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Abstract— Efficient and intuitive Human-Robot interfaces
are crucial for expanding the user base of operators and
enabling new applications in critical areas such as precision
agriculture, automated construction, rehabilitation, and envi-
ronmental monitoring. In this paper, we investigate the design
of intuitive human-robot interfaces for the teleoperation of
dynamical systems. The proposed framework seeks an optimal
interface that complies with key concepts such as user comfort,
efficiency, continuity, and consistency. Moreover, we show that
optimal interfaces arising from common robot tasks are user-
friendly and ensure a certain degree of naturalness within our
framework. As a proof-of-concept, we introduce an approach to
teleoperating underwater vehicles, allowing the translation be-
tween human body movements into vehicle control commands.
Field experiments were conducted utilizing a custom head-
mounted display coupled with a smartphone to interpret body
movements and transmit corresponding commands to operate a
remotely operated vehicle. These experiments were performed
in a marine robotics research testbed to validate the efficacy
and practicality of our proposed interface design.

Index Terms— Human-Robot Interaction, Teleoperation, Re-
motely Operated Vehicles Marine Robotics

I. INTRODUCTION

The design of intuitive, robust, and efficient human-robot
interfaces can extend the user base of operators and enable
a new generation of applications in critical areas such as
precision agriculture, automated construction, rehabilitation,
and environmental monitoring [1], [2], [3]. Due to advances
in virtual reality applications in the last few years, user
interface design for robotic teleoperation drew increasingly
more attention since the human performance of teleoperated
systems can be decremented by data bandwidth, time de-
lays, frame rates, and lack of concentration, among other
interface-related factors [4]. Furthermore, environments with
high spatio-temporal variability, sensing, and communication
challenges, such as marine environments, provide additional
challenges for teleoperation. The underwater environment
is unnatural for humans, and working below the surface
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Fig. 1: Field experiment setup. A custom HMD is used to
send commands to a BlueROV2 deployed in FIU’s marine
robotics research testbed located at Florida International
University - Biscayne Bay Campus.

requires diving gear or teleoperated underwater robots. This
paper presents a formal description of natural human-robot
interfaces, showcasing the teleoperation of a remotely op-
erated underwater vehicle (ROV). The proposed concept
breaks the barrier between the underwater location and the
user, freeing the user from harsh underwater conditions. Our
general approach enables the remote operator to control an
ROV with their body movements, and this method could
be expanded to and tested on other similar robot platforms.
Furthermore, a head-mounted display (HMD) enables the
teleoperation of the ROV and provides visual feedback of
the underwater world.

The teleoperation method presented provides an intuitive
and natural high-level control interface for the human oper-
ator of the ROV. Due to its built-in sensors and widespread
availability, the presented solution uses a smartphone to
translate teleoperator head movements into ROV control
commands. Potential applications that may benefit from this
solution encompass underwater tasks such as inspection,
welding, and rescue. By operating remotely, the teleoperator
can ensure an ergonomic and safe working environment,
reducing the risk of physical strain or injury. Additionally,
this solution can allow for continuous work without frequent
breaks or short working periods, ultimately increasing pro-
ductivity and efficiency in underwater operations. In addition
to industrial applications, the development of human-robot
interfaces for teleoperation offers educational benefits, in-
cluding problem-based learning and hands-on opportunities.
These educational applications bridge theoretical concepts
with real-world scenarios, providing students with practical
experience [5], [6].



The contributions of this paper lie in the formal description
of an optimization-based framework for natural human-
robot interface design that complies with user comfort and
efficiency constraints. Furthermore, we define and establish
the connection between natural interfaces and the optimal
interfaces arising from common teleoperation tasks such
as exploration and manipulation, highlighting that intuitive
configurations do not only meet design criteria but are also
optimal.

The rest of the paper is organized as follows: Section II
reviews previous research on the topic. Section III formulates
the research problem. Section IV introduces the preliminar-
ies and notations, section V presents the methods used to
solve the proposed problem, and section VI-B presents the
implementation of the prototype teleoperation as a proof-of-
concept. Section VI presents the experimental evaluation of
this work, and Section VII concludes this paper.

