

1 **Cathodically Deposited ZIF-8 Compact Layer on an 8- μ m Ultrathin Polypropylene**
2 **Separator to Enhance the Performance of Lithium-Sulfur and Lithium-Metal Batteries**

3 Xueyan Lin^a, Rishav Baranwal^a, Guofeng Ren^b, Zhaoyang Fan^{c*}

4 ^aSchool for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ
5 85281, USA

6 ^bShenzhen Mosu Tech, Shenzhen, Guangdong 51800, China

7 ^cSchool of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ
8 85281, USA

9 *Contact: zyfan@asu.edu

10

11 **Abstract**

12 The development of high-performance battery technologies necessitates ultrathin separators with
13 superior mechanical strength and electrochemical properties. We present an innovative 1 μ m thick,
14 pinhole-free zeolitic imidazolate framework-8 (ZIF-8) layer, cathodically deposited on an 8 μ m
15 thick commercial polypropylene (PP) film in a rapid process, resulting in a ZIF-8@8- μ m PP
16 flexible membrane. This crack-free ZIF-8 layer, featuring angstrom-scale pores and chemical polar
17 groups, functions as a Li⁺ sieve, regulating Li⁺ transport, controlling Li deposition, and blocking
18 dissolved active cathode materials. It also enhances Li⁺ diffusion and transference number,
19 extending the Sand's time for Li dendrite formation. Consequently, the ZIF-8@8- μ m PP separator
20 addresses polysulfide shuttling in Li-S batteries and Li dendrite formation in Li-metal batteries,
21 significantly improving their performance compared to conventional separators. Our findings
22 indicate that while the 8- μ m PP alone is unsuitable as a battery separator, the ZIF-8@8- μ m PP,
23 possesses the mechanical strength and electrochemical properties necessary for developing both
24 Li-S and Li-metal batteries, as well as application in conventional Li-ion batteries with enhanced
25 volumetric energy densities.

26 **Keywords:** Battery separator; Flexible MOF membrane; Battery separator functionalization; Li-
27 S battery; Li-Metal Battery

28 **1. Introduction**

29 Li-metal batteries (LMBs), using Li-metal as the anode, are promising for next generation
30 energy storage due to lithium's highest specific capacity (3861 mAh g⁻¹) and lowest negative
31 potential (-3.04 V vs. standard hydrogen electrode)¹. Taking a further step, by using sulfur as the
32 cathode, lithium-sulfur batteries (LSBs) have garnered significant attention among LMBs. The
33 sulfur cathode offers a superior theoretical specific capacity of 1672 mAh g⁻¹, along with the
34 merits of environmental friendliness and abundance of sulfur, potentially overcoming the
35 limitations of lithium-ion batteries^{2,3}.

36 The practical implementation of LMBs is hindered by the uncontrolled lithium dendrite
37 formation on the metallic lithium anode during cycling. Moreover, the growth of lithium
38 dendrites exposes fresh lithium to the electrolyte, leading to their continuous reaction, which
39 results in rapid capacity degradation, low Coulombic efficiency and electrolyte consumption⁴.
40 LSBs inherit the Li dendrites and other Li-metal problems of LMBs. Additionally, they face
41 challenges associated with the sulfur cathode, among which the notorious 'shuttle effect' is a
42 major technical issue. This effect is caused by the dissolution and migration of intermediate
43 lithium polysulfides (LiPSs) to the anode, giving rise to the subsequent reactions⁵ with serious
44 consequences⁶, particularly an irreversible capacity loss.

45 The fundamental function of the separator in a battery is to isolate the active cathode materials
46 from those of the anode while providing pathways for rapid electrolytic Li⁺ transport. Polyolefin-
47 based membranes, including polypropylene (PP) and polyethylene (PE), characterized by large
48 (up to hundreds of nanometers) and non-uniform micropores, are commonly used as battery
49 separators. However, these polyolefin separators cannot fulfill their two fundamental roles since
50 they can neither block polysulfide crossover nor facilitate Li⁺ transportation. While significant

51 research efforts have been dedicated to immobilizing polysulfides within the cathode host⁷⁻⁹,
52 achieving effective separation using the separator remains a solution to polysulfide shuttling.
53 With a nonpolar surface property, these separator materials are not able to expedite Li⁺
54 transportation.

55 The formation of lithium dendrites can be modeled by Sand's time (or capacity)¹⁰, which
56 suggests that to prevent dendrite formation, the diffusion (D_+) and transference number (t_+) of
57 Li⁺ in electrolyte should be maximized, while its flux (J) should be minimized. Polyolefin-based
58 "passive" separators lack functional groups that actively regulate ion transport to enhance Li⁺
59 diffusion and its transference number. On the other hand, the random pore size and pore
60 distribution in these passive separators leads to an inhomogeneous Li⁺ flux¹¹, increasing localized
61 Li⁺ flux. These separators not only fail to effectively separate the active electrode materials and
62 promote Li⁺ transportation but also exacerbate the dendrite problem. Modifying the separator by
63 reducing pore size or functionalizing it to facilitate uniform and rapid Li⁺ transfer and block
64 polysulfide pathway emerges as a promising approach to mitigate the lithium dendrite problem
65 and the shuttle effect in LMBs and LSBs¹².

66 Even though being an indispensable component of batteries, the passive separator itself does
67 not actively contribute to any battery capacity, while with a typical thickness of 20-30 μm , it
68 occupies a significant portion of the battery volume¹³. Reduction of separator thickness can help
69 increase the battery volumetric energy density¹⁴. For instance, replacing the 30 μm thick separator
70 with 10 μm ultrathin one, NCM811-based LIB will increase its energy density from 700 to 820
71 Wh L⁻¹. Reduction of internal resistance is another merit of ultrathin separators. Yet, these
72 ultrathin PP or PE separators lack the necessary puncture strength and mix penetration resistance
73 that are crucial for battery manufacturing¹⁵. Moreover, they do not possess enough mechanical

74 strength to endure the long-term battery cycling ¹⁴. They certainly cannot prevent Li dendrite
75 penetration if a metal Li anode is used.

76 Therefore, it becomes an urgent subject to engineer an ultrathin separator with active functions
77 to help solve the challenges of polysulfide shuttling and Li dendrite formation, while possessing
78 enough mechanical strength to endure long-term battery cycling and maintaining high volumetric
79 energy density. Indeed, considerable works have been done in developing new polymer
80 separators that prevent lithium dendrite formation and polysulfide shuttling in LSBs. Separators
81 have been coated or functionalized with various polar groups to create a physical and chemical
82 barrier¹⁶⁻¹⁹. However, these coatings lack the appropriate physical and chemical pore structure,
83 making them less effective. Additionally, the resulted separators are typically not in the ultrathin
84 rage (< 10 μ m).

85 In this context, metal-organic frameworks (MOFs), coordinated by metallic nodes and organic
86 ligands, known for their highly ordered and tunable pore size structures, might provide a
87 solution²⁰. MOFs possess precisely controllable sub-nanoscale structures that can accommodate
88 liquid electrolytes, serve as ion/molecule sieves to block polysulfide crossing over and
89 regulate/enhance Li⁺ transportation, and homogenize Li⁺ flux on the Li-metal surface, thus help
90 addressing the two challenges of Li dendritic growth and polysulfide shuttling ²¹⁻²³. Indeed,
91 various MOFs have been explored for these purposes for LMBs and LSBs. For instance, UIO-66,
92 a Zr-based MOF with open metal sites, attracts and immobilizes anions, increasing t_{Li^+} from 0.49
93 to 0.79 and σ_{Li^+} from 0.3 to 1.7 mS cm⁻¹.²⁴ Amine group functionalized NH₂-MIL-125(Ti)
94 accelerates cation transport and retards anion diffusion, thus increasing t_{Li^+} to 0.78 ²⁵. Thick ZIF-
95 67 powder coated LIB separator ²⁶ was demonstrated to immobilize PF₆⁻ and dramatically
96 increase t_{Li^+} to 0.81 and $\sigma > 1.5$ mS cm⁻¹. MOFs@GO as separators of LSBs displayed a low-

97 capacity decay rate of 0.041% per cycle at 1C²⁷.

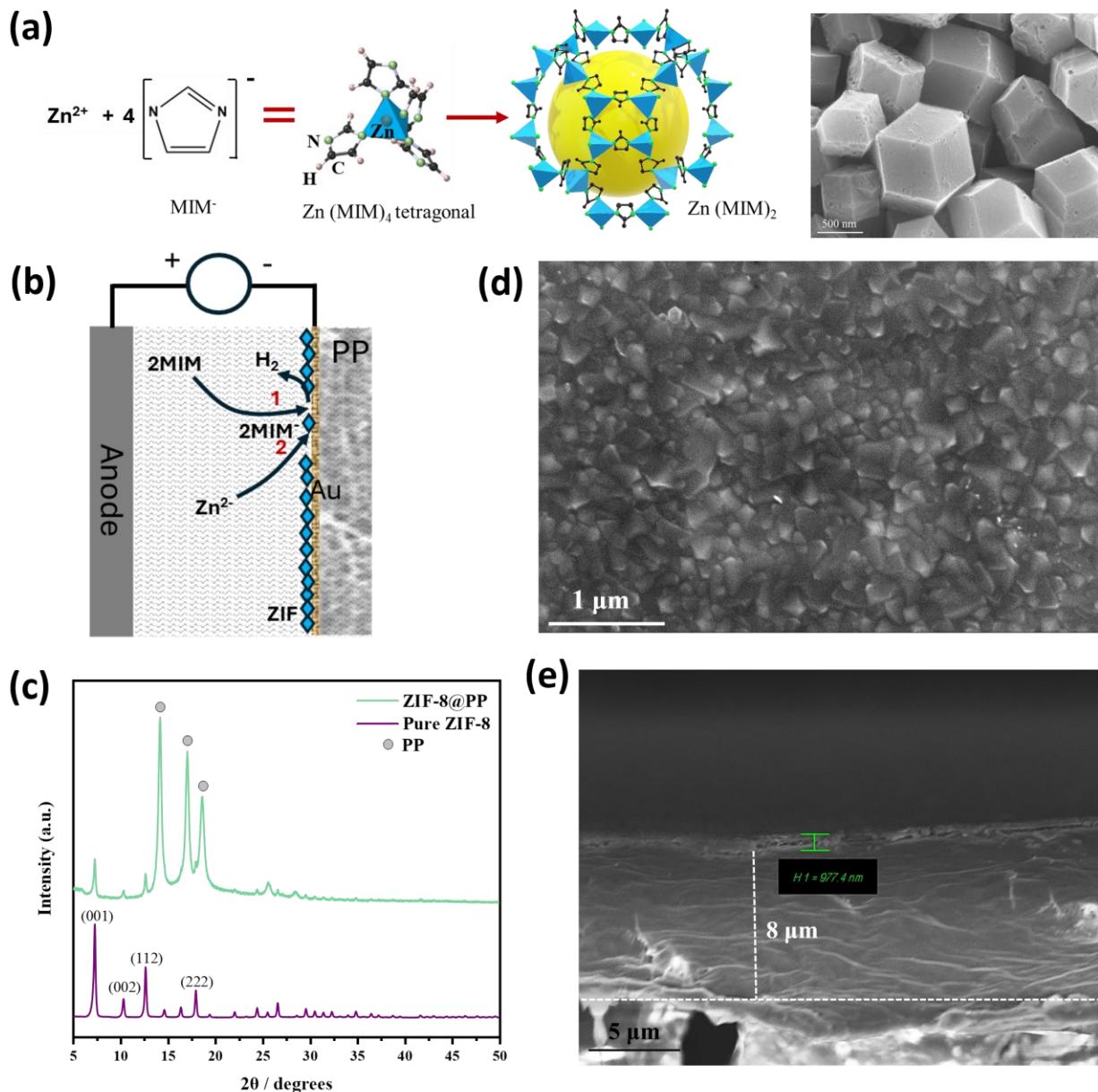
98 In the broad field of MOF-based membrane technology, although many synthesis techniques
99 have been developed, preparing uniform and crack-free MOF layers with a sub- μm thickness on
100 flexible porous substrates has remained a challenge^{28,29}. The tens of micrometers thick MOF
101 powder coating is excluded. Techniques such as layer-by-layer assembly and phase
102 transformation interfacial growth could fulfill this purpose, but they usually need tens of hours
103 for deposition, and hence are not suitable for large-scale battery separator applications. In this
104 regard, cathodic (electro)deposition method provides a new opportunity for fabricating crack-free
105 MOF films with shorter synthesis time and thickness/morphology controlled^{30,31}.

