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Abstract— Efficient and intuitive Human-Robot interfaces
are crucial for expanding the user base of operators and
enabling new applications in critical areas such as precision
agriculture, automated construction, rehabilitation, and envi-
ronmental monitoring. In this paper, we investigate the design
of intuitive human-robot interfaces for the teleoperation of
dynamical systems. The proposed framework seeks an optimal
interface that complies with key concepts such as user comfort,
efficiency, continuity, and consistency. Moreover, we show that
optimal interfaces arising from common robot tasks are user-
friendly and ensure a certain degree of naturalness within our
framework. As a proof-of-concept, we introduce an approach to
teleoperating underwater vehicles, allowing the translation be-
tween human body movements into vehicle control commands.
Field experiments were conducted utilizing a custom head-
mounted display coupled with a smartphone to interpret body
movements and transmit corresponding commands to operate a
remotely operated vehicle. These experiments were performed
in a marine robotics research testbed to validate the efficacy
and practicality of our proposed interface design.

Index Terms— Human-Robot Interaction, Teleoperation, Re-
motely Operated Vehicles Marine Robotics

I. INTRODUCTION

The design of intuitive, robust, and efficient human-robot

interfaces can extend the user base of operators and enable

a new generation of applications in critical areas such as

precision agriculture, automated construction, rehabilitation,

and environmental monitoring [1], [2], [3]. Due to advances

in virtual reality applications in the last few years, user

interface design for robotic teleoperation drew increasingly

more attention since the human performance of teleoperated

systems can be decremented by data bandwidth, time de-

lays, frame rates, and lack of concentration, among other

interface-related factors [4]. Furthermore, environments with

high spatio-temporal variability, sensing, and communication

challenges, such as marine environments, provide additional

challenges for teleoperation. The underwater environment

is unnatural for humans, and working below the surface
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Fig. 1: Field experiment setup. A custom HMD is used to

send commands to a BlueROV2 deployed in FIU’s marine

robotics research testbed located at Florida International

University - Biscayne Bay Campus.

requires diving gear or teleoperated underwater robots. This

paper presents a formal description of natural human-robot

interfaces, showcasing the teleoperation of a remotely op-

erated underwater vehicle (ROV). The proposed concept

breaks the barrier between the underwater location and the

user, freeing the user from harsh underwater conditions. Our

general approach enables the remote operator to control an

ROV with their body movements, and this method could

be expanded to and tested on other similar robot platforms.

Furthermore, a head-mounted display (HMD) enables the

teleoperation of the ROV and provides visual feedback of

the underwater world.

The teleoperation method presented provides an intuitive

and natural high-level control interface for the human oper-

ator of the ROV. Due to its built-in sensors and widespread

availability, the presented solution uses a smartphone to

translate teleoperator head movements into ROV control

commands. Potential applications that may benefit from this

solution encompass underwater tasks such as inspection,

welding, and rescue. By operating remotely, the teleoperator

can ensure an ergonomic and safe working environment,

reducing the risk of physical strain or injury. Additionally,

this solution can allow for continuous work without frequent

breaks or short working periods, ultimately increasing pro-

ductivity and efficiency in underwater operations. In addition

to industrial applications, the development of human-robot

interfaces for teleoperation offers educational benefits, in-

cluding problem-based learning and hands-on opportunities.

These educational applications bridge theoretical concepts

with real-world scenarios, providing students with practical

experience [5], [6].



The contributions of this paper lie in the formal description

of an optimization-based framework for natural human-

robot interface design that complies with user comfort and

efficiency constraints. Furthermore, we define and establish

the connection between natural interfaces and the optimal

interfaces arising from common teleoperation tasks such

as exploration and manipulation, highlighting that intuitive

configurations do not only meet design criteria but are also

optimal.

The rest of the paper is organized as follows: Section II

reviews previous research on the topic. Section III formulates

the research problem. Section IV introduces the preliminar-

ies and notations, section V presents the methods used to

solve the proposed problem, and section VI-B presents the

implementation of the prototype teleoperation as a proof-of-

concept. Section VI presents the experimental evaluation of

this work, and Section VII concludes this paper.

