[a—
SOOI DN A~ W —

—
—

DO — = = = e e e
SO 001N DN B~ WD

NN Do
W N~

AR, PEAEPEAEDDE D OWLLLWLWLWLWLWLWLWLWLWLWLWWENDNDDNDNDNDDN
O NPH WL OOV IANNDRWN—OWOVOJION WA

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.24.563791; this version posted October 27, 2023. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Kairos infers in situ horizontal gene transfer in longitudinally sampled microbiomes
through microdiversity-aware sequence analysis

Connor L. Brownl, Yat Fei Cheung,2 Haoqiu Song,2 Delaney Snead3, Peter Vikesland4,
Amy Pruden’, Liging Zhang®

Dept. of Genetics, Bioinformatics, and Computational Biology, Virginia Tech'
Dept. of Computer Science, Virginia Tech’
Dept. of Civil and Environmental, University of Michigan®
Dept. of Civil and Environmental Engineering, Virginia Tech’

Abstract

Horizontal gene transfer (HGT) occurring within microbiomes is linked to complex
environmental and ecological dynamics that are challenging to replicate in controlled settings.
Consequently, most extant studies of microbiome HGT are either simplistic experimental
settings with tenuous relevance to real microbiomes or correlative studies that assume that HGT
potential is a function of the relative abundance of mobile genetic elements (MGEs), the vehicles
of HGT. Here we introduce Kairos as a bioinformatic tool deployed in nextflow for detecting
HGT events “in situ,” i.e., within a microbiome, through analysis of time-series metagenomic
sequencing data. The in-situ framework proposed here leverages available metagenomic data
from a longitudinally sampled microbiome to assess whether the chronological occurrence of
potential donors, recipients, and putatively transferred regions could plausibly have arisen due to
HGT over a range of defined time periods. The centerpiece of the Kairos workflow is a novel
competitive read alignment method that enables discernment of even very similar genomic
sequences, such as those produced by MGE-associated recombination. A key advantage of
Kairos is its reliance on assemblies rather than metagenome assembled genomes (MAGs), which
avoids systematic exclusion of accessory genes associated with the binning process. In an
example test-case of real world data, use of assemblies directly produced a 264-fold increase in
the number of antibiotic resistance genes included in the analysis of HGT compared to analysis
of MAGs with MetaCHIP. Further, in silico evaluation of contig taxonomy was performed to
assess the accuracy of classification for both chromosomally- and MGE-derived sequences,
indicating a high degree of accuracy even for conjugative plasmids up to the level of class or
order. Thus, Kairos enables the analysis of very recent HGT events, making it suitable for
studying rapid prokaryotic adaptation in environmental systems without disturbing the ornate
ecological dynamics associated with microbiomes. Current versions of the Kairos workflow are
available here: https://github.com/clb21565/kairos.

Introduction

Horizontal gene transfer (HGT) facilitates bacterial adaptation in the face of shifting selective
pressures. Many clinically-important antibiotic resistance genes (ARGs) have achieved global
dissemination through HGT of ARG-bearing mobile genetic elements (MGEs).(R. et al., 2018;
U.S. Department of Health and Human Services, 2019; United Nations Environment
Programme, 2023) Examining HGT in the context of microbiomes has the potential to yield
valuable insights regarding the ecology and evolutionary dynamics of bacterial populations, with
especially important implications for antibiotic resistance. For example, HGT of broad host-
range MGEs is well documented in the human gut(Brito, 2021; Forster et al., 2022) and has been
found to mediate transfer of ARGs across broad phylogenetic ranges, including between gut
commensals and potential pathogens.(de Nies et al., 2022; Stecher et al., 2012) Human and
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animal guts are suspected to be a particularly critical venue for the evolution of resistance in
pathogens as clinical concentrations of antibiotics are unlikely to be encountered
elsewhere.(Bengtsson-Palme and Larsson, 2016; Gullberg et al., 2011; Larsson and Flach, 2022)
However, the environment, and particularly wastewater, is increasingly being recognized for its
potential to facilitate the emergence of novel ARGs due to the coalescence of extremely high
genetic diversity, MGEs, and selective agents.(Berglund et al., 2023; Ebmeyer et al., 2021)

Increased understanding of the ecological dynamics of HGT in complex environmental
microbiomes such as sewage, and the wastewater treatment plants (WWTPs) that treat sewage,
could aid surveillance and intervention efforts.(Moralez et al., 2021) For example, the
operational parameters of WWTPs are extensively monitored, as required by law. Such
monitoring data are essential to adjusting operational conditions as needed and ensuring that
performance meets minimum standards of treated water quality prior to discharge. Developing a
predictive understanding of bacterial HGT in WWTPs could further enable convenient and
synergistic adjustments to operational decisions that could also mitigate unregulated
contaminants of concern found in sewage, including antimicrobial resistance determinants.
However, no reliable bioinformatic tools exist for monitoring HGT over short timescales in
complex microbiomes, such as those represented by WWTPs.(Brito, 2021) Typical approaches
include in vitro systems with model organisms or analysis of isolate whole genome sequence
(WGS) data(Ding et al., 2022; Hutinel et al., 2021; Li et al., 2022), which are unlikely to capture
ecological dynamics. Thus, there is a need for tools for tracking HGT that effectively capture the
complex interplay between microbial ecology and HGT under real-world conditions.