106 Among a variety of MOFs, ZIF-8 (Zeolitic Imidazolate Frameworks-8) stands out attributed
107 to its suitable pore size and high thermal and chemical stability³²⁻³⁷. Herein, we employed an
108 aqueous cathodic deposition method^{30,38-41} to in-situ grow a pinhole-free and crack-free ZIF-8
109 compact thin film with a sub- μm thickness on both conventional (25 μm) and ultrathin (8 μm) PP
110 membranes^{28,42} used as separators in LSBs and LMBs. The ZIF-8 modification not only facilitates
111 the electrolyte affinity but also serves as an ion/molecule sieve to facilitate and regulate Li⁺
112 transportation as well as inhibit soluble polysulfide shuttling. In addition, the modified ultrathin
113 ZIF-8@8- μm PP separators overcome the mechanical and electrochemical limitations of pristine
114 8- μm PP separators while maintaining their merits of lower internal resistance and higher ionic
115 conductance due to the shortened distance. Therefore, the use of the ZIF-8@PP separator in Li||Li
116 symmetric and Li||Cu asymmetric cells for Li stripping/plating studies demonstrated smaller
117 polarization voltage, higher coulombic efficiency, and significantly enhanced lithium
118 stripping/plating cycling stability compared to cells utilizing pristine PP separators. Consequently,
119 LSBs equipped with the ZIF-8@8- μm PP separator delivered a high initial capacity of 1480 mAh

120 g^{-1} as well as a low capacity-degradation rate of 0.031% per cycle at 1C within 500 cycles.
121 Similarly, LMBs (Li||LiFePO₄) coupled with the ZIF-8@8- μm PP also demonstrated
122 substantially enhanced performance.

123 **2. Results and Discussion**

124 **2.1. Cathodic deposition of ZIF-8 films**


125 Fig. 1(a) illustrates the structure and formation process of the 3-D crystal lattice of ZIF-8. The
126 lattice structure consists of a Zn(II) ion tetrahedrally coordinated with four 2-methylimidazolate
127 ligands via Zn-N bonds. When 2-methylimidazole (C₄H₆N₂, MIM) loses a proton, it becomes 2-
128 methylimidazolate (C₄H₅N₂⁻, MIM⁻). The deprotonated nitrogen (N⁻) coordinates with a Zn²⁺ ion.
129 Additionally, the second nitrogen in the imidazolate ring, which is not deprotonated, has a lone
130 pair of electrons that can interact with another Zn²⁺ ion, though not as strongly as the negatively
131 charged nitrogen. Consequently, each of the four 2-methylimidazolate ligands, tetrahedrally
132 coordinated to a Zn(II) ion, bridges to another Zn(II) ion. This interaction forms a 3D network that
133 can be visualized as a tetrahedral coordination geometry around each zinc ion, with each 2-
134 methylimidazolate ligand bridging two zinc centers. Thus formed ZIF-8 features a pore diameter
135 of approximately 11.6 Å and a window size of 3.4 Å⁴³. The inset SEM image illustrates the common
136 rhombic dodecahedral morphology of ZIF-8 particles synthesized in a hydrothermal process. ZIF-
137 8 combines the advantages of both MOFs and zeolites, exhibiting properties such as high
138 crystallinity, porosity, and remarkable chemical and thermal stability.

139

140

141

142

143

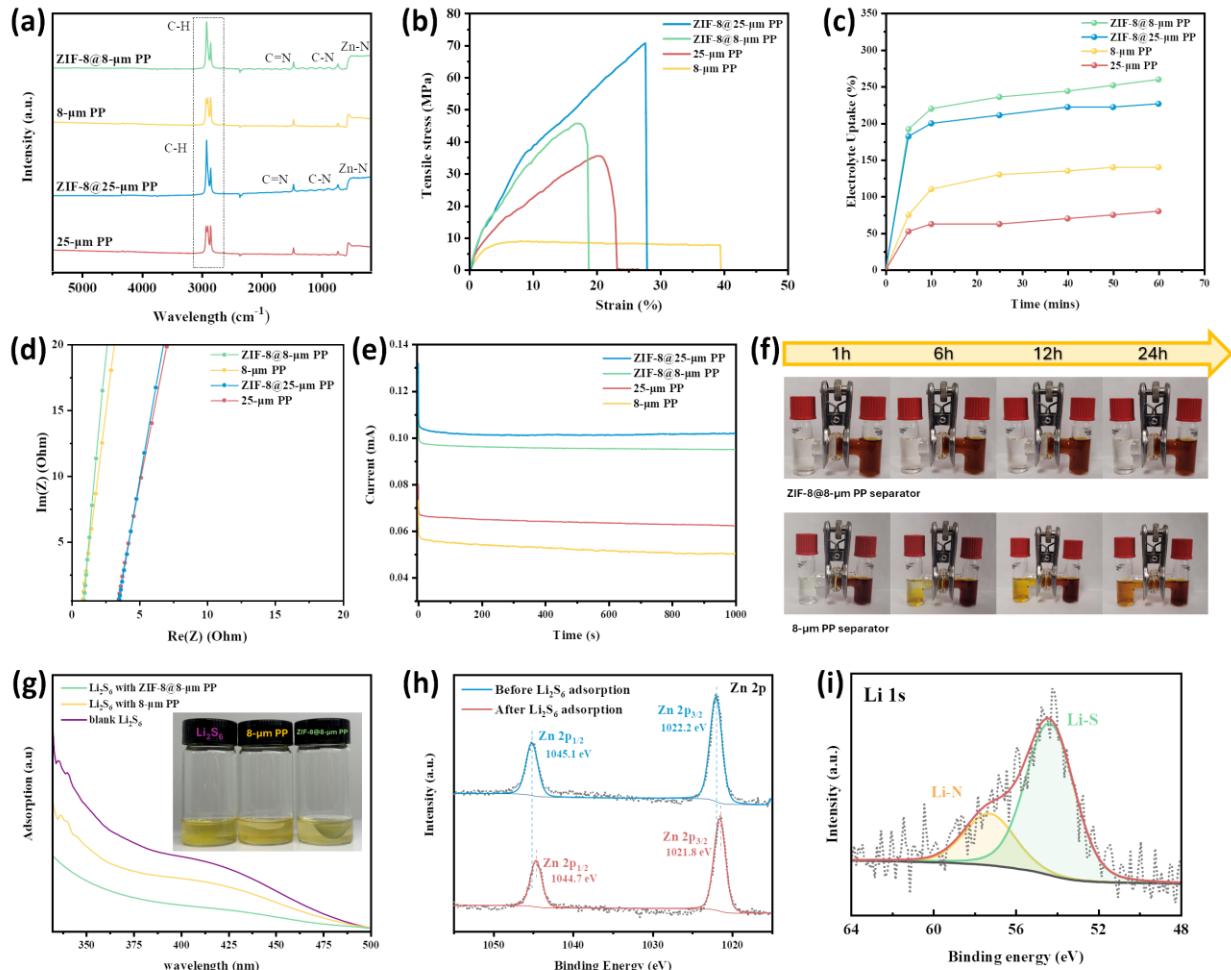
144

145 Fig. 1. (a) The scheme of the chemical reaction to synthesize ZIF-8, its porous structure, and the
 146 typical morphology of ZIF-8 crystals. (b) The electrochemical synthesis process of ZIF-8 on PP
 147 membrane. (c) XRD pattern of ZIF-8@PP and pure ZIF-8 crystals. SEM top view (d) and cross-
 148 sectional view (e) of ZIF-8@8- μ m PP separator.

149

150 Fig. 1(b) shows the process of cathodic electrodeposition of ZIF-8 on a porous PP membrane.
151 A few nanometers thick gold is first deposited on the commercial PP separator in a sputtering
152 tool. The gold layer is used as the cathode and as the hydrogen evolution catalyst. With Au/PP as
153 the cathode, graphite paper as the anode, and MIM and Zn salt solution as the electrolyte, a small
154 current (0.13 mA cm^{-2}) is applied for electrodeposition. When MIM diffuses to the cathode
155 surface, it is reduced by deprotonation: $2\text{MIM} + 2\text{e}^- = 2\text{MIM}^- + \text{H}_2$ (Reaction 1 in Fig. 1(b)).
156 Meanwhile, Zn^{2+} in the solution migrates to the cathode, coordinating with MIM^- : $\text{Zn}^{2+} + 2\text{MIM}^-$
157 $= \text{Zn}(\text{MIM})_2$ (Reaction 2 in Fig. 1(b)), nucleating on the Au-coated PP surface, and eventually
158 forming a film. Since ZIF-8 is electronically insulating, deprotonation of MIM more easily occurs
159 at the spots on the cathode where ZIF-8 has no perfect coverage. Therefore, electrodeposition is
160 a self-limiting process, which ensures complete and pinhole-free coverage of ZIF-8 on the PP
161 separator, while its thickness is self-limited. In this work, a crack-free layer with full coverage
162 was obtained after 1 h deposition, which was confirmed by the thin-film optical interference
163 observed in the resultant ZIF-8@PP composite separator, as shown in Fig. S1 in the
164 Supplementary Information (SI). Fig. S2 presents the porous morphology of the pristine PP
165 membrane.

166 The XRD pattern of the ZIF-8@PP membrane, as shown in Fig. 1 (c), reveals three distinct
167 peaks centered at the 2θ angles of 14.0° , 16.9° and 18.5° , corresponding to the (110), (040) and
168 (130) crystallographic planes of the PP substrate, respectively⁴⁴. Additionally, peaks at 7.3° ,
169 10.35° , 12.7° and 18.0° emerge, attributed to the (001), (002), (112), and (222) planes of ZIF-8
170 crystals. This observation suggests the successful deposition of ZIF-8 film^{45,46}. By using the PP
171 membrane substrate with different thickness (8 μm vs. 25 μm), the resultant ZIF-8 deposited PP
172 membranes were denoted as ZIF-8@8- μm PP and ZIF-8@25- μm PP, respectively. SEM images


173 in Fig.1 (d) (top view) and Fig. S4 (tilted view) reveal the surface morphology of the ZIF-8 film
174 on a PP membrane, demonstrating the formation of a crack-free and uniform layer of ZIF-8
175 crystals on the surface of 8 μm thick PP membrane. Similarly, a compact ZIF-8 layer was also
176 deposited on 25 μm thick PP membrane, as observed from Fig. S5.