II. RELATED WORK

Teleoperation has been researched for decades to over-

come barriers between the teleoperator and the environ-

ment [7], [8], [9]. The barrier can be a physical barrier,

such as a wall, or an environmental barrier, such as a toxic

or hazardous environment or deep underwater conditions.

Research on underwater teleoperation has focused on devel-

oping techniques to improve the performance and capabilities

of underwater robots [10]. Current examples of underwater

teleoperation applications range from developing virtual re-

ality interfaces for underwater missions [11], [12] and the

design of underwater humanoid robots [13] to visible light

communication systems that can be employed for limited-

range teleoperation of underwater vehicles [14]. In [15], au-

thors investigate deep-sea manipulation through human-robot

collaboration with a robotic system designed for precise

underwater tasks. Additionally, Mixed Reality (MR) tech-

nologies, particularly those utilizing HMDs, provide immer-

sive experiences and allow users to interact seamlessly with

surrounding objects[16]. In [17], human–robot interfaces

combining augmented reality and hand gesture detection for

remote operations in hazardous environments are proposed.

Our work addresses the problem of optimal human-robot

interface design. The design of human-robot interfaces relies

on the selection of appropriate desired properties, such as

consistency, linearity, and continuity, that enable comfort and

naturalness in teleoperation [18]. Our approach is closely

related to the concepts presented in [19] in the sense of

investigating the mappings between human and robot spaces

and the mathematical formulation of such a problem. We also

share commonalities with recent research on HMD-based

immersive teleoperation interfaces [20], human perception-

optimized planning [21], human–robot interaction based on

gesture and movement recognition [22], and approaches that

utilize optimal control for teleoperating robots [23].

III. PROBLEM FORMULATION

In this paper, we consider the task of visual-based teleop-

eration of an underwater vehicle. The two agents involved,

the person teleoperating the robot and the robot itself, have

a workspace, an action space, and a configuration space. Let

Wo ¢ R
3 and Wr ¢ R

3 be the workspaces for the operator

and the robot, respectively; Co and Cr be their configuration

spaces. Let U denote the set of controls applicable to the

robot and A the set of actions the human operator can

perform. Following the notation from [19], we assume that

the robot’s dynamics are ruled by the relation given by the

function f : Cr × U −→ Cr, ẋ = f(x, u).

To establish a teleoperating system, it is necessary to map

the user’s actions to the robot’s actions through a mapping

g : Cr × A −→ U so that the robot is affected by actions

taken by the user as ẋ = f(x, g(x, a)).

Assuming fixed sets A, U and the function f , our problem

is building g according to principles such as Continuity, Con-

sistency and Reachability as described in [19] are restated

below. However, we may face the challenge wherein the

user becomes fully immersed in the teleoperating system,

leading to a lack of comprehensive or precise knowledge

about the configuration state of the robot. Likewise, the in-

formation provided by the teleoperating system may present

challenges concerning fast and precise user interpretation for

optimal performance. Those reasons suggest the necessity of

designing g to be intuitive and potentially independent of the

robot’s state x.

To achieve a realistic and comfortable teleoperation ex-

perience, the mapping g should fulfill key conditions [19],

of which we consider five to be the most crucial. Firstly,

Consistency, which means preserving the attributes that the

robot and the operator share. In particular, this implies

symmetry, meaning that if the operator’s and robot’s actions

are symmetric with respect to a particular axis, the map-

ping g should preserve this symmetry as much as possible.

Secondly, Continuity, which requires mapping actions of the

operator to closely related actions of the robot. In this case,

the derivative of g may also need to be restricted in order to

prevent the robot from moving inconsistently due to sensory-

motor aspects. Thirdly, Linearity, which provides an intuitive

way for the agent to teleoperate the robot. In this case, it is

reasonable to expect that if the input is doubled, the operator

expects the robot output to be approximately doubled as

well. Lastly, Reachability and Completeness allow the user

to operate the robot to a given desired state. Let Fo ¦ Co
and Fr ¦ Cr be subsets of feasible configurations for the

operator and robot, respectively. A state x′
r ∈ Fr is said

to be u-reachable from xr ∈ Fr if there exists a control

function u(t) such that xr is brought to x′
r. In the same way,

a state x′
o ∈ Fo is said to be a-reachable from xo ∈ Fo if

there exists a control function a(t) such that xo is brought to

x′
o. Therefore, the function g is said to be complete if all u-

reachable pairs (xr, x
′
r) ∈ Fr have an equivalent a-reachable

pair (xo, x
′
o) ∈ Fo. In general, this problem is stated as

finding a function g that minimizes certain functional J(g)
tailored to fulfill the conditions stated before. As a general

