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Mathematical results on the chiral models

of twisted bilayer graphene

Maciej Zworski

(with an appendix by Mengxuan Yang and Zhongkai Tao)

Abstract. The study of twisted bilayer graphene (TBG) is a hot topic in condensed matter

physics with special focus on magic angles of twisting at which TBG acquires unusual prop-

erties. Mathematically, topologically non-trivial flat bands appear at those special angles. The

chiral model of TBG pioneered by Tarnopolsky, Kruchkov, and Vishwanath (2019) has partic-

ularly nice mathematical properties and we survey, and in some cases, clarify, recent rigorous

results which exploit them.

1. Introduction

Investigation of physical properties of twisted bilayer graphene, and of similar struc-

tures, is a hot topics in condensed matter physics. One feature which is present when

periodic structures are twisted is the emergence of moiré patterns – see Figure 1.

These patterns create new periodic (or quasi-periodic) structures which now have

much larger fundamental cells. That is very useful and, for instance, has led to exper-

imental observation of the Hofstadter butterfly [23] – see [1] for the mathematical

derivation and history.

The property on which we focus in this mathematical survey is existence of flat

bands at certain angles of twisting (see Section 3.1 below for a review of the Bloch–

Floquet theory and for definition of band spectrum). Flat bands correspond to eigen-

values of infinite multiplicity for the periodic Hamiltonian modelling the system. The

first thought would then suggest existence of highly localised eigenstates which would

prevent conductivity. If however the band topology is non-trivial (see Section 8 below)

the localization is weak and can lead to superconductivity, in a somewhat mysterious

mechanism, certainly not understood mathematically.
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Figure 1. Left. a moiré pattern at CIRM in Luminy. Right. a moiré fundamental cell with regions

of different (AA0, BB’, AB 0; : : :) particle-type overlaps. Tunnelling potential jV.r/j concen-

trates in AA0=BB 0 regions and jU.r/j concentrates at AB 0 regions.

The Bistritzer–MacDonald Hamiltonian (BMH) [13] is widely considered to be a

good model for the study of twisted bilayer graphene (TBG) and it achieved celebrity

for an accurate prediction of the twisting angle at which superconductivity occurs [15].

The chiral limit of BMH is obtained by neglecting AA0=BB 0 tunnelling (see Figure 1

and Section 2.2). It has many advantageous properties and was studied with great suc-

cess by Tarnopolsky, Kruchkov, and Vishwanath [34] and their collaborators, see for

instance Ledwith et al. [26]. One striking feature of the chiral limit, one which is not

present in the BMH model, is the existence of exact flat bands. The Hamiltonian is of

the form

H.˛/ D
�

0 D.˛/�

D.˛/ 0

�

; D.˛/WH 1.CI C2/ ! L2.CI C2/;

where D.˛/ is a first order (non-self-adjoint) matrix valued operator and ˛ is dimen-

sionless constant (a much appreciated feature for mathematicians) with 1
˛

correspond-

ing to the angle of twisting – see (2.2) for the definition of D.˛/. The bands are the

eigenvalues of Hk.˛/ which is obtained by replacing D.˛/ by D.˛/C k in the defi-

nition of H.˛/ and by taking periodic boundary condition with respect to the lattice

of periodicity of H.˛/, � . Hence,

H.˛/ has a flat band at zero energy () SpecL2.C=�/D.˛/ D C:

It turns out (see Sections 2.2 and 5) that the set of ˛’s for which this happens is discrete

– at other ˛’s the spectrum is given by ��, the reciprocal lattice of � (in the notation

of Section 2.1, � D 3ƒ and �� D 1
3
ƒ�).
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In this survey we discuss distribution of ˛ for which H.˛/ has a flat band at zero

energy and properties of the corresponding eigenfunctions. We concentrate on pre-

senting rigorous mathematical results familiar to the author with precise pointers to

specific papers. In particular, we do not attempt to survey the vast physics literature

on TBG. The motivation comes from beautiful and mysterious properties of the dif-

ferential operator appearing in the chiral model (see Figure 2 for an illustration). We

also highlight some open mathematical problems. The most interesting are perhaps

Problems 1 and 9, as they still attract attention in the physics literature. Other prob-

lems concern finer aspects of the model and most are of purely mathematical interest –

I find Problems 2, 3, 8, 15, 18, and 20 particularly appealing.