MetaCHIP(Song et al., 2019), the first such effort towards specifically profiling
microbiome-scale HGT, leverages metagenome assembled genomes (MAGs) for HGT detection.
While well suited for identifying distant (i.e., older) HGT events, the dependency on MAGs
poses several challenges, especially when investigating recent HGT events. It has been shown
previously that the accessory genome is particularly difficult to bin accurately when multiple
strains of the same species are present.(Maguire et al., 2020; Meziti et al., 2021) This is in part
because some portions of the genome are common among strains (core regions) while others
(accessory regions) are strain-specific. The result of this is that core and accessory regions
display different depth profiles, which makes it challenging to successfully capture both the core
and accessory regions in a MAG.(Meziti et al., 2021) Unfortunately, this problem is only
exacerbated in the case of mobile ARGs and MGEs, both of which are by definition associated
with the accessory genome.(Mazel, 2006; Oliveira et al., 2017)

Here we introduce Kairos as a bioinformatic tool for microbiome-level HGT analysis
that addresses many of the above limitations. We further propose a framework of “in situ HGT”
inference, aiming to provide objective criteria for inferring HGT events occurring within defined
windows of time using time series metagenomic sequencing data. The in situ framework
provides a means to assess whether the chronological occurrence of potential donors, recipients,
and putatively transferred regions could plausibly have arisen due to HGT in the sampled period.
The centerpiece of Kairos, the Kairos assess workflow, leverages a novel competitive read
alignment method that is capable of distinguishing between even very similar genomic
sequences. Notably, our methodology is applicable to any longitudinally sampled microbiome
for which a reasonable sample of gene contexts can be obtained, thus enabling the potential for
retrospective analysis of metagenomic datasets with simplified experimental designs.
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Fig. 1. Overview of the Kairos derep-detect and assess workflows for profiling microbiome-level HGT via analysis of
assembled metagenomic sequences. (A) The Kairos derep-detect workflow takes contigs (capturing a reasonable sample of
target gene contexts) and taxonomy assignments as input and produces a list of identical open reading frames (orfs) shared
among the contigs and a summary of potential HGTs. (B) The Kairos assess workflow takes contigs and multiple short read
samples and produces assessments of contig presence/absences across the set of samples. If provided with additional information
regarding the study design, it can infer putative in situ HGTs. All settings displayed are default values and are able to be specified
by the user.

Methods

Kairos and in situ HGT's

Kairos is a nextflow(Di Tommaso et al., 2017) pipeline that integrates multiple tools and python
scripts to identify, score, and visualize potential HGTs from a metagenomic assembly. If
provided sequencing reads, assemblies, and metadata relaying information about longitudinal
aspects of the data, it also can identify potential in sifru HGT events. We define in situ HGT in
this context as any putative HGT event for which the chronological occurrence of predicted
transferred regions, hosts, and recipients, display patterns of abundance or presence/absence
consistent with the event having occurred within the sampled space of the microbiome in
question.

Kairos first identifies potential HGTs as identical genes/open reading frames (orfs)
shared by the input contigs that have different taxonomic classifications. Subsequent steps assess
the bioinformatic support for a given potential HGT and provide the means to assess whether a
potential HGT may have occurred in situ given a set of longitudinally sampled metagenomes. A
complete, step-by-step workflow is described in the supplementary methods and methods below.

Kairos derep-detect workflow

The Kairos derep-detect workflow takes a set of contigs as input and identifies, scores, and
visualizes the potential HGTs (Fig. 1, Supplementary Methods 1). The first task in the derep-
detect workflow is to identify orfs from a set of contigs. Protein sequences or orfs are predicted
using prodigal(Hyatt et al., 2010) (-p meta) and then clustered using mmseqs(Steinegger and
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123 Soéding, 2017) (coverage of >30% and identity of >99 %). The orfs predicted from the contigs are
124  also annotated for MGE hallmarks (i.e., mobileOGs) from mobileOG-db(L. et al., 2022) using
125  diamond(Buchfink et al., 2014) (--id 30 --evalue le-5) and for ARGs using deepARG-
126  db(Arango-Argoty et al., 2018) (--id 80 --evalue le-10 --query-cov 0.6) (Supplementary
127  Methods 2). The user is also able to provide their own database of target genes which will be
128  likewise scored as ARGs are.