II. RELATED WORK

Teleoperation has been researched for decades to over-
come barriers between the teleoperator and the environ-
ment [7], [8], [9]. The barrier can be a physical barrier,
such as a wall, or an environmental barrier, such as a toxic
or hazardous environment or deep underwater conditions.
Research on underwater teleoperation has focused on devel-
oping techniques to improve the performance and capabilities
of underwater robots [10]. Current examples of underwater
teleoperation applications range from developing virtual re-
ality interfaces for underwater missions [11], [12] and the
design of underwater humanoid robots [13] to visible light
communication systems that can be employed for limited-
range teleoperation of underwater vehicles [14]. In [15], au-
thors investigate deep-sea manipulation through human-robot
collaboration with a robotic system designed for precise
underwater tasks. Additionally, Mixed Reality (MR) tech-
nologies, particularly those utilizing HMDs, provide immer-
sive experiences and allow users to interact seamlessly with
surrounding objects[16]. In [17], human-robot interfaces
combining augmented reality and hand gesture detection for
remote operations in hazardous environments are proposed.
Our work addresses the problem of optimal human-robot
interface design. The design of human-robot interfaces relies
on the selection of appropriate desired properties, such as
consistency, linearity, and continuity, that enable comfort and
naturalness in teleoperation [18]. Our approach is closely
related to the concepts presented in [19] in the sense of
investigating the mappings between human and robot spaces
and the mathematical formulation of such a problem. We also
share commonalities with recent research on HMD-based
immersive teleoperation interfaces [20], human perception-
optimized planning [21], human-robot interaction based on
gesture and movement recognition [22], and approaches that
utilize optimal control for teleoperating robots [23].

III. PROBLEM FORMULATION

In this paper, we consider the task of visual-based teleop-
eration of an underwater vehicle. The two agents involved,

the person teleoperating the robot and the robot itself, have
a workspace, an action space, and a configuration space. Let
W, C R? and W, C R? be the workspaces for the operator
and the robot, respectively; C, and C, be their configuration
spaces. Let U denote the set of controls applicable to the
robot and A the set of actions the human operator can
perform. Following the notation from [19], we assume that
the robot’s dynamics are ruled by the relation given by the
function f: C, xU — Cpr, & = f(x,u).

To establish a teleoperating system, it is necessary to map
the user’s actions to the robot’s actions through a mapping
g : Cr x A — U so that the robot is affected by actions
taken by the user as & = f(z, g(z,a)).

Assuming fixed sets A, U and the function f, our problem
is building g according to principles such as Continuity, Con-
sistency and Reachability as described in [19] are restated
below. However, we may face the challenge wherein the
user becomes fully immersed in the teleoperating system,
leading to a lack of comprehensive or precise knowledge
about the configuration state of the robot. Likewise, the in-
formation provided by the teleoperating system may present
challenges concerning fast and precise user interpretation for
optimal performance. Those reasons suggest the necessity of
designing g to be intuitive and potentially independent of the
robot’s state x.

To achieve a realistic and comfortable teleoperation ex-
perience, the mapping g should fulfill key conditions [19],
of which we consider five to be the most crucial. Firstly,
Consistency, which means preserving the attributes that the
robot and the operator share. In particular, this implies
symmetry, meaning that if the operator’s and robot’s actions
are symmetric with respect to a particular axis, the map-
ping g should preserve this symmetry as much as possible.
Secondly, Continuity, which requires mapping actions of the
operator to closely related actions of the robot. In this case,
the derivative of g may also need to be restricted in order to
prevent the robot from moving inconsistently due to sensory-
motor aspects. Thirdly, Linearity, which provides an intuitive
way for the agent to teleoperate the robot. In this case, it is
reasonable to expect that if the input is doubled, the operator
expects the robot output to be approximately doubled as
well. Lastly, Reachability and Completeness allow the user
to operate the robot to a given desired state. Let F, C C,
and F, C C, be subsets of feasible configurations for the
operator and robot, respectively. A state z,. € F,. is said
to be u-reachable from z, € F, if there exists a control
function w(t) such that x,. is brought to .. In the same way,
a state =/ € F, is said to be a-reachable from z, € F, if
there exists a control function a(t) such that x, is brought to
a!. Therefore, the function g is said to be complete if all u-
reachable pairs (z,, z.) € F, have an equivalent a-reachable
pair (z,,2,) € F,. In general, this problem is stated as
finding a function g that minimizes certain functional J(g)
tailored to fulfill the conditions stated before. As a general
rule, this function has the form