Mathematical study of the chiral model of TBG started with the work of Watson

and Luskin [37] who showed existence of the first magic angle, and of Becker, Embree,

Wittsten, and Zworski [2,3] who gave a spectral characterization of magic angles and

explained exponential squeezing of bands. It has been developed in several direc-

tions by Becker, Humbert, and Zworski [6, 7, 7] (trace formulas, existence of gener-

alised magic angles, existence and properties of degenerate magic angles, topologi-

cal properties), Becker, Humbert, Wittsten, and Yang [4] (magic angles for trilayer

graphene), Becker, Oltman, and Vogel [9] (random perturbation of TBG), Becker and

Zworski [11,12] (TBG in a magnetic field parallel to the graphene sheets, deformation

to the full Bistritzer–MacDonald model), Galkowski and Zworski [20] (an abstract

formulation of the spectral characterization, a scalar model for magic angles), Hitrik

and Zworski [22], Tao and Zworski [22, Appendix] (classically forbidden regions

for eigenstates), and Yang [38] (twisted multiple layer graphene). Becker, Kim, and

Zhu [8] and Becker and Zhu [10] considered TBG in a transversal magnetic field.

Some of these results are described here.

During the writing of this survey, it became apparent that we did not have a ref-

erence to the fact that the chiral model of TBG exhibits Dirac cones away from ˛’s

at which flat bands appear – see Open Problem 2. Mengxuan Yang and Zhongkai Tao

immediately provided an argument for that and it is included here as an appendix.

Notation. In this paper, we use the physics notation: for an operatorA onL2.M;dm/,

hujAjvi ´
R

M
Av Nudm. Also, jui denotes the operator C 3 � ! �u 2 L2, and huj

its adjoint L2 3 v ! hujvi 2 C. For z; w 2 C ' R2, we use the real inner product,

hz; wi ´ Re z Nw. If H is a function space (such as L2, the Sobolev space H s , or

spaces with given periodicity conditions) then H.M I Cn/ denotes functions in H on

M with values in Cn. When the context is clear, we may drop M and Cn.
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2. The Bistritzer–MacDonald Hamiltonian and its chiral limit

In this section, we consider the Bistritzer–MacDonald Hamiltonian (BMH) [13] from

the PDE point of view without addressing its physical motivation. It has been

mathematically derived by Cancès, Garriguea, and Gontier [14] and Watson, Kong,

MacDonald, and Luskin [36] and we refer to these papers above and [34] for physics

background. As we will stress, its chiral limit exhibits beautiful and unusual mathe-

matical properties which have been our main motivation.

The representation of BMH in the physics literature [13, 34] is given as follows.

For two parameters ˛ and �, we define

HBM.˛; �/ D
�

�i.�1@x1
C �2@x2

/ T .˛; �/

T .˛; �/� �i.�1@x1
C �2@x2

/

�

W

H 1.R2I C4/ ! L2.R2I C4/;

where we use Pauli matrices,

�1 ´
�

0 1

1 0

�

; �2 ´
�

0 �i
i 0

�

; r D .x1; x2/ 2 R2;

and �� denotes the hermitian conjugate.

The parameter ˛ corresponds (modulo physical constants) to the reciprocal of the

angle of twisting of the two sheets of graphene, and � is the “anti-chiral” coupling

constant.

The interlayer tunnelling matrix is defined as follows:

T .˛; �/ D
�

�V.r/ ˛U.�r/

˛U.r/ �V.r/

�

:

The non-equivalent pairs of atoms in a fundamental cell of the honeycomb lattice of

graphene are labelled by A;B , with the labelling A0; B 0 for the second sheet in TBG.

In the matrix potential T , U.Û�/ and V model AB 0=BA0 and AA0=BB 0 tunnelling

respectively, see Figure 1. They are defined as follows: with ! ´ exp 2�i
3

,

U.r/ D
2
X

iD0

!`e�iq`�r ; V .r/ D
2
X

`D0

e�iq`�r ;

q` ´ R`.0;�1/; R ´ 1

2

�

�1 �
p
3p

3 �1

�

:

(We note that R is the 2�
3

rotation matrix.) A useful equivalent representation ofHBM

is given as follows:

AHBM.˛; �/A D
�

�C D.˛/�

D.˛/ �C

�

; A ´
 1 0 0

0 �1 0

0 0 1

!

W C4 ! C4;
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where (with Dxj
´ 1

i
@xj

)

D.˛/ D
�

Dx1
C iDx2

˛U.r/

˛U.�r/ Dx1
C iDx2

�

and C D
�

0 V.r/

V .�r/ 0

�

:

In most of the figures, we use the coordinates .x1; x2/ and corresponding dual coor-

dinates k.