129 Optionally, contigs may be dereplicated by calculating the proportion of shared orfs
130  between two contigs. If so, contigs with >50% shared orfs relative to the smaller contig (i.e.,

o shared orfs . .
131 50% shared orfs = Y T S——— fsmmgz)) are potential duplicates by default. Clusters are

132 dereplicated by selecting the member with the largest number of orfs as the representative. In the
133 case of ties, one of the tied cluster members are randomly selected. The number of contexts
134  ascribed to a gene is thus the number of dereplicated contigs with the gene.

135

136  Defining potential HGTs

137  We define any given contig (referring to any contig, scaffold, extracted window from a genome,
138  or other subsection of a genome):

G = (T, Gy)
139
140  where T; is the user supplied taxonomic annotation of the contig C; and G; s the set of genes on
141 the contig, where G; = {g4,g2,...,gn}. Two contigs, C; and Cj, sharing identical genes would
142 be a potential HGT if:
143 T # Tyand G, N G # @
144
145  Scoring potential HGTs
146  Potential HGTs (as represented above) are ranked according to gene content features
147  (Supplemental Methods 2). First, potential HGTs that involve MGE hallmark genes, such as
148  those aggregated by mobileOG-db, are considered to be more plausible and thus a potential
149  HGT associated with a mobileOG receives a score of 1 and otherwise 0. The mobileOG can
150 either directly be the shared gene or can simply co-occur with the shared gene on one or both of
151  the contigs. In the latter case, the orf matching a mobileOG must be within 5,000 bp of the
152  putatively transferred gene. This distance should be sufficient to be inclusive of co-occurrences
153  with insertion sequence elements, integrative elements, or transposons.(Liu et al., 2019; Ross et
154  al., 2021; Siguier et al., 2015) In addition, a score of 1 is applied if the putatively transferred orf
155 aligns to one of the target database sequences (deepARG-db by default).
156
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%gg Fig. 2. Visualizing potential HGTs provides a powerful means for assessing biological plausibility. (A) Visualization

159 workflow implemented in Kairos as a supplementary script takes in user-supplied text files of contigs to be visualized, extracts
160 them, and produces annotations and visualizations via clinker.(Gilchrist and Chooi, 2021) (B) Example visualizations produced
161 using clinker.

162

163 Visualizing potential HGTs

164  Visualization of putative HGTs is powerful for assessing biological plausibility. The visualize
165 workflow annotates a set of potential HGTs using prokka and visualizes them using
166  clinker(Gilchrist and Chooi, 2021) (Fig. 2). The output html files are interactive and can be
167  modified to the user’s preference.

168
"in situ" horizontal gene transfer inference
]
]
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%98 Fig. 3. A framework for inferring “in situ” HGT events from longitudinal metagenomic data. We propose a framework for

171 inferring HGT occurring within a sampled period of a microbiome (i.e., in situ). The potential for in situ HGT is assessed by
172 evaluating a set of hypotheses regarding the chronological occurrence of potential donors and recipients in order to determine
173 whether the observed gene co-occurrence could have plausibly arisen within the sampled period.

174

175  Inferring in situ HGT events

176 ~ We define in situ HGT as any instance of gene sharing between two contigs with different
177  taxonomic assignments wherein the paired contigs display patterns of presence/absence
178  consistent with an HGT event occurring during a sampled period. Inferring in situ HGT events
179  from a longitudinally sampled microbiome is performed using generic and case-specific
180  hypotheses for each instance of potential HGT (Fig. 3). For example:

181

182 Hy; = The HGT-associated insertion/deletion already existed in the microbiome at a
183 previous time point and thus could not be due to recombination within the period between
184 samplings.

185
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186 H,4; = The HGT-associated insertion/deletion was not detectable in the microbiome at a
187 previous time point and therefore could have arisen as a result of recombination within
188 the span of the experimental period.

189

190 Hy, = Neither contigs comprising the HGT-associated insertion/deletion were detectable
191 at any previous timepoint, implying that there is no detectable donor.

192

193 Hy = One of the contigs comprising the HGT-associated insertion/deletion was
194 detectable at a prior timepoint suggesting that the HGT-associated insertion/deletion
195 could have arisen as a result of recombination within the span of the experimental period.
196

197  These hypotheses can be amended as additional null hypotheses arise, or as relevant to the
198  experimental design in question.

199

200  Kairos assess workflow provides sensitive detection of contigs associated with potential HGT
201  The Kairos assess workflow identifies and then uses boundary regions defined by the edges of an
202  alignment between two contigs (Fig. 1, Supplementary Methods 3, Fig. S1) to further
203  investigate the potential HGTs. All vs. all alignment of a set of contigs with potential HGTs is
204  performed using minimap2(Li, 2018) (-x asm5 -X). Edge regions, defined by coordinates of
205  (alignment-start + length / and alignment-end + length /, default of 75 bps) are written to bedfiles
206  that are then sorted, clustered, and extracted from the contigs using bedtools.(Quinlan, 2014)
207  Edges are dereplicated using mmseqs (identity >99% and coverage = 88%). Short reads are
208 mapped to the dereplicated edges using salmon(Patro et al., 2017) quant and the
209  presence/absence of each region of variation are assessed by counting the number of reads
210  mapping to each boundary region passing quality filtering (100 bp minimum alignment length,
211  1i.e., samtools view -m 100). By default, a minimum of one read is taken as evidence of the locus
212 being present. The minimum alignment setting of 100 bp ensures that at least 25 bp of the unique
213 portion of the locus is present (hence, it is a ‘competitive’ reads mapping approach). Results of
214  the read mapping are summarized using samtools(Danecek et al., 2021) coverage (using default
215  parameters). Read mapping results are extended to apply to edge cluster members by combining
216  the output of samtools coverage with the edge cluster table. The presence/absence of structural
217  variations are determined by counting the proportion of distinguishing boundaries detected to
218  total distinguishing boundaries in the contig (=90% of distinguishing boundaries must be
219  detected).