T
J(g) = / L(z, g, Dg)dt, (1)
0

where L is a cost function and Dg indicates the derivative
of g. Whenever necessary, the control function a can be
computed with g, implying that the optimization problem
may involve two variables. Likewise, it is assumed that
both variables are required unless otherwise specified and
the functions L and J are allowed to take an argument
for a, denoted as L(x,g,Dg,a) and J(g,a) respectively.
Naturally, this leads to an optimal control problem with
g € CY(C, x A,U) being the interface between the human
and the robot that translates human actions into robot controls
and the sequence of actions performed by the operator
a € C*(R,.A), both serving as solutions to the constrained
problem

g,a
st. ©= f(z,g(z,a))
.Z'(O) = Tinitial s -’B(T) = Tfinal,

T
min / L(x,g,Dg,a)dt
0 (¢)

where C''(X,Y’) denotes the set of functions with continuous
derivative from X to Y.

We emphasize that the robot’s state = xz(t) and the
action taken by the user a = a(t) have temporal dependen-
cies (one state and action per timestamp ¢) and we dropped
them in (2) to ease the notation. In any case, the solution
to this problem involves solving a Jacobi-Bellman equation
[19], which requires solving a partial differential equation
to obtain optimal functions. This procedure is, in general,
challenging. Furthermore, the resulting solutions may not
fulfill the principles described previously, or the translation
scheme provided for them may be difficult for an average
person to execute. Therefore, we will study particular cases
that have an intuitive design and are easy to manage for an
average person.

Problem definition: Translating configuration spaces

Given the configuration spaces of the operator and the
robot C,, C, respectively, and the set of actions A the
operator can perform, compute an optimal mapping g that
translates the operator’s action space into robot’s action
space U.

IV. PRELIMINARIES

Fig. 2 depicts a mapping between the actions of the
operators and the actions of the robot. This mapping exhibits
key properties such as continuity and consistency, meaning
that small operator movements result in corresponding small
robot movements and that these actions are reversible and
consistent. As a result, the robot is highly intuitive to control
even though the robot’s reachability is somewhat limited, as
not all operator actions can be translated into robot actions.

Our purpose in this work is to show that natural mappings
can be obtained as solutions for common tasks, demon-
strating that they are also optimal interfaces. To this end,
theoretical arguments were developed to show and quantify
how far an interface g is from being ‘“natural”. In this

context, we define a natural interface as one that assigns
a single user action to a corresponding robot action, without
depending on the robot’s state, i.e. g : A — U. Introducing
such a dependency would make the operation process more
cumbersome and less intuitive; instead, the interface solely
relies on the user’s action. If g were a linear transformation,
one might expect it to exhibit behavior similar to that of
a permutation matrix P with scaled rows. Therefore, it
becomes necessary to exercise tight control over the first
derivative of g, Dg. This necessity gives rise to Definition
1.

Definition 1: Let A C R"™, p(a) a probability density
function distribution defined on A, g € CY(A,U), o a
permutation of the numbers 1,...,n, P, € My, xn,(R) the
permutation matrix whose rows are permuted according to
o, A a diagonal matrix whose diagonal entries come from a
vector A € R™ and || - || a norm defined on the space of the
matrices. We say that g is (e,p)-unnatural interface if

[ min{liDg(a) - AP, |[p(a)da < c. )

Equation (33 quantifies the extent to which a potential nat-
ural interface, denoted as g, deviates from being considered
natural on average. If an interface is (0, p)-unnatural for any
probability density function p, it is considered completely
natural. Furthermore, when g is an affine transformation, this
measure becomes independent of p. In that case, g is said to
be e-unnatural.

