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Abstract 12 
Horizontal gene transfer (HGT) occurring within microbiomes is linked to complex 13 
environmental and ecological dynamics that are challenging to replicate in controlled settings. 14 
Consequently, most extant studies of microbiome HGT are either simplistic experimental 15 
settings with tenuous relevance to real microbiomes or correlative studies that assume that HGT 16 
potential is a function of the relative abundance of mobile genetic elements (MGEs), the vehicles 17 
of HGT. Here we introduce Kairos as a bioinformatic tool deployed in nextflow for detecting 18 
HGT events “in situ,” i.e., within a microbiome, through analysis of time-series metagenomic 19 
sequencing data. The in-situ framework proposed here leverages available metagenomic data 20 
from a longitudinally sampled microbiome to assess whether the chronological occurrence of 21 
potential donors, recipients, and putatively transferred regions could plausibly have arisen due to 22 
HGT over a range of defined time periods. The centerpiece of the Kairos workflow is a novel 23 
competitive read alignment method that enables discernment of even very similar genomic 24 
sequences, such as those produced by MGE-associated recombination. A key advantage of 25 
Kairos is its reliance on assemblies rather than metagenome assembled genomes (MAGs), which 26 
avoids systematic exclusion of accessory genes associated with the binning process. In an 27 
example test-case of real world data, use of assemblies directly produced a 264-fold increase in 28 
the number of antibiotic resistance genes included in the analysis of HGT compared to analysis 29 
of MAGs with MetaCHIP. Further, in silico evaluation of contig taxonomy was performed to 30 
assess the accuracy of classification for both chromosomally- and MGE-derived sequences, 31 
indicating a high degree of accuracy even for conjugative plasmids up to the level of class or 32 
order. Thus, Kairos enables the analysis of very recent HGT events, making it suitable for 33 
studying rapid prokaryotic adaptation in environmental systems without disturbing the ornate 34 
ecological dynamics associated with microbiomes.  Current versions of the Kairos workflow are 35 
available here: https://github.com/clb21565/kairos.  36 
 37 
Introduction 38 
Horizontal gene transfer (HGT) facilitates bacterial adaptation in the face of shifting selective 39 
pressures. Many clinically-important antibiotic resistance genes (ARGs) have achieved global 40 
dissemination through HGT of ARG-bearing mobile genetic elements (MGEs).(R. et al., 2018; 41 
U.S. Department of Health and Human Services, 2019; United Nations Environment 42 
Programme, 2023) Examining HGT in the context of microbiomes has the potential to yield 43 
valuable insights regarding the ecology and evolutionary dynamics of bacterial populations, with 44 
especially important implications for antibiotic resistance. For example, HGT of broad host-45 
range MGEs is well documented in the human gut(Brito, 2021; Forster et al., 2022) and has been 46 
found to mediate transfer of ARGs across broad phylogenetic ranges, including between gut 47 
commensals and potential pathogens.(de Nies et al., 2022; Stecher et al., 2012) Human and 48 
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animal guts are suspected to be a particularly critical venue for the evolution of resistance in 49 
pathogens as clinical concentrations of antibiotics are unlikely to be encountered 50 
elsewhere.(Bengtsson-Palme and Larsson, 2016; Gullberg et al., 2011; Larsson and Flach, 2022) 51 
However, the environment, and particularly wastewater, is increasingly being recognized for its 52 
potential to facilitate the emergence of novel ARGs due to the coalescence of extremely high 53 
genetic diversity, MGEs, and selective agents.(Berglund et al., 2023; Ebmeyer et al., 2021) 54 
  Increased understanding of the ecological dynamics of HGT in complex environmental 55 
microbiomes such as sewage, and the wastewater treatment plants (WWTPs) that treat sewage, 56 
could aid surveillance and intervention efforts.(Moralez et al., 2021) For example, the 57 
operational parameters of WWTPs are extensively monitored, as required by law. Such 58 
monitoring data are essential to adjusting operational conditions as needed and ensuring that 59 
performance meets minimum standards of treated water quality prior to discharge. Developing a 60 
predictive understanding of bacterial HGT in WWTPs could further enable convenient and 61 
synergistic adjustments to operational decisions that could also mitigate unregulated 62 
contaminants of concern found in sewage, including antimicrobial resistance determinants. 63 
However, no reliable bioinformatic tools exist for monitoring HGT over short timescales in 64 
complex microbiomes, such as those represented by WWTPs.(Brito, 2021) Typical approaches 65 
include in vitro systems with model organisms or analysis of isolate whole genome sequence 66 
(WGS) data(Ding et al., 2022; Hutinel et al., 2021; Li et al., 2022), which are unlikely to capture 67 
ecological dynamics. Thus, there is a need for tools for tracking HGT that effectively capture the 68 
complex interplay between microbial ecology and HGT under real-world conditions.  69 
 MetaCHIP(Song et al., 2019), the first such effort towards specifically profiling 70 
microbiome-scale HGT, leverages metagenome assembled genomes (MAGs) for HGT detection. 71 
While well suited for identifying distant (i.e., older) HGT events, the dependency on MAGs 72 
poses several challenges, especially when investigating recent HGT events. It has been shown 73 
previously that the accessory genome is particularly difficult to bin accurately when multiple 74 
strains of the same species are present.(Maguire et al., 2020; Meziti et al., 2021) This is in part 75 
because some portions of the genome are common among strains (core regions) while others 76 
(accessory regions) are strain-specific. The result of this is that core and accessory regions 77 
display different depth profiles, which makes it challenging to successfully capture both the core 78 
and accessory regions in a MAG.(Meziti et al., 2021) Unfortunately, this problem is only 79 
exacerbated in the case of mobile ARGs and MGEs, both of which are by definition associated 80 
with the accessory genome.(Mazel, 2006; Oliveira et al., 2017) 81 
 Here we introduce Kairos as a bioinformatic tool for microbiome-level HGT analysis 82 
that addresses many of the above limitations. We further propose a framework of “in situ HGT” 83 
inference, aiming to provide objective criteria for inferring HGT events occurring within defined 84 
windows of time using time series metagenomic sequencing data. The in situ framework 85 
provides a means to assess whether the chronological occurrence of potential donors, recipients, 86 
and putatively transferred regions could plausibly have arisen due to HGT in the sampled period. 87 
The centerpiece of Kairos, the Kairos assess workflow, leverages a novel competitive read 88 
alignment method that is capable of distinguishing between even very similar genomic 89 
sequences. Notably, our methodology is applicable to any longitudinally sampled microbiome 90 
for which a reasonable sample of gene contexts can be obtained, thus enabling the potential for 91 
retrospective analysis of metagenomic datasets with simplified experimental designs.  92 
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 93 
Fig. 1. Overview of the Kairos derep-detect and assess workflows for profiling microbiome-level HGT via analysis of 94 
assembled metagenomic sequences. (A) The Kairos derep-detect workflow takes contigs (capturing a reasonable sample of 95 
target gene contexts) and taxonomy assignments as input and produces a list of identical open reading frames (orfs) shared 96 
among the contigs and a summary of potential HGTs. (B) The Kairos assess workflow takes contigs and multiple short read 97 
samples and produces assessments of contig presence/absences across the set of samples. If provided with additional information 98 
regarding the study design, it can infer putative in situ HGTs. All settings displayed are default values and are able to be specified 99 
by the user.  100 
 101 
Methods 102 
Kairos and in situ HGTs 103 
Kairos is a nextflow(Di Tommaso et al., 2017) pipeline that integrates multiple tools and python 104 
scripts to identify, score, and visualize potential HGTs from a metagenomic assembly. If 105 
provided sequencing reads, assemblies, and metadata relaying information about longitudinal 106 
aspects of the data, it also can identify potential in situ HGT events. We define in situ HGT in 107 
this context as any putative HGT event for which the chronological occurrence of predicted 108 
transferred regions, hosts, and recipients, display patterns of abundance or presence/absence 109 
consistent with the event having occurred within the sampled space of the microbiome in 110 
question.  111 
 Kairos first identifies potential HGTs as identical genes/open reading frames (orfs) 112 
shared by the input contigs that have different taxonomic classifications. Subsequent steps assess 113 
the bioinformatic support for a given potential HGT and provide the means to assess whether a 114 
potential HGT may have occurred in situ given a set of longitudinally sampled metagenomes. A 115 
complete, step-by-step workflow is described in the supplementary methods and methods below. 116 
 117 
Kairos derep-detect workflow 118 
The Kairos derep-detect workflow takes a set of contigs as input and identifies, scores,  and 119 
visualizes the potential HGTs (Fig. 1, Supplementary Methods 1). The first task in the derep-120 
detect workflow is to identify orfs from a set of contigs. Protein sequences or orfs are predicted 121 
using prodigal(Hyatt et al., 2010) (-p meta) and then clustered using mmseqs(Steinegger and 122 
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Söding, 2017) (coverage of ≥30% and identity of ≥99 %). The orfs predicted from the contigs are 123 
also annotated for MGE hallmarks (i.e., mobileOGs) from mobileOG-db(L. et al., 2022) using 124 
diamond(Buchfink et al., 2014) (--id 30 --evalue 1e-5) and for ARGs using deepARG-125 
db(Arango-Argoty et al., 2018) (--id 80 --evalue 1e-10 --query-cov 0.6) (Supplementary 126 
Methods 2). The user is also able to provide their own database of target genes which will be 127 
likewise scored as ARGs are. 128 