177 **2.2. Characteristics of ZIF-8@PP separator**

178 The X-ray photoelectron spectroscopy (XPS) analysis was carried out to study the chemical
179 composition of the materials. As depicted in the wide XPS surveys (Fig. S6(a)), Zn 2p, N 1s and
180 O 1s peaks emerge in ZIF-8@PP samples after cathodic deposition. In the Zn 2p spectra of ZIF-
181 8@PP (Fig. S6(b)), two narrow peaks are evident, corresponding to Zn 2p3/2 at 1022.2 eV and
182 Zn 2p1/2 at 1045.1 eV, respectively. This observation suggests that the majority of zinc ions are
183 in tetrahedral coordination⁴⁷. The N 1s spectra of the ZIF-8@PP sample in Fig. S6(c) exhibits
184 two peaks at 400 and 398.9 eV, attributed to the C=N and C-N bonds, respectively, in the 2-
185 methylimidazole organic ligands⁴⁸. This observation is consistent with the C-N signal detected
186 in the C 1s spectra of ZIF-8@PP, whereas pristine PP only contains C-C bonds without additional
187 polar functional groups (Fig. S6(d))^{49,50}.

188 The elemental configuration of the four studied separators was further investigated using
189 Fourier-transform infrared (FT-IR) spectrometer. In Fig. 2(a), the spectrum of the pristine PP is
190 similar to the one observed in previous studies⁵¹, while the change in intensity peaks of the
191 modified separators is evident, indicating the presence of additional functional groups introduced
192 by the very thin ZIF-8 layer. The additional C-H bending observed in the wavelength region of
193 2800-3000 cm^{-1} in the ZIF-modified separator indicates the presence of methyl groups from the
194 ZIF-8 rings. The nitrogen-coordinated zinc atoms are confirmed by Zn-N vibrations at
195 approximately 421 cm^{-1} . Furthermore, the C-N and C=N vibrations at approximately 1150 cm^{-1}

196 and 1585 cm^{-1} , respectively, confirm the formation of functional groups due to ZIF-8 deposition
 197 52.

198
 199 *Figure 2.* (a) FT-IR spectra of four different separators. (b) Stress-strain characteristics of
 200 different separators under uniaxial elongation. (c) Electrolyte uptake demonstration of different
 201 separators. (d) The EIS profiles of two-electrode symmetrical stainless-steel cells coupled with
 202 different separators. (e) The chronoamperometry profiles of two-electrode symmetrical lithium
 203 metal cells coupled with different separators. (f) Polysulfide permeation tests in H-type cell
 204 through ZIF-8@8-μm PP and commercial 8-μm PP membranes. (g) UV-Vis absorbance spectra
 205 and digital photographs (inset) of 5mM Li_2S_6 solutions and Li_2S_6 solutions after interacting with

206 *ZIF-8@8- μ m PP and 8- μ m PP. (h) Zn 2p XPS spectra of ZIF-8@8- μ m PP before and after Li₂S₆*
207 *adsorption test. (i) Li 1s XPS spectrum of ZIF-8@8- μ m PP after Li₂S₆ adsorption test.*

208

209 The synthesis of continuous MOF membranes with high flexibility is practically useful and has
210 been considered technically challenging²⁸. As shown in Fig. S7, the ZIF-8@8- μ m PP ultrathin
211 separator exhibits excellent flexibility. Even after multiple times of folding and unfolding, the in-
212 situ formed ZIF-8 layer remained firmly affixed to the surface of the ultrathin PP separator
213 without any obvious visual changes in the thin-film optical interference, indicating the
214 exceptional flexibility of the ZIF-8@8- μ m PP separator. The mass loading of ZIF-8 on 8- μ m and
215 25- μ m PP separators was determined to be 0.04 mg/cm², with weight percentages of 6.7% and
216 2.6% for ZIF-8@8- μ m PP and ZIF-8@25- μ m PP, respectively. These values were obtained by
217 measuring the membrane weights after each synthesis step, with areal densities summarized in
218 Tables S1 and S2. The lightweight ZIF-8 layer ensures minimal impact on the separator's overall
219 weight, preserving the high energy density of LSBs.

220 Furthermore, as illustrated in Fig. 2(b), the ZIF-8@8- μ m separator demonstrated a
221 significantly higher yield stress of approximately 45.7 MPa at a strain of 17.2%, in contrast to the
222 pristine 8- μ m PP, which exhibited a yield stress of 7.75 MPa at a strain of 39.4%. The
223 conventional 25- μ m PP separator showed a yield stress of 35.5 MPa at a strain of 20.8%, while
224 the ZIF-8 coating increased the yield stress to 70.5 MPa at a strain of 27.8%. These results
225 indicate that a thin ZIF-8 coating can dramatically increase the yield stress of PP separators,
226 enabling them with superior breaking strength. This is particularly true for the fragile 8- μ m PP.
227 The tensile test confirms that the incorporation of a thin crystalline ZIF-8 layer enhances the
228 mechanical strength, thereby overcoming the limitations of the pristine 8- μ m PP.

229 Thermal stability is a critical factor that significantly impacts the safety and reliability of
230 lithium-based batteries. To quantitatively characterize the thermal stability and phase changes at
231 elevated temperatures, differential scanning calorimetry (DSC) analysis was performed (Fig.
232 S8(a)). The pristine commercial PP separator shows a main endothermic peak at ~ 160 °C, which
233 is close to the melting point of polypropylene ⁵³. However, ZIF-8 modified PP membranes shift
234 to a higher phase transition temperature with the same substrate materials. The wider temperature
235 window indicates the improved thermal stability of ZIF-8@PP separators. The thermal shrinkage
236 tests shown in Fig. S8(b) were performed by keeping different separators in a drying oven and
237 the temperature was increased up to 150°C at 5°C/min. All separators made of polypropylene
238 material decomposed at 150°C, consistent with the DSC measurements. However, in the case of
239 the decomposition of ZIF-8@PP separators, a coarse layer of ZIF-8 remained behind compared
240 to pristine PP separators.

241 The separator, along with the electrolyte it holds, forms ionic pathways for lithium ions, aiding
242 their transport across electrodes. Maximizing transport efficiency can be achieved by increasing
243 the electrolyte load on separators. Fig. 2(c) presents the electrolyte uptake by different separators,
244 with the ZIF-8 coating demonstrating higher electrolyte absorption. The lithophilic functional
245 groups (-N, =N, -Zn-N) [20] and the cage-like porous structure of ZIF-8 enable these separators
246 to hold a considerable amount of electrolyte, thereby enhancing electrolyte uptake. Table S3
247 summarizes the electrolyte uptake weight percentages of different separators.

248 The wettability of separators also plays a critical role in batteries, as it influences the ion
249 transportation. A wetting test was performed by adding a droplet of the electrolyte onto the
250 surface of each separator and observing the spread of the electrolyte over time, as shown in Fig.
251 S9. When a droplet of electrolyte is placed on the surface of the ZIF-8@8- μ m and ZIF-8@25- μ m

252 PP separators, it rapidly spreads over and is absorbed, leading to complete wetting within 10 s.
253 The affinity between the separator and electrolyte is closely associated with ionic conductivity
254 and internal resistance. Efficient wetting not only improves the performance of the battery by
255 enhancing ion transportation but also reduces the time required for electrolyte filling, simplifying
256 manufacturing processes and extending the battery life cycle. In contrast, the commercial PP
257 separator exhibits considerably less wetting under the same testing conditions, with the
258 electrolyte drop observed to remain on the surface. Therefore, with the introduction of ZIF-8 thin
259 film, fast and uniform wetting of the liquid electrolyte over the entire separator can be realized.

260 Unlike ceramic-coated separators containing low-surface-area ceramic particles or polymer
261 materials with low Li^+ conductivity, the crack-free ZIF-8 layer offers a higher surface area and
262 abundant open metal sites with an appropriate pore size. This enables efficient Li^+ transport with
263 high Li^+ transference number. The modification of the ZIF-8 layer allows for rapid absorption of
264 sufficient liquid electrolyte and retention of the absorbed electrolyte throughout the discharge and
265 charge processes. This results in lower internal resistance of both separators and batteries,
266 contributing to excellent electrochemical performance over an extended period. Consequently,
267 the rate capability and cycle durability of the batteries are improved. In general, achieving high
268 ionic conductivity in separators depends on having a sufficient number of pores with appropriate
269 sizes. Additionally, good wettability with the liquid electrolyte is essential for the ionic
270 conductivity of separators. The electrochemical impedance spectroscopy (EIS) results in Fig. 2(d)
271 indicate that cells using the ZIF-8@8- μm and 8- μm PP separators exhibit smaller internal
272 resistance. This lower internal resistance with the thin separator compared to the thick separator
273 is due to reduced tortuosity for Li^+ transportation. Based on the Nyquist plots of their EIS spectra,
274 the resistance (R) is defined at the intersection of the spectrum curve with the Zre -axis. This

275 resistance is used to calculate Li^+ conductivity based on the formula $\sigma = \frac{L}{RA}$, where L is the
276 thickness and A is the area of the separator⁵⁴. The thickness of the ZIF-8 layer has been confirmed
277 to be approximately 1 μm . Therefore, the ZIF-8@8- μm separator with electrolyte saturated was
278 determined to have the highest Li^+ conductivity of 0.322 mS/cm, compared to 0.307 mS/cm for
279 the 8- μm PP separator, 0.235 mS/cm for the ZIF-8@25- μm PP separator, and 0.229 mS/cm for
280 the 25- μm PP separator. Thus, the ZIF-8 modified separators prompt more effective ionic
281 transport compared to the pristine PP separator due to the improved wettability, despite slightly
282 higher membrane thicknesses.

283 The Li^+ transference number (t_{Li^+}) is another significant factor affecting the batteries
284 performance. To obtain the transference number of a separator, it is sandwiched between two
285 lithium chips, and a DC potential of 10 mV is applied for 1000 sec to record the
286 chronoamperometry, as presented in Fig. 2(e). The transference number can be calculated by
287
$$t_{\text{Li}^+} = \frac{I_s(V - I_oR_o)}{I_o(V - I_sR_s)}$$
, where V represents the applied DC voltage (10 mV), I_o and I_s denote the initial
288 and steady-state currents, respectively, which can be read from the chronoamperometry curves.
289 R_o and R_s stand for the interfacial resistances before and after DC polarization, respectively, and
290 can be derived from the EIS curves as depicted in Fig. S10⁵⁵. With a thin ZIF-8 coating, the 25-
291 μm PP increases its transference number from 0.61 to 0.68, while the 8- μm PP increases its value
292 from 0.59 to 0.67. The crack-free ZIF-8 thin film enhances the permselectivity of Li^+ through the
293 separator, resulting in an increased transference number.