220

221  Longitudinally sampled sequencing batch reactors

222 Sequencing batch reactors (SBRs) were operated using influent recovered from a local municipal
223 WWTP and large urban hospital in Illinois. Extended details of SBR operation can be found
224  elsewhere.(Brown et al., 2023; Maile-Moskowitz, Ayella,Connor Brown, Latania Logan, Kang
225  Xia, Amy Pruden, 2023) The SBRs were seeded with activated sludge from the corresponding
226  municipal WWTP and were maintained for a period of weeks prior to reaching steady-state
227  operation (i.e., stable removal of organic carbon). For the following three weeks, samples were
228  collected for culture of antibiotic resistant pathogens (Klebsiella pneumoniae, Escherichia coli,
229  and carbapenemase producing Enterobacterales (CPE). This produced a catalogue of 456 isolates
230  in addition to 111 Illumina shotgun metagenomes of influent, effluent, and AS, and 36 nanopore
231  long read samples. AS and influent samples were sequenced to approximately 5 Gbp per sample
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232 and effluent to 3 Gbp per sample. A subset of AS and influent samples (n = 6) were also
233 subjected to deep sequencing (mean 36 Gbp per sample).

234

235  Assembly of an MGE and resistance gene catalogue

236  We contrasted MAG-based inferences with a catalogue of contigs with a catalogue of MGEs and
237  resistance genes created in a parallel study.(Brown et al., 2023) Briefly, multiple hybrid
238  assembly strategies were performed using short Illumina reads and long minION nanopore reads
239  to improve recovery of informative resistance gene contexts. Briefly, individual samples were
240  assembled using OPERA-MS(Bertrand et al., 2019) (--contig-len-thr 1000 —long-read-mapper
241  minimap2) and hybridSPAdes(Antipov et al., 2016) (metaspades.py with default settings).
242 OPERA-MS was used for all coassemblies, including individual reactors (e.g., 10%-1) across all
243 timepoints, coassembly of all ML samples, and of samples partitioned by treatment (i.e., £
244 hospital effluent or 10% vs. 0%). All assemblies/coassemblies were searched for RGs and MGE
245  hallmark genes. Protein sequences were predicted using prodigal (-meta) and queried against
246  experimental sequences in BacMet v2,(Pal et al., 2014) CARD v3.0.7,(Alcock et al., 2020) and
247  mobileOG-db beatrix-v1.6(L. et al., 2022) using diamond(Buchfink et al., 2014) blastp (-id 90%
248  -e le-10). For subsequent contextual analysis, only those contigs with a hit from one of the
249  databases was retained.

250

251  MAG recovery and dereplication

252  Assemblies produced in the creation of the MGE and resistance gene catalogue were further
253  binned using both MetaBat2(Kang et al., 2019) and MaxBin.(Wu et al., 2016) Creation of sorted
254  bam files was performed using minimap2(Li, 2018) read alignment (-x sr) of the corresponding
255  short read samples. Only the coassembly of all samples (excluding deeply-sequenced ones) were
256  used for binning using both bbmap, minimap2 and subsequently MetaBat2 and MaxBin. The
257  resulting draft MAG collection was dereplicated using dRep v. 2 with default settings.

258

259  Insilico validation of Kairos assess

260  We assessed Kairos’s ability to distinguish samples with and without simulated plasmid
261  sequences bearing small differences in sequence (Supplementary Methods 4). Sequenced
262  plasmid assemblies were extracted from the assembled WGS of Aeromonas rivipollensis ArCPE-
263  VT-1 and Escherichia coli EctMDR-VT-1. We additionally identified two plasmids with >99%
264  ANI from plsdb(Schmartz et al., 2022) using blastn v.2.12.0+ (Table S1). To simulate an
265 insertion, ISEscan(Xie and Tang, 2017) was used to identify copy of IS91, a cut-and-paste type
266  transposable element, from one metagenomic assembly (Fig. S2). The extracted copy of
267  IS91(Berger and Haas, 2001) was inserted into a random position in the WGS-derived and plsdb-
268  derived plasmid sequences (Fig. S3). Simulated chimeric sequences were generated by randomly
269  merging 2,500 bp windows extracted from the plasmid sequences. Strain-level chimeras were
270  those where the source plasmids had >99% ANI (i.e., were derived from a WGS sequence and its
271  closest match from plsdb). More distant chimeras were generated by splicing either WGS with
272 WGS plasmid sequences, or with plsdb with plsdb sequences. Reads were then simulated using
273 in silico seq(Gourlé et al., 2019) (iss generate --seed 1 --cpus 32 --genomes
274  merged simulated.fasta --abundance uniform --n_reads 1000000 --model NovaSeq --mode kde -
275 -0 is_reads) and were spiked into the appropriate test samples (Supplementary Methods 4,
276  Table S2) at 1x, 5%, or 10x coverage.

