node-edge networks, and amorphous
microstructures. Samples from each category are shown in
Figure 2. The dataset is divided into a training set and a test set
in a ratio of 9:1.
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Figure 2: Examples of microstructure samples in the database
for deep generative modeling. From left to right: random

particles, random fibers, random ellipsoids, random node-edge
networks, and amorphous microstructures.

2.1. Microstructure representation by VAE

VAE is a deep generative model that consists of two major
components: an encoder network and a decoder network. The
encoder network maps the input data to a Gaussian distribution
in the latent space, which allows for the generation of novel data
samples through sampling from the learned distribution. The
decoder network takes the latent representation as the input and
reconstructs the original data. The key feature of VAE is the
introduction of a probabilistic approach to encode the input data
into the latent space. Rather than mapping the input data to a
single point in the latent space, the VAE maps the input data to a
probability distribution over the latent space. Compared to other
generative models, e.g., GAN and diffusion model, VAE
provides an interpretable latent space, which can be used as a
low-dimensional design space. The similarity of structural
features can be measured by the distance in the latent space of
VAE. Moreover, GAN models suffer from diminished gradient,
model collapse, and other training instability issues that limit
their application to complex datasets, such as mix-category
microstructure datasets. Therefore, VAE is selected in this study.
A general loss function of a vanilla VAE is expressed as:

L;(0,9) = _Ez~q9(Z|xi)[log Py (x; | Z)] +

Dk, (qe(z | x;)|p(2)) (1)
where @ and ¢ are the parameters of the decoder and encoder,
respectively, and x; is input microstructure image data for our
case, and z denotes the latent vectors. The first term,
_Ez~q3(z|xi)[log Py (x; | Z)], is the reconstruction loss that
measures the pixel-level error between the input and
reconstruction. The second term, DKL(qg(z | x; )|p(z)),

denotes the KL loss and ensures that the learned distribution q
follows the true prior distribution p. Practically, including the
KL term in the loss function can avoid overfitting and also
regularize the latent space to reduce discontinuities in the latent
space.

Figure 3 shows our implementation of the VAE to generate
a parametric latent space representation of the stochastic
microstructures as the design space. The encoder follows a
VGG-style architecture, in which the convolution layer blocks
are followed by the fully connected layers. The dimension of
latent vectors is set at 256 based on the results of trials, in order
to balance the reconstruction quality and the time efficiency of
conducting optimal microstructure search in the latent space.

We also explored other variants of VAE in this work.
Literature and our previous work suggest that including a style
loss term in the loss function typically enhances reconstruction
quality significantly [40, 43]. However, the small improvement
in quality comes at the cost of a substantial increase in
computational complexity due to the tensor permutation process
on each image. We also tested an architecture that incorporates
the style loss [43], but did not observe an improvement in the
reconstruction quality. Furthermore, we experimented with a
Gaussian-mixture VAE [44], but did not observe any significant
benefits either. After a thorough exploration of these options, we
decided to employ a vanilla VAE for its computational efficiency.

2.2 Property-driven microstructure design and
generation of functionally graded structure designs by
VAE

As discussed in Section 1, we adopt the surrogate model-
based optimization approach to design microstructures for
desired properties. The latent variables are considered as
microstructure design variables. DOE is conducted in latent
space to generate a dataset for training the microstructure-
property surrogate models. Multi-response Gaussian Process
(GP) regression models are employed to establish the
relationship between the latent variables and the mechanical
properties.

As the computational cost of design evaluation (by surrogate
model) during the optimization process is not a concern here, we
select the Genetic Algorithm (GA) to solve the design problem.
GA, and other evolutionary algorithms, have the advantage of
avoiding local minima. For multi-objective optimization
problems, Non-dominated Sorting Genetic Algorithm IT (NSGA-
IT) [45] is employed as the optimizer.
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Figure 3: Architecture of the Variational Autoencoder. The reduced dimensional latent space is employed as the design space.
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The optimal designs are first obtained in the format of latent
vector, and the corresponding microstructure images are
reconstructed by the decoder. The properties of the optimal
microstructure designs are verified by simulations, as there
always exist discrepancies between the surrogate model-
predicted properties and the true values.

