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Deep learning sharpens vistas on biodiversity mapping

Thomas J. Givnish®'®

Fig. 1. Coreopsis gigantea (Asteraceae) is a summer-deciduous shrub with thick, succulent stems; it is native to cool, dry, often foggy coastal dunes, hillsides,
and bluffs along the Pacific coast from San Francisco to northwestern Baja California. The new deep-learning program Deepbiosphere—based partly on remote
sensing data, which can easily track Coreopsis’ wind-disturbed, low-coverage habitat—is 11 times as accurate in predicting the distribution of this species as
Maxent based solely on climatic data. Image Credit: William T. Reid (photographer).

Deep learning—the use of artificial neural networks to detect
and analyze patterns in complex data—is revolutionizing the
use of computers for image and speech recognition, auton-
omous driving, financial projections, DNA sequencing, med-
ical diagnosis and treatment, behavioral analyses, and the
study and modeling of ecological processes (1, 2). One of the
great strengths of deep learning—and its key to successful
application across such a wide range of fields and prob-
lems—is that it specifies no model in advance and pursues
whatever approach best connects potential predictors in
input data to desired predictions, with appropriate measures
taken to avoid overfitting.

In ecology, remote sensing is creating a second revolution,
allowing the massively parallel collection of spatially struc-
tured data at a variety of scales on species identity, functional
traits, chemistry, physiology, phylogenetic affinity, species
interactions, community composition, structure, diversity,
and ecosystem productivity, as well as patterns of change
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through time in each of these attributes (3-5). One of the
major challenges facing ecological studies that employ
remote sensing, however, has been tracking rare or under-
story species that contribute few if any reflected or emitted
photons that can be detected by sensors on drones, aircraft,
or satellites.
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See companion article, “Deep learning models map rapid plant species changes from
citizen science and remote sensing data,” 10.1073/pnas.2318296121.
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Gillespie et al. (6) provide a novel and highly powerful solu-
tion to this challenge. They use deep learning to predict
occurrences of thousands of common, rare, or understory
plant species at scales from meters to hundreds of kilome-
ters, based on remote sensing data (in this first case, high-
resolution aerial photographs shot in color and infrared),
climatic data, and hundreds of thousands of geolocated
species occurrences drawn from herbarium records and
(especially) from citizen-science observations logged on the
widely used database iNaturalist. The authors tested this
approach mainly in California, which is an especially apt
venue given its high density of species, species observations,
and remote sensing data (Fig. 1).

Their technique builds on a few recent papers that have
also applied deep learning or other forms of Al to map spe-
cies occurrences. However, Gillespie etal. substantially
improve the power and range of analyses by relating species
occurrences to both climatic and remotely sensed data, by
training their networks with the distributions of species and
related taxa at the genus and family levels, and by including
information on the distributions of co-occurring species. This
approach takes advantage of two key findings in community
ecology: Close relatives tend to have similar ecologies and
distributions, and joint species occurrences refine estimates
of the positions of species and samples along environmental
gradients. In addition, using both climatic and remotely sensed
data allows species presence and community composition to
be predicted accurately at a wide range of spatial scales,
reflecting variation in temperature, rainfall, and seasonality
over tens to hundreds of kilometers of distance and hun-
dreds to thousands of meters in elevation, while differences
in reflectance or emission at different wavelengths can track
variation in disturbance, succession, substrate, and land
use—and consequent differences in species occurrence—at
very fine scales, down to a few meters.

The accuracy and speed of current and future
versions of Deepbiosphere could contribute to the
massive international efforts that will be needed
to monitor biodiversity and ecological services on
a global scale under the Convention on Biological

Diversity.

Gillespie et al. provide several compelling applications of
this approach, using their Deepbiosphere model of convolu-
tional neural networks to predict the distributions of coast
redwoods in northern California, various trees and shrubs
in the Mediterranean climate region in southern California,
understory plants of young and old-growth redwood stands,
and vegetation and abrupt ecotones in Marin County, together
with estimates of the tempo of community change across
larges areas associated with the severe Rim Fire in the western
Sierra Nevada foothills in 2013. Predicted differences in the
distributions of Pacific blackberry and redwood sorrel in young
vs. old-growth redwood forests are highly significant, and track
changes in forest age and structure are evident over just a few
meters in the high-resolution RBG+IR aerial images used.
Across 34 species examined statewide, Deepbiosphere provides
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much greater resolution of distributions at subkilometer
scales than other approaches. Furthermore, Deepbiosphere is
often more accurate than other models often used to predict
species distributions. For example, based on the area-under-
the-receiver-curve metric, Deepbiosphere had a minimum
AUCgoc 0f 0.986, compared to 0.04 for Maxent. Based on this
comparison, Deepbiosphere has a 9.7% + 26.5% advantage.
However, most of that advantage is due to far poorer per-
formance by Maxent on four species: Lupinus arboreus,
Malacothrix saxatilis, Coreopsis gigantea, and Rhus integrifolia.
All are associated with low-coverage habitats in coastal
dunes, coastal sage, chaparral, and cliffs, readily recognized
by Deepbiosphere but missed by Maxent and other widely
used species distribution models (SDMs).

Across 11 different metrics, Deepbiosphere usually adds
accuracy to distributions over those predicted by other SDMs,
including Maxent, Inception, and Random Forest. Deepbiosphere
shows the most consistent performance across species,
especially for rare species. Deepbiosphere based on both cli-
matic and remote sensing data outperforms versions on only
climatic data or only remote sensing data. Furthermore, ver-
sions that include phylogenetic and associational data—that
is, training based on related species in the same genus or
family, and on associated species—outperform others.

The Gillespie et al. approach, based on widely available, rel-
atively low-cost data, can be pursued over much larger areas
than California, use much larger fractions of the Tree of Life,
and track dynamics based on remote sensing data gathered at
decadal frequencies. Deepbiosphere is a powerful analytical
pipeline that can easily be improved in the future. Exciting
improvements mightinclude 1) use of more informative multi-
or hyperspectral remotely sensed data; 2) inclusion of soil or
bedrock data, given the importance of edaphic conditions in
limiting the distributions of many species; and especially 3)
incorporating modules that use higher-level spatial and tem-
poral data—especially on patch size, landscape
context, distance from similar habitats, dispersal
corridors, species interactions, and time since dis-
turbance—to improve predicted distributions of
species strongly affected by fragmentation, edge
effects, and successional dynamics. Hyperspectral
data, although expensive to obtain, offers big
advantages in species identification and quantifica-
tion of leaf chemistry, vegetation structure, and
community composition and diversity (3-5). Gillespie etal.
themselves show that including substrate data substantially
increases the accuracy of predicted distribution for some spe-
cies. Finally, many ecologists and conservation biologists have
used experimental or observational data to show that fragmen-
tation, landscape context, and species interactions can have
important impacts on species distributions. For example,
Terborgh et al. (7) demonstrated how isolation can cause plant
species loss from forest fragments via loss of mega- and mes-
opredators. Rogers et al. (8) showed that landscape context and
fragmentation have increasingly accounted for forest compo-
sition in Wisconsin—and local environmental conditions
increasingly less—in moving from the 1950s to 2000s. Damschen
et al. (9) demonstrated how corridors elevate plant species rich-
ness in patchy landscapes. All these phenomena might be
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captured in upcoming editions of Deepbiosphere. More broadly, efforts that will be needed to monitor biodiversity and ecolog-
the accuracy and speed of current and future versions of ical services on a global scale under the Convention on Biological
Deepbiosphere could contribute to the massive international Diversity (4, 10).
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