Optionally, contigs may be dereplicated by calculating the proportion of shared orfs 129 
between two contigs. If so, contigs with ≥50% shared orfs relative to the smaller contig (i.e., 130 
50% ����	
 ���� 


������ ��	�


��
 ��	������� �,��	������� 	�
� are potential duplicates by default. Clusters are 131 

dereplicated by selecting the member with the largest number of orfs as the representative. In the 132 
case of ties, one of the tied cluster members are randomly selected. The number of contexts 133 
ascribed to a gene is thus the number of dereplicated contigs with the gene.  134 
 135 
Defining potential HGTs 136 
We define any given contig (referring to any contig, scaffold, extracted window from a genome, 137 
or other subsection of a genome):  138 

�� � ��� , ��� 
 139 
where Ti is the user supplied taxonomic annotation of  the contig Ci and Gi is the set of genes on 140 
the contig, where �� � �	�, 	�, . . . , 	��.  Two contigs, ��  and �� , sharing identical genes would 141 
be a potential HGT if: 142 

�� �  �� and �� � �� � � 143 
 144 

Scoring potential HGTs 145 
Potential HGTs (as represented above) are ranked according to gene content features 146 
(Supplemental Methods 2). First, potential HGTs that involve MGE hallmark genes, such as 147 
those  aggregated by mobileOG-db, are considered to be more plausible and thus a potential 148 
HGT associated with a mobileOG receives a score of 1 and otherwise 0. The mobileOG can 149 
either directly be the shared gene or can simply co-occur with the shared gene on one or both of 150 
the contigs. In the latter case, the orf matching a mobileOG must be within 5,000 bp of the 151 
putatively transferred gene. This distance should be sufficient to be inclusive of co-occurrences 152 
with insertion sequence elements, integrative elements, or transposons.(Liu et al., 2019; Ross et 153 
al., 2021; Siguier et al., 2015) In addition, a score of 1 is applied if the putatively transferred orf 154 
aligns to one of the target database sequences (deepARG-db by default).  155 
 156 
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 157 
Fig. 2. Visualizing potential HGTs provides a powerful means for assessing biological plausibility. (A) Visualization 158 
workflow implemented in Kairos as a supplementary script takes in user-supplied text files of contigs to be visualized, extracts 159 
them, and produces annotations and visualizations via clinker.(Gilchrist and Chooi, 2021) (B) Example visualizations produced 160 
using clinker.  161 
 162 
Visualizing potential HGTs 163 
Visualization of putative HGTs is powerful for assessing biological plausibility. The visualize 164 
workflow annotates a set of potential HGTs using prokka and visualizes them using 165 
clinker(Gilchrist and Chooi, 2021) (Fig. 2). The output html files are interactive and can be 166 
modified to the user’s preference.  167 
 168 

 169 
Fig. 3. A framework for inferring “in situ” HGT events from longitudinal metagenomic data. We propose a framework for 170 
inferring HGT occurring within a sampled period of a microbiome (i.e., in situ). The potential for in situ HGT is assessed by 171 
evaluating a set of hypotheses regarding the chronological occurrence of potential donors and recipients in order to determine 172 
whether the observed gene co-occurrence could have plausibly arisen within the sampled period.  173 
 174 
Inferring in situ HGT events 175 
We define in situ HGT as any instance of gene sharing between two contigs with different 176 
taxonomic assignments wherein the paired contigs display patterns of presence/absence 177 
consistent with an HGT event occurring during a sampled period. Inferring in situ HGT events 178 
from a longitudinally sampled microbiome is performed using generic and case-specific 179 
hypotheses for each instance of potential HGT (Fig. 3). For example:  180 
 181 

H01 = The HGT-associated insertion/deletion already existed in the microbiome at a 182 
previous time point and thus could not be due to recombination within the period between 183 
samplings.   184 
 185 
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HA1 = The HGT-associated insertion/deletion was not detectable in the microbiome at a 186 
previous time point and therefore could have arisen as a result of recombination within 187 
the span of the experimental period.  188 
 189 
H02 = Neither contigs comprising the HGT-associated insertion/deletion were detectable 190 
at any previous timepoint, implying that there is no detectable donor.  191 
 192 
HA2 = One of the contigs comprising the HGT-associated insertion/deletion was 193 
detectable at a prior timepoint suggesting that the HGT-associated insertion/deletion 194 
could have arisen as a result of recombination within the span of the experimental period. 195 