2.1. Change to the standard lattice Z C !Z

The potentials U and V are periodic with respect to the lattice � D 4�i.Z C !Z/

with finer twisted periodicity with respect to the moiré lattice 1
3
� . It is mathematically

nicer, especially when dealing with theta functions, to use coordinates in which the

moiré lattice is given by ƒ ´ Z C !Z. This corresponds to changing the physics

coordinates r D .x1; x2/ 2 R2 to z 2 C ' R2 defined by

x1 C ix2 D 4

3
�iz:

This leads to an equivalent Hamiltonian,

H.˛; �/ ´
�

�C D.˛/�

D.˛/ �C

�

WH 1.CI C4/ ! L2.CI C4/; ˛ 2 C; � 2 R; (2.1)

where (with D Nz D 1
i
@ Nz D 1

2i
.@x1

C i@x2
/)

D.˛/ D
�

2D Nz ˛U.z/

˛U.�z/ 2D Nz

�

; C ´
�

0 V.z/

V .�z/ 0

�

; (2.2)

where the parameter ˛ is proportional to the inverse relative twisting angle. With

! D e2�i=3 and K ´ 4
3
� , we assume that

U.z C 
/ D eih
;KiU.z/; 
 2 ƒ; (2.3a)

U.!z/ D !U.z/; (2.3b)

U. Nz/ D �U.�z/; (2.3c)

ƒ ´ Z ˚ !Z, and

V.z/ D V. Nz/ D V.�z/; V .!z/ D V.z/; V .z C 
/ D eih
;KiV.z/: (2.4)

The specific potentials in HBM are, with K D 4
3
� ,

U.z/ D UBM.z/ ´ �4
3
�i

2
X

`D0

!`eihz;!`Ki; (2.5a)

V.z/ D VBM.z/ ´
2
X

`D0

eihz;!`Ki; (2.5b)
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and these are the potentials used in (most) numerical experiments in the papers cited

in the abstract. We stress that for most results surveyed here only assumptions (2.3)

and (2.4) are used (unless specifically stated).

2.2. The chiral limit

When we put � D 0 in (2.1) (or equivalently in HBM) we obtain an operator build

from D.˛/ only and satisfying a chiral symmetry:

H.˛/ ´ H.˛; 0/ D
�

0 D.˛/�

D.˛/ 0

�

;

�

�1 0

0 1

�

H.˛/

�

�1 0

0 1

�

D �H.˛/:

(2.6)

In particular, the spectrum of H.˛/ is symmetric with respect to 0. The great advan-

tage comes from reducing some properties ofH.˛/ to those of the operatorD.˛/. We

will see in Section 3 that H.˛/ has a perfect flat band at energy zero if and only if

SpecL2.C=3ƒIC2/D.˛/ D C; (2.7)

and that the set of ˛’s for which this happens is discrete. Outside of that discrete

set, the spectrum on L2.C=3ƒ/ is given by 1
3
ƒ�. The domain of D.˛/ is given by

H 1.C=3ƒ/ and it is a Fredholm operator of index 0. (In Section 3 we will consider

a finer space L2
0.CI C2/ which is more suitable for Floquet theory and the study of

flat bands; the reason for C=3ƒ is periodicity of potentials with respect to the lattice

3ƒ.) The set, A, of ˛’s for which (2.7) holds satisfies the following symmetries (see

[3] and [7, Section 2.3]):

A D �A D xA: (2.8)

Another advantage of the operator D.˛/ is that scalar valued holomorphic func-

tions act as scalars:

D.˛/.f u/ D fD.˛/u; u 2 H 1
loc.CI C2/; f 2 O.CI C/:

This was emphasised in [34] and was a basis of the argument recalled in Section 6

below.

A crucial feature of D.˛/ is its non-normality, ŒD.˛/; D.˛/�� ¤ 0. This allows

for exotic phenomena such as (2.7), which in turn produce exactly flat bands appre-

ciated by physicists. As indicated in [3], it also results in less desirable features such

as exponential squeezing of bands (see Section 10.1) and spectral instability (see Fig-

ure 5). Those effects are exploited in [9], where small random perturbations produce

dramatic changes in spectral behaviour, suggesting high instability of all but the first

magic angle.

The set of (complex) ˛’s for which (2.7) holds for the potential (2.5) is shown in

Figure 2. Its structure remains a mystery. One striking observation made in [34] is the
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Figure 2. The set of ˛’s for which (2.7) holds (with the potential given by (2.5)), that is for which

the chiral Hamiltonian has a perfectly flat band at 0 energy. The regular distribution becomes

less apparent when the potential is relaxed while all the properties (2.3) are maintained.

even spacing of real ˛’s (shown in red and labelled 0 < ˛1 < ˛2 < � � �) roughly given

by

j̨ C1 � j̨ ' 3

2
: (2.9)

(A more accurate computation based on the spectral characterization [3] – see Theo-

rem 5 – suggests the spacing ' 1:515).

Open Problem 1. For U given in equation (2.5a), establish an asymptotic quantiza-

tion rule (2.9). At the moment, there are no convincing arguments. A more general

question is obtaining asymptotics of real ˛’s for more general potentials satisfy-

ing (2.3). In that case, a simple law similar to (2.9) is harder to observe – see the

movie linked to Figure 3. See also Sections 5.2 and 10 for discussions of related

issues.