277
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278  Evaluating taxonomic classification of bacterial chromosomes, plasmids, phages, and
279  mobile genetic elements

280  To provide guidance on the conditions that provide reliable taxonomic inferences for contigs, we
281  evaluated taxonomic classification using three different methods (kraken2(Wood et al., 2019)
282  with gtdb,(Parks et al., 2022) kraken2 with the standard reference database (downloaded August
283  2022), and mmseqs2 taxonomy(Mirdita et al., 2021) using gtdb (v202). We selected a set of
284 2,178 environment-associated bacteria and archaea from GenBank (Table S3) from which we
285  simulated contigs of 500 bp, 1,500 bp, 3,000 bp, and 5,000 bp in size by fragmenting the
286  genomes using seqgkit(Shen et al., 2016) and subjected them to taxonomic annotation. In
287  addition, we also assessed the fidelity of taxonomic assignments of MGEs applied to plasmids
288 (COMPASS),(Douarre et al., 2020) integrative elements (ICEberg 2.0),(Liu et al., 2019) and
289  phages (pVOG)(Grazziotin et al., 2017) using only 3,000 bp length fragments and mmseqs2 with
290 gtdb (Table S3). MGEs with genus labels of Raoutella, Shigella, Mycolicobacterium were
291  relabeled as Klebsiella, Escherichia, and Mycobacterium, respectively, consistent with gtdb.

292

293  Results and Discussion

294  Kairos enables capture of HGT in the unbinned accessory genome via direct analysis of
295  assemblies

296  The Kairos derep-detect workflow predicts potential HGTs directly from contigs rather than
297  relying on MAGs. This is in contrast to MetaCHIP, which leverages MAGs for its inferences.
298  Here and throughout, we employ data generated from a controlled and replicated experiment
299  using SBRs, a lab-scale bioreactor commonly employed for replicable simulation of activated
300 sludge wastewater treatment.(Brown et al., 2023; Maile-Moskowitz, Ayella,Connor Brown,
301 Latania Logan, Kang Xia, Amy Pruden, 2023) Sampling of the SBRs took place over three
302  weeks, during which time isolates of multidrug resistant bacteria were collected in addition to
303  samples for shotgun metagenomics using both Illumina and nanopore sequencing platforms.

304

305
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Fig. 4. Overview of three different methods for tackling microbiome HGT. (A) Two potential routes to identifying HGT in a
microbiome start with assembly of shotgun metagenomic sequencing data and lead to either analysis of binned assemblies, i.e.,
metagenome assembled genomes (MAGS) or via direct analysis of assemblies. MAGs have taxonomic assignments that are more
certain. However, the binning process tends to exclude important accessory genes. Analysis of assemblies directly (i.e., no
binning) improves recovery of accessory genes but means less certainty in taxonomic assignments. (B) One alternative approach
might be to cultivate and isolate relevant species, for example, drug resistant pathogens, and subject to whole genome sequencing
(WGS). While providing certain taxonomic assignments and robust coverage of accessory genes, there is limited throughput, and
the process excludes non-culturable organisms. The methods presented here do not comprise an exhaustive list of experimental
approaches.(Brito, 2021) (C-E): report results from a lab scale study of activated sludge for which culture and metagenomic data
were obtained. (C) A total of 17,954 ARG-encoding orfs were detected in the assembled contigs vs. 66 in MAGs. (D) A total of
573 unique ARG reference sequences were detected in the assembled contigs vs. 54 in MAGs. (E) Assemblies, MAGs, and WGS
contain partially overlapping sets of the resistome, with assemblies capturing the most.

Comparison of the MAGs, assemblies, and WGS data highlights the strengths and
weakness of three options for characterizing microbiome-level HGT (Fig. 4). After binning and
dereplication(Brown et al., 2023) only 66 ARGs (54 unique) and 3,810 mobileOGs (3,182
unique) were detected in the 876 MAGs vs. 17,954 ARGs (537 unique) and 1,408,559
mobileOGs (91,710 unique) in the MGE/resistance gene catalogue. Thus, use of metagenomic
assemblies directly, rather than MAGs, averted a 265-fold loss of resistance gene information.