In addition to designing microstructure units, we also
investigate the VAE model’s capability of generating
functionally graded structure designs. A functionally graded
structure is characterized by the variation in structure gradually
over volume, resulting in corresponding continuous changes in
the properties. A series of microstructure units are generated by
conducting spherical linear interpolation [46] between two
microstructure unit samples in the latent space. A gradual change
in the microstructure features can be observed in this series of
designs. A functionally graded structure can be generated by
assembling those microstructure units sequentially (Figure 4).
Due to the discrete nature of the microstructure interpolation,
one outstanding shortcoming is the lack of continuity at the
interface between two adjacent microstructure units. The
presence of discontinuities at the interface can lead to local stress
concentrations that may weaken the overall strength of the
structure and even cause it to failure. Non-smooth transitions in
the interfaces can be observed, as shown in the side views in
Figure 4 (d).

=
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Latent dimension #2
=
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Latent dimension #1

(c)

A0 93 1k T

Figure 4. Funct10na1 graded structure design by the deep
generative modeling-based method. (a) A series of designs are

generated along a certain path in two selected dimensions of the
256-dimensional latent space. (b) Each star in the path is decoded
into a microstructure unit. (¢) A functionally graded structure
design is created by assembling the microstructure units. (d) Side
view of the 3D functionally graded structure. The interfaces
among adjacent units are marked by triangles. Due to the discrete
nature of the sampling process, non-smooth transitions can be
observed at the interfaces among microstructure units.

3. CURVATUAL FUNCTIONAL-BASED METHOD

3.1. Microstructure representation by curvature
functionals

Curvature functionals are capable of generating a variety of
complex shapes and have been demonstrated as a powerful tool
for designing bio-mimetic scaffold [47]. Curvature functionals
employ a phase-field formulation to diffuse an approximation of
a vast range of shape textures. The resulting approximation is
used as a loss function, in conjunction with modern automatic
differentiation optimizers, to generate geometries from a random
field initialization. When compared to the phase-field [48, 49]
and statistical functional approaches [25], such as spinodal
microstructures generated by Gaussian random field (GRF) [2,
50], curvature functionals have the ability to generate a broader
range of topologies. These include laminar, spherical, pearly thin
wall, and tube shapes, and are governed by seven generation
parameters @ = [a,, Qg2 A11,a10,001,00p] and my
However, the mathematical meaning of the generation
parameters is yet fully explored which limits the capability in
directly using this method for inverse design. To address this
limitation, we utilize the supervised learning method to establish
the relation between generation parameters and properties to
enable the property-driven microstructure design.

Gaussian curvature is a differential geometry measure of the
curvature of a surface at a given point, which is defined as the
production of the principal curvatures kq, k, by

K= K1Ky (2)

The complex microstructure surface under constant volume
is modelled as a curvature functional

F(S) = fsp(’fp’fz)dA 3)

where p is the second order polynomial of the principal
curvatures of the entire surface S. p is restricted at the degree of
2, as it is efficient to generate topological features. The curvature
functionals can be expanded as

F(S) = fs(az,o’flz +aq 1K1Ky + ao,z"z2 + Qg 0k +
gz + Ggo)dA = f5(2|a|sz A (k1K) )dA “)
Generally, it is convenient to refine this kind of 2D surface

functionals to scalar fields u in 3D volume by diffusion
approximation. And the matrix field M is introduced as:

M = —e Hessu + W )nu®nu ©)
whose trace is equal to

w' (u)

TrIME = —eAu + —— 6)
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Applied phase-field approximation and further simplification,
the final representation of the phase-field F.(u) can be written
as

Fo(u) = [, [0 g2 + 222 (T +
L2 TeME RIMEN? = (TrMHD)* +
207801 |9y | Tr M +

L0201 |9y | [RIMEIE = (TIMOD)T + agoelVul?|dx ()

To implement the phase-field F.(u) to generate
microstructure geometries given a random initialization, a mass-
preserving flow can be defined as

y = AP
u=A o0 (®)
This form can also be repressed as
u=V-4+m, 9

where A: Q - R3is a periodic vector field, and m, € R is the
desired value of the average u which also approximates the

volume fraction by mOTH Finally, an energy function is defined
as:

G.(A) =F.(V-A+my) (10)
with a gradient of

0Ge an
e (4) = -v=~£w) (11)

This energy function is used as the loss function with an
auto-differentiation tool that iteratively optimizes u to evolve a
random vector field A, until the energy function meets the
convergence criterion. Empirically, A, can be drawn from a
uniform distribution. Random initialization of the structure
image in the curvature functional method results in diverse yet
statistically ~ equivalent  stochastic  reconstructions  of
microstructures that share the same input generation parameters
a and m,. Therefore, the generation variables can be considered
as a quantitative representation of an infinite set of random but
statistically equivalent microstructures, which makes this
method suitable for generating random but statistically
equivalent stochastic microstructure designs. Several examples
of statistically equivalent microstructure samples generated from
the same a vector are shown in Figure 5 (a~d).

