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COMMENTARY

Deep learning sharpens vistas on biodiversity mapping
Thomas J. Givnisha,1

 Deep learning—the use of artificial neural networks to detect 
and analyze patterns in complex data—is revolutionizing the 
use of computers for image and speech recognition, auton-
omous driving, financial projections, DNA sequencing, med-
ical diagnosis and treatment, behavioral analyses, and the 
study and modeling of ecological processes ( 1 ,  2 ). One of the 
great strengths of deep learning—and its key to successful 
application across such a wide range of fields and prob-
lems—is that it specifies no model in advance and pursues 
whatever approach best connects potential predictors in 
input data to desired predictions, with appropriate measures 
taken to avoid overfitting.

 In ecology, remote sensing is creating a second revolution, 
allowing the massively parallel collection of spatially struc-
tured data at a variety of scales on species identity, functional 
traits, chemistry, physiology, phylogenetic affinity, species 
interactions, community composition, structure, diversity, 
and ecosystem productivity, as well as patterns of change 

through time in each of these attributes ( 3   – 5 ). One of the 
major challenges facing ecological studies that employ 
remote sensing, however, has been tracking rare or under-
story species that contribute few if any reflected or emitted 
photons that can be detected by sensors on drones, aircraft, 
or satellites.
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Fig. 1.   Coreopsis gigantea (Asteraceae) is a summer-deciduous shrub with thick, succulent stems; it is native to cool, dry, often foggy coastal dunes, hillsides, 
and bluffs along the Pacific coast from San Francisco to northwestern Baja California. The new deep-learning program Deepbiosphere—based partly on remote 
sensing data, which can easily track Coreopsis’ wind-disturbed, low-coverage habitat—is 11 times as accurate in predicting the distribution of this species as 
Maxent based solely on climatic data. Image Credit: William T. Reid (photographer).
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 Gillespie et al. ( 6 ) provide a novel and highly powerful solu-
tion to this challenge. They use deep learning to predict 
occurrences of thousands of common, rare, or understory 
plant species at scales from meters to hundreds of kilome-
ters, based on remote sensing data (in this first case, high-
resolution aerial photographs shot in color and infrared), 
climatic data, and hundreds of thousands of geolocated 
species occurrences drawn from herbarium records and 
(especially) from citizen-science observations logged on the 
widely used database iNaturalist. The authors tested this 
approach mainly in California, which is an especially apt 
venue given its high density of species, species observations, 
and remote sensing data ( Fig. 1 ).        

 Their technique builds on a few recent papers that have 
also applied deep learning or other forms of AI to map spe-
cies occurrences. However, Gillespie et al. substantially 
improve the power and range of analyses by relating species 
occurrences to both climatic and  remotely sensed data, by 
training their networks with the distributions of species and  
related taxa at the genus and family levels, and by including 
information on the distributions of co-occurring species. This 
approach takes advantage of two key findings in community 
ecology: Close relatives tend to have similar ecologies and 
distributions, and joint species occurrences refine estimates 
of the positions of species and samples along environmental 
gradients. In addition, using both climatic and remotely sensed 
data allows species presence and community composition to 
be predicted accurately at a wide range of spatial scales, 
reflecting variation in temperature, rainfall, and seasonality 
over tens to hundreds of kilometers of distance and hun-
dreds to thousands of meters in elevation, while differences 
in reflectance or emission at different wavelengths can track 
variation in disturbance, succession, substrate, and land 
use—and consequent differences in species occurrence—at 
very fine scales, down to a few meters.