We turn our attention to the interfaces g that behave as
linear transformations, as the natural-unnatural concepts rely
on the first derivative of g. From this point forward, we
assume that g can be described using a matrix G = Dg.
The functional J(g) described in (2) can be rewritten as
J(G,a), adding a as a new variable and G as a description
of g. The regularized problems considered are of the form
L(G,a) = J(G,a) + aR(G), where o« > 0 and R(G) is
a regularizer function. The regularizer R(G) enforces G to
have certain characteristics while minimizing J(G, a). This
formulation is more numerically tractable than constrained
problems. Importantly, the functional £(G,a) should in-
clude a regularization term R(G) related to (3), allowing
the enforcement and estimation of the naturalness of g by
calculating R(G) for a given function g.

The following analysis focuses on bounding the value
of R(G) when it is used to regularize optimization prob-
lems. Since R(G) is related to (3), it will estimate the
naturalness of an interface G (i.e. g). Decoupling the min
operator computed for the pair (z,y) into two consecutive
min operators applied one after the other will be beneficial
throughout the subsequent analysis. Specifically, it is well
known that the join min operator can be decoupled by
minimizing individually over the arguments of a function,
as provided by Proposition 1.

Proposition 1: Let X, ) two Banach spaces, F(z,y) a
functional defined on X x ). Suppose that the function
Gy) = m$in F(z,y) is well-defined for each y € ), then
min F(z,y) = rnyin Gly) = myin{ma}n F(z,y)}. 4)

z,y



We apply Proposition 1 to £(G,a) in order to define
F(G) = min J(G, a) and ensure that

mén F(G) +aR(G) = Igin L(G,a). Q)

This separation allows for the study of the properties of
the optimal interface G given optimal user actions a. On
the other hand, it is important to examine the relationship
between the optimization problem in Eq. (5) and

min F(G)

6
st. R(G) <r ©

for » > 0. This consideration allows us to connect the
regularized optimization problem with the constrained prob-
lem. The regularization constant « provides a bound on
the value of the regularization function evaluated at the
optimum, i.e., it allows the estimation of r. This bound
will be particularly valuable in Section VI. By solving Eq.
(5) to find a minimizer G* and restricting the search to
the super level set Ly .., (R), we ensure that there is no
G € Ly (R) such that F(G) < F(G*). This contradicts
the fact that G* serves as a minimizer. This understanding,
condensed in Proposition 2, is relevant for our subsequent
analysis.

Proposition 2: Let G* be a minimizer of the problem
(5), then G* is a minimizer of the problem (6) with r =
R(G*). Moreover, the inequality constraint R(G) < r can
be replaced by R(G) = r in Eq. (6).

Lastly, the values of » and « can be related by first-order
conditions arising from (5), where G* and « satisfy F/(G*)+
aR(G*) = 0. If the Hessian matrix D?F(G) + aD?R(G)
has an inverse when G = G*, then, by the inverse function
theorem, G* can be isolated by a mapping G* = w(«)
such that F'(w(a)) + aR(w(e)) = 0 in some neighborhood
of (G*,«). Therefore, r = R(w(«)). Theoretically, this
suggests that r can be defined before the optimization process
by choosing « appropriately.