rule, this function has the form



J(g) =

∫ T

0

L(x, g,Dg)dt, (1)

where L is a cost function and Dg indicates the derivative

of g. Whenever necessary, the control function a can be

computed with g, implying that the optimization problem

may involve two variables. Likewise, it is assumed that

both variables are required unless otherwise specified and

the functions L and J are allowed to take an argument

for a, denoted as L(x, g,Dg, a) and J(g, a) respectively.

Naturally, this leads to an optimal control problem with

g ∈ C1(Cr × A,U) being the interface between the human

and the robot that translates human actions into robot controls

and the sequence of actions performed by the operator

a ∈ C1(R,A), both serving as solutions to the constrained

problem

min
g,a

∫ T

0

L(x, g,Dg, a)dt

s.t. ẋ = f(x, g(x, a))

x(0) = xinitial, x(T ) = xfinal,

(2)

where C1(X,Y ) denotes the set of functions with continuous

derivative from X to Y .

We emphasize that the robot’s state x = x(t) and the

action taken by the user a = a(t) have temporal dependen-

cies (one state and action per timestamp t) and we dropped

them in (2) to ease the notation. In any case, the solution

to this problem involves solving a Jacobi-Bellman equation

[19], which requires solving a partial differential equation

to obtain optimal functions. This procedure is, in general,

challenging. Furthermore, the resulting solutions may not

fulfill the principles described previously, or the translation

scheme provided for them may be difficult for an average

person to execute. Therefore, we will study particular cases

that have an intuitive design and are easy to manage for an

average person.

Problem definition: Translating configuration spaces

Given the configuration spaces of the operator and the

robot Co, Cr respectively, and the set of actions A the

operator can perform, compute an optimal mapping g that

translates the operator’s action space into robot’s action

space U .

IV. PRELIMINARIES

Fig. 2 depicts a mapping between the actions of the

operators and the actions of the robot. This mapping exhibits

key properties such as continuity and consistency, meaning

that small operator movements result in corresponding small

robot movements and that these actions are reversible and

consistent. As a result, the robot is highly intuitive to control

even though the robot’s reachability is somewhat limited, as

not all operator actions can be translated into robot actions.

Our purpose in this work is to show that natural mappings

can be obtained as solutions for common tasks, demon-

strating that they are also optimal interfaces. To this end,

theoretical arguments were developed to show and quantify

how far an interface g is from being “natural”. In this

context, we define a natural interface as one that assigns

a single user action to a corresponding robot action, without

depending on the robot’s state, i.e. g : A −→ U . Introducing

such a dependency would make the operation process more

cumbersome and less intuitive; instead, the interface solely

relies on the user’s action. If g were a linear transformation,

one might expect it to exhibit behavior similar to that of

a permutation matrix P with scaled rows. Therefore, it

becomes necessary to exercise tight control over the first

derivative of g, Dg. This necessity gives rise to Definition

1.

Definition 1: Let A ¦ R
n, p(a) a probability density

function distribution defined on A, g ∈ C1(A,U), Ã a

permutation of the numbers 1, . . . , n, PÃ ∈ Mn×n(R) the

permutation matrix whose rows are permuted according to

Ã, Λ a diagonal matrix whose diagonal entries come from a

vector ¼ ∈ R
n and || · || a norm defined on the space of the

matrices. We say that g is (ϵ,p)-unnatural interface if
∫

A

min
Ã,¼

{||Dg(a)− ΛPÃ||}p(a)da ≤ ϵ. (3)

Equation (3) quantifies the extent to which a potential nat-

ural interface, denoted as g, deviates from being considered

natural on average. If an interface is (0, p)-unnatural for any

probability density function p, it is considered completely

natural. Furthermore, when g is an affine transformation, this

measure becomes independent of p. In that case, g is said to

be ϵ-unnatural.

We turn our attention to the interfaces g that behave as

linear transformations, as the natural-unnatural concepts rely

on the first derivative of g. From this point forward, we

assume that g can be described using a matrix G = Dg.