3.2 Property-driven microstructure design and
generation of graded functional structure designs by
curvature functionals

Following the flowchart in Figure 1, we propose a surrogate
model-based optimization approach for microstructure design.
The surrogate model of the relationship between the generation
parameters @ and material property is established using GP
regression. It is to be noted that random but statistically
equivalent microstructures will be generated for a given set of
design variables. Therefore, we generated ten samples from ten
fixed random initializations (A4) for the same design variable
vector, and then simulated the mechanical properties of all ten
samples. We generated a total of 20,000 samples using 2,000 sets
of generation parameters. Similar to the method presented in

Section 2, we adopt GA and NSGA-II as the optimizer to solve
the property-driven design problem. In the last step, the digital
images of the microstructure designs are reconstructed based on
the design variable vector a.

Here we also investigated the curvature functional-based
method’s capability of generating functional graded structure
designs. One advantage of the curvature functional method is
that a smooth transition between different categories of
microstructures can be easily obtained by varying the values of
the generation parameters continuously. Figure 5(e) shows a
functional graded design generated based on continuous
functions of the generation parameters a along the longitudinal
direction.

(a)
a=[1,1.2,12.9,
-117.7,104.9, 48.8]
my =-0.4

(b)

a=[1,-0.8, 1.1,
67.9,172.1,391.6)
my = -0.58 :
()
a=[1,30,118,
-142.6, -127.2,
-1438.2]

o = -0.49

(d)
a=[1,15,009,
-45.8,182.9, 8.1]
my =-0.50

Figure 5: (a)~(d) Design variable vectors and the corresponding
statistically equivalent microstructure samples. Each row shows
three stochastic samples of the same microstructure design and
the corresponding generation parameters. (¢) A functionally
graded structure obtained by the curvature functional-based
method. It is created from continuous functions of the generation
parameters a.

4. A COMPARATIVE STUDY WITH A DESIGN FOR
STIFFNESS PROBLEM

In this section, we present a design case to compare the deep
generative model-based and the curvature functional-based
design representation methods in two aspects: the accuracy of
the microstructure-property regressor and the performance of the
optimal designs obtained with each method.

Here we define a multi-objective microstructure design
problem that maximizes the Young’s moduli along X-, Y-, and
Z- directions. Design constraints are defined to guarantee close-
to-isotropic  designs, i.e., the differences between the
maximum/minimum modulus and the median modulus of the
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three directions are within 3%. Therefore, the optimization
problem can be formulated as

max E;(z) ormax E;(a,my),i =X Y,Z (12)

subject to:
|Enighest ~Emedium|
highest medium < 3% (13)
Emedium
|Elowest ~Emedium| < 3% (14)
Emedium

If using the curvature functional-based method, additional
constraints are needed to guarantee the convergence of
microstructure image reconstruction:

max(u) > 0.1 (14)
min(u) < —0.1 (15)
discrepancy(u) < 0.75 (16)

where the discrepancy is a measurement of how much the scalar
fields u deviate from a tanh profile phase field function [47]. As
this research focuses on investigating the influence of
microstructure morphology on the properties, the volume
fraction is set as a constant (0.4).

As a preparation for exploring the relationship between
microstructure and the property of interest, in this case, elasticity,
we performed finite element simulations on all microstructure
samples by ABAQUS. The 0-1 matrices that represent the binary
microstructure images are transformed into hexahedral meshes.
The elastic modulus and Poisson’s ratio of the 1 phase in the
microstructure are Eg,.on = 379300 MPa and ygoron = 0.1,
whereas Eajyminum = 68300 Mpa, Yajuminum = 0.3 for the 0
phase. The Young’s moduli (E,, E,, E;) in the X-, Y-, and Z-
direction are calculated from the compliance matrix. The
infinitesimal displacement boundary conditions are shown in
Figure 6.

Figure 6: Elasticity property analysis on a microstructure for the
maximum in-plane strain and the maximum von Mises stress in
(a) X-direction, (b) Y-direction, and (c) Z-direction.

The dimensionality of the design space has a strong impact
on the predictability of the GP regressors. The design space
generated by VAE has a dimensionality of 256. By contrast, the
design space of the curvature functional-based method is only 7.
More input variables indicate a potentially better capability to
capture complex microstructure features, but practically, a high
dimensional input space poses a significant challenge to
establishing the design variable-property relationship by
surrogate modeling because a lot more training data points are
required to fully cover the input space. In Table 1, we present a
comparison of three GP models: VAE latent space-based GP
model with a dataset of 40000 samples, VAE latent space-based
GP model with a dataset of 20000 samples, and curvature
functional-based GP model with a dataset of 20000 samples. In
each training, the dataset is split into a training set (90%) and a
test set (10%). The model accuracy, R?, is evaluated based on the
test set. The curvature functional-based GP model has a higher
accuracy, even when comparing with the VAE-based GP model
that uses twice as many training data points.