As a proof of concept, we address the problem of trans-
lating operator spaces into robot spaces, by examining the
scenario wherein the human operator transmits commands to
the robot using head movements. The range of motion for
the human head depends on several factors, such as age, sex,
health, and individual anatomical differences. On average, an
adult human can rotate their head up to 90 degrees to either
side and tilt them up and down about 45 degrees, giving a
total range of motion of about 180 degrees. The movements
mentioned above are captured by a smartphone’s built-in
sensors, including the inertial measurement unit (IMU) and
barometer, which are affixed to a diving mask worn by
the operator. The operator’s movements are subsequently
translated into commands to enable the teleoperation of the
underwater robot. The complete architecture is shown in Fig.
4. The visual feedback is provided to the operator through
the robot camera, which captures images of the robot’s
environment and displays them on the smartphone screen.
This allows the operator to see where the robot is going and
adjust its movements accordingly. Due to the restrictions of

user input commands, the robot is initially treated as a rigid
body that moves at a constant speed in R2. Let ay and ay,
be the head pitch and head yaw commands, respectively,
and ug and u, be the robot camera tilt command and yaw
command of the robot base. Let v, and v, be the linear
forward velocities of the operator and the robot in [m/s],
respectively. Let acose and aopen describe the user action
of closing and opening hands, respectively, and let wcjose
and uepen describe the robot’s gripper discrete state (closed
and open). We define the action space of the operator as
A= (a9 min; @6 max) X (ad) mins Qg max) X (Uo mins Vo max)

X {@close, Gopen } and the action space of the robot as U =
(UO min, Ug max) X (uw min; Uy max) X (U'r min, Ur max)

X {aclose; aopen}~

move head right / left

yaw command
right / left

move head up / down

open hand / closed hand open / close gripper

Fig. 2: An example of human-robot action space translation

To evaluate the mappings, we modified functionals de-
fined in [19] to reflect specific factors that are relevant to
underwater teleoperation. An important formulation is the
shortest-distance problem where

g.a
st &= f(z,g9(x,a))
2(0) = Tinitial, ©(T) = X final-
Several works have reported the need to maintain a com-
fortable environment for the user during teleoperation tasks
[21], [24]. In this context, the goal is to reduce the number
of movements made by the person to increase their comfort
level when operating the robot. For example, [21] focuses
on minimizing the number of head movements to improve
user comfort. This approach can be seen as simplifying the
curvature of a path, where intuitively, paths with fewer turns
are considered more comfortable. In the subsequent section,
additional terms will be added to the formulation to enforce
the desired properties.

T T
min / L(z,g,Dg)dt = min/ ||| d¢
0 oo @)



V. METHODS

There could be numerous potential interface designs. This
work aims to show that the natural interface (Fig. 2) is
optimal in some sense. To this end, we consider the afore-
mentioned action spaces A and U of the operator and the
robot, respectively. Since the camera angle does not affect the
robot’s movement, we consider an operator who can perform
two actions: moving their head and body (e.g., by walking or
moving their hands). These actions are denoted as apeqa(t)
and apoqy(t), respectively, and the operator’s action space is
represented as a(t) = [anead(t), Apody(t)] T, where A C R?
and Cy C R2. The kinematic model of the robot is given by

xpos (t) = ()
Ypos(t) = v(t)
6(t) = w(t)

cos(6(t))
sin(6(2)) ®)

where v(t) is the forward speed and w(t) is the angular
speed. The robot’s action and state spaces are represented
as u(t) = [o(t), w(t)] T and &(t) = [pos(t), dpos (1), O(1)] .
respectively, where U C R? and C, C R? x S,

As described in Problem 1, the objective is to find the map-
ping g. In this case, g is assumed to be a linear transformation
given by u(t) = Gal(t), which exhibits several properties
including continuity, linearity, and consistency under certain
conditions. We consider the task of moving the robot from
the initial point Z;psi4; to the final point, x f;y,4;, as this is
a common task during environment exploration. The goal is
to find the optimal interface g and the control policy a(t)
that should be applied by the operator. To achieve this, the
following optimization problem is defined, inspired by (7)

)|)? +ﬂ/0 a(t)" Ma(t)dt

+V/O [|Z(8)]|dt + & dist(G, O(2))
|:cos(9(t))

min  o||Tfina — T
g,a

(C)]

sin(6(¢))

