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Antimicrobial resistance (AMR) is a growing global health threat

that requires coordinated action across One Health sectors

(humans, animals, environment) to stem its spread.

Environmental surveillance of AMR is largely behind the curve

in current One Health surveillance programs, but recent

momentum in the establishment of infrastructure for monitoring

of the SARS-CoV-2 virus in sewage provides an impetus for

analogous AMR monitoring. Simultaneous advances in

research have identified striking trends in various AMR

measures in wastewater and other impacted environments

across global transects. Methodologies for tracking AMR,

including metagenomics, are rapidly advancing, but need to be

standardized and made modular for access by LMICs, while

also developing systems for sample archiving and data sharing.

Such efforts will help optimize effective global AMR policy.
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Introduction
Antimicrobial resistance (AMR) is a looming global

public health threat that increasingly undermines treat-

ment options for deadly infections. Most recent esti-

mates place the health burden of antibiotic-resistant

bacterial infections to be comparable to influenza,
www.sciencedirect.com 
tuberculosis, and HIV/AIDS combined [1], and this is

likely an underestimation [2]. The COVID-19 pandemic

has made it abundantly clear that microbes do not

respect borders and are readily dispersed via commerce,

travel, and various earth system processes. Tracking the

global dissemination of AMR is particularly daunting

because there is no single agent responsible. In contrast

to SARS-CoV-2 or influenza, there are numerous species

of antibiotic-resistant bacteria (ARB) of concern. While

pathogenic strains present immediate acute health risks,

non-pathogenic ARB are active reservoirs of antibiotic

resistance genes (ARGs) that can be horizontally trans-

ferred to pathogens. It is currently understood that most

ARGs and virulence genes were actually acquired by

human pathogens from environmental bacteria via hori-

zontal gene transfer [3�]. Furthermore, beyond bacteria,

there is growing worry about the broader resistance of

other microbes, for example, to antiviral and antifungal

treatments [4]. Recognizing the importance of antimi-

crobials to both human and animal health, as well as the

need to holistically consider the movement of AMR

among people, animals, and the environment, the need

for a One Health framework for understanding, tracking,

and mitigating the problem is broadly gaining accep-

tance [5�,6,7�,8].

Surveillance is a fundamental tenet of global public

health protection, and various national and international

systems are in place for tracking infections caused by

reportable pathogens (e.g. Legionella in the US, EU, and

Australia [9], Ebola virus globally [10]). In the context of

AMR, most surveillance has historically targeted clinical

and food sectors, with a focus on faecal indicators and the

ESKAPE (Enterococcus faecium, Staphylococcus aureus, Kleb-
siella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter spp.) pathogens. In the

United States, the National Antimicrobial Resistance

Monitoring System (NARMS) serves to compare enteric

ARBs isolated from food production systems to clinical

strains while the recently launched European Antimicro-

bial Resistance Surveillance network in Veterinary med-

icine (EARS-vet) aims to assess the risk of AMR trans-

mission between diseased animals and humans via non-

food-related routes [11�]. Comparable environmental

monitoring that fully informs the One Health framework

has been lacking (Figure B1). The confluence of air,

water, soil, and the waste streams (domestic, agricultural,
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Figure B1
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Existing infrastructure that can be expanded upon for coordinated international environmental AMR surveillance, including gaps and opportunities,

to inform and refine policy for combatting AMR.
and industrial) that flow into and between them, are

understood to contain key hotspots for the evolution

and transmission of ARGs in particular and AMR in

general [12��,13�,14].

Establishing coordinated local, regional, and international

surveillance systems for tracking environmental AMR

presents numerous advantages and opportunities towards

shaping antimicrobial use policy and practice in a manner

that will ensure their efficacy for future generations [15��].
While there has been inertia towards environmental

monitoring of AMR, recent developments, including

the broad infrastructure emplaced for SARS-CoV-2 sur-

veillance in wastewater over the past year [16], present a

tipping point towards actualization. However, it is also

critical at this moment to strategically plan and coordinate

such efforts to maximize potential benefits.
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Wastewater surveillance: history, COVID-19,
and synergy for advancing AMR surveillance
In 1929, Gray published on the isolation of Bacillus
paratyphosus B (i.e. Salmonella enterica serotypes (Paraty-

phi A–C)) from sewage concluding that the method could

be adopted for tracing of carriers [17]. Later, wastewater

surveillance was employed for many pathogens including

viruses [18]. In 2003, WHO embraced environmental

surveillance of poliovirus to support poliovirus eradication

efforts, targeting locales with low vaccination coverage

and emergence [19], as was shown for the Netherlands

[20]. The sensitivity of sewage surveillance was estimated

to be 100 infected (asymptomatic) individuals in >10

000 individuals in a poliovirus vaccine field study [21].