294 Lithium polysulfides (LiPSs) are reported to easily dissolve within the commonly used ether-
295 based electrolyte⁵⁶, and the size of desolvated and solvated LiPSs molecules is about 7 and 10-
296 13 \AA ⁵⁷, which are significantly smaller than the 50-200 nm strip-shaped pores in commonly used

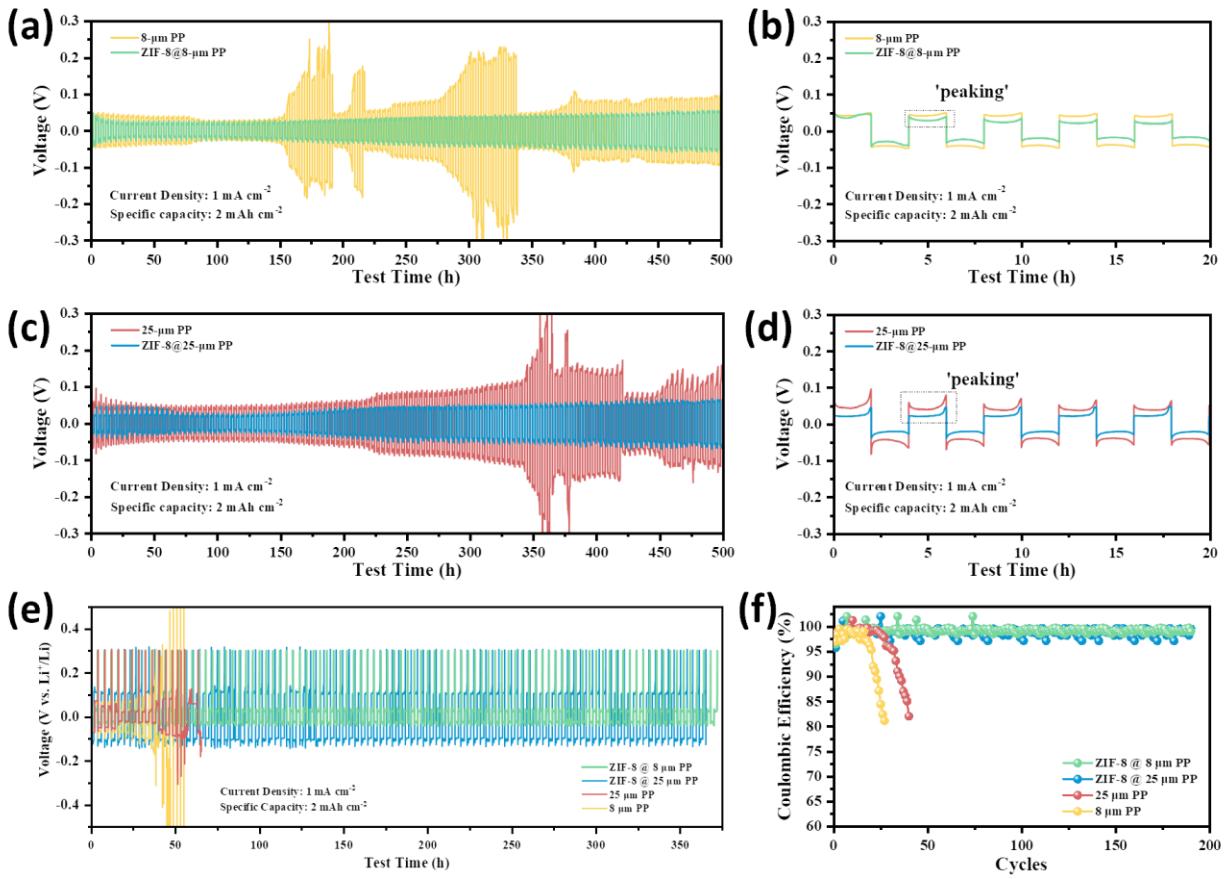
297 PP separators (Fig. S2). Therefore, LiPSs can easily permeate across the separator and shuttle
298 between the electrodes. The densely covered ZIF-8 layer consists of ZIF-8 nano crystals
299 possessing a small pore aperture of 3.4 \AA^{43} , which can serve as a molecule sieve and physically
300 block the diffusion of LiPSs through the separator.

301 Previous studies have shown that MOF materials exhibit a strong Lewis acid–base interaction
302 with LiPSs⁵⁸. In the case of ZIF-8, the Zn metal acts as a Lewis acid center, effectively trapping
303 polysulfides in the pores of ZIF-8 through strong interactions with the polysulfide soft Lewis
304 base. This interaction plays a crucial role in anchoring sulfur²⁷. Additionally, the N-rich
305 functional groups present in ZIF-8 facilitate the trapping of LiPSs by forming Li-N bonds⁵⁹.
306 Therefore, besides physically inhibiting polysulfide shuttling through sub-nanoscale pore
307 apertures, the ZIF-8 modification layer can also capture and confine LiPSs by chemical
308 interactions.

309 The superior polysulfide blocking capability of the ZIF-8@8- μm PP membrane compared with
310 the pristine 8- μm PP separator can be directly observed in lithium polysulfide permeation tests.
311 As shown in Fig. 2(f), initially, the H-type cells were coupled with ZIF-8@8- μm PP and 8- μm
312 PP separator. The left tube was filled with a pure DOL/DME solution, while the right tube
313 contained a 0.025 M Li_2S_6 DOL/DME brownish solution. Over time, polysulfide diffusion from
314 right to left became evident with the 8- μm PP separators, noticeable after 24 hours. In contrast,
315 the ZIF-8@8- μm PP separator effectively prevented almost any Li_2S_6 from passing through
316 within the same period. Similarly, the ZIF-8@25- μm PP also strongly inhibits the polysulfide
317 shuttling compared to the pristine 25- μm PP separators as shown in Fig. S11. Based on the visual
318 observations, the permeation rate of polysulfide in 8- μm PP is slightly faster than that of 25- μm
319 PP due to the reduced diffusion distance across the separator. However, the ZIF-8@8- μm PP can

320 block the polysulfide shuttling as the ZIF-8@25- μ m PP, which highlights the benefits of ZIF-8
321 modification thin film on an ultrathin PP separator.

322 The superior performance of crack-free ZIF-8 thin coating on inhibiting polysulfide shuttling
323 is ascribed to its sub-nanoscale permselective pores. Each unit cell of ZIF-8 contains a micropore
324 with a diameter of \sim 11.6 \AA and a pore aperture of 3.4 \AA . But the rotation of MIM ligands allows
325 molecules with kinetic diameters of up to 6.7 \AA to diffuse through the framework. In DOL/DME,
326 the solvated polysulfides exist in many forms but generally have a size $>$ 10 \AA , while the solvated
327 Li^+ and free Li^+ are only 6.4 \AA and 1.8 \AA , respectively⁶⁰. Therefore, ZIF-8 can effectively block
328 polysulfides while allowing Li^+ transport. Small de-solvated polysulfides may enter the pores,
329 but they can be trapped there due to the presence of the MIM ligand in ZIF-8 which contains a
330 positively charged nitrogen atom ($\text{N}^+ \text{-CH}_3$) in the imidazole ring. This observation further implies
331 that the ZIF-8@8- μ m PP separator can function as an ionic sieve, selectively transporting Li^+
332 while simultaneously preventing the shuttle effects of polysulfides species.


333 To study the trapping effect of ZIF-8 modification layer towards LiPSs, ZIF-8@8- μ m PP and
334 pristine 8- μ m PP separators were immersed in 5 mM Li_2S_6 solutions for polysulfide adsorption
335 tests. After 12 hours of immersion, the yellow Li_2S_6 solution slightly discolored with the ZIF-
336 8@8- μ m PP separator. The changes in polysulfide concentration were quantitatively confirmed
337 through UV-Vis absorbance spectroscopy, as shown in Fig. 2(g). A greater reduction in UV
338 absorbance intensity was observed for ZIF-8@8- μ m PP, indicating its stronger polysulfide
339 adsorption capabilities. XPS analysis conducted before and after Li_2S_6 adsorption tests revealed
340 the chemical interactions between ZIF-8@8- μ m PP and polysulfides. As shown in the Zn 2p XPS
341 spectra of ZIF-8@8- μ m PP (Fig. 2(h)), the Zn 2p characteristic peaks shift to lower binding
342 energies after interaction with Li_2S_6 , indicating electron transfer from Li_2S_6 to the Zn sites⁶¹.

343 Additionally, the presence of the Li 1s peak after Li_2S_6 adsorption (Fig. 2(i)) corresponds to Li-
344 S bonds at 54.6 eV and Li-N bonds at 57.2 eV, respectively⁶². In the S 2p core-level XPS spectra
345 (Fig. S12), peaks at 161.1 and 162.3 eV are attributed to terminal sulfur (S^{-1}_{T}) and bridging sulfur
346 (S^0_{B}), while the signals at 165.8 and 167.7 eV are assigned to thiosulfate and polythionite species,
347 respectively⁶³.

348

349 2.3. Electrochemical studies of ZIF-8@PP separators

350 The electrochemical function of ZIF-8 coating on the separator can be appreciated in the Li
351 plating/stripping test. The test was first conducted in $\text{Li}||\text{Li}$ symmetrical cells with specific
352 capacity of 2 mAh cm^{-2} at 1 mA cm^{-2} that were assembled with different separators. The
353 electrolyte is 1 M LiTFSI in DOL/DME (1:1 vol%) with 2% LiNO_3 .

354

355 *Figure 3 (a) Time–voltage curves of Li plating/stripping in Li||8-μm PP||Li cell and Li||ZIF-*
 356 *8@8-μm PP||Li symmetrical cells at 1 mA cm⁻² and 2 mAh cm⁻² and (b) the enlarged view of*
 357 *time–voltage curves from 0 to 20 h. (c) Time–voltage curves of Li plating/stripping in Li||25-μm*
 358 *PP||Li cell and Li||ZIF-8@25-μm PP||Li symmetrical cells at 1 mA cm⁻² and 2 mAh cm⁻² and*
 359 *(d) the enlarged view of time–voltage curves from 0 to 20 h. (e) Time–voltage curves of Li plating–*
 360 *stripping in Li||Cu asymmetrical cells with different separators and (f) their respective Coulombic*
 361 *efficiency comparison.*

362

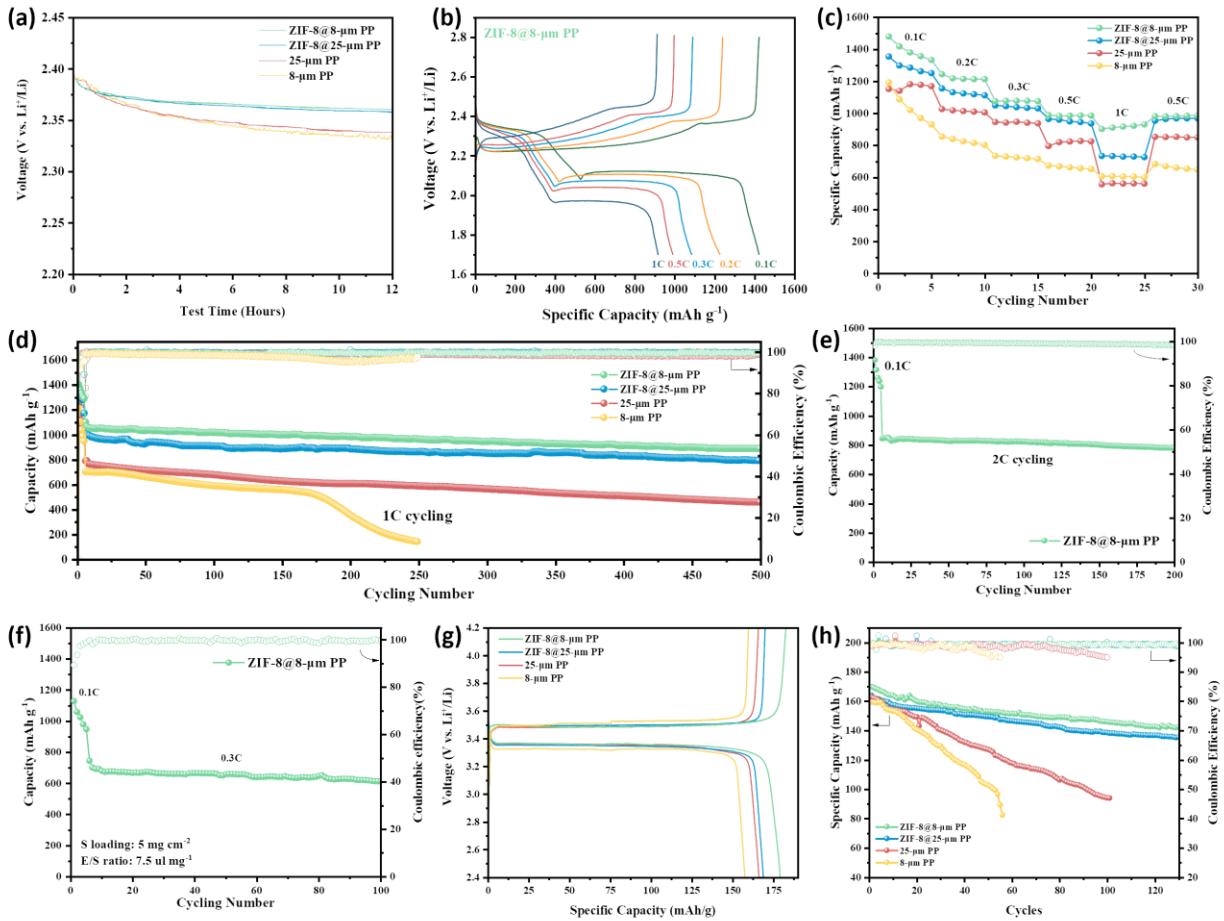
363 As shown in Fig. 3(a) and (c), the overpotential of symmetric Li||PP separator||Li metal cell
 364 gradually increases during cycling, implying a deteriorating electrode/electrolyte interface caused