0
0| u(t), =z(0) = Tinitiai-
0 1

Here, M is a positive-definite matrix, O(2) is the set
of orthogonal matrices of size 2 x 2, and the coefficients
«, B, 7, and § are non-negative regularization coefficients
that determine the relative importance of each term. The
first term ensures that the desired point is reached given
the control policy of the operator, after being transformed
by the interface. The second term measures the effort made
by the user, with a higher cost assigned to head movements
compared to body movements, to maintain a comfortable
interface for the user. The third term considers the distance
the robot traverses, encouraging it to take the optimal path.
The fourth term R(G) = dist(G,0(2)) = ming||G —
Q|lr, @ € O(2) encourages G to preserve angles. Hence,
G should be an orthogonal matrix; this requirement aims to
better fulfill the consistency criterion. This term is expressed
as the distance between G and the set of orthogonal matrices
in the Frobenius norm, which is R(G) = |[UV T — G||F,

where G = UXV' T is the singular value decomposition of
the matrix G.

Equation (3), the definition of an unnatural interface, and
the regularization functional R(G) are connected by the
following proposition

Proposition 3: Let R(G) = ming ||G—Q||r, Q@ € O(n),
A, A, o0 and P, as in (3). Then,

min[|G = AP,|| < k(R(G) + V). (10)

Where k is a constant that depends only on the norms || - ||
and || - || p.

Proof. Let @ € O(n) be an orthogonal matrix. We start
with the triangle inequality

|G = AR || < |G = QI +|Q — AF||
< k(G = Qllr +lQ = APs|[F).

The second inequality arises from the fact that the space
is finite-dimensional, and every norm is equivalent. Specif-
ically, there exists a constant k£ that depends only on the
norms || - || and || - ||F such that ||A|| < k||A]|F for each
fixed-size matrix A.

Proposition 1 is heavily relied upon to apply the min
operator by each variable individually, rather than applying
the complete join operator to obtain

1)

min{[|G = AP |[} < kmin{(/|G = Q[[r + [|Q = AP ||F)}

= k([IG = Qllr +min ||Q — AP ||F).
12)
It can be shown by using Lagrange multipliers and the fact
that the rows of an orthogonal matrix form an orthonormal
basis of R"™ that

min||Q —APsllr= [> > a4 <V (13
i jFo(i)

0, (12) is updated to
min{[|G — AP [[} < k(||G = Qllr +V/n). (14)

Moreover, the right-hand side of inequality 14 does not
depend on o and the left-hand side does not depend on Q.
Thus, the min operator can be applied on both sides with
respect to ¢ and () leading to

min{|G — APA|[} < K(IG = Qlle + V)
min{[G — APA|[} < k(min{lIG ~ Qlle} + V) ()
= K(R(G) + Vi),

which is our desired bound. O

Leveraging the definition of the naturalness of an interface
g (Definition 1), we have tailored a functional following
the average human operational demands outlined in Eq. (9).
Through this process, we demonstrate that optimal interfaces
derived from this functional must meet a specific level
of naturalness (Propositions 2 and 3). This combination
encapsulates a key aspect of our contribution, establishing
that interfaces characterized by naturalness also align with
the optimality criterion outlined in Eq. (9).



VI. EXPERIMENTAL EVALUATION
A. Finding optimal human-robot interfaces

Simulation experiments were conducted to determine the
optimal actions for the operator. An example of a naviga-
tion task is illustrated in Fig. 3. Additionally, we utilized
functional (9) to derive the optimal set of actions a(t) =
[@head(t), avoay(t)] T (Fig. 3, top). Our findings indicate
that the operator can accomplish the assigned task more
efficiently by prioritizing body movements over excessive
head movements. Consequently, we found the control applied
to the robot, computed as u(t) = Ga(t) (Fig. 3, middle), and
the resulting path taken by the robot z(t) (Fig. 3, bottom).
More important is the mapping g, which turned out to be

—®—  @)q4(t): head movement

o

pody(t): body movement

Control magnitude

—eo— (t): forward speed
w(

w(t): angular speed

.

Control magnitude

Y Start point
Finish point

104 — Path

Fig. 3: Experiment results solving problem (9).
Tinitial — [0, 0, 7T/2]T, T final = [15, 15, 77T/2]T, M =
diag(10,1/2), a = 250, f = 10,y = 5 and ¢ = 10. Control
a(t) performed by the operator (top); control u(¢) mapped
to the robot (middle); and simulated path task (bottom).