Among the 66 ARGs detected in the MAGs, about half (28, 42%) were detected in a
MAG with a strain-level taxonomic assignment of E. coli D (bin86). This MAG was likely
derived from the same clonal lineage as one of the isolates with an ANI value >99.99%.
Encouragingly, the MAG-associated ARGs entirely overlapped with ARGs encountered in the
WGS of the E. coli isolate. However, the MAG lacked 58 ARGs that were associated with the
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331  WAGS. Further scrutiny reaffirmed that many of the MAG-encoded ARGs were those typically
332 encoded on chromosomes (e.g., genes encoding an AmpC-type beta-lactamase and a TolC outer
333 membrane protein) (Table S4), and thus were unlikely to be constituents of the accessory
334  genome. Notably, 15 ARGs detected in WGS were not present in the metagenome assemblies.
335
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338 approach. Network of MetaCHIP-predicted HGTs weighted by frequency of predicted gene sharing highlights centrality of
339 Proteobacteria, Verrumicrobiota, and Bacteroidia. (B) Network of Kairos derep-detect predicted HGTs weighted by frequency
340 of predicted gene sharing using the assemblies with taxonomic assignments derived from contigs. (C) Network of Kairos derep-
341 detect predicted HGTs weighted by frequency of predicted gene sharing using the MAGs with taxonomic assignments derived
342 from MAGs. (D) Phylum-level degrees (the number of edges corresponding to a particular node) from networks A-C highlight
343 similarity in topology between the three networks. (E) Phylum-level neighborhood connectivity values (the average number of
344 edges corresponding to the first order-neighbors) again highlight similarities between the three networks. A detailed display of
345 the experimental design is provided (Fig. S4).

346
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347  Concordance of network properties of predicted HGTs across source genomic catalogue
348 and method

349  We next conducted a parallel comparison of MetaCHIP versus Kairos derep-detect using MAGs
350  and assemblies, respectively. It was noted that when running MetaCHIP, the overall computation
351  time for the bins (876 MAGs totaling 3.19 Gbp with an N5y 0f 16,765) was a little over 2 days on
352  an institutional high performance computing cluster (128 cores with 200 GB memory). The
353  majority of this time was devoted towards the all vs. all blastn step. By contrast, the Kairos
354  derep-detect workflow required about 1 hour. It should be noted that recent versions of
355  MetaCHIP have pivoted from using blastn and substituted it for minimap2.

356
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359 Fig. 6. Head-to-head comparison of MetaCHIP and Kairos applied to MAGs and assemblies. (A) Overall number of
360 predicted HGTs partitioned by taxonomic level. Kairos derep-detect when applied to MAGs suggested a high number of HGTs
361  occurring at the level of genus. B) Volcano plot of PFAMs enrichment in either Kairos MAG genus-level HGT
362 predictions ( log2(enrichment)>0) or MetaCHIP predictions (log2(enrichment)<0). (C) Comparison of COG
363 categories predicted to be transferred between different methods. X-axis refers to taxonomic level (P: phylum; C:
364  class; O: order; F: family; G: genus).

365

366 Overall, the predicted gene sharing networks produced by the two pipelines were
367  similar across tools and target catalogues (i.e., MAGs or contigs) (Fig. SA-C). Over the full
368 range of conditions examined (i.e., Kairos derep-detect workflow applied to the assemblies or

369 MAGs; and MetaCHIP applied to the MAGs), network topology was found to be similar in terms
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370  of degree (i.e., the number of edges corresponding to a particular node) and neighborhood
371  connectivity (the average number of edges corresponding to the first order-neighbors) (Fig.
372 SD,E). Notably, Kairos and MetaCHIP agreed in terms of overall rates of HGT (Fig. 6A)
373  estimated across different taxonomic strata. However, it was also noted that estimated genus
374  level HGTs were highest when using Kairos with the MAG catalogue. Closer examination of the
375  gene families putatively enriched in HGT predictions produced by Kairos using MAGs revealed
376  the presence of several conserved protein families (e.g., PFAM Sigma70 12 associated with
377  bacterial RNA polymerase), suggesting that such families may be prone to erroneous
378  classification when using Kairos/MAGs (Fig. 6B). By contrast, MetaCHIP likely correctly
379  eliminates them through phylogenetic analysis, which compares single copy gene evolution to
380 putative HGT genes to differentiate HGT from vertical inheritance. While the potential for
381  misclassification of highly conserved protein families by Kairos when MAGs are used as the
382  input data is a duly-noted limitation, it likely could be subverted by excluding HGTs without co-
383  occurring MGE hallmark genes.

384 Examining the functional categories predicted to be transferred by the different
385 methods, the use of assembled contigs had an increased proportion of COG category L
386  (replication, recombination, repair), S (unknown function) and U (secretion/intracellular
387  trafficking) proteins relative to the other two approaches (Fig. 6C). By contrast, use of MAGs as
388  input produced more frequent predictions of COG categories C, E, and P, which are linked to
389  energy production, amino acid metabolism, and inorganic phosphate metabolism, respectively.
390  This is likely due to the differences in the genome “fractions” (i.e., core vs. accessory genes)
391  represented by the two catalogues.