The functional J(g) described in (2) can be rewritten as

J(G, a), adding a as a new variable and G as a description

of g. The regularized problems considered are of the form

L(G, a) = J(G, a) + ³R(G), where ³ > 0 and R(G) is

a regularizer function. The regularizer R(G) enforces G to

have certain characteristics while minimizing J(G, a). This

formulation is more numerically tractable than constrained

problems. Importantly, the functional L(G, a) should in-

clude a regularization term R(G) related to (3), allowing

the enforcement and estimation of the naturalness of g by

calculating R(G) for a given function g.

The following analysis focuses on bounding the value

of R(G) when it is used to regularize optimization prob-

lems. Since R(G) is related to (3), it will estimate the

naturalness of an interface G (i.e. g). Decoupling the min

operator computed for the pair (x, y) into two consecutive

min operators applied one after the other will be beneficial

throughout the subsequent analysis. Specifically, it is well

known that the join min operator can be decoupled by

minimizing individually over the arguments of a function,

as provided by Proposition 1.

Proposition 1: Let X , Y two Banach spaces, F (x, y) a

functional defined on X × Y . Suppose that the function

G(y) = min
x

F (x, y) is well-defined for each y ∈ Y , then

min
x,y

F (x, y) = min
y

G(y) = min
y

{min
x

F (x, y)}. (4)



We apply Proposition 1 to L(G, a) in order to define

F (G) = min
a

J(G, a) and ensure that

min
G

F (G) + ³R(G) = min
G,a

L(G, a). (5)

This separation allows for the study of the properties of

the optimal interface G given optimal user actions a. On

the other hand, it is important to examine the relationship

between the optimization problem in Eq. (5) and

min
G

F (G)

s.t. R(G) ≤ r
(6)

for r g 0. This consideration allows us to connect the

regularized optimization problem with the constrained prob-

lem. The regularization constant ³ provides a bound on

the value of the regularization function evaluated at the

optimum, i.e., it allows the estimation of r. This bound

will be particularly valuable in Section VI. By solving Eq.

(5) to find a minimizer G⋆ and restricting the search to

the super level set L−

R(G⋆)(R), we ensure that there is no

G ∈ L−

R(G⋆)(R) such that F (G) < F (G⋆). This contradicts

the fact that G⋆ serves as a minimizer. This understanding,

condensed in Proposition 2, is relevant for our subsequent

analysis.

Proposition 2: Let G⋆ be a minimizer of the problem

(5), then G⋆ is a minimizer of the problem (6) with r =
R(G⋆). Moreover, the inequality constraint R(G) f r can

be replaced by R(G) = r in Eq. (6).

Lastly, the values of r and ³ can be related by first-order

conditions arising from (5), where G⋆ and ³ satisfy F (G⋆)+
³R(G⋆) = 0. If the Hessian matrix D2F (G) + ³D2R(G)
has an inverse when G = G⋆, then, by the inverse function

theorem, G⋆ can be isolated by a mapping G⋆ = É(³)
such that F (É(³)) + ³R(É(³)) = 0 in some neighborhood

of (G⋆, ³). Therefore, r = R(É(³)). Theoretically, this

suggests that r can be defined before the optimization process

by choosing ³ appropriately.

As a proof of concept, we address the problem of trans-

lating operator spaces into robot spaces, by examining the

scenario wherein the human operator transmits commands to

the robot using head movements. The range of motion for

the human head depends on several factors, such as age, sex,

health, and individual anatomical differences. On average, an

adult human can rotate their head up to 90 degrees to either

side and tilt them up and down about 45 degrees, giving a

total range of motion of about 180 degrees. The movements

mentioned above are captured by a smartphone’s built-in

sensors, including the inertial measurement unit (IMU) and

barometer, which are affixed to a diving mask worn by

the operator. The operator’s movements are subsequently

translated into commands to enable the teleoperation of the

underwater robot. The complete architecture is shown in Fig.

4. The visual feedback is provided to the operator through

the robot camera, which captures images of the robot’s

environment and displays them on the smartphone screen.