365 by Li dendrite growth. More importantly, the cell assembled with 8- μm PP separator faced an
366 earlier short circuit failure (~ 150 h) compared to 25- μm PP separator, indicating that the inherent
367 lithium dendrites can easily penetrate through the ultrathin separator and result much faster cell
368 failure and more severe safety hazards. However, the symmetric cells using the ZIF-8 coated
369 separator present stable and reversible cycling with low Li stripping/plating overpotential after
370 over 500 h in the case of both 8- μm and 25- μm separators, which obviously overcome the
371 challenges of anode deterioration when utilizing ultrathin separator and ensure the safety for high
372 performance LMBs. As shown in Fig. 3(b) and (d), it is noteworthy that during the initial cycles,
373 the voltage response of Li-Li symmetric cells with different separators exhibited a characteristic
374 'peaking' shape, indicating spatially varying surface kinetics due to the coexistence of fast and
375 slow interfacial reactions across the electrode surface. With extended cycling, this peaking
376 behavior diminishes in cells with ZIF-8@PP separators, while an 'arcing' shape emerges in cells
377 with pristine PP separators, as depicted in Fig. S13(a) and (b). The appearance of this 'arcing'
378 behavior indicates the accumulation of dead Li, leading to large lithium-ion concentration
379 gradients and voltage behavior dominated by mass transport limitations. As the dead Li layer
380 grows, these mass transport constraints worsen, resulting in more pronounced arcs and increased
381 overpotential⁶⁴. As has been demonstrated, the compact ZIF-8 coating enhances the diffusion
382 coefficient and transference number of Li^+ . Moreover, the presence of polar functional group,
383 open lithophilic metal sites as well as homogeneous and ordered microporous structure of ZIF-8
384 help to regulate the uniform deposition of lithium ions. All these contribute to the significantly
385 expanded Sand's time and capacity before lithium dendrites appearance, thereby prolonging the
386 lithium electrode lifespan.

387 Plating-stripping behavior in a Li||Cu cell was further tested to determine the Coulombic
388 Efficiency (CE) of Li||Cu half cells with the various separators. CE hints at the reversibility of
389 the lithium transfer in a full metal cell. These cells were tested at a large specific capacity of 4
390 mAh/cm² with a current density of 2 mA/cm². Fig. 3(e) shows that the plating-stripping occurs
391 with minimum overpotential for the ZIF-8@8- μ m separator. This can be attributed to improved
392 ionic pathways with reduced length and a uniform lithium-ion flux due to the presence of a crack
393 free uniform ZIF-8 layer. The cells with pristine separators showed signs of short circuit after
394 \sim 70 and \sim 100 hours of cycling at this rate, while the ZIF modified separator showed almost
395 invariable CE of \sim 99.5% over a course of 380 hours as evident from Fig. 3(f). This suggests that
396 the ZIF-8@8- μ m separator can inhibit the formation of lithium dendrites at a faster
397 charging/discharging rate for a longer span compared to the other commercially available
398 separators.

399 The cyclic voltammograms (CVs) obtained at scan rates of 0.2, 0.4, 0.6, 0.8, and 1 mV s⁻¹ for
400 Li-S cells coupled with different separators are illustrated in Fig. S14(a)(b) and Fig. S15 (a)(b). As
401 the scan rate increases, the anodic peaks shift towards more positive potentials while the cathodic
402 peaks shift towards more negative potentials, resulting in increased polarization. The CV curves
403 exhibit a two-step redox reaction during the lithiation/delithiation of sulfur. Distinct cathodic peaks
404 (C₁ and C₂) and one anodic peak (A) are observed in the CV curves. Cathodic peak C₁ corresponds
405 to the reduction of sulfur (S₈) to high order polysulfides (Li₂S₈/Li₂S₄), which is equivalent to the
406 first plateau observed in the discharge curve. Cathodic peak C₂ is attributed to the reduction of
407 these high order polysulfides to short order polysulfides and ultimately Li₂S₂/Li₂S, corresponding
408 to the second plateau in discharge curves. The anodic peak A represents the oxidation reaction
409 from Li₂S₂/Li₂S back to Li₂S₈/S₈⁶⁵. The anodic and cathodic current peaks (I_A, I_{C1}, I_{C2}) exhibit a

410 linear relationship with the square root of the scanning rates (Fig. S14(c)(d) and Fig. S15(c)(d)),
411 indicating that the ion diffusion process is the rate-determining step in the electrochemical
412 reactions⁶⁶. The lithium-ion diffusion coefficient (D_{Li^+}) was determined using the Randles–Sevcik
413 equation: $I_P = 2.69 \times 10^5 n^{3/2} A D^{1/2} Li C_{Li} \nu^{1/2}$ where I_P is the peak current, n is the number of
414 electrons in the reaction, A is the electrode area, C_{Li} is the lithium-ion concentration in the
415 electrolyte, and ν is the scan rate⁶⁷. The slopes can be derived from the linear relationship between
416 the peak current I_P and $\nu^{1/2}$ at each redox peak. To quantitatively evaluate the lithium-ion diffusion
417 behavior coupled with different separators, the D_{Li^+} values at each redox peak were calculated and
418 summarized in Table S4. The ZIF-8@8-μm PP exhibited the highest D_{Li^+} for each reaction step
419 when compared to other counterparts, which suggests ZIF-8@8-μm PP possess the most favorable
420 lithium-ion diffusion properties. The higher D_{Li^+} of ZIF-8@8-μm PP than that of ZIF-8@25-μm
421 PP implies the decreased thickness with less diffusion distance and tortuosity are conducive to
422 lithium-ion diffusion.


423

424 **2.4. Battery performance**

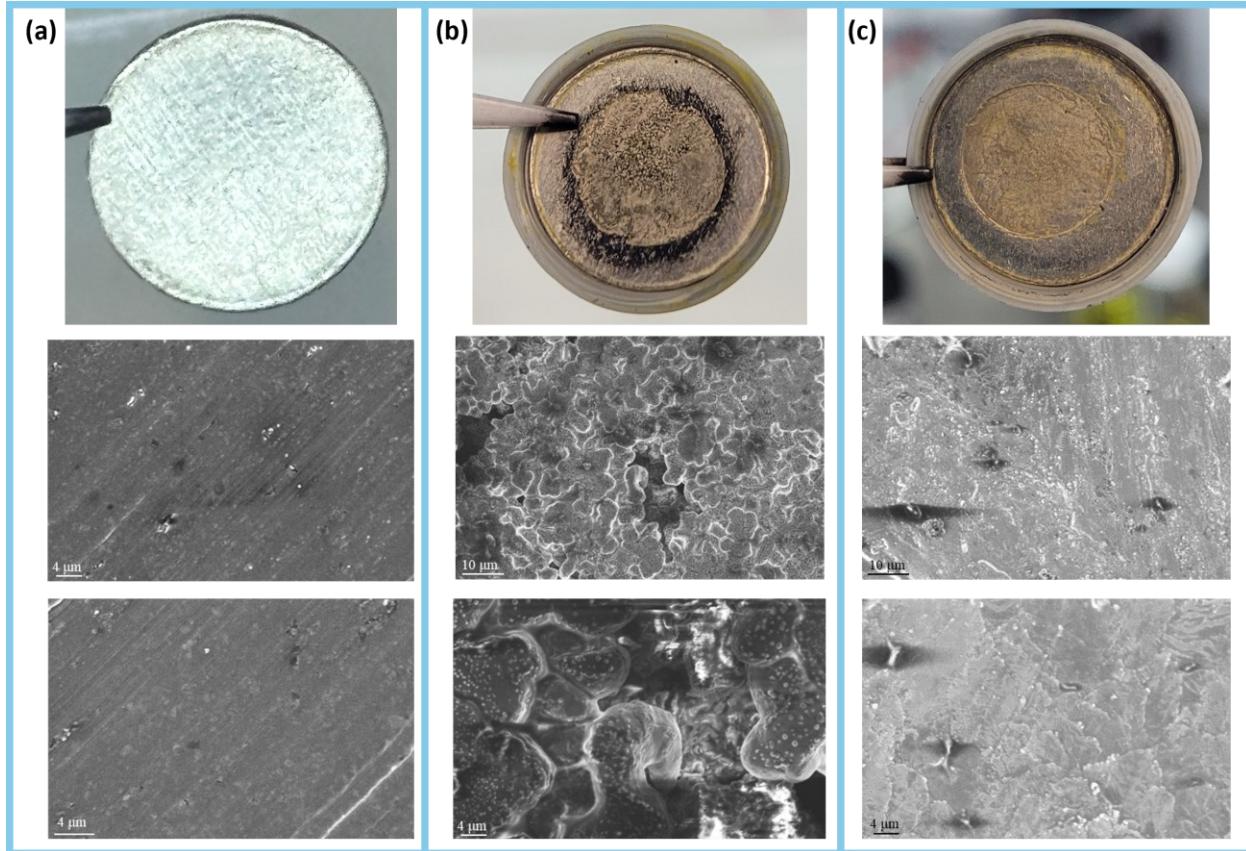
425 The improved charge transfer properties of LSBs by incorporation of ZIF-8@8-μm PP are
426 evident in its electrochemical impedance spectroscopy (EIS) profiles (Fig. S16). The EIS spectra
427 were fitted using the equivalent circuit shown in Fig. S17, where R_e represents the bulk internal
428 resistance of the electrolyte, separator, and electrode interfaces, R_{ct} is the charge transfer
429 resistance, W_o denotes Warburg diffusion, and CPE represents a constant phase element⁶⁸. The
430 values of R_e and R_{ct} obtained from the fitting are summarized in Table S5. For fresh Li-S cells
431 assembled with ZIF-8@8-μm PP, the smallest semi-circle loop in the high frequency region

432 indicates lowest charge transfer resistance, whilst the higher slope in the low frequency region
433 suggests a trend towards an ideal ion diffusion behavior ⁶⁹. The open-circuit voltage profiles in
434 Fig. 4(a) illustrate the self-discharge behavior of LSBs using different separators. The self-
435 discharge rate follows the sequence: 8- μ m PP > 25- μ m PP > ZIF-8@ 25- μ m PP > ZIF-8@8- μ m
436 PP. This sequence is consistent with the capacity decay rate observed in LSBs during the cycling
437 and rate capability tests. In contrast to the rapid voltage drop with the pristine PP separator, the
438 ZIF-8 modified separators slow down the self-discharge. This is achieved by inhibiting or
439 suppressing crossover polysulfide diffusion, leading to a sustained stable plateau of 2.37 V.