Table 1: Prediction accuracies of the GP regression models with
the design spaces generated by the VAE-based method and the
curvature functional-based method.

Model (size of the R? score
dataset) E, I E,
GP w/VAE (40000) 0.743 | 0.681 0.746
GP w/VAE (20000) 0.686 | 0.620 | 0.688
GP w/ curvature functional | 0.811 0.803 0.775
(20000)

Another point worth noting is that some combination of
generation parameters in the curvature functional method may
generate ill-posed geometric which may have zero level set and
floating fragments, where such fragments can lead to unrealistic
microstructures in composite material and porous material from
both design and manufacturing perspectives. Therefore, three
criteria, max(u), min(u), and discrepancy ratio, are required to
identify ill-posed phase-field u during the optimization process.
These three criteria must be included as inequality constraints in
optimization to ensure successful reconstructions of the final
microstructure designs. Experimentally, we observe that these
three constraint functions limit the number of feasible designs
significantly.

The Pareto frontiers obtained with the two methods are
compared in Figure 7. The performances of the design points in
these plots are the true values obtained from verification
simulations. Due to the predicted errors of the microstructure-
property model, some of the optimal designs violate the design
constraints on isotropicity. For the VAE-based method, only
10% of the optimal designs in the Pareto frontier satisfy the
design constraints. Among the feasible designs, we can hardly
find designs that rank in the top 10% compared to the samples in
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the microstructure database, with respect to the properties of
interest.

On the other hand, more than 70% percent of optimal
designs found by the curvature functional approach are isotropic,
according to the results of verification simulations. Furthermore,
almost all of the feasible solution rank in the 10% compared to
the samples in the microstructure database. Figure 8 (a)~(d)
show several examples of the optimal designs obtained by the
curvature functional-based method, and Figure 8 (e) and (f)
show the optimal designs obtained by the VAE-based method.

® Feasible designs - curvature
Infeasible designs - curvature

* Feasible designs - VAE E
Infeasible designs - VAE z

180000 <
()
S
<&
160000
[ ]
[ ]
L )
140000 *x
120000
120000 140000 160000 180000
X
180000 <
(")
S
ve)
160000
[ ]
E, ¢
* o®
140000
120000
120000 140000 160000 180000
Ey

Figure 7: Pareto frontiers obtained by both design approaches.
As there are three design objectives, one 3D view and two 2D
views of the performance space are provided. The design
objective is to maximize E,, E,, and E,. The feasible design
points are in dark colors and the infeasible design points are in

light colors.
(b.
(d,.

(e) U] l

Figure 8: (a)~(d) Optimal designs from the curvature
functional-based optimization approach. (a) a =[1, 4.0, 0.3, 75,
200, -2060] and m, = -0.26. (b) a = [1, 3.93, 3.79, 36, 194,
2998] and my =-0.43. (c) a =11, 3.99, 0.34, 45, 197, 1422] and
my = -0.19. (d) a=[1, 3.98, 0.22, 40, 198, 1431] and my = -
0.30. (e) and (f) Two optimal designs from the VAE-based
design approach.

(a)

(c)

5. UNDERSTANDING THE PROS AND CONS OF THE
TWO DESIGN REPRESENTATION METHODS

As summarized in Table 2, the pros and cons of the deep
generative modeling-based method and the curvature functional-
based method are discussed in terms of seven criteria:
computational cost, continuous transition in functionally graded
structure design, scalability of the microstructure design, design
diversity, dimensionality of the design space, and design
performance.

Computational cost: To obtain a design space that embodies
various categories of microstructures, the deep generative
modeling-based approach requires significant computing
resources for data generating and model training. On the other
hand, the curvature functional-based method incurs minimal
costs in defining the design space, while computing the viability
constraints (Equation 14~16) during the optimization process is
relatively computationally expensive.
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Continuous transition in functionally graded structure
design: When creating functionally graded structure designs, the
curvature functional-based method can guarantee a smooth
transition among various microstructure patterns. With the deep
generative model-based method, the functionally graded
structure design is created by assembling a series of
microstructure units, which correspond to discrete points in the
latent space. Therefore, a smooth transition between
microstructure units cannot be guaranteed. This issue could
potentially be mitigated (but not resolved) by applying circular
spatial padding to the transposed convolutional layer in the deep
generative model [51], but the impacts on reconstruction quality
and computational complexity need further investigation.