This allows the operator to see where the robot is going and

adjust its movements accordingly. Due to the restrictions of

user input commands, the robot is initially treated as a rigid

body that moves at a constant speed in R
2. Let a¹ and aÈ

be the head pitch and head yaw commands, respectively,

and u¹ and uÈ be the robot camera tilt command and yaw

command of the robot base. Let vo and vr be the linear

forward velocities of the operator and the robot in [m/s],
respectively. Let aclose and aopen describe the user action

of closing and opening hands, respectively, and let uclose

and uopen describe the robot’s gripper discrete state (closed

and open). We define the action space of the operator as

A = (a¹min, a¹max)× (aÈmin, aÈmax)× (vomin, vomax)
× {aclose, aopen} and the action space of the robot as U =
(u¹min, u¹max)× (uÈmin, uÈmax)× (vrmin, vrmax)
× {aclose, aopen}.

Fig. 2: An example of human-robot action space translation

To evaluate the mappings, we modified functionals de-

fined in [19] to reflect specific factors that are relevant to

underwater teleoperation. An important formulation is the

shortest-distance problem where

min
g,a

∫ T

0

L(x, g,Dg)dt = min
g,a

∫ T

0

||ẋ||dt

s.t ẋ = f(x, g(x, a))

x(0) = xinitial, x(T ) = xfinal.

(7)

Several works have reported the need to maintain a com-

fortable environment for the user during teleoperation tasks

[21], [24]. In this context, the goal is to reduce the number

of movements made by the person to increase their comfort

level when operating the robot. For example, [21] focuses

on minimizing the number of head movements to improve

user comfort. This approach can be seen as simplifying the

curvature of a path, where intuitively, paths with fewer turns

are considered more comfortable. In the subsequent section,

additional terms will be added to the formulation to enforce

the desired properties.



V. METHODS

There could be numerous potential interface designs. This

work aims to show that the natural interface (Fig. 2) is

optimal in some sense. To this end, we consider the afore-

mentioned action spaces A and U of the operator and the

robot, respectively. Since the camera angle does not affect the

robot’s movement, we consider an operator who can perform

two actions: moving their head and body (e.g., by walking or

moving their hands). These actions are denoted as ahead(t)
and abody(t), respectively, and the operator’s action space is

represented as a(t) = [ahead(t), abody(t)]
¦, where A ¦ R

2

and C0 ¦ R
2. The kinematic model of the robot is given by

ẋpos(t) = v(t) cos(¹(t))

ẏpos(t) = v(t) sin(¹(t))

¹̇(t) = w(t)

(8)

where v(t) is the forward speed and É(t) is the angular

speed. The robot’s action and state spaces are represented

as u(t) = [v(t), w(t)]¦ and ẋ(t) = [ẋpos(t), ẏpos(t), ¹̇(t)]
¦,

respectively, where U ¦ R
2 and Cr ¦ R

2 × S1.

As described in Problem 1, the objective is to find the map-

ping g. In this case, g is assumed to be a linear transformation

given by u(t) = Ga(t), which exhibits several properties

including continuity, linearity, and consistency under certain

conditions. We consider the task of moving the robot from

the initial point xinitial to the final point, xfinal, as this is

a common task during environment exploration. The goal is

to find the optimal interface g and the control policy a(t)
that should be applied by the operator. To achieve this, the

following optimization problem is defined, inspired by (7)

min
g,a

³||xfinal − x(T )||2 + ´

∫ T

0

a(t)¦Ma(t)dt

+µ

∫ T

0

||ẋ(t)||dt+ ¶ dist(G,O(2))

S.t. ẋ(t) =





cos(¹(t)) 0
sin(¹(t)) 0

0 1



u(t), x(0) = xinitial.

(9)

Here, M is a positive-definite matrix, O(2) is the set

of orthogonal matrices of size 2 × 2, and the coefficients

³, ´, µ, and ¶ are non-negative regularization coefficients

that determine the relative importance of each term. The

first term ensures that the desired point is reached given

the control policy of the operator, after being transformed

by the interface. The second term measures the effort made

by the user, with a higher cost assigned to head movements

compared to body movements, to maintain a comfortable

interface for the user. The third term considers the distance

the robot traverses, encouraging it to take the optimal path.