 Gillespie et al. provide several compelling applications of 
this approach, using their Deepbiosphere  model of convolu-
tional neural networks to predict the distributions of coast 
redwoods in northern California, various trees and shrubs 
in the Mediterranean climate region in southern California, 
understory plants of young and old-growth redwood stands, 
and vegetation and abrupt ecotones in Marin County, together 
with estimates of the tempo of community change across 
larges areas associated with the severe Rim Fire in the western 
Sierra Nevada foothills in 2013. Predicted differences in the 
distributions of Pacific blackberry and redwood sorrel in young 
vs. old-growth redwood forests are highly significant, and track 
changes in forest age and structure are evident over just a few 
meters in the high-resolution RBG+IR aerial images used. 
Across 34 species examined statewide, Deepbiosphere  provides 

much greater resolution of distributions at subkilometer 
scales than other approaches. Furthermore, Deepbiosphere  is 
often more accurate than other models often used to predict 
species distributions. For example, based on the area-under-
the-receiver-curve metric, Deepbiosphere  had a minimum 
AUCROC  of 0.986, compared to 0.04 for Maxent . Based on this 
comparison, Deepbiosphere  has a 9.7% ± 26.5% advantage. 
However, most of that advantage is due to far poorer per-
formance by Maxent  on four species: Lupinus arboreus , 
﻿Malacothrix saxatilis , Coreopsis gigantea , and Rhus integrifolia . 
All are associated with low-coverage habitats in coastal 
dunes, coastal sage, chaparral, and cliffs, readily recognized 
by Deepbiosphere  but missed by Maxent  and other widely 
used species distribution models (SDMs).

 Across 11 different metrics, Deepbiosphere  usually adds 
accuracy to distributions over those predicted by other SDMs, 
including Maxent , Inception , and Random Forest . Deepbiosphere  
shows the most consistent performance across species, 
especially for rare species. Deepbiosphere  based on both cli-
matic and remote sensing data outperforms versions on only 
climatic data or only remote sensing data. Furthermore, ver-
sions that include phylogenetic and associational data—that 
is, training based on related species in the same genus or 
family, and on associated species—outperform others.

 The Gillespie et al. approach, based on widely available, rel-
atively low-cost data, can be pursued over much larger areas 
than California, use much larger fractions of the Tree of Life, 
and track dynamics based on remote sensing data gathered at 
decadal frequencies. Deepbiosphere  is a powerful analytical 
pipeline that can easily be improved in the future. Exciting 
improvements might include 1) use of more informative multi- 
or hyperspectral remotely sensed data; 2) inclusion of soil or 
bedrock data, given the importance of edaphic conditions in 
limiting the distributions of many species; and especially 3) 
incorporating modules that use higher-level spatial and tem-

poral data—especially on patch size, landscape 
context, distance from similar habitats, dispersal 
corridors, species interactions, and time since dis-
turbance—to improve predicted distributions of 
species strongly affected by fragmentation, edge 
effects, and successional dynamics. Hyperspectral 
data, although expensive to obtain, offers big 
advantages in species identification and quantifica-
tion of leaf chemistry, vegetation structure, and 

community composition and diversity ( 3   – 5 ). Gillespie et al. 
themselves show that including substrate data substantially 
increases the accuracy of predicted distribution for some spe-
cies. Finally, many ecologists and conservation biologists have 
used experimental or observational data to show that fragmen-
tation, landscape context, and species interactions can have 
important impacts on species distributions. For example, 
Terborgh et al. ( 7 ) demonstrated how isolation can cause plant 
species loss from forest fragments via loss of mega- and mes-
opredators. Rogers et al. ( 8 ) showed that landscape context and 
fragmentation have increasingly accounted for forest compo-
sition in Wisconsin—and local environmental conditions 
increasingly less—in moving from the 1950s to 2000s. Damschen 
et al. ( 9 ) demonstrated how corridors elevate plant species rich-
ness in patchy landscapes. All these phenomena might be 

 The accuracy and speed of current and future 
versions of Deepbiosphere  could contribute to the 
massive international efforts that will be needed 
to monitor biodiversity and ecological services on 
a global scale under the Convention on Biological 
Diversity.
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captured in upcoming editions of Deepbiosphere . More broadly, 
the accuracy and speed of current and future versions of 
﻿Deepbiosphere  could contribute to the massive international 

efforts that will be needed to monitor biodiversity and ecolog-
ical services on a global scale under the Convention on Biological 
Diversity ( 4 ,  10 ).    
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