Scalability of the microstructure design: The deep
generative models, which are trained on the images directly,
cannot generate images with a wide range of sizes and
resolutions. By contrast, the curvature functional-based method
can easily map the design variables to an arbitrary domain size
(Figure 9).

Design diversity: The deep generative models have the
advantage over the curvature functionals. Theoretically, the deep
generative models can be extended to embody any type of
microstructure (e.g., microstructures with triangular inclusions)
as long as the training data are available. The curvature
functionals can only generate microstructures with curved
surfaces.

Dimensionality of the design space: The curvature
functional-based method has the advantage in generating a low
dimensional design space. Although we can also set the
dimensionality of the VAE latent space to a very low value (e.g.
8, the same as the design space of the curvature functional
method) by modifying the fully connected layers in encoder, in
practice, it will lead to a much poorer reconstruction accuracy.
The high dimensionality of the VAE latent space poses a
significant challenge to establishing the microstructure-property
relationship, as well as searching for the optimal microstructure
designs in the design space.

Interpretability of statistical equivalency among stochastic
microstructure designs: It is a unique requirement for stochastic
microstructure design. From the perspective of statistical
characterization and stochastic reconstruction, one “design”
actually represents an infinite number of microstructure samples
that are random but statistically equivalent. The design
representation by curvature functional parameters can provide
this capability. By contrast, in the latent space learned by the
deep generative model, each point corresponds to one specific,
unique microstructure image. The distance between the points is
a measurement of the pixel-to-pixel similarity of the two images,
instead of the similarity in the statistical sense. As shown in
Figure 10, two statistically equivalent random particle
microstructure samples are far apart in terms of the Euclidean
distance in latent space, while the random particle microstructure
#1 is closer to the quasi-random microstructure. Therefore, it is
not possible to define statistical equivalency purely based on the
distance in the latent space. We acknowledge the possibility of
generating random but statistically equivalent microstructures by

introducing empirical statistical descriptors into the loss function
of deep generative models (e.g., GAN) [52], but then again, it
loops back to our original research question: how to select proper
descriptors for describing stochastic microstructures without
compromising the design freedom.

Design performance: The performances of the optimal
designs are influenced by two factors: the accuracy of the
microstructure-property surrogate model, and the effectiveness
of design exploration/searching in the design spaces generated
by each method. Although the curvature functional-based
method demonstrates better performances in the presented case
study, we should be cautious to make a conclusion. In our
previous work [40] and literature [53], it has been demonstrated
that training the VAE and the latent variable-property regressor
simultaneously can improve the property prediction accuracy.
This paper focuses on the capability of learning a unified design
space, so the simultaneously training of the latent space and the
property repressor is out of scope and not included.

Figure 9: Scalability of the curvature functional-based method:
microstructure designs generated from the same design variable
vector a =[1, 2.8, 2, -10, -10, 25] and m, = -0.25 with sizes of
(a) 64° (b) 1283 (c) 256> voxels by the curvature functional-based
method.
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Figure 10: 2D #-SNE representations of VAE latent space. It is
observed that the distance between two statistically equivalent
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random particle microstructures is larger than that between a
random particle microstructure and an  amorphous
microstructure. Therefore, the Euclidean distance in the latent
space cannot be used to identify statistically equivalent
microstructures.

Table 2: Overview of the comparison between the deep
generative model-based and curvature functional-based methods
in the design representation. The criterion with * is only valid for
the methods and case study presented in this paper and further
investigations are needed for other cases. “+” means better, “-”
means worse.

Deep generative Curvature
Criteria model-based Functional-
method based method
Computational Cost - +
Continuous transition - +
Design scalability - +
Design diversity + -
Dimensionality of the _ n
design space
Interpretability of
.. . — +
statistical equivalency
Design performance* - +

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed and compared two methods for
generating a unified design space that embodies various
categories of stochastic microstructures: the deep generative
model-based method and the curvature functional-based method.
For the deep generative model-based method, the latent space
learned from a highly diversified microstructure database is
employed as the microstructure design space. For the curvature
functional-based method, the generation parameters in the
functionals are used as microstructure design variables. We
established surrogate models to predict the relationship between
microstructure design variables and the properties of interest,
and conducted surrogate model-based optimization to design
microstructures for desired properties. Furthermore, we applied
the two methods to generate functionally graded structure
designs. We present a comprehensive discussion and comparison
of each method, outlining their respective advantages and
drawbacks. This discussion serves to inform the design process
for architecture and composite materials, aiding in the selection
of an appropriate method based on the desired outcomes.