With the onset of the COVID-19 pandemic, there was

spontaneous recognition of the value that sewage moni-

toring of the virus and corresponding research and
www.sciencedirect.com
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infrastructure was rapidly established across numerous

universities and wastewater treatment plants (WWTPs)

around the world [22,23]. Widescale surveillance of

SARS-COV-2 has brought to light numerous advantages,

as a sensitive, early warning tool to aid public health

decision making [24].

The rapid development of infrastructure for SARS-

COV-2 monitoring is remarkably timely with respect

to recent momentum in research aimed at sewage

surveillance of AMR. A study in Hawaii demonstrated

that Salmonella detected in sewage could be traced to

ongoing unreported foodborne outbreaks, with whole

genome sequencing (WGS) applied to obtain a high-

resolution resistance profile [25��]. The application of

shotgun metagenomic sequencing to sewage has further

recently revealed striking concordance of ARG abun-

dances with national stringency in antibiotic use policy

and socioeconomic factors likely contributing to the

spread of resistance [26��,27�,28]. Sewage surveillance

is particularly advantageous because it provides an

integrated view of AMR carried across a human popu-

lation, which is much more efficient than the current

status quo of patient-by-patient sampling and also avoids

privacy concerns in the collection of data [29��].
Approaches currently in development can also easily

be extended to environments collectively influenced by

agricultural inputs, such as waste lagoons and surface

waters [30], making for the possibility of a true One

Health monitoring system. For example, efforts are

currently underway to expand the traditionally retail

meat and food-producing animal focused NARMS to

include surface water, as an integrator of domestic,

industrial, and agricultural inputs [31��]. Thus, the

present moment is ideal to extend the tremendous

resources that have been invested towards pandemic

monitoring of sewage towards environmental surveil-

lance of AMR.

Environmental surveillance of AMR: need for
adaptable, modular, and standardized
methods
In order for the full benefits of environmental AMR

monitoring to be realized, a coordinated approach will

be essential to ensure that the data are comparable and

actionable. To achieve this, standardized methods are

needed (Figure 2). Grab, passive, or composite (flow-

weighted or time-weighted) samples [32] can be collected

either from the influent to a WWTP or further up the

sewage collection system. Discrete locations within the

sewer system can provide more granular (i.e. building-

level or street-level) information and isolate sensitive

populations, such as hospitals, nursing homes, as well

as potential industrial inputs, such as pharmaceutical

manufacturing plants. Collection of available metadata

(e.g. WWTP/lagoon capacity, flow rate, time temperature,

pH) are essential to interpreting the data.
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Given the complexity of AMR and the contributing

factors, there are numerous analytical approaches, all

providing insight into the parts of the ‘elephant of AMR’,

but not the whole picture [33,34�] (Figure 2). Culture of

relevant faecal indicators or pathogens provides a direct

measure of viable ARBs of concern, which can be enu-

merated via plate counts and subsequently subject to

further phenotypic profiling of various forms of AMR and/

or WGS for high resolution genotypic profiling. Recently,

the WHO has launched a standardized Tricycle Protocol

for enumerating extended-spectrum beta lactamase-pro-

ducing (ESBL) Escherichia coli intended to be suitable

across the One Health spectrum [35��]. Similar protocols

have been developed to more broadly capture resistant

Enterobacteriaceae, targeting ESBL [36] and carbape-

nem-resistant forms [37�]. Culture is attractive as an entry

point for LMIC participation, as faecal indicator monitor-

ing infrastructure is relatively low cost and widespread.

Isolates can be sent to centralized labs where resources

can be effectively pooled, for example, through the

WHO, to support archive and further characterization

via WGS or phenotypic testing.