392

393  Fidelity of contig taxonomic assignments

394  An important concern regarding the use of contigs rather than MAGs for HGT inference is to
395  what extent the contig taxonomic annotation is trustworthy. First, predictions of contig taxonomy
396  might be inaccurate due to contamination of the underlying genome database,(Abraham et al.,
397  2023) for example. This could lead to false positive prediction of HGT between genomes of the
398 true and erroneous taxonomic assignments. Second, lack of phylogenetic signal in a contig might
399  result in a low resolution assignment, essentially masking HGT at higher taxonomic levels (e.g.,
400  genus or species). Of particular concern are the taxonomic annotations of MGEs which, by
401  definition, have transient associations with individual bacteria. To interrogate what impact these
402  challenges have on yielding accurate taxonomic inferences, we performed a series of
403  experiments examining the efficacy of taxonomic inference using mmseqs2 or kraken2 on
404  simulated contigs derived from chromosomes of environmental bacteria, plasmids, phages, and
405  integrative elements (Figs S5-7). Briefly, it was found that taxonomic inferences using mmseqs2
406  with gtdb as the underlying taxonomic reference database yielded the best performance (i.e.,
407  greatest accuracy) for chromosomal sequences (with phylum-level accuracies ranging from
408  98.72%-99.24%) (Fig. S5). Taxonomic annotation of contigs simulated from MGEs using
409 mmseqs2 displayed a wider range of accuracies (Fig. S6A) and higher rates of unclassified
410  sequences (Fig. S6B). We additionally observed that contigs derived from conjugative or
411  mobilizable plasmids were less frequently classified (median 90% for non-mobilizable plasmids
412  vs. 80% for conjugative and 56% for mobilizable plasmids at the order taxonomic level).
413  However, conjugative plasmid contigs that were classified had median accuracies above 75% at
414  the level of genus and >90% at the family level (Fig. S7). This suggests that if annotation of
415  contigs successfully produces a taxonomic classification, then the taxonomic assignment is
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416  generally accurate, even for plasmids. However, it is not possible to know with certainty the host

417  ofaplasmid sequence in a metagenome without additional lines of evidence
418
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0 Fig. 7. The Kairos assess method provides sensitive detection of mobile element-associated microdiversity through

421 competitive read mapping. (A-D): The Kairos assess method. (A) Two contigs sharing an aligned region with A1/A2 and
422 B1/B2 representing boundary regions of the alignment are identified. (B) Windows of length 2/ (75 bp by default) in 5’ and 3’
423 directions on both contigs are extracted. (C) Reads are aligned to the extracted window regions and must meet a minimum
424 alignment length (100 bp by default to ensure a minimum of 25 bp of the unique region is kept). (D) Pattern of distinguishing
425 boundary regions presence/absence (i.e., Al, A2, B1, or B2) is used to infer the presence of the contig they are derived from.

426 Each row represents the different possibilities for two contigs A and B. For example, in the top row, only windows from A are
427 detected and thus contig A is determined to be present (as displayed in the second column). (E) Identification of plasmid
428 sequences (both WGS-derived and public database-derived) for evaluations. (F) Generation of in silico insertions using a copy of

429 IS91. (G) Simulation of chimeric fragments. (H) Breadth of coverage is unable to distinguish plasmid strains with or without a
430 copy of IS91. Red color indicates the sample that is mapped did not receive the spike-in. (I) Example coverage profiles of three
431 randomly selected chimeras are indistinguishable from correctly assembled fragment depth profiles (e.g., panel H). (J) ROC

432 curve highlighting the influence on target coverage (1%, 5%, and 10%) on the efficacy of Kairos assess for determining
433 presence/absence of plasmid genomes (created in panels E and F). (K) Breadth of coverage shows worse performance in
434 distinguishing the presence/absence of plasmids with or without IS91.

435

436  Kairos provides sensitive detection of structural microdiversity while reducing the
437  inclusion of chimeric assemblies in the analysis

438  Analysis of very recent HGT involving recombination of some sort requires consideration of
439  structural microdiversity (i.e., variation in a genomic region of 1 kbp or more) to successfully
440  distinguish between closely related genome sequences with and without a putative recombination
441  event. However, this is difficult to distinguish from chimeric assemblies, i.e., assembled
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442  sequences that are derived from more than one genome. Chimeric assemblies are especially
443  problematic in the context of HGT and gene sharing analyses as they can produce false-positive
444  associations between taxa, MGEs, and cargo genes. The Kairos assess workflow addresses this
445  through microdiversity aware sequence analysis (Fig. 7A-D). We assessed the competitive read
446  alignment method for its ability to distinguish the presence or absence of plasmid sequences with
447  or without an in silico inserted copy of insertion sequence IS91 that was extracted from the
448  assemblies (Figs. 7E-G, S2-S4). The plasmids in question were derived from isolates recovered
449  from the SBRs and close matches to the plasmids in plsdb, for a total of eight plasmid sequences
450  (Table S1). In addition, we compared this method to a static breadth of coverage (BoC) cut-off

bases detected

451 (BoC = ) based detection.