2.15 0 2.15
—0.62} ~ {1.73 0 ] ' (16)
Assuming the coarse approximation expressed in (16), it

can be observed that there exists a relationship between the
human control a(t) and the robot control u(t) described as

[vm] — u(t) = Gralt) ~ [1,%3 % 5] [ZZSZZ e

0] = [ ).

It can be inferred that the natural mapping obtained from
optimizing (9), in which the user operates the robot’s yaw

. _[o2a
¢ = [1.73

} a7

movement by their head orientation, is not only intuitive
and user-friendly but also optimal. Regarding our bounds
computed previously to estimate how natural g is, we found
that at dist(G*,0(2)) ~ 1.45. Besides, according to (10),
G* is at most 2.89-unnatural. When we compute (3) G* is
0.66-unnatural. Also, the closest natural interface AP, (see
Definition 1) parametrized by A and Po is

A= (1.73,2.15), P, = {0 1} (18)

1 0

which is precisely the coarse approximation in Eq. (16).

B. Software-in-the-Loop Experiments

The Software-in-the-Loop (SIL) configuration employed
the BlueSim hardware simulator [25] instead of real hard-
ware for software component development and configuration.
BlueSim simulates the BlueROV?2 hardware [26], providing
a virtual camera unit for testing and refining the system.
The teleoperating control device consists of a diving mask,
casing, and smartphone. To access the smartphone’s inertial
measurement unit (IMU) data and stream it to the tele-
operator workstation, we utilized the SensorServer appli-
cation [27]. A custom extension was developed to receive
the sensor data stream and translate the orientation data into
directional commands for the ROV, as well as up and down
commands for the ROV camera. Also, an OpenCV-based
application was developed to process the video stream and
transmit only black-and-white images to conserve bandwidth
for the teleoperator while keeping meaningful information.
Fig. 4 presents the architecture of the initial prototype and
connections of the SIL and Hardware-in-the-Loop (HIL).

. e

Router BlueROV2 (HIL)

o Control Raspberry Pi
* > QGroundControl | -

——
| MAVProxy 1 Controller
Telemetry

Custom
MediaPipe e raspivid — <]

- Extension L
Display o Raspberry Pi
Camera

Navigator
Flight

Video stream

Legends BlueSIM (SIL)

= o i.....B
Gam] | e -

Virtual

OO ey Camera

Ethernet connection

Fig. 4: Architecture of the initial prototype.

To gather quantifiable data on the effectiveness of the
presented solution, the framework is tested by a group of
volunteers based on the guidelines of [21]. The experimental
procedure is described in three tasks. In the first task, each
user is provided with a virtual empty pool scenario and has
3 minutes to familiarize themselves with the headset and
simulator. In the second task, the user is provided with an
RGB video stream from the virtual robot’s front camera and
is asked to identify a cubic shape in the pool by pointing the
robot camera at the respective shape. Only one cubic shape
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Fig. 5: Experimental setup for underwater teleoperation simulation. (left) Task 2: find the cubic shape provided RGB video
stream; (middle) Task 3: find the oval shape provided edge-detected, black-and-white video stream; (right) the original video
stream is displayed to the user’s HMD for tasks 1 and 2, and the modified video stream is provided for task 3.

is located in one corner of the pool (Fig. 5, left). To conserve
bandwidth, in the third task, the user is provided with a black-
and-white video stream of the pool and is asked to identify
an oval shape by pointing the robot camera at the respective
shape (Fig. 5, middle).In this step, there is an oval shape in
one of the pool’s corners and a cubic shape in another.

Regarding the implementation of the user commands strat-
egy, we used a fixed-size buffer to collect enough samples
at the beginning of the simulation and avoid unnecessary
rotations of the simulated ROV. To move the ROV, we
compute the moving average of the buffer, where each
sample represents the difference between two consecutive
measurements of head orientations. The resulting moving
average at each time step is then checked against a predefined
threshold to decide which way (left or right) the ROV should
turn. The time required to complete tasks 2 and 3 is recorded
during the piloting.