The fourth term R(G) = dist(G,O(2)) = minQ ||G −
Q||F , Q ∈ O(2) encourages G to preserve angles. Hence,

G should be an orthogonal matrix; this requirement aims to

better fulfill the consistency criterion. This term is expressed

as the distance between G and the set of orthogonal matrices

in the Frobenius norm, which is R(G) = ||UV ¦ − G||F ,

where G = UΣV ¦ is the singular value decomposition of

the matrix G.

Equation (3), the definition of an unnatural interface, and

the regularization functional R(G) are connected by the

following proposition

Proposition 3: Let R(G) = minQ ||G−Q||F , Q ∈ O(n),
¼, Λ, Ã and PÃ as in (3). Then,

min
¼,Ã

||G− ΛPÃ|| ≤ k(R(G) +
√
n). (10)

Where k is a constant that depends only on the norms || · ||
and || · ||F .

Proof. Let Q ∈ O(n) be an orthogonal matrix. We start

with the triangle inequality

||G− ΛPÃ|| ≤ ||G−Q||+ ||Q− ΛPÃ||
≤ k(||G−Q||F + ||Q− ΛPÃ||F ).

(11)

The second inequality arises from the fact that the space

is finite-dimensional, and every norm is equivalent. Specif-

ically, there exists a constant k that depends only on the

norms || · || and || · ||F such that ||A|| f k||A||F for each

fixed-size matrix A.

Proposition 1 is heavily relied upon to apply the min

operator by each variable individually, rather than applying

the complete join operator to obtain

min
¼

{||G− ΛPÃ||} ≤ kmin
¼

{(||G−Q||F + ||Q− ΛPÃ||F )}
= k(||G−Q||F +min

¼
||Q− ΛPÃ||F ).

(12)

It can be shown by using Lagrange multipliers and the fact

that the rows of an orthogonal matrix form an orthonormal

basis of Rn that

min
¼

||Q− ΛPÃ||F =

√

∑

i

∑

j ̸=Ã(i)

q2ij ≤
√
n (13)

so, (12) is updated to

min
¼

{||G− ΛPÃ||} ≤ k(||G−Q||F +
√
n). (14)

Moreover, the right-hand side of inequality 14 does not

depend on Ã and the left-hand side does not depend on Q.

Thus, the min operator can be applied on both sides with

respect to Ã and Q leading to

min
¼,Ã

{||G− ΛPÃ||} ≤ k(||G−Q||F +
√
n)

min
¼,Ã

{||G− ΛPÃ||} ≤ k(min
Q

{||G−Q||F }+
√
n)

= k(R(G) +
√
n),

(15)

which is our desired bound. ⊓⊔
Leveraging the definition of the naturalness of an interface

g (Definition 1), we have tailored a functional following

the average human operational demands outlined in Eq. (9).

Through this process, we demonstrate that optimal interfaces

derived from this functional must meet a specific level

of naturalness (Propositions 2 and 3). This combination

encapsulates a key aspect of our contribution, establishing

that interfaces characterized by naturalness also align with

the optimality criterion outlined in Eq. (9).



VI. EXPERIMENTAL EVALUATION

A. Finding optimal human-robot interfaces

Simulation experiments were conducted to determine the

optimal actions for the operator. An example of a naviga-

tion task is illustrated in Fig. 3. Additionally, we utilized

functional (9) to derive the optimal set of actions a(t) =
[ahead(t), abody(t)]

¦ (Fig. 3, top). Our findings indicate

that the operator can accomplish the assigned task more

efficiently by prioritizing body movements over excessive

head movements. Consequently, we found the control applied

to the robot, computed as u(t) = Ga(t) (Fig. 3, middle), and

the resulting path taken by the robot x(t) (Fig. 3, bottom).

More important is the mapping g, which turned out to be

Fig. 3: Experiment results solving problem (9).

xinitial = [0, 0, Ã/2]¦, xfinal = [15, 15,−Ã/2]¦, M =
diag(10, 1/2), ³ = 250, ´ = 10, µ = 5 and ¶ = 10. Control

a(t) performed by the operator (top); control u(t) mapped

to the robot (middle); and simulated path task (bottom).