" total bases of plasmid
452 As expected, BoC was a poor indicator of plasmid presence or absence as all sequences

453  retained 2 50% BoC across all samples used for these analyses (Fig. 7H,I, Table S5). By
454  contrast, the support method provided near perfect detection of the plasmids (precision = 1 and
455  recall = 0.97) at 10x coverage while 5% coverage displayed slightly superior performance (Fig.
456  7J). However, even at lower coverages, Kairos assess maintained a greater accuracy than did
457  BoC-based classification (Fig. 7J,K). We hypothesized that the support method would eliminate
458  chimeric assemblies from analysis because chimera-derived loci would be unlikely to yield a
459  sufficient number of 2100 bp alignments. To test this, we combined 2.5 kbp fragments of the
460  1isolate-derived plasmids with 2.5 kbp fragments of plasmids derived from plsdb, simulating a
461  strain-level chimeric assembly. We also combined 2.5 kbp fragments of the E. coli and A.
462  rivipollensis plasmids containing the IS91 copy simulating chimeric assembly of more distantly
463  related plasmids, in part to mirror chimeric assemblies due to shared copies of MGEs. This
464  experiment was conducted using 10x coverage to maximize the potential for false positive
465  detection of chimeric fragments. This produced encouraging results, with 94.67% accuracy for
466  strain-level chimeras (e.g., A. rivipollensis + A. rivipollensis) and 97.60% accuracy for chimeras
467  constructed from divergent plasmids (e.g., A. rivipollensis + E. coli). Despite not completely
468  eliminating chimeric fragments entirely, the method demonstrated an overall tendency of
469  exclusion. This suggests that Kairos assess provides sensitive detection of contigs representing
470  structural microdiversity, while simultaneously diminishing chimeric assemblies.

471

472  In situ HGT analysis for incorporating ecology into environmental HGT models and
473  hypothesis generation

474  The framework proposed was specifically configured to enable HGT-relevant hypothesis testing
475  using longitudinally sampled microbiomes. An initial application of the in situ HGT framework
476  revealed multiple putative pathways and ecological dynamics of ARG transfer in activated
477  sludge linked to fluctuations in antibiotic levels(Brown et al., 2023). However, Kairos is unlikely
478  to detect instances of conjugation that did not also involve some form of recombination.
479  Conjugation is typically mediated through physical interactions between cells through the
480 activity of a protein supramolecular complex that translocates single-stranded DNA across donor
481  and recipient membranes.(Costa et al., 2021) This generally results in replicative transfer of an
482  identical copy of the MGE into the recipient cell,(Humbert et al., 2019) which would not be
483  distinguishable on the basis of gene content. On the other hand, Kairos is especially suited to
484  address HGT associated with recombination, such as that posed by transposable elements and
485  cargo elements of conjugative MGEs, and transduction. Indeed, initial applications of Kairos
486  recently suggested the transduction of macrolide resistance gene mphA across classes
487  Mpyxococcia and Polyangia, two species of the phylum Myxococcota. The gene itself appears to
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488  have originated from a Proteobacteria of the order Xanthomonadales. Thus, Kairos is able to
489  address modes of HGT beyond conjugation, a functionality that has been critically lacking in
490  existing approaches.(Brito, 2021; R. et al., 2018)

491 Including additional DNA sequencing data types in the analysis, such as
492  complimentary long read or Hi-C sequencing, could help to further improve detection
493  microbiome-level HGT, but this is not a requirement for Kairos. One note of caution is that
494  metagenomic assembly is notoriously prone to error due to the inherent complexity of
495  environmental microbiomes, which challenges computational algorithms. We previously
496  assessed multiple means of short-, long-, and hybrid-assembly and found that hybrid assembly
497  greatly improved the accuracy and length of metagenomic assemblies associated with
498  wastewater, a complex environmental microbiome. (Brown et al., 2021) Our results also
499  suggested that contigs with greater coverage (>5x coverage) were less likely to be chimeras,
500 although displayed increased rates of insertions and deletions. In the future, we envision that
501  improved methods for assembly graph mining could enable more exhaustive production of
502  assembled genomic catalogues directly from short read metagenomes.

503 Comprehensively identifying and quantifying key microbial ecological factors driving
504  microbiome-level HGT remains a critical frontier towards characterizing microbial evolution
505 across a suite of different domains. While, like any other method, metagenomic sequencing has
506 inherent limitations, the in situ framework presented here achieves its intended purpose of
507  generating hypotheses to support the development of models that characterize potential HGT
508 pathways at the microbiome-scale. The represents a substantial step forward towards
509  understanding such complex phenomena in situ, relative to extrapolating from simplistic
510  experiments.

511
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