 196 
These hypotheses can be amended as additional null hypotheses arise, or as relevant to the 197 
experimental design in question.  198 
 199 
Kairos assess workflow provides sensitive detection of contigs associated with potential HGT 200 
The Kairos assess workflow identifies and then uses boundary regions defined by the edges of an 201 
alignment between two contigs (Fig. 1, Supplementary Methods 3, Fig. S1) to further 202 
investigate the potential HGTs. All vs. all alignment of a set of contigs with potential HGTs is 203 
performed using minimap2(Li, 2018) (-x asm5 -X). Edge regions, defined by coordinates of 204 
(alignment-start ± length l and alignment-end ± length l, default of 75 bps) are written to bedfiles 205 
that are then sorted, clustered, and extracted from the contigs using bedtools.(Quinlan, 2014) 206 
Edges are dereplicated using mmseqs (identity ≥99% and coverage = 88%). Short reads are 207 
mapped to the dereplicated edges using salmon(Patro et al., 2017) quant and the 208 
presence/absence of each region of variation are assessed by counting the number of reads 209 
mapping to each boundary region passing quality filtering (100 bp minimum alignment length, 210 
i.e., samtools view -m 100). By default, a minimum of one read is taken as evidence of the locus 211 
being present. The minimum alignment setting of 100 bp ensures that at least 25 bp of the unique 212 
portion of the locus is present (hence, it is a ‘competitive’ reads mapping approach). Results of 213 
the read mapping are summarized using samtools(Danecek et al., 2021) coverage (using default 214 
parameters). Read mapping results are extended to apply to edge cluster members by combining 215 
the output of samtools coverage with the edge cluster table. The presence/absence of structural 216 
variations are determined by counting the proportion of distinguishing boundaries detected to 217 
total distinguishing boundaries in the contig (≥90% of distinguishing boundaries must be 218 
detected).  219 
 220 
Longitudinally sampled sequencing batch reactors  221 
Sequencing batch reactors (SBRs) were operated using influent recovered from a local municipal 222 
WWTP and large urban hospital in Illinois. Extended details of SBR operation can be found 223 
elsewhere.(Brown et al., 2023; Maile-Moskowitz, Ayella,Connor Brown, Latania Logan, Kang 224 
Xia, Amy Pruden, 2023) The SBRs were seeded with activated sludge from the corresponding 225 
municipal WWTP and were maintained for a period of weeks prior to reaching steady-state 226 
operation (i.e., stable removal of organic carbon). For the following three weeks, samples were 227 
collected for culture of antibiotic resistant pathogens (Klebsiella pneumoniae, Escherichia coli, 228 
and carbapenemase producing Enterobacterales (CPE). This produced a catalogue of 456 isolates 229 
in addition to 111 Illumina shotgun metagenomes of influent, effluent, and AS, and 36 nanopore 230 
long read samples. AS and influent samples were sequenced to approximately 5 Gbp per sample 231 
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and effluent to 3 Gbp per sample. A subset of AS and influent samples (n = 6) were also 232 
subjected to deep sequencing (mean 36 Gbp per sample). 233 
 234 
Assembly of an MGE and resistance gene catalogue 235 
We contrasted MAG-based inferences with a catalogue of contigs with a catalogue of MGEs and 236 
resistance genes created in a parallel study.(Brown et al., 2023) Briefly, multiple hybrid 237 
assembly strategies were performed using short Illumina reads and long minION nanopore reads 238 
to improve recovery of informative resistance gene contexts. Briefly, individual samples were 239 
assembled using OPERA-MS(Bertrand et al., 2019) (--contig-len-thr 1000 –long-read-mapper 240 
minimap2) and hybridSPAdes(Antipov et al., 2016) (metaspades.py with default settings). 241 
OPERA-MS was used for all coassemblies, including individual reactors (e.g., 10%-1) across all 242 
timepoints, coassembly of all ML samples, and of samples partitioned by treatment (i.e., ± 243 
hospital effluent or 10% vs. 0%). All assemblies/coassemblies were searched for RGs and MGE 244 
hallmark genes. Protein sequences were predicted using prodigal (-meta) and queried against 245 
experimental sequences in BacMet v2,(Pal et al., 2014) CARD v3.0.7,(Alcock et al., 2020) and 246 
mobileOG-db beatrix-v1.6(L. et al., 2022) using diamond(Buchfink et al., 2014) blastp (-id 90% 247 
-e 1e-10). For subsequent contextual analysis, only those contigs with a hit from one of the 248 
databases was retained.  249 
 250 
MAG recovery and dereplication 251 
Assemblies produced in the creation of the MGE and resistance gene catalogue were further 252 
binned using both MetaBat2(Kang et al., 2019) and MaxBin.(Wu et al., 2016) Creation of sorted 253 
bam files was performed using minimap2(Li, 2018) read alignment (-x sr) of the corresponding 254 
short read samples. Only the coassembly of all samples (excluding deeply-sequenced ones) were 255 
used for binning using both bbmap, minimap2 and subsequently MetaBat2 and MaxBin. The 256 
resulting draft MAG collection was dereplicated using dRep v. 2 with default settings.  257 
 258 
In silico validation of Kairos assess 259 
We assessed Kairos’s ability to distinguish samples with and without simulated plasmid 260 
sequences bearing small differences in sequence (Supplementary Methods 4). Sequenced 261 
plasmid assemblies were extracted from the assembled WGS of Aeromonas rivipollensis ArCPE-262 
VT-1 and Escherichia coli EcrMDR-VT-1. We additionally identified two plasmids with >99% 263 
ANI from plsdb(Schmartz et al., 2022) using blastn v.2.12.0+ (Table S1). To simulate an 264 
insertion, ISEscan(Xie and Tang, 2017) was used to identify copy of IS91, a cut-and-paste type 265 
transposable element, from one metagenomic assembly (Fig. S2). The extracted copy of 266 
IS91(Berger and Haas, 2001) was inserted into a random position in the WGS-derived and plsdb-267 