440

441

442 *Figure 4. (a) Open-circuit voltage (OCV) curves of Li-S cells assembled with different separators.*
 443 *(b) Voltage charge/discharge profiles of Li-S cell coupled with ZIF-8@8-μm PP from 0.1 to 1 C.*
 444 *(c) The rate capabilities demonstration of LSBs coupled with different separators. (d) Long-term*
 445 *cyclic stability of LSBs coupled with different separators at 1C. (e) Long-term cyclic stability of*
 446 *LSBs with ZIF-8@8-μm at 2C. (f) Long-term cyclic stability of LSBs with ZIF-8@8-μm at 0.3C*
 447 *under high loading (5 mg cm⁻²) and low E/S ratio (7.5 μL mg⁻¹) condition. (g) First cycle voltage-*
 448 *capacity curves of LFP-Li cells with different separators at 0.1C. (h) Long-term cycling stability*
 449 *of LFP-Li cells with different separators at 0.5C.*


450 The experiments collectively indicate that the application of ZIF-8@8- μm PP separator is
451 highly beneficial for achieving high capacity and good cyclic stability in LSB performance at
452 high current density. This is attributed to the ability of ZIF-8 to enhance wettability to the
453 electrolyte, improve Li^+ ion conductivity and diffusion within the electrolyte, and effectively
454 suppress the shuttle effect of LiPSs.

455 To assess the viability of the crack-free ZIF-8 functional layer modified PP separator in LSBs,
456 a set of LSBs was assembled using different separators: pristine 8- μm PP, 25- μm PP, ZIF-8@25-
457 μm PP and ZIF-8@8- μm PP. The assembled coin cells have a sulfur loading of 1.5 mg/cm^2 and
458 E/S ratio of 15 $\mu\text{l}/\text{mg}$. The rate capability and cyclic performance of these cells were evaluated
459 using galvanostatic charge/discharge measurement.

460 As depicted in Fig. 4(b)(c) and Fig. S18, batteries utilizing ZIF-8 modified separators exhibited
461 an increasing rate capability, which became more pronounced with higher applied current density.
462 Specifically, the batteries equipped with ZIF-8@8- μm PP separators delivered specific discharge
463 capacities of 1480, 1250, 1090, 990, and 917 $\text{mAh}\cdot\text{g}^{-1}$ at current densities of 0.1C, 0.2C, 0.3C,
464 0.5C and 1C rate, respectively. Upon returning to a current density of 0.5C, the capacity remained
465 stable at 968 $\text{mAh}\cdot\text{g}^{-1}$. This superior rate capability can be attributed to the synergistic effect of
466 ZIF-8 modification and ultrathin separator, which enhances wettability to the electrolyte and
467 improved Li^+ conductivity and its transference number. In terms of LSBs cycled at a rate of 1C
468 with different separators, the cells assembled with ZIF-8@8- μm demonstrated a retained capacity
469 of $\sim 891 \text{ mAh g}^{-1}$ after 500 cycles from an initial capacity of $\sim 1053 \text{ mAh g}^{-1}$ (Fig. 4(d)). The
470 capacity fading rate for each cycle is approximately 0.031%, which was the best among the four
471 LSBs with different separators. In contrast, cells assembled with a commercial ultrathin 8- μm PP
472 separator exhibited very fast capacity decay, experiencing sudden failure after only 160 cycles.

473 Moreover, when cycled at a high rate of 2C (Fig. 4(e)), Li-S cells assembled with ZIF-8@8-
474 μm PP maintain a capacity of 785 mAh/g after 200 cycles. To meet the practical requirements of
475 Li-S batteries, cells coupled with ZIF-8@8- μm PP were further tested with a higher sulfur loading
476 of 5 mg/cm² and a lower E/S ratio of 7.5 $\mu\text{l/mg}$. As shown in Fig. 4(f), after being activated at
477 0.1C for 5 cycles, those cells assembled with ZIF-8@8- μm PP demonstrated outstanding cyclic
478 stability at 0.3 C with a high capacity of 623 mAh/g after 100 cycles.

479 To further validate the application of the ZIF-8 modified separator in lithium metal batteries,
480 these separators were tested in an LFP||Li cell configuration. The LFP-Li cells exhibited
481 charge/discharge behavior with lowest polarization when using the ZIF-8@8- μm separator at
482 both 0.1 and 0.5C rates. The LFP-Li cells achieved the highest first cycle capacity of 178 mAh/g
483 at 0.1C and 167 mAh/g at 0.5C when using the ZIF-8@8- μm PP separator, as shown in Fig. 4(g)
484 and Fig. S19. When tested over longer durations, cells with unmodified separators exhibited
485 immediate capacity decay in the first few cycles, as shown in Fig. 4(h). In contrast, the ZIF-8
486 modified thin and thick separators maintained capacities of 138 mAh/g and 130 mAh/g,
487 respectively, after 140 cycles. This indicates that ZIF-8 modification enables the functioning of
488 a very thin 8- μm separator, potentially leading to the application of dendrite free lithium metal
489 batteries.

490

491 *Figure 5. Digital images and corresponding surface morphology SEM images of the (a) pristine*
 492 *Li metal anode, (b) Li anode in cells coupled with 8-μm PP after 250 cycles and (c) Li anode in*
 493 *cells coupled with ZIF-8@8-μm PP after cycling 500 cycles.*

494

495 We further conducted a postmortem examination of the cycled LSBs to inspect the effects of
 496 ZIF-8 coating on Li metal anodes. As shown in Fig. 5(a), the pristine Li anode exhibited a flat
 497 and glossy surface. However, the cycled Li anodes with 8-μm ultrathin PP displayed very rough
 498 and lumpy surfaces (Fig. 5(b)), caused by irreversible plating/stripping behavior and undesired
 499 corrosion reaction between Li and LiPSs. In contrast, after introducing ZIF-8 modification layer,
 500 the cycled Li anodes almost retained their original smooth morphology (Fig. 5(c)), indicating that

501 the ZIF-8@8- μ m PP separator effectively confines LiPSs on the cathode side and regulates Li⁺
502 flux and deposition. This finding was consistent with the previously discussed superior
503 electrochemical performance of ZIF-8@8- μ m PP cells, in contrast to those low-performance
504 pristine PP cells.

505 SEM images of ZIF-8@8- μ m PP before and after LSBs cycling were also captured to confirm
506 its cyclic stability. As shown in Fig. S20, the strong adhesion and retention of the ZIF-8 layer on
507 the surface of the 8- μ m PP were observed after 500 cycles, with no significant changes. Compared
508 to the initial surface morphology depicted in Fig. S20(a) and (b), where ZIF-8 particles were
509 uniformly sharp, the particles post-cycling exhibit a slightly rough texture, and minor cracks are
510 visible on the previously continuous crack-free surface. The observed morphological changes
511 might be attributed to electrolyte etching, which gradually degrades the ZIF-8 surface, causing
512 roughness and structural alterations. Additionally, the volume expansion of the sulfur cathode
513 and lithium anode during cycling induces mechanical stress on the separator, leading to
514 deformation and crack formation in the ZIF-8 layer. Interactions with shuttled LiPSs during
515 cycling may also weaken the crystal structure over time. Despite these technical challenges during
516 cycling, the ZIF-8 ultra-thin layer maintains a well-defined structure with minimal degradation
517 after extended cycling, demonstrating the resilience of the ZIF-8@8- μ m PP separators.

518

519 **3. Conclusion**

520 In this study, we employed an aqueous cathodic deposition method to engineer a commercial
521 8- μ m ultrathin PP separator with a compact ZIF-8 thin film. The resulting ZIF-8@8- μ m PP
522 exhibits exceptional flexibility, electrolyte uptake capacity, wettability, and remarkable ability to

523 mitigate polysulfide shuttling due to its distinctive physiochemical properties. Moreover, higher
524 ionic conductivity and transference number are achieved by the syngeneic effect of reduced
525 separator thickness and the utilization of ZIF-8 as an ion/molecule sieve and Li⁺ transport booster.
526 Additionally, it promotes uniform lithium-ion flux and regulates Li deposition, thus enabling
527 stable lithium plating/stripping behavior, evidenced by extended cycling life, lower polarization
528 and higher Coulombic efficiency. With the ZIF-8 thin film modification, the LSBs utilizing the
529 ZIF-8@8- μ m PP separator demonstrate a superior initial capacity of 1480 mAh g⁻¹, along with a
530 low capacity-degradation rate of 0.031% per cycle at 1C after 500 cycles. Similarly, Li||LiFePO₄
531 LMBs configured with the ZIF-8@8- μ m PP also exhibit significantly enhanced electrochemical
532 performance. Our results demonstrate that although the ultrathin 8- μ m PP is not suitable as
533 separator in batteries, the ultrathin ZIF-8@8- μ m PP, with a micrometer crack-free ZIF-8 coating
534 on 8- μ m PP, has the mechanical strength and superior electrochemical properties to be applied as
535 the separator in LSBs and LMBs.

536 4. **Experimental Section**

537 4.1. Preparation of the ZIF-8@PP separators by cathodic deposition

538 4.105 g 2-Methylimidazole (MIM) was initially dissolved in 50 ml DI water. Meanwhile,
539 another aqueous solution was prepared by dissolving 0.183 g Zinc acetate dihydrate
540 (Zn(CH₃COO)₂·2H₂O) in another 10 ml DI water. The two solutions were mixed and stirred to
541 prepare the ZIF-8 precursor solution for the cathodic electrodeposition. 8- μ m ultrathin PP
542 membranes were coated with gold via sputtering coating at 20 mA for 20 s. The gold-coated PP
543 membranes, along with a graphite paper, were positioned parallel to each other with a separation
544 distance of 1.5 cm and soaked in the ZIF-8 precursor solution. The current-driven cathodic
545 electrodeposition process was performed for 60 min under a current density of 0.13 mA cm⁻².

546 The resultant membranes were thoroughly rinsed by DI water and methanol to remove the
547 residues after synthesis process. The obtained ZIF-8 coated 8- μ m PP membrane was tailored and
548 named ZIF-8@8- μ m PP separator. Similarly, ZIF-8@25- μ m PP separators were prepared
549 through the same synthesis protocol while replacing the ultrathin 8- μ m PP membranes by
550 conventional 25- μ m PP membranes. The fabricated composite membranes were activated in
551 methanol and dried in vacuum oven at 80 °C.

552 4.2. Material characterization

553 The morphologies of ZIF-8@PP separators and Li anodes before-and-after cycling were
554 observed by using Zeiss Auriga scanning electron microscope (SEM). The X-ray photoelectron
555 spectroscopy (XPS) spectra were measured by a Kratos Axis Supra + apparatus using Al K-alpha
556 (1486.6 eV) as the excitation light source. Fourier-transform infrared (FT-IR) spectra were
557 recorded using a Nicolet 6700 FT-IR spectrometer to acquire the chemical bonding information.
558 The X-ray diffraction (XRD) patterns were obtained on Malvern PANalytical Aeris X-ray
559 Diffractometer with Cu K α radiation ($\lambda = 0.1541$ nm) over the 2θ range of 10–80° with a scan
560 speed of 2° min $^{-1}$ at room temperature. Differential scanning calorimetry (DSC) was performed
561 on a LABSYS EVO instrument by heating the samples from ambient temperature to 600 °C at a
562 rate of 20 °C/min in Argon flow to verify the thermal stability. UV-Vis Spectrometer (Perkin
563 Lambda 950) was used to acquire UV-vis absorbance spectroscopy after polysulfide adsorption
564 tests.