Molecular monitoring also presents several advantages

and can also be adapted to LMIC settings, with the

minimum entry point being the extraction of DNA.

DNA can then be subject to a quantitative polymerase

chain reaction (qPCR), providing highly sensitive quan-

titation of specific targets of concern, such as specific

clinically relevant ARGs (e.g. ESBL-producing ARGs).

qPCR quantification of anthropogenic indicators of AMR,

such as sul1 and class 1 integrons [38], can also be quite

informative with respect to evaluating the tendency of

water treatment processes to reduce AMR and the overall

persistence of AMR in affected receiving environments.

Elevated anthropogenic indicators can also flag potential

hot spots, for example, those receiving high loads of

ARGs and/or where selection pressures are high, for

deeper study with other methods. A drawback to all

molecular-based measures is an inability to confirm the

viability of targets.

DNA extracts could also be sent to centralized labs for

shotgun metagenomic sequencing, which presents the

advantage of being able to broadly capture the dominant

genes representing the microbial community of a given

environmental sample, without a priori selection of tar-

gets [39]. Resulting metagenomes can be compared to

public databases, such as the Comprehensive Antibiotic

Resistance Database (CARD) [40�], to profile ARGs

belonging to various classes of interest (currently

>3000 curated ARGs). Metagenomics also presents the

advantage of providing rich contextual information,

including taxonomic profiles of the microbial community

and profiles of mobile genetic elements (MGEs), such as

plasmids, integrons, and transposons known to play a key

role in the dissemination of ARGs [41�,42,43].
Current Opinion in Microbiology 2021, 64:91–99
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Metagenomic data can further be searched for other

pathogens of interest, such as fungi and viruses, although

sample processing may need to be adjusted, for example,

capture of smaller particles and extraction of RNA in

addition to DNA. DNA sequencing, including metage-

nomics and WGS, is also really the only currently avail-

able approach to detecting newly emerged/emerging

ARGs of concern. The present downsides of metage-

nomics include cost, high detection limits for highly

diverse samples (e.g. environmental samples), the need

to standardize bioinformatic approaches to ensure com-

parability of data, and general specialized expertise

required to interpret the data that is likely lacking at

the local level. These challenges can be addressed, in

part, through centralized sample archiving, processing,

and data analysis, which can additionally be supported

through coordinated financing, to ensure access by

LMICs [29��].

Although metagenomics is an emerging tool for AMR

surveillance, it is clearly very powerful and already

enabling remarkable discoveries. For example, recent

comparisons of sewage collected across global transects

have revealed that geographical location and socioeco-

nomics are stronger predictors of elevated sewage ARG

abundances than available antibiotic use data [26��,28].
Longitudinal metagenomic monitoring of Hong Kong

WWTPs further showed that the activated sludge ARG

composition shifts slowly over the span of nine years [44]

and of a small US WWTP demonstrated that effluent

metagenomes retain clinically relevant resistance pat-

terns with strong concordance to clinical monitoring data

[45�].

Building on growing AMR surveillance
infrastructure
Substantial momentum has been gathered in recent years

that provide the valuable groundwork for environmental

AMR monitoring. In particular, the WHO Global Action

Plan (GAP) (2015) and the EU One Health Action Plan

against AMR [5�] have been highly influential in setting

the stage. By 2017, the WHO estimated that roughly 2/3

of the World Health Assembly Member States had com-

pleted National Action Plans for combatting AMR,

encompassing approximately 85% of the world’s popula-

tion [46,47]. Of the five strategic objectives in the WHO

GAP, at least three collectively address concerns across

human, veterinary, and environmental domains by

improving awareness and understanding, strengthening

knowledge through surveillance and research, and reduc-

ing the incidence of infection. However, there is a need

for relevant environmental dimensions of AMR to be

much more explicit, especially with respect to need for

corresponding surveillance. The Joint Programming Ini-

tiative on Antimicrobial Resistance (JPIAMR), a global

collaborative currently of 28 nations, is a major step in the

direction needed for global One Health AMR
Current Opinion in Microbiology 2021, 64:91–99 
surveillance with a robust environmental dimension,

but many major industrialized nations have not yet

joined. The Tripartite Integrated System for Surveillance

on AMR and Antimicrobial Use (TISSA) is in develop-

ment at this time and could be an ideal mechanism to

achieve the kind of global participation and coordination

across nations that is urgently needed to realize the

benefits of environmental AMR surveillance (Figure B1).