derived plasmid sequences (Fig. S3). Simulated chimeric sequences were generated by randomly 268 
merging 2,500 bp windows extracted from the plasmid sequences. Strain-level chimeras were 269 
those where the source plasmids had >99% ANI (i.e., were derived from a WGS sequence and its 270 
closest match from plsdb). More distant chimeras were generated by splicing either WGS with 271 
WGS plasmid sequences, or with plsdb with plsdb sequences. Reads were then simulated using 272 
in silico seq(Gourlé et al., 2019) (iss generate --seed 1 --cpus 32 --genomes 273 
merged_simulated.fasta --abundance uniform --n_reads 1000000 --model NovaSeq --mode kde -274 
-o is_reads) and were spiked into the appropriate test samples (Supplementary Methods 4, 275 
Table S2) at 1×, 5×, or 10× coverage.   276 
 277 
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Evaluating taxonomic classification of bacterial chromosomes, plasmids, phages, and 278 
mobile genetic elements  279 
To provide guidance on the conditions that provide reliable taxonomic inferences for contigs, we 280 
evaluated taxonomic classification using three different methods (kraken2(Wood et al., 2019) 281 
with gtdb,(Parks et al., 2022) kraken2 with the standard reference database (downloaded August 282 
2022), and mmseqs2 taxonomy(Mirdita et al., 2021) using gtdb (v202). We selected a set of 283 
2,178 environment-associated bacteria and archaea from GenBank (Table S3) from which we 284 
simulated contigs of 500 bp, 1,500 bp, 3,000 bp, and 5,000 bp in size by fragmenting the 285 
genomes using seqkit(Shen et al., 2016) and subjected them to taxonomic annotation. In 286 
addition, we also assessed the fidelity of taxonomic assignments of MGEs applied to plasmids 287 
(COMPASS),(Douarre et al., 2020) integrative elements (ICEberg 2.0),(Liu et al., 2019) and 288 
phages (pVOG)(Grazziotin et al., 2017) using only 3,000 bp length fragments and mmseqs2 with 289 
gtdb (Table S3). MGEs with genus labels of Raoutella, Shigella, Mycolicobacterium were 290 
relabeled as Klebsiella, Escherichia, and Mycobacterium, respectively, consistent with gtdb.   291 
 292 
Results and Discussion 293 
Kairos enables capture of HGT in the unbinned accessory genome via direct analysis of 294 
assemblies 295 
The Kairos derep-detect workflow predicts potential HGTs directly from contigs rather than 296 
relying on MAGs. This is in contrast to MetaCHIP, which leverages MAGs for its inferences. 297 
Here and throughout, we employ data generated from a controlled and replicated experiment 298 
using SBRs, a lab-scale bioreactor commonly employed for replicable simulation of activated 299 
sludge wastewater treatment.(Brown et al., 2023; Maile-Moskowitz, Ayella,Connor Brown, 300 
Latania Logan, Kang Xia, Amy Pruden, 2023) Sampling of the SBRs took place over three 301 
weeks, during which time isolates of multidrug resistant bacteria were collected in addition to 302 
samples for shotgun metagenomics using both Illumina and nanopore sequencing platforms.  303 
 304 
 305 
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 306 
Fig. 4. Overview of three different methods for tackling microbiome HGT. (A) Two potential routes to identifying HGT in a 307 
microbiome start with assembly of shotgun metagenomic sequencing data and lead to either analysis of binned assemblies, i.e., 308 
metagenome assembled genomes (MAGs) or via direct analysis of assemblies. MAGs have taxonomic assignments that are more 309 
certain. However, the binning process tends to exclude important accessory genes. Analysis of assemblies directly (i.e., no 310 
binning) improves recovery of accessory genes but means less certainty in taxonomic assignments. (B) One alternative approach 311 
might be to cultivate and isolate relevant species, for example, drug resistant pathogens, and subject to whole genome sequencing 312 
(WGS). While providing certain taxonomic assignments and robust coverage of accessory genes, there is limited throughput, and 313 
the process excludes non-culturable organisms. The methods presented here do not comprise an exhaustive list of experimental 314 
approaches.(Brito, 2021) (C-E): report results from a lab scale study of activated sludge for which culture and metagenomic data 315 
were obtained. (C) A total of 17,954 ARG-encoding orfs were detected in the assembled contigs vs. 66 in MAGs. (D) A total of 316 
573 unique ARG reference sequences were detected in the assembled contigs vs. 54 in MAGs. (E) Assemblies, MAGs, and WGS 317 
contain partially overlapping sets of the resistome, with assemblies capturing the most.  318 
 319 
 Comparison of the MAGs, assemblies, and WGS data highlights the strengths and 320 
weakness of three options for characterizing microbiome-level HGT (Fig. 4). After binning and 321 
dereplication(Brown et al., 2023) only 66 ARGs (54 unique) and 3,810 mobileOGs (3,182 322 
unique) were detected in the 876 MAGs vs. 17,954 ARGs (537 unique) and 1,408,559 323 
mobileOGs (91,710 unique) in the MGE/resistance gene catalogue. Thus, use of metagenomic 324 
assemblies directly, rather than MAGs, averted a 265-fold loss of resistance gene information.  325 
 Among the 66 ARGs detected in the MAGs, about half (28, 42%) were detected in a 326 
MAG with a strain-level taxonomic assignment of E. coli D (bin86). This MAG was likely 327 
derived from the same clonal lineage as one of the isolates with an ANI value >99.99%. 328 
Encouragingly, the MAG-associated ARGs entirely overlapped with ARGs encountered in the 329 
WGS of the E. coli isolate. However, the MAG lacked 58 ARGs that were associated with the 330 
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WGS. Further scrutiny reaffirmed that many of the MAG-encoded ARGs were those typically 331 
encoded on chromosomes (e.g., genes encoding an AmpC-type beta-lactamase and a TolC outer 332 
membrane protein) (Table S4), and thus were unlikely to be constituents of the accessory 333 
genome. Notably, 15 ARGs detected in WGS were not present in the metagenome assemblies.  334 
 335 