565 4.3. Electrochemical measurements

566 To fabricate sulfur cathode, commercial Ketjenblack (KB) and sublimed sulfur (S) powder
567 were uniformly mixed by gridding with a mass ratio of 3:7, then the mixed powder was heated at

568 155 °C under an argon atmosphere for 12 h to obtain KB/S composite by melt diffusion method.
569 The slurry was prepared by mixing 80 wt% KB/S composite, 10 wt% acetylene black (AB) and
570 10 wt% polyvinylidene fluoride (PVDF) binder in N-methyl-2-pyrrolidinone (NMP) solvent and
571 then slurry was coated on an aluminum foil through doctor-blade casting method. The as-prepared
572 cathode with a sulfur loading of 1.5 mg/cm² was cut into disks (ϕ = 13 mm) after vacuum drying
573 at 60 °C overnight. Li-S full cell was assembled in an argon-filled glove box with the sulfur
574 cathode, 0.6 mm thick lithium foil (diameter of 20 mm) as the anode and ZIF-8@PP or pristine
575 PP membranes as the separators. The ether-based electrolyte used in LSBs is made up of 1 M
576 bis(trifluoromethanesulfonyl)imide lithium (LiTFSI) and 2 wt% Lithium nitrites (LiNO₃) in a
577 mixed solvent of 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) with a volume ratio of
578 1:1. The E/S ratio is controlled to be 15 μ l/mg for normal electrochemical tests. LSB cells with a
579 high mass loading of 5 mg/cm² and a lower E/S ratio of 7.5 μ l/mg were also assembled. The
580 lithium stripping and plating cycling behavior is evaluated by assembling Li||Li symmetric cells
581 and Li||Cu asymmetric cells coupled with different separators. The ether-based electrolyte (1 M
582 LiTFSI with 2 wt% LiNO₃ in DOL/DME v/v=1:1) is also used in Li||Li and Li||Cu cells cycling
583 tests. Li||LiFePO₄ batteries were assembled to test the applicability of different separators in
584 another type of LMBs apart from LSBs. A commercial LiFePO₄/aluminum foil (single side
585 coated, 12 mg cm⁻², MTI corporation) was used as the cathode, carbonated-based electrolyte
586 comprising 1 M LiPF₆ in ethylene carbonate (EC), and ethyl methyl carbonate (EMC) as the
587 electrolyte (MTI corporation), with the ratio of electrolyte and LiFePO₄ being ~ 10 μ L/mg.

588 Galvanostatic charge-discharge cycling tests of the batteries between the voltage range of 1.7-
589 2.8V were recorded with a LAND CT2001A battery tester. Cyclic voltammetry (CV) rate
590 measurement and electrochemical impedance spectroscopy (EIS) were performed using a

591 Biologic SP-240 electrochemical workstation. CV tests were conducted within the voltage range
592 of 1.6-2.8 V (vs Li/Li⁺), at different scanning rates from 0.2 to 1 mV s⁻¹. EIS measurements were
593 carried out over a frequency range of 10⁵-10⁻² Hz with an amplitude of 5 mV.

594 **Acknowledgment**

595 This research was funded by National Science Foundation of U.S.A, grant number 2103582
596 and 2129983.

597 **Appendix A. Supplementary material**

598 Supplementary data to this article can be found online.

599

600 **Reference**

601 (1) Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward safe lithium metal anode in
602 rechargeable batteries: a review. *Chemical reviews* **2017**, *117*, 10403-10473.

603 (2) Yin, Y.-X.; Xin, S.; Guo, Y.-G.; Wan, L.-J. Lithium–Sulfur Batteries: Electrochemistry,
604 Materials, and Prospects. *Angewandte Chemie International Edition* **2013**, *52*, 13186-13200.

605 (3) Li, S.; Lin, X.; Wang, S.; Zhu, H.; Fan, Z. Bacteria derived nanomaterials for lithium-based
606 batteries. *Carbon* **2024**, *216*, 118564.

607 (4) Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. *Nature
608 nanotechnology* **2017**, *12*, 194-206.

609 (5) Liu, T.; Hu, H.; Ding, X.; Yuan, H.; Jin, C.; Nai, J.; Liu, Y.; Wang, Y.; Wan, Y.; Tao, X. 12 years
610 roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). *Energy Storage Materials* **2020**,
611 *30*, 346-366.

612 (6) Rana, M.; Luo, B.; Kaiser, M. R.; Gentle, I.; Knibbe, R. The role of functional materials to
613 produce high areal capacity lithium sulfur battery. *Journal of Energy Chemistry* **2020**, *42*, 195-209.

614 (7) Lin, X.; Li, W.; Pan, X.; Wang, S.; Fan, Z. Electrocatalytic and Conductive Vanadium Oxide
615 on Carbonized Bacterial Cellulose Aerogel for the Sulfur Cathode in Li-S Batteries. *Batteries* **2023**, *9*, 14.

616 (8) Lin, X.; Li, W.; Nguyen, V.; Wang, S.; Yang, S.; Ma, L.; Du, Y.; Wang, B.; Fan, Z. Fe-single-
617 atom catalyst nanocages linked by bacterial cellulose-derived carbon nanofiber aerogel for Li-S batteries.
618 *Chemical Engineering Journal* **2023**, *477*, 146977.

619 (9) Gueon, D.; Ju, M.-Y.; Moon, J. H. Complete encapsulation of sulfur through interfacial
620 energy control of sulfur solutions for high-performance Li-S batteries. *Proceedings of the National
621 Academy of Sciences* **2020**, *117*, 12686-12692.

622 (10) Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Transition of lithium growth mechanisms in
623 liquid electrolytes. *Energy & Environmental Science* **2016**, *9*, 3221-3229.

624 (11) Wang, C.; Wang, A.; Ren, L.; Guan, X.; Wang, D.; Dong, A.; Zhang, C.; Li, G.; Luo, J.
625 Controlling Li Ion Flux through Materials Innovation for Dendrite-Free Lithium Metal Anodes. *Advanced
626 Functional Materials* **2019**, *29*, 1905940.

627 (12) Yu, X.; Feng, S.; Boyer, M. J.; Lee, M.; Ferrier, R. C.; Lynd, N. A.; Hwang, G. S.; Wang, G.;
628 Swinnea, S.; Manthiram, A. Controlling the polysulfide diffusion in lithium-sulfur batteries with a polymer
629 membrane with intrinsic nanoporosity. *Materials Today Energy* **2018**, *7*, 98-104.

630 (13) Deimede, V.; Elmasides, C. Separators for Lithium-Ion Batteries: A Review on the
631 Production Processes and Recent Developments. *Energy Technology* **2015**, *3*, 453-468.

632 (14) Zhong, S.; Yuan, B.; Guang, Z.; Chen, D.; Li, Q.; Dong, L.; Ji, Y.; Dong, Y.; Han, J.; He, W.
633 Recent progress in thin separators for upgraded lithium ion batteries. *Energy Storage Materials* **2021**, *41*,
634 805-841.

635 (15) Arora, P.; Zhang, Z. Battery separators. *Chemical reviews* **2004**, *104*, 4419-4462.

636 (16) Huang, Z.-D.; Yang, M.-T.; Qi, J.-Q.; Zhang, P.; Lei, L.; Du, Q.-C.; Bai, L.; Fu, H.; Yang, X.-S.;
637 Liu, R.-Q.; Masese, T.; Zhang, H.; Ma, Y.-W. Mitigating the polysulfides “shuttling” with TiO₂
638 nanowires/nanosheets hybrid modified separators for robust lithium-sulfur batteries. *Chemical
639 Engineering Journal* **2020**, *387*, 124080.

640 (17) Zhang, Y.; Miao, L.; Ning, J.; Xiao, Z.; Hao, L.; Wang, B.; Zhi, L. A graphene-oxide-based thin
641 coating on the separator: an efficient barrier towards high-stable lithium–sulfur batteries. *2D Materials*
642 **2015**, *2*, 024013.

643 (18) Li, Z.; Hou, L.-P.; Zhang, X.-Q.; Li, B.-Q.; Huang, J.-Q.; Chen, C.-M.; Liu, Q.-B.; Xiang, R.;
644 Zhang, Q. A Nafion protective layer for stabilizing lithium metal anodes in working lithium–sulfur batteries.
645 *Battery Energy* **2022**, *1*, 20220006.

646 (19) Baranwal, R.; Lin, X.; Li, W.; Pan, X.; Wang, S.; Fan, Z. Biopolymer separators from
647 polydopamine-functionalized bacterial cellulose for lithium-sulfur batteries. *Journal of Colloid and*
648 *Interface Science* **2024**, *656*, 556-565.

649 (20) Zhou, C.; Li, Z.; Xu, X.; Mai, L. Metal-organic frameworks enable broad strategies for
650 lithium-sulfur batteries. *National Science Review* **2021**, *8*.

651 (21) Bai, S.; Liu, X.; Zhu, K.; Wu, S.; Zhou, H. Metal-organic framework-based separator for
652 lithium-sulfur batteries. *Nature Energy* **2016**, *1*, 16094.

653 (22) Chu, Z.; Gao, X.; Wang, C.; Wang, T.; Wang, G. Metal-organic frameworks as separators
654 and electrolytes for lithium-sulfur batteries. *Journal of Materials Chemistry A* **2021**, *9*, 7301-7316.

655 (23) Zheng, Y.; Zheng, S.; Xue, H.; Pang, H. Metal-organic frameworks for lithium-sulfur
656 batteries. *Journal of Materials Chemistry A* **2019**, *7*, 3469-3491.

657 (24) Zhang, C.; Shen, L.; Shen, J.; Liu, F.; Chen, G.; Tao, R.; Ma, S.; Peng, Y.; Lu, Y. Anion-sorbent
658 composite separators for high-rate lithium-ion batteries. *Advanced Materials* **2019**, *31*, 1808338.

659 (25) Liu, W.; Mi, Y.; Weng, Z.; Zhong, Y.; Wu, Z.; Wang, H. Functional metal-organic framework
660 boosting lithium metal anode performance via chemical interactions. *Chemical Science* **2017**, *8*, 4285-
661 4291.

662 (26) Lin, G.; Jia, K.; Bai, Z.; Liu, C.; Liu, S.; Huang, Y.; Liu, X. Metal - Organic Framework
663 Sandwiching Porous Super-Engineering Polymeric Membranes as Anionphilic Separators for Dendrite-
664 free Lithium Metal Batteries. *Advanced Functional Materials* **2022**, *32*, 2207969.

665 (27) Bai, S.; Zhu, K.; Wu, S.; Wang, Y.; Yi, J.; Ishida, M.; Zhou, H. A long-life lithium-sulphur
666 battery by integrating zinc-organic framework based separator. *Journal of Materials Chemistry A* **2016**, *4*,
667 16812-16817.

668 (28) Zhao, Y.; Wei, Y.; Lyu, L.; Hou, Q.; Caro, J.; Wang, H. Flexible Polypropylene-Supported ZIF-
669 8 Membranes for Highly Efficient Propene/Propane Separation. *Journal of the American Chemical Society*
670 **2020**, *142*, 20915-20919.

671 (29) Wang, Z.; Liu, L.; Li, Z.; Goyal, N.; Du, T.; He, J.; Li, G. K. Shaping of Metal-Organic
672 Frameworks: A Review. *Energy & Fuels* **2022**, *36*, 2927-2944.