In our future work, we plan to test both methods on more
engineering case studies to deepen our understanding of the
strengths of each method. We are also aiming to extend both

methods to the design of 3D mixed-stochasticity microstructural
systems that embody both deterministic and stochastic
microstructure units.

ACKNOWLEDGEMENT

The authors gratefully acknowledge financial support from
the National Science Foundation (CAREER Award CMMI-
2142290). L.X. sincerely thanks the insightful discussions with
Anna Song at Imperial College London.

REFERENCES

[1] P.P. Meyer, C. Bonatti, T. Tancogne-Dejean, D. Mohr,
Graph-based metamaterials: Deep learning of structure-property
relations, Materials & Design 223 (2022) 111175.

[2] S. Kumar, S. Tan, L. Zheng, D.M. Kochmann, Inverse-
designed spinodoid metamaterials, npj Computational Materials
6(1) (2020) 73.

[3] Z. Wang, W. Xian, M.R. Baccouche, H. Lanzerath, Y. Li, H.
Xu, Design of Phononic Bandgap Metamaterials Based on
Gaussian Mixture Beta Variational Autoencoder and Iterative
Model Updating, Journal of Mechanical Design 144(4) (2022)
041705.

[4] Y. Kim, H.K. Park, J. Jung, P. Asghari-Rad, S. Lee, J.Y. Kim,
H.G. Jung, H.S. Kim, Exploration of optimal microstructure and
mechanical properties in continuous microstructure space using
a variational autoencoder, Materials & Design 202 (2021)
109544.

[5]M. Guo, J. Jiang, Z. Shen, Y. Lin, C.-W. Nan, Y. Shen, High-
energy-density ferroelectric polymer nanocomposites for
capacitive energy storage: enhanced breakdown strength and
improved discharge efficiency, Materials Today 29 (2019) 49-
67.

[6] Q. Ye, Y. Liu, H. Lin, M. Li, H. Yang, Multi-band
metamaterial absorber made of multi-gap SRRs structure,
Applied Physics A 107 (2012) 155-160.

[7] K. Yaji, S. Yamasaki, K. Fujita, Data-driven multifidelity
topology design using a deep generative model: Application to
forced convection heat transfer problems, Computer Methods in
Applied Mechanics and Engineering 388 (2022) 114284.

[8] P. Du, A. Zebrowski, J. Zola, B. Ganapathysubramanian, O.
Wodo, Microstructure design using graphs, npj Computational
Materials 4(1) (2018) 50.

[9] Y. Li, Z. Chen, L. Su, W. Chen, X. Jin, H. Xu, Stochastic
reconstruction and microstructure modeling of SMC chopped
fiber composites, Composite Structures 200 (2018) 153-164.
[10] Z. Chen, T. Huang, Y. Shao, Y. Li, H. Xu, K. Avery, D.
Zeng, W. Chen, X. Su, Multiscale finite element modeling of
sheet molding compound (SMC) composite structure based on
stochastic mesostructure reconstruction, Composite Structures
188 (2018) 25-38.

[11] WM. Tucho, V.H. Lysne, H. Austbg, A. Sjolyst-
Kverneland, V. Hansen, Investigation of effects of process
parameters on microstructure and hardness of SLM
manufactured SS316L, Journal of Alloys and Compounds 740
(2018) 910-925.

Copyright © 2023 by ASME



[12] S. Wang, J. Ning, L. Zhu, Z. Yang, W. Yan, Y. Dun, P. Xue,
P. Xu, S. Bose, A. Bandyopadhyay, Role of porosity defects in
metal 3D printing: Formation mechanisms, impacts on
properties and mitigation strategies, Materials Today (2022).
[13] T. Tran - Phu, R. Daiyan, X.M.C. Ta, R. Amal, A. Tricoli,
From Stochastic Self - Assembly of Nanoparticles to
Nanostructured (Photo) Electrocatalysts for Renewable Power -
to - X Applications via Scalable Flame Synthesis, Advanced
Functional Materials 32(13) (2022) 2110020.

[14] H. Xu, J. Zhu, D.P. Finegan, H. Zhao, X. Lu, W. Li, N.
Hoffman, A. Bertei, P. Shearing, M.Z. Bazant, Guiding the
Design of Heterogeneous Electrode Microstructures for Li - Ton
Batteries: Microscopic Imaging, Predictive Modeling, and
Machine Learning, Advanced Energy Materials 11(19) (2021)
2003908.