 336 
Fig. 5. Concordance of network properties of predicted HGTs across source genomic catalogue and HGT prediction 337 
approach. Network of MetaCHIP-predicted HGTs weighted by frequency of predicted gene sharing highlights centrality of 338 
Proteobacteria, Verrumicrobiota, and Bacteroidia. (B) Network of Kairos derep-detect predicted HGTs weighted by frequency 339 
of predicted gene sharing using the assemblies with taxonomic assignments derived from contigs. (C) Network of Kairos derep-340 
detect predicted HGTs weighted by frequency of predicted gene sharing using the MAGs with taxonomic assignments derived 341 
from MAGs. (D) Phylum-level degrees (the number of edges corresponding to a particular node) from networks A-C highlight 342 
similarity in topology between the three networks. (E) Phylum-level neighborhood connectivity values (the average number of 343 
edges corresponding to the first order-neighbors) again highlight similarities between the three networks. A detailed display of 344 
the experimental design is provided (Fig. S4).  345 
 346 
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Concordance of network properties of predicted HGTs across source genomic catalogue 347 
and method 348 
We next conducted a parallel comparison of MetaCHIP versus Kairos derep-detect using MAGs 349 
and assemblies, respectively. It was noted that when running MetaCHIP, the overall computation 350 
time for the bins (876 MAGs totaling 3.19 Gbp with an N50 of 16,765) was a little over 2 days on 351 
an institutional high performance computing cluster (128 cores with 200 GB memory). The 352 
majority of this time was devoted towards the all vs. all blastn step. By contrast, the Kairos 353 
derep-detect workflow required about 1 hour. It should be noted that recent versions of 354 
MetaCHIP have pivoted from using blastn and substituted it for minimap2.  355 
 356 