673 (30) Wei, R.; Chi, H.-Y.; Li, X.; Lu, D.; Wan, Y.; Yang, C.-W.; Lai, Z. Aqueously Cathodic Deposition
674 of ZIF-8 Membranes for Superior Propylene/Propane Separation. *Advanced Functional Materials* **2020**, *30*,
675 1907089.

676 (31) Xie, S.; Zhou, Z.; Zhang, X.; Fransaer, J. Cathodic deposition of MOF films: mechanism and
677 applications. *Chemical Society Reviews* **2023**, *52*, 4292-4312.

678 (32) Low, J. J.; Benin, A. I.; Jakubczak, P.; Abrahamian, J. F.; Faheem, S. A.; Willis, R. R. Virtual
679 High Throughput Screening Confirmed Experimentally: Porous Coordination Polymer Hydration. *Journal*
680 *of the American Chemical Society* **2009**, *131*, 15834-15842.

681 (33) Rangnekar, N.; Mittal, N.; Elyassi, B.; Caro, J.; Tsapatsis, M. Zeolite membranes – a review
682 and comparison with MOFs. *Chemical Society Reviews* **2015**, *44*, 7128-7154.

683 (34) Chen, B.; Yang, Z.; Zhu, Y.; Xia, Y. Zeolitic imidazolate framework materials: recent
684 progress in synthesis and applications. *Journal of Materials Chemistry A* **2014**, *2*, 16811-16831.

685 (35) Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal-Organic Frameworks for Separations. *Chemical*
686 *Reviews* **2012**, *112*, 869-932.

687 (36) Bux, H.; Liang, F.; Li, Y.; Cravillon, J.; Wiebcke, M.; Caro, J. Zeolitic Imidazolate Framework
688 Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis. *Journal of*
689 *the American Chemical Society* **2009**, *131*, 16000-16001.

690 (37) Bai, S.; Sun, Y.; Yi, J.; He, Y.; Qiao, Y.; Zhou, H. High-power Li-metal anode enabled by
691 metal-organic framework modified electrolyte. *Joule* **2018**, *2*, 2117-2132.

692 (38) Jia, Z.; Hao, S.; Wen, J.; Li, S.; Peng, W.; Huang, R.; Xu, X. Electrochemical fabrication of
693 metal-organic frameworks membranes and films: A review. *Microporous and Mesoporous Materials* **2020**,
694 305, 110322.

695 (39) Zhou, S.; Wei, Y.; Li, L.; Duan, Y.; Hou, Q.; Zhang, L.; Ding, L. X.; Xue, J.; Wang, H.; Caro, J.
696 Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened
697 propene/propane separation. *Sci Adv* **2018**, 4, eaau1393.

698 (40) Yadnum, S.; Roche, J.; Lebraud, E.; Negrer, P.; Garrigue, P.; Bradshaw, D.; Warakulwit, C.;
699 Limtrakul, J.; Kuhn, A. Site-Selective Synthesis of Janus-type Metal-Organic Framework Composites.
700 *Angewandte Chemie International Edition* **2014**, 53, 4001-4005.

701 (41) Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z. Rapid synthesis of zeolitic imidazolate framework-
702 8 (ZIF-8) nanocrystals in an aqueous system. *Chemical Communications* **2011**, 47, 2071-2073.

703 (42) Chang, Z.; Yang, H.; Pan, A.; He, P.; Zhou, H. An improved 9 micron thick separator for a
704 350 Wh/kg lithium metal rechargeable pouch cell. *Nature Communications* **2022**, 13, 6788.

705 (43) Zhang, C.; Lively, R. P.; Zhang, K.; Johnson, J. R.; Karvan, O.; Koros, W. J. Unexpected
706 Molecular Sieving Properties of Zeolitic Imidazolate Framework-8. *The Journal of Physical Chemistry
707 Letters* **2012**, 3, 2130-2134.

708 (44) Ariyoshi, S.; Hashimoto, S.; Ohnishi, S.; Negishi, S.; Mikami, H.; Hayashi, K.; Tanaka, S.;
709 Hiroshima, N. Broadband terahertz spectroscopy of cellulose nanofiber-reinforced polypropylenes.
710 *Materials Science and Engineering: B* **2021**, 265, 115000.

711 (45) Morris, W.; Stevens, C. J.; Taylor, R. E.; Dybowski, C.; Yaghi, O. M.; Garcia-Garibay, M. A.
712 NMR and X-ray Study Revealing the Rigidity of Zeolitic Imidazolate Frameworks. *The Journal of Physical
713 Chemistry C* **2012**, 116, 13307-13312.

714 (46) Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe,
715 M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks.
716 *Proceedings of the National Academy of Sciences* **2006**, 103, 10186-10191.

717 (47) Mphuthi, L. E.; Erasmus, E.; Langner, E. H. G. Metal Exchange of ZIF-8 and ZIF-67
718 Nanoparticles with Fe(II) for Enhanced Photocatalytic Performance. *ACS Omega* **2021**, 6, 31632-31645.

719 (48) Dangwal, S.; Ronte, A.; Lin, H.; Liu, R.; Zhu, J.; Lee, J. S.; Gappa-Fahlenkamp, H.; Kim, S.-J.
720 ZIF-8 membranes supported on silicalite-seeded substrates for propylene/propane separation. *Journal of
721 Membrane Science* **2021**, 626, 119165.

722 (49) Kravets, L. I.; Altynov, V. A.; Zagonenko, V. F.; Lizunov, N. E.; Satulu, V.; Mitu, B.; Dinescu,
723 G. Composite Bilayer Polymer Membranes with Hydrophobic Layers. *Inorganic Materials: Applied
724 Research* **2018**, 9, 777-784.

725 (50) Luanwuthi, S.; Krittayavathananon, A.; Srimuk, P.; Sawangphruk, M. In situ synthesis of
726 permselective zeolitic imidazolate framework-8/graphene oxide composites: rotating disk electrode and
727 Langmuir adsorption isotherm. *RSC Advances* **2015**, 5, 46617-46623.

728 (51) Minhas, F. T.; Memon, S.; Bhanger, M.; Iqbal, N.; Mujahid, M. J. A. s. s. Solvent resistant
729 thin film composite nanofiltration membrane: characterization and permeation study. **2013**, 282, 887-897.

730 (52) Rodriguez, R.; Palma, M. S.; Bhandari, D.; Tian, F. J. L. Electrodeposition of Ag/ZIF-8-
731 Modified Membrane for Water Remediation. **2023**, 39, 2291-2300.

732 (53) Bahar, E.; Ucar, N.; Onen, A.; Wang, Y.; Oksüz, M.; Ayaz, O.; Ucar, M.; Demir, A. Thermal
733 and mechanical properties of polypropylene nanocomposite materials reinforced with cellulose nano
734 whiskers. *Journal of Applied Polymer Science* **2012**, 125, 2882-2889.

735 (54) Prasanna, K.; Kim, C.-S.; Lee, C. W. Effect of SiO₂ coating on polyethylene separator with
736 different stretching ratios for application in lithium ion batteries. *Materials Chemistry and Physics* **2014**,
737 146, 545-550.

738 (55) Evans, J.; Vincent, C. A.; Bruce, P. G. Electrochemical measurement of transference
739 numbers in polymer electrolytes. *Polymer* **1987**, 28, 2324-2328.

740 (56) Zhang, S. S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems,
741 and solutions. *Journal of Power Sources* **2013**, *231*, 153-162.

742 (57) Rajput, N. N.; Murugesan, V.; Shin, Y.; Han, K. S.; Lau, K. C.; Chen, J.; Liu, J.; Curtiss, L. A.;
743 Mueller, K. T.; Persson, K. A. Elucidating the Solvation Structure and Dynamics of Lithium Polysulfides
744 Resulting from Competitive Salt and Solvent Interactions. *Chemistry of Materials* **2017**, *29*, 3375-3379.

745 (58) Zheng, J.; Tian, J.; Wu, D.; Gu, M.; Xu, W.; Wang, C.; Gao, F.; Engelhard, M. H.; Zhang, J.-
746 G.; Liu, J.; Xiao, J. Lewis Acid–Base Interactions between Polysulfides and Metal Organic Framework in
747 Lithium Sulfur Batteries. *Nano Letters* **2014**, *14*, 2345-2352.

748 (59) Song, J.; Gordin, M. L.; Xu, T.; Chen, S.; Yu, Z.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y.; Wang, D.
749 Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for
750 high-performance lithium–sulfur battery cathodes. *Angewandte Chemie* **2015**, *127*, 4399-4403.

751 (60) Kang, X.; He, T.; Zou, R.; Niu, S.; Ma, Y.; Zhu, F.; Ran, F. Size Effect for Inhibiting Polysulfides
752 Shuttle in Lithium-Sulfur Batteries. *Small* **2023**, *23*, 2306503.

753 (61) Ni, L.; Gu, J.; Jiang, X.; Xu, H.; Wu, Z.; Wu, Y.; Liu, Y.; Xie, J.; Wei, Y.; Diao, G.
754 Polyoxometalate-Cyclodextrin-Based Cluster-Organic Supramolecular Framework for Polysulfide
755 Conversion and Guest–Host Recognition in Lithium-sulfur Batteries. *Angewandte Chemie International
756 Edition* **2023**, *62*, e202306528.

757 (62) Yang, Y.; Wang, W.; Li, L.; Li, B.; Zhang, J. Stable cycling of Li–S batteries by simultaneously
758 suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator. *Journal of
759 Materials Chemistry A* **2020**, *8*, 3692-3700.

760 (63) Zhu, Z.; Zeng, Y.; Pei, Z.; Luan, D.; Wang, X.; Lou, X. W. Bimetal-Organic Framework
761 Nanoboxes Enable Accelerated Redox Kinetics and Polysulfide Trapping for Lithium-Sulfur Batteries.
762 *Angewandte Chemie International Edition* **2023**, *62*, e202305828.

763 (64) Chen, K.-H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta,
764 N. P. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. *Journal
765 of Materials Chemistry A* **2017**, *5*, 11671-11681.

766 (65) Huang, X.; Wang, Z.; Knibbe, R.; Luo, B.; Ahad, S. A.; Sun, D.; Wang, L. Cyclic Voltammetry
767 in Lithium–Sulfur Batteries—Challenges and Opportunities. *Energy Technology* **2019**, *7*, 1801001.

768 (66) Zhou, G.; Tian, H.; Jin, Y.; Tao, X.; Liu, B.; Zhang, R.; Seh, Z. W.; Zhuo, D.; Liu, Y.; Sun, J.;
769 Zhao, J.; Zu, C.; Wu, D. S.; Zhang, Q.; Cui, Y. Catalytic oxidation of Li₂S on the surface of metal sulfides for
770 Li–S batteries. *Proceedings of the National Academy of Sciences* **2017**, *114*, 840-845.

771 (67) Huang, J.-Q.; Zhuang, T.-Z.; Zhang, Q.; Peng, H.-J.; Chen, C.-M.; Wei, F. Permselective
772 Graphene Oxide Membrane for Highly Stable and Anti-Self-Discharge Lithium–Sulfur Batteries. *ACS Nano*
773 **2015**, *9*, 3002-3011.

774 (68) Cañas, N. A.; Hirose, K.; Pascucci, B.; Wagner, N.; Friedrich, K. A.; Hiesgen, R. Investigations
775 of lithium–sulfur batteries using electrochemical impedance spectroscopy. *Electrochimica Acta* **2013**, *97*,
776 42-51.

777 (69) Li, Z.; Sami, I.; Yang, J.; Li, J.; Kumar, R. V.; Chhowalla, M. Lithiated metallic molybdenum
778 disulfide nanosheets for high-performance lithium–sulfur batteries. *Nature Energy* **2023**, *8*, 84-93.

779