[15] A. Guell Izard, J. Bauer, C. Crook, V. Turlo, L. Valdevit,
Ultrahigh energy absorption multifunctional spinodal
nanoarchitectures, Small 15(45) (2019) 1903834.

[16] Z. Yang, X. Li, L. Catherine Brinson, A.N. Choudhary, W.
Chen, A. Agrawal, Microstructural materials design via deep
adversarial learning methodology, Journal of Mechanical Design
140(11) (2018).

[17] C.M. Portela, A. Vidyasagar, S. Krodel, T. Weissenbach,
D.W. Yee, J.R. Greer, D.M. Kochmann, Extreme mechanical
resilience of self-assembled nanolabyrinthine materials,
Proceedings of the National Academy of Sciences 117(11) (2020)
5686-5693.

[18] Y. Li, Z. Chen, H. Xu, J. Dahl, D. Zeng, M. Mirdamadi, X.
Su, Modeling and simulation of compression molding process
for sheet molding compound (SMC) of chopped carbon fiber
composites, SAE International Journal of Materials and
Manufacturing 10(2) (2017) 130-137.

[19] Q.T. Do, C.H.P. Nguyen, Y. Choi, Homogenization-based
optimum design of additively manufactured Voronoi cellular
structures, Additive Manufacturing 45 (2021) 102057.

[20] Y. Jiao, F. Stillinger, S. Torquato, Modeling heterogeneous
materials via two-point correlation functions: Basic principles,
Physical Review E 76(3) (2007) 031110.

[21] Y. Jiao, F.H. Stillinger, S. Torquato, Modeling
heterogeneous materials via two-point correlation functions. II.
Algorithmic details and applications, Phys Rev E 77(3) (2008).
[22] S. Torquato, Optimal design of heterogeneous materials,
Annu Rev Mater Res 40 (2010) 101-129.

[23] Y. Zhang, M. Yan, Y. Wan, Z. Jiao, Y. Chen, F. Chen, C.
Xia, M. Ni, High-throughput 3D reconstruction of stochastic
heterogeneous microstructures in energy storage materials, npj
Computational Materials 5(1) (2019) 1-8.

[24] S. Yu, C. Wang, Y. Zhang, B. Dong, Z. Jiang, X. Chen, W.
Chen, C. Sun, Design of non-deterministic quasi-random
nanophotonic structures using Fourier space representations,
Scientific reports 7(1) (2017) 1-10.

[25] A. Iyer, R. Dulal, Y. Zhang, U.F. Ghumman, T. Chien, G.
Balasubramanian, @ W.  Chen, Designing anisotropic
microstructures with spectral density function, Comp Mater Sci
179 (2020) 109559.

10

[26] M. Grigoriu, Random field models for two-phase
microstructures, J Appl Phys 94(6) (2003) 3762-3770.

[27] E. Levina, P.J. Bickel, Texture synthesis and nonparametric
resampling of random fields, The Annals of Statistics 34(4)
(2006) 1751-1773.

[28] S.G. Advani, C.L. Tucker III, The use of tensors to describe
and predict fiber orientation in short fiber composites, Journal of
rheology 31(8) (1987) 751-784.

[29] H. Xu, R. Liu, A. Choudhary, W. Chen, A machine
learning-based design representation method for designing
heterogeneous microstructures, Journal of Mechanical Design
137(5) (2015) 051403.

[30] H. Xu, D.A. Dikin, C. Burkhart, W. Chen, Descriptor-based
methodology  for statistical characterization and 3D
reconstruction of microstructural materials, Comp Mater Sci 85
(2014) 206-216.

[31]Y.Li, H. Xu, W.-J. Lai, Z. Li, X. Su, A Multiscale Material
Modeling Approach to Predict the Mechanical Properties of
Powder Bed Fusion (PBF) Metal with Consideration of
Microstructure Uncertainties, Fourth ASTM Symposium on
Structural Integrity of Additive Manufactured Materials & Parts,
Oxon Hill, Maryland, USA, 2019.

[32] RK. Tan, N.L. Zhang, W. Ye, A deep learning—based
method for the design of microstructural materials, Structural
and Multidisciplinary Optimization 61 (2020) 1417-1438.

[33] R. Bostanabad, Reconstruction of 3d microstructures from
2d images via transfer learning, Computer-Aided Design 128
(2020) 102906.

[34] A. Dahari, S. Kench, I. Squires, S.J. Cooper, Fusion of
complementary 2D and 3D mesostructural datasets using
generative adversarial networks, Advanced Energy Materials
13(2) (2023) 2202407.