Global environmental surveillance of AMR and
data sharing to inform policy and practice
It has become abundantly clear that the status quo of

piecemeal monitoring in clinical and food productions

systems will not be sufficient to stem the wicked problem

of AMR. Environmental surveillance can help to provide

essential information needed to efficiently and effectively

inform policy and practice across the One Health spec-

trum to help keep antibiotics working for future genera-

tions. At the same time, surveillance can serve to assess

the efficacy of various policy and mitigation measures,

while also informing refinement and optimization with

time (Figure 1) [48��]. Figure B1 summarizes a growing

body of infrastructure that can be leveraged to advance

environmental AMR monitoring, identifying key gaps

and opportunities.

The first key opportunity that AMR surveillance of

wastewater and corresponding receiving environments

would bring would be the ability to rapidly identify

hotspots for the evolution and spread of clinically relevant

AMR. This would be especially valuable for guiding

policy action and the investment of resources where they

are most needed. For example, if pharmaceutical or

hospital discharges are found to present high levels of

mobile clinically relevant ARGs and pathogens, then it

would be logical to regulate these waste streams in a

manner appropriate to the individual country and local

situation. Metagenomic approaches may be particularly

suitable for this purpose [29��], aiding in the broad detec-

tion of novel ARGs and/or ARGs that have not previously

been detected in a given location [49]. The detection of

newly emerging or recently mobilized ARGs that have

not yet become fixed in a microbial population may be

limited though by the relatively high limits of detection of

shotgun sequencing of complex environmental samples

[50].

The second key opportunity that such environmental

surveillance would bring would be to inform doctors

and veterinarians with respect to which antibiotics are

likely to be most effective within a given population.

Centralized sewage surveillance can contain signals that

reflect community-level dissemination of AMR. Similar

to SARS-CoV-2, AMR may be silently transmitted within

communities and missed by standard clinical surveillance

[25��]. Such an approach is currently being piloted in the

Netherlands, where culture-based monitoring of CPE
www.sciencedirect.com
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Figure 1
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Informing One Health policy towards mitigating AMR through environmental monitoring. Surveillance informs policy aimed at mitigating the spread

of AMR in human and agricultural systems and also serves to evaluate mitigation efforts to further develop policy and improve efficacy of

mitigation efforts.
and subsequent WGS is helping to link to infections in

the clinic and strains found in agricultural monitoring

[37�]. The recently launched WHO Tricycle protocol for

standardized ESBL E. coli enumeration in environmental

samples [51] is poised to play a leading role in informing

clinical and agricultural practice. Data compatibility and

sharing will be essential to the success of such endea-

vours. Publicly facing dashboards, such as those popular-

ized during the current COVID-19 pandemic, would be

ideal for achieving this purpose [52]. Importantly, envi-

ronmental and public health monitoring agencies are now

working much more closely with local clinicians, many of

whom even obtained their own PCR units for COVID

testing that could potentially be adapted to ARG testing.

Ideally, this can also help improve clinical AMR report-

ing, which is known as a longstanding lost opportunity as

clinics primarily act only to treat patients and not to

participate in research.

The third key opportunity of environmental surveillance

would be to inform risk assessments, which is critical to

guiding regulatory limits for the discharge of antibiotics,

ARBs, and ARGs. There are various approaches to

achieving this with the general recognition of the need

to broaden and adapt traditional frameworks [53�,54],
such as quantitative microbial risk assessment. One

key challenge is differentiating human health risk, that

is, estimating probability of infection based on a given
www.sciencedirect.com 
exposure, from the risk of contributing to the evolution

and spread of AMR. In both cases, the ability of ARGs to

be horizontally transferred among bacteria is a critical

phenomenon to account for [53�]. Culture-based

approaches are more amenable to traditional human

health risk assessments, whereas other algorithms are

being explored to assess general risk of spread of clinically

relevant ARGs to new pathogen hosts [55,56�] and to

model and predict the various environmental processes

(e.g. in a WWTP) that can contribute to the selection,

amplification, horizontal transfer or attenuation of ARGs

(e.g. Bayesian analysis [57,58]).