 357 
 358 
Fig. 6. Head-to-head comparison of MetaCHIP and Kairos applied to MAGs and assemblies. (A) Overall number of 359 
predicted HGTs partitioned by taxonomic level. Kairos derep-detect when applied to MAGs suggested a high number of HGTs 360 
occurring at the level of genus. B) Volcano plot of PFAMs enrichment in either Kairos MAG genus-level HGT 361 
predictions ( log2(enrichment)>0) or MetaCHIP predictions (log2(enrichment)<0). (C) Comparison of COG 362 
categories predicted to be transferred between different methods. X-axis refers to taxonomic level (P: phylum; C: 363 
class; O: order; F: family; G: genus).   364 
 365 
 Overall, the predicted gene sharing networks produced by the two pipelines were 366 
similar across tools and target catalogues (i.e., MAGs or contigs) (Fig. 5A-C). Over the full 367 
range of conditions examined (i.e., Kairos derep-detect workflow applied to the assemblies or 368 
MAGs; and MetaCHIP applied to the MAGs), network topology was found to be similar in terms 369 
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of degree (i.e., the number of edges corresponding to a particular node) and neighborhood 370 
connectivity (the average number of edges corresponding to the first order-neighbors) (Fig. 371 
5D,E). Notably, Kairos and MetaCHIP agreed in terms of overall rates of HGT (Fig. 6A) 372 
estimated across different taxonomic strata. However, it was also noted that estimated genus 373 
level HGTs were highest when using Kairos with the MAG catalogue. Closer examination of the 374 
gene families putatively enriched in HGT predictions produced by Kairos using MAGs revealed 375 
the presence of several conserved protein families (e.g., PFAM Sigma70_r2 associated with 376 
bacterial RNA polymerase), suggesting that such families may be prone to erroneous 377 
classification when using Kairos/MAGs (Fig. 6B). By contrast, MetaCHIP likely correctly 378 
eliminates them through phylogenetic analysis, which compares single copy gene evolution to 379 
putative HGT genes to differentiate HGT from vertical inheritance. While the potential for 380 
misclassification of highly conserved protein families by Kairos when MAGs are used as the 381 
input data is a duly-noted limitation, it likely could be subverted by excluding HGTs without co-382 
occurring MGE hallmark genes.  383 
 Examining the functional categories predicted to be transferred by the different 384 
methods, the use of assembled contigs had an increased proportion of COG category L 385 
(replication, recombination, repair), S (unknown function) and U (secretion/intracellular 386 
trafficking) proteins relative to the other two approaches (Fig. 6C).  By contrast, use of MAGs as 387 
input produced more frequent predictions of COG categories C, E, and P, which are linked to 388 
energy production, amino acid metabolism, and inorganic phosphate metabolism, respectively. 389 
This is likely due to the differences in the genome “fractions” (i.e., core vs. accessory genes) 390 
represented by the two catalogues. 391 
 392 
Fidelity of contig taxonomic assignments 393 
An important concern regarding the use of contigs rather than MAGs for HGT inference is to 394 
what extent the contig taxonomic annotation is trustworthy. First, predictions of contig taxonomy 395 
might be inaccurate due to contamination of the underlying genome database,(Abraham et al., 396 
2023) for example. This could lead to false positive prediction of HGT between genomes of the 397 
true and erroneous taxonomic assignments. Second, lack of phylogenetic signal in a contig might 398 
result in a low resolution assignment, essentially masking HGT at higher taxonomic levels (e.g., 399 
genus or species). Of particular concern are the taxonomic annotations of MGEs which, by 400 
definition, have transient associations with individual bacteria. To interrogate what impact these 401 
challenges have on yielding accurate taxonomic inferences, we performed a series of 402 
experiments examining the efficacy of taxonomic inference using mmseqs2 or kraken2 on 403 
simulated contigs derived from chromosomes of environmental bacteria, plasmids, phages, and 404 
integrative elements (Figs S5-7). Briefly, it was found that taxonomic inferences using mmseqs2 405 
with gtdb as the underlying taxonomic reference database yielded the best performance (i.e., 406 
greatest accuracy) for chromosomal sequences (with phylum-level accuracies ranging from 407 
98.72%-99.24%) (Fig. S5). Taxonomic annotation of contigs simulated from MGEs using 408 
mmseqs2 displayed a wider range of accuracies (Fig. S6A) and higher rates of unclassified 409 
sequences (Fig. S6B). We additionally observed that contigs derived from conjugative or 410 
mobilizable plasmids were less frequently classified (median 90% for non-mobilizable plasmids 411 
vs. 80% for conjugative and 56% for mobilizable plasmids at the order taxonomic level). 412 
However, conjugative plasmid contigs that were classified had median accuracies above 75% at 413 
the level of genus and >90% at the family level (Fig. S7). This suggests that if annotation of 414 
contigs successfully produces a taxonomic classification, then the taxonomic assignment is 415 
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generally accurate, even for plasmids. However, it is not possible to know with certainty the host 416 
of a plasmid sequence in a metagenome without additional lines of evidence   417 
 418 