G
⋆ =

[

0.24 2.15
1.73 −0.62

]

≈
[

0 2.15
1.73 0

]

. (16)

Assuming the coarse approximation expressed in (16), it

can be observed that there exists a relationship between the

human control a(t) and the robot control u(t) described as

[

v(t)
É(t)

]

= u(t) = G
⋆
a(t) ≈

[

0 2.15
1.73 0

] [

ahead(t)
abody(t)

]

[

v(t)
É(t)

]

≈
[

2.15 · abody(t)
1.73 · ahead(t)

]

.

(17)

It can be inferred that the natural mapping obtained from

optimizing (9), in which the user operates the robot’s yaw

movement by their head orientation, is not only intuitive

and user-friendly but also optimal. Regarding our bounds

computed previously to estimate how natural g is, we found

that at dist(G⋆, O(2)) ≈ 1.45. Besides, according to (10),

G⋆ is at most 2.89-unnatural. When we compute (3) G⋆ is

0.66-unnatural. Also, the closest natural interface ΛPÃ (see

Definition 1) parametrized by ¼ and PÃ is

¼ = (1.73, 2.15), PÃ =

[

0 1
1 0

]

(18)

which is precisely the coarse approximation in Eq. (16).

B. Software-in-the-Loop Experiments

The Software-in-the-Loop (SIL) configuration employed

the BlueSim hardware simulator [25] instead of real hard-

ware for software component development and configuration.

BlueSim simulates the BlueROV2 hardware [26], providing

a virtual camera unit for testing and refining the system.

The teleoperating control device consists of a diving mask,

casing, and smartphone. To access the smartphone’s inertial

measurement unit (IMU) data and stream it to the tele-

operator workstation, we utilized the SensorServer appli-

cation [27]. A custom extension was developed to receive

the sensor data stream and translate the orientation data into

directional commands for the ROV, as well as up and down

commands for the ROV camera. Also, an OpenCV-based

application was developed to process the video stream and

transmit only black-and-white images to conserve bandwidth

for the teleoperator while keeping meaningful information.

Fig. 4 presents the architecture of the initial prototype and

connections of the SIL and Hardware-in-the-Loop (HIL).

Fig. 4: Architecture of the initial prototype.

To gather quantifiable data on the effectiveness of the

presented solution, the framework is tested by a group of

volunteers based on the guidelines of [21]. The experimental

procedure is described in three tasks. In the first task, each

user is provided with a virtual empty pool scenario and has

3 minutes to familiarize themselves with the headset and

simulator. In the second task, the user is provided with an

RGB video stream from the virtual robot’s front camera and

is asked to identify a cubic shape in the pool by pointing the

robot camera at the respective shape. Only one cubic shape



Simulation scenario: task 2 Simulation scenario: task 3 Experimental setup

Fig. 5: Experimental setup for underwater teleoperation simulation. (left) Task 2: find the cubic shape provided RGB video

stream; (middle) Task 3: find the oval shape provided edge-detected, black-and-white video stream; (right) the original video

stream is displayed to the user’s HMD for tasks 1 and 2, and the modified video stream is provided for task 3.

is located in one corner of the pool (Fig. 5, left). To conserve

bandwidth, in the third task, the user is provided with a black-

and-white video stream of the pool and is asked to identify

an oval shape by pointing the robot camera at the respective

shape (Fig. 5, middle).In this step, there is an oval shape in

one of the pool’s corners and a cubic shape in another.

Regarding the implementation of the user commands strat-

egy, we used a fixed-size buffer to collect enough samples

at the beginning of the simulation and avoid unnecessary

rotations of the simulated ROV. To move the ROV, we

compute the moving average of the buffer, where each

sample represents the difference between two consecutive

measurements of head orientations. The resulting moving

average at each time step is then checked against a predefined

threshold to decide which way (left or right) the ROV should

turn. The time required to complete tasks 2 and 3 is recorded

during the piloting.

The group of users exhibited a balanced distribution with

respect to gender, comprising three females and three males,

with a mean age of 24.5 years (Fig. 5, right). Regarding the

HMD, the experiments indicate that optimal teleoperation

comfort can be achieved by increasing the distance between

the eyes and the smartphone. Additionally, we noted that

laggy communication significantly increases task completion

times, as users must wait for image updates on their phone

screens. As expected, users could detect shapes faster when

presented with RGB streams, while black-and-white streams

resulted in comparatively longer detection times. The average

completion time and standard deviation for tasks 2 and 3

were ≈ 14.77 ± 5.18 seconds and ≈ 32.44 ± 5.62 seconds,

respectively.