The fourth key opportunity would be to identify waste

treatment technologies that are most effective for miti-

gating the spread of AMR. Wastewater and on-farm

treatments have been an active area of research that

can be tapped into to guide treatment practices, both

in HICs and LMICs, as summarized comprehensively by

Ashbolt et al. [59�]. Centralizing the accessibility and

amenability of such data for analysis would be a tremen-

dous resource towards guiding engineers and farmers in

the selection of appropriate treatment processes and best

management practices for stemming the spread of AMR.

Finally, environmental surveillance of AMR would pro-

vide vital missing data need to support large-scale

modelling to identify key drivers. In particular,
Current Opinion in Microbiology 2021, 64:91–99
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Figure 2

Tier 1

Tier 2

Tier 3

Current Opinion in Microbiology

A tiered approach to coordinated and standardized environmental AMR monitoring. Tier 1 is most accessible and should be carried out by all

participating locales. Tier 2 may be carried out in-house or by centralized facilities. Tier 3 is likely to be carried out by centralized facilities and will

be least accessible due to cost, but cost and accessibility is expected to improve in coming decades. Centralized sample archives and public-

facing dashboards facilitate standardization of data analysis and reporting and data sharing. Sample archives will further provide value for future

re-analysis as technology evolves.
machine-learning based approaches could be extremely

powerful towards achieving all of the above objectives

[60], detecting emerging ARGs and variants [61], in

addition to forecasting broader trends in AMR [62].

Pooling key AMR data and metadata will be essential

towards informing such models, as they will fail without

large volumes of comparable data. Comprehensive, cen-

tralized AMR data and metadata management systems

with user-friendly interfaces could facilitate such efforts

[63]. Such efforts applied to environmental surveillance

of AMR could similarly be a powerful tool towards

identifying factors driving AMR globally, including,

socioeconomic indicators, and assessing and refining
Current Opinion in Microbiology 2021, 64:91–99 
the efficacy of local policies (such as eliminating or

reducing the use of certain antibiotics) towards reducing

AMR burden [64��].

It is critical to recognize that global health stands to

broadly and comprehensively gain from the establish-

ment of environmental monitoring infrastructure pro-

posed herein. In addition to informing strategies to stem

the spread of AMR, such networks can easily be

expanded to address various bacterial, viral, fungal, and

parasitic pathogens. In concert with the microbial moni-

toring described herein, direct measurements of antibio-

tics and other antimicrobials could also help to fill critical
www.sciencedirect.com
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reporting gaps with respect to antimicrobial use and

consumption [65]. Recent reports of illegal drugs in

sewage [66] have further demonstrated the potential

broad information that can be gained to broadly address

greater public health ailments. Now that the general

public has grown accustomed to freely available public

health dashboards, for example, following day-by-day

COVID epidemiological curves, we may have reached

a place in society where the value of such transparent

information is broadly accepted and appropriately acted

upon.

Conclusions
The COVID-19 pandemic provides a warning of the dire

consequences of an uncontrolled global public health

threat, but also an exemplar and path forward with respect

to key infrastructure and data sharing that has been

emplaced that can be adapted towards coordinated global

surveillance of environmental AMR. The need for envi-

ronmental surveillance as a critical dimension of One

Health policy is rapidly being recognized and there is

good synergy with several World Health Organization

initiatives and NAPs. Stemming the spread of AMR is

more challenging in many ways, given that it is continu-

ously evolving and involves a multitude of strains of

bacteria and other microbes and corresponding resistance

determinants. Culture-based and molecular-based meth-

ods for tracking AMR have evolved substantially over the

past decade and can be standardized in a way to ensure

comparability across studies and validity for inclusion in

models to identify drivers of AMR and to predict overall

trends. Such standardized methods can readily be

employed in a tiered fashion, with centralized sample

archives and analysis, to ensure accessibility for LMICs.

Data sharing and public-facing dashboards can help make

the data broadly accessible and informative to clinicians,

veterinarians, policy-makers, and regulators to spur com-

prehensive advancement of policy and practice that helps

effectively stem the spread of AMR.
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