The group of users exhibited a balanced distribution with
respect to gender, comprising three females and three males,
with a mean age of 24.5 years (Fig. 5, right). Regarding the
HMD, the experiments indicate that optimal teleoperation
comfort can be achieved by increasing the distance between
the eyes and the smartphone. Additionally, we noted that
laggy communication significantly increases task completion
times, as users must wait for image updates on their phone
screens. As expected, users could detect shapes faster when
presented with RGB streams, while black-and-white streams
resulted in comparatively longer detection times. The average
completion time and standard deviation for tasks 2 and 3
were ~ 14.77 £+ 5.18 seconds and ~ 32.44 + 5.62 seconds,
respectively.

C. Field Experiments

Field experiments are carried out at FIU’s marine robotics
research testbed, a water tank of size 7.6m x 4.5m x 1.8m,
with an approximate water capacity of 45,400L located in
Florida International University’s Biscayne Bay Campus, as
illustrated in Figures 1 and 6.

We conducted three different sets of experiments. The
first set focuses on controlling the ROV camera gimbal
using the information provided by the smartphone’s IMU

associated with up and down head movements. The second
set of experiments is designed to explore left and right
head movements to command robot yaw actions accordingly.
Finally, the last set of experiments encompasses simple
manipulation tasks, such as grabbing and releasing a soda
can placed near the bottom of the tank. This is accomplished
by translating appropriate hand gestures into open and close
commands for the robot gripper. Fig. 6 shows a snapshot
of the experimental procedure, and the complete video is
provided at https://youtu.be/8QjVyL8I0GU. The
physical BlueROV?2 establishes a tethered connection with an
above-surface workstation, enabling the transmission of RGB
video stream utilizing GStreamer [28]. All robot commands
are sent through QGroundControl (QGC) via Pymavlink, a
Python implementation of the MAVLink protocol. Google
Mediapipe is utilized to translate recognized hand gestures
into meaningful BlueROV2 gripper commands [29]. For
gesture recognition, the neural network architecture consisted
of a 6-layer sequential model. The input layer is a one-
dimensional array of length 21 X 2, covering landmarks for
both hands [29]. Following the input layer, a 20% dropout
layer was used for regularization and to prevent overfitting.
Subsequently, a fully connected layer with 20 units and a
ReLU activation function was added. Then, another dropout
layer with a dropout rate of 40% was introduced, followed by
a dense layer with ten units, also using the ReLU activation
function. Finally, the output layer used the softmax activation
function to produce output probabilities for each class (open
or closed hand). The final model comprises 1,092 parameters.
For model compilation, we utilized the sparse categorical
cross-entropy loss function and employed a stochastic gradi-
ent descent method based on Adam optimization. Each epoch
involved training the model for 1,000 iterations, with a batch
size of 128. This training process resulted in an accuracy of
98%.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the design of human-robot
interfaces for robotics teleoperation based on key concepts
such as linearity, consistency, continuity, and user comfort.
As a proof-of-concept, the proposed solution was applied
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Fig. 6: Field experiment: Manipulation task. The gripper is
actuated (opened/closed) by the user’s hand movements

to perform underwater tasks from a safe and ergonomic
location. Additionally, we established and developed a theo-
retical framework emphasizing the necessity of natural and
user-friendly interfaces. Consequently, we demonstrated that
optimal interfaces arising from common tasks possess a cer-
tain level of naturalness. The experimental simulation results
involved a group of volunteers to collect quantifiable data to
assess the effectiveness of the presented solution. Addition-
ally, field experiments conducted in a marine robotics testbed
validated the real-world applicability of our approach. Our
future work will enhance the overall system’s functionality
by expanding the proposed action space and configuration
space mappings. This will include incorporating the vehi-
cle’s depth control, translational motion, and additional hand
gestures for manipulation.
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