C. Field Experiments

Field experiments are carried out at FIU’s marine robotics

research testbed, a water tank of size 7.6m × 4.5m × 1.8m,

with an approximate water capacity of 45, 400L located in

Florida International University’s Biscayne Bay Campus, as

illustrated in Figures 1 and 6.

We conducted three different sets of experiments. The

first set focuses on controlling the ROV camera gimbal

using the information provided by the smartphone’s IMU

associated with up and down head movements. The second

set of experiments is designed to explore left and right

head movements to command robot yaw actions accordingly.

Finally, the last set of experiments encompasses simple

manipulation tasks, such as grabbing and releasing a soda

can placed near the bottom of the tank. This is accomplished

by translating appropriate hand gestures into open and close

commands for the robot gripper. Fig. 6 shows a snapshot

of the experimental procedure, and the complete video is

provided at https://youtu.be/8QjVyL8I0GU. The

physical BlueROV2 establishes a tethered connection with an

above-surface workstation, enabling the transmission of RGB

video stream utilizing GStreamer [28]. All robot commands

are sent through QGroundControl (QGC) via Pymavlink, a

Python implementation of the MAVLink protocol. Google

Mediapipe is utilized to translate recognized hand gestures

into meaningful BlueROV2 gripper commands [29]. For

gesture recognition, the neural network architecture consisted

of a 6-layer sequential model. The input layer is a one-

dimensional array of length 21× 2, covering landmarks for

both hands [29]. Following the input layer, a 20% dropout

layer was used for regularization and to prevent overfitting.

Subsequently, a fully connected layer with 20 units and a

ReLU activation function was added. Then, another dropout

layer with a dropout rate of 40% was introduced, followed by

a dense layer with ten units, also using the ReLU activation

function. Finally, the output layer used the softmax activation

function to produce output probabilities for each class (open

or closed hand). The final model comprises 1,092 parameters.

For model compilation, we utilized the sparse categorical

cross-entropy loss function and employed a stochastic gradi-

ent descent method based on Adam optimization. Each epoch

involved training the model for 1,000 iterations, with a batch

size of 128. This training process resulted in an accuracy of

98%.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the design of human-robot

interfaces for robotics teleoperation based on key concepts

such as linearity, consistency, continuity, and user comfort.

As a proof-of-concept, the proposed solution was applied



Fig. 6: Field experiment: Manipulation task. The gripper is

actuated (opened/closed) by the user’s hand movements

to perform underwater tasks from a safe and ergonomic

location. Additionally, we established and developed a theo-

retical framework emphasizing the necessity of natural and

user-friendly interfaces. Consequently, we demonstrated that

optimal interfaces arising from common tasks possess a cer-

tain level of naturalness. The experimental simulation results

involved a group of volunteers to collect quantifiable data to

assess the effectiveness of the presented solution. Addition-

ally, field experiments conducted in a marine robotics testbed

validated the real-world applicability of our approach. Our

future work will enhance the overall system’s functionality

by expanding the proposed action space and configuration

space mappings. This will include incorporating the vehi-

cle’s depth control, translational motion, and additional hand

gestures for manipulation.

REFERENCES

[1] K. Hauser, “Recognition, prediction, and planning for assisted teleop-
eration of freeform tasks,” Autonomous Robots, vol. 35, 11 2013.

[2] A. Birk, T. Doernbach, C. Mueller, T. Łuczynski, A. Gomez Chavez,
D. Koehntopp, A. Kupcsik, S. Calinon, A. K. Tanwani, G. Antonelli,
P. Di Lillo, E. Simetti, G. Casalino, G. Indiveri, L. Ostuni, A. Turetta,
A. Caffaz, P. Weiss, T. Gobert, B. Chemisky, J. Gancet, T. Siedel,
S. Govindaraj, X. Martinez, and P. Letier, “Dexterous underwater
manipulation from onshore locations: Streamlining efficiencies for
remotely operated underwater vehicles,” IEEE Robotics & Automation

Magazine, vol. 25, no. 4, pp. 24–33, 2018.

[3] J. A. Cardenas, Z. Samadikhoshkho, A. U. Rehman, A. U. Valle-
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