 419 
Fig. 7. The Kairos assess method provides sensitive detection of mobile element-associated microdiversity through 420 
competitive read mapping. (A-D): The Kairos assess method. (A) Two contigs sharing an aligned region with A1/A2 and 421 
B1/B2 representing boundary regions of the alignment are identified. (B) Windows of length 2l (75 bp by default) in 5’ and 3’ 422 
directions on both contigs are extracted. (C) Reads are aligned to the extracted window regions and must meet a minimum 423 
alignment length (100 bp by default to ensure a minimum of 25 bp of the unique region is kept). (D) Pattern of distinguishing 424 
boundary regions presence/absence (i.e., A1, A2, B1, or B2) is used to infer the presence of the contig they are derived from. 425 
Each row represents the different possibilities for two contigs A and B. For example, in the top row, only windows from A are 426 
detected and thus contig A is determined to be present (as displayed in the second column).  (E) Identification of plasmid 427 
sequences (both WGS-derived and public database-derived) for evaluations. (F) Generation of in silico insertions using a copy of 428 
IS91. (G) Simulation of chimeric fragments. (H) Breadth of coverage is unable to distinguish plasmid strains with or without a 429 
copy of IS91. Red color indicates the sample that is mapped did not receive the spike-in. (I) Example coverage profiles of three 430 
randomly selected chimeras are indistinguishable from correctly assembled fragment depth profiles (e.g., panel H). (J) ROC 431 
curve highlighting the influence on target coverage (1×, 5×, and 10×) on the efficacy of Kairos assess for determining 432 
presence/absence of plasmid genomes (created in panels E and F). (K) Breadth of coverage shows worse performance in 433 
distinguishing the presence/absence of plasmids with or without IS91. 434 
 435 
Kairos provides sensitive detection of structural microdiversity while reducing the 436 
inclusion of chimeric assemblies in the analysis 437 
Analysis of very recent HGT involving recombination of some sort requires consideration of 438 
structural microdiversity (i.e., variation in a genomic region of 1 kbp or more) to successfully 439 
distinguish between closely related genome sequences with and without a putative recombination 440 
event. However, this is difficult to distinguish from chimeric assemblies, i.e., assembled 441 
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sequences that are derived from more than one genome. Chimeric assemblies are especially 442 
problematic in the context of HGT and gene sharing analyses as they can produce false-positive 443 
associations between taxa, MGEs, and cargo genes. The Kairos assess workflow addresses this 444 
through microdiversity aware sequence analysis (Fig. 7A-D). We assessed the competitive read 445 
alignment method for its ability to distinguish the presence or absence of plasmid sequences with 446 
or without an in silico inserted copy of  insertion sequence IS91 that was extracted from the 447 
assemblies (Figs. 7E-G, S2-S4). The plasmids in question were derived from isolates recovered 448 
from the SBRs and close matches to the plasmids in plsdb, for a total of eight plasmid sequences 449 
(Table S1). In addition, we compared this method to a static breadth of coverage (BoC) cut-off 450 
(��� � ����� ��������

�	��
 ����� 	� �
��
��
) based detection.  451 

 As expected, BoC was a poor indicator of plasmid presence or absence as all sequences 452 
retained ≥ 50% BoC across all samples used for these analyses (Fig. 7H,I, Table S5). By 453 
contrast, the support method provided near perfect detection of the plasmids (precision = 1 and 454 
recall = 0.97) at 10× coverage while 5× coverage displayed slightly superior performance (Fig. 455 
7J). However, even at lower coverages, Kairos assess maintained a greater accuracy than did 456 
BoC-based classification (Fig. 7J,K). We hypothesized that the support method would eliminate 457 
chimeric assemblies from analysis because chimera-derived loci would be unlikely to yield a 458 
sufficient number of ≥100 bp alignments. To test this, we combined 2.5 kbp fragments of the 459 
isolate-derived plasmids with 2.5 kbp fragments of plasmids derived from plsdb, simulating a 460 
strain-level chimeric assembly. We also combined 2.5 kbp fragments of the E. coli and A. 461 
rivipollensis plasmids containing the IS91 copy simulating chimeric assembly of more distantly 462 
related plasmids, in part to mirror chimeric assemblies due to shared copies of MGEs. This 463 
experiment was conducted using 10× coverage to maximize the potential for false positive 464 
detection of chimeric fragments. This produced encouraging results, with 94.67% accuracy for 465 
strain-level chimeras (e.g., A. rivipollensis + A. rivipollensis) and 97.60% accuracy for chimeras 466 
constructed from divergent plasmids (e.g., A. rivipollensis + E. coli). Despite not completely 467 
eliminating chimeric fragments entirely, the method demonstrated an overall tendency of 468 
exclusion. This suggests that Kairos assess provides sensitive detection of contigs representing 469 
structural microdiversity, while simultaneously diminishing chimeric assemblies.   470 
 471 
In situ HGT analysis for incorporating ecology into environmental HGT models and 472 
hypothesis generation 473 
The framework proposed was specifically configured to enable HGT-relevant hypothesis testing 474 
using longitudinally sampled microbiomes. An initial application of the in situ HGT framework 475 
revealed multiple putative pathways and ecological dynamics of ARG transfer in activated 476 
sludge linked to fluctuations in antibiotic levels(Brown et al., 2023). However, Kairos is unlikely 477 
to detect instances of conjugation that did not also involve some form of recombination. 478 
Conjugation is typically mediated through physical interactions between cells through the 479 
activity of a protein supramolecular complex that translocates single-stranded DNA across donor 480 
and recipient membranes.(Costa et al., 2021) This generally results in replicative transfer of an 481 
identical copy of the MGE into the recipient cell,(Humbert et al., 2019) which would not be 482 
distinguishable on the basis of gene content. On the other hand, Kairos is especially suited to 483 
address HGT associated with recombination, such as that posed by transposable elements and 484 
cargo elements of conjugative MGEs, and transduction. Indeed, initial applications of Kairos 485 
recently suggested the transduction of macrolide resistance gene mphA across classes 486 
Myxococcia and Polyangia, two species of the phylum Myxococcota. The gene itself appears to 487 
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have originated from a Proteobacteria of the order Xanthomonadales. Thus, Kairos is able to 488 
address modes of HGT beyond conjugation, a functionality that has been critically lacking in 489 
existing approaches.(Brito, 2021; R. et al., 2018)  490 
 Including additional DNA sequencing data types in the analysis, such as 491 
complimentary long read or Hi-C sequencing, could help to further improve detection 492 
microbiome-level HGT, but this is not a requirement for Kairos. One note of caution is that 493 
metagenomic assembly is notoriously prone to error due to the inherent complexity of 494 
environmental microbiomes, which challenges computational algorithms. We previously 495 
assessed multiple means of short-, long-, and hybrid-assembly and found that hybrid assembly 496 
greatly improved the accuracy and length of metagenomic assemblies associated with 497 
wastewater, a complex environmental microbiome. (Brown et al., 2021) Our results also 498 
suggested that contigs with greater coverage (>5× coverage) were less likely to be chimeras, 499 
although displayed increased rates of insertions and deletions. In the future, we envision that 500 
improved methods for assembly graph mining could enable more exhaustive production of 501 
assembled genomic catalogues directly from short read metagenomes.  502 
 Comprehensively identifying and quantifying key microbial ecological factors driving 503 
microbiome-level HGT remains a critical frontier towards characterizing microbial evolution 504 
across a suite of different domains. While, like any other method, metagenomic sequencing has 505 
inherent limitations, the in situ framework presented here achieves its intended purpose of 506 
generating hypotheses to support the development of models that characterize potential HGT 507 
pathways at the microbiome-scale. The represents a substantial step forward towards 508 
understanding such complex phenomena in situ, relative to extrapolating from simplistic 509 
experiments.  510 
 511 
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