[35] S. Noguchi, J. Inoue, Stochastic characterization and
reconstruction of material microstructures for establishment of
process-structure-property linkage using the deep generative
model, Physical Review E 104(2) (2021) 025302.

[36] S. Kench, S.J. Cooper, Generating three-dimensional
structures from a two-dimensional slice with generative
adversarial network-based dimensionality expansion, Nature
Machine Intelligence 3(4) (2021) 299-305.

[37] R. Cang, Y. Xu, S. Chen, Y. Liu, Y. Jiao, M. Yi Ren,
Microstructure ~ representation  and  reconstruction  of
heterogeneous materials via deep belief network for
computational material design, Journal of Mechanical Design
139(7) (2017).

[38] J. Jung, J.I. Yoon, HXK. Park, H. Jo, H.S. Kim,
Microstructure design using machine learning generated low
dimensional and continuous design space, Materialia 11 (2020)
100690.

[39] S. Deng, C. Mora, D. Apelian, R. Bostanabad, Data-Driven
Calibration of Multifidelity Multiscale Fracture Models Via
Latent Map Gaussian Process, Journal of Mechanical Design
145(1) (2023) 011705.

[40] L. Xu, N. Hoffman, Z. Wang, H. Xu, Harnessing structural
stochasticity in the computational discovery and design of
microstructures, Materials & Design 223 (2022) 111223.

Copyright © 2023 by ASME



[41] Y. Li, W. Chen, H. Xu, X. Jin, 3D representative volume
element reconstruction of fiber composites via orientation tensor
and substructure features, 31st Annual Technical Conference of
the American Society for Composites, American Society for
Composites, 2016.

[42] N. Hoffman, J. Lee, W. Li, J. Zhu, H. Xu, A Stochastic
Microstructure Reconstruction-Based Mechanical and Transport
Modeling Approachfor Learning the Microstructure-Property
Relationship of Li-lon Battery Graphite Anodes, 239th ECS
meeting, Digital Meeting, 2021.

[43] R. Cang, H. Li, H. Yao, Y. Jiao, Y. Ren, Improving direct
physical properties prediction of heterogeneous materials from
imaging data via convolutional neural network and a
morphology-aware generative model, Comp Mater Sci 150
(2018) 212-221.

[44] N. Dilokthanakul, P.A. Mediano, M. Garnelo, M.C. Lee, H.
Salimbeni, K. Arulkumaran, M. Shanahan, Deep unsupervised
clustering with gaussian mixture variational autoencoders, arXiv
preprint arXiv:1611.02648 (2016).

[45] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and
elitist multiobjective genetic algorithm: NSGA-II, IEEE
transactions on evolutionary computation 6(2) (2002) 182-197.
[46] K. Shoemake, Animating rotation with quaternion curves,
Proceedings of the 12th annual conference on Computer
graphics and interactive techniques, 1985, pp. 245-254.

[47] A. Song, Generation of tubular and membranous shape
textures with curvature functionals, Journal of Mathematical
Imaging and Vision 64(1) (2022) 17-40.

[48] P.-A. Geslin, I. McCue, B. Gaskey, J. Erlebacher, A. Karma,
Topology-generating interfacial pattern formation during liquid
metal dealloying, Nature communications 6(1) (2015) 8887.
[49] D. Montes de Oca Zapiain, J.A. Stewart, R. Dingreville,
Accelerating  phase-field-based  microstructure  evolution
predictions via surrogate models trained by machine learning
methods, npj Computational Materials 7(1) (2021) 3.

[50] F.V. Senhora, E.D. Sanders, G.H. Paulino, Optimally -
Tailored Spinodal Architected Materials for Multiscale Design
and Manufacturing, Advanced Materials 34(26) (2022) 2109304.
[51] A. Gayon-Lombardo, L. Mosser, N.P. Brandon, S.J. Cooper,
Pores for thought: generative adversarial networks for stochastic
reconstruction of 3D multi-phase electrode microstructures with
periodic boundaries, npj Computational Materials 6(1) (2020) 1-
11.

[52] F. Zhang, Q. Teng, H. Chen, X. He, X. Dong, Slice-to-voxel
stochastic reconstructions on porous media with hybrid deep
generative model, Comp Mater Sci 186 (2021) 110018.

[53] L. Wang, Y.-C. Chan, F. Ahmed, Z. Liu, P. Zhu, W. Chen,
Deep generative modeling for mechanistic-based learning and
design of metamaterial systems, Comput Method Appl M 372
(2020) 113377.

11

Copyright © 2023 by ASME