3. Basic symmetries and band theory of TBG

The translation symmetry of BMH are given as follows: for u2L2
loc.CIC2/we define

L
u.z/ ´
�

eih
;Ki 0

0 e�ih
;Ki

�

u.z C 
/; 
 2 ƒ; K D 4

3
�: (3.1)

We extend this action diagonally for w 2 L2
loc.CI C4/:

L
w D
�

L
w1

L
w2

�

; w D
�

w1

w2

�

; wj 2 L2
loc.CI C2/:

We then have, in the notation of (2.1) and (2.2), with U , V satisfying (2.3) and (2.4),

L
D.˛/ D D.˛/L
 ; L
H.˛; �/ D H.˛; �/L
 : (3.2)
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We also define the pull back of the rotation by 2�
3

:

�WL2
loc.CI C2/ ! L2

loc.CI C2/; �u.z/ ´ u.!z/;

CWL2
loc.CI C4/ ! L2

loc.CI C4/; C

�

w1

w2

�

´
�

�w1

x!�w2

�

:

This gives

�D.˛/ D !D.˛/; CH.˛; �/ D H.˛; �/C: (3.3)

The natural subspaces of L2
loc.CI C2/ are given by

L2
k.CI C2/ ´ ¹u 2 L2

loc.C;C
2/ W L
u D eihk;
iuº; kukL2

k
D
Z

C=ƒ

ju.z/j2dm.z/;

(3.4)

and similarly for p D 4 with L
 replaced by L
 . We also define Sobolev spaces

H s
k ´ L2

k \H s
loc:

With s D 1, they can be used as domains of our operators.

These spaces depend only on the congruence class of k in C=ƒ�,

ƒ� ´ 4�ip
3
ƒ; k 7! z.k/´

p
3k

4�i
; ƒ� !ƒ; hp;
i 2 2�Z; p 2ƒ�; 
 2ƒ:

(3.5)

The points of high symmetry, K , are defined by demanding that

p 2 K H) !p � p modƒ�:

They are given by

K D ¹K;�K; 0º Cƒ�; K D 4

3
�: (3.6)

Mathematically, these are the fixed points of the action of z 7! !z on C=ƒ�. Phys-

ically, ÛK are called the K-points at which Dirac points are present (see Section 6)

and 0 is called a �-point – see Figure 4. (A different choice of L
 in (3.1) can result

in different sets of K-points – see [11, Section 2].)

For k 2 K=ƒ� and p 2 Z3, we also define

L2
k;p.CI C4/ ´ ¹u 2 L2

k.CI C4/ W Cu D x!puº; (3.7)

with the definition ofL2
k;p
.CIC2/ obtained by replacing C by�. We have orthogonal

decompositionsL2
k

D
L

p2Z3
Lk;p , k 2 K=ƒ�. Also, the actions of L
 and C onL2

p;k

commute. In general, L
C D CL!
 and the group generated by the action L
 and C

(or the actions of L
 and C) is a discrete Heisenberg group – see [3, Section 2.1].

These spaces play an important role in the study of protected states (Theorem 1), and

trace formulas for magic angles (Theorems 9 and 11), and multiplicities (Theorems 12

and 14).
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3.1. Bloch–Floquet theory

The “twisted” translations L
 can be used to define a Bloch transform

Bu.k; z/ ´ jC=ƒ�j� 1
2

X


2ƒ

e�ihzC
;ki
L
u.z/; u 2 S.C/:

We then easily check that

Bu.k C p; z/ D e�ihz;pi
Bu.k; z/; p 2 ƒ�;

L˛Bu.k; �/ D jC=ƒ�j� 1
2

X




e�ihzC˛C
;ki
L˛C
u.z/ D Bu.k; �/; ˛ 2 ƒ:

We can check that, for u 2 S.C/,
Z

C=ƒ

Z

C=ƒ�

jBu.k; z/j2dm.z/dm.k/ D
Z

C

ju.z/j2dm.z/;

and that

CBu.z/ D u.z/; Cu.z/ ´ jC=ƒ�j� 1
2

Z

C=ƒ�

v.z; k/eihz;kidm.k/:

This shows that B extends to a unitary map BWL2.CI C4/ ! H, where

H ´ ¹v.k; z/ 2 L2
loc.CIL2

0.CI C4//; v.k C p; z/ D e�ihz;piv.k; z/; p 2 ƒ�º:

We then define

Hk.˛; �/WD ! H; D ´ H \ L2
loc.CkIH 1

0 .C;C
4//;

Hk.˛; �/ ´ e�ihz;kiH.˛; �/eihz;ki D
�

�C D.˛/� C Nk
D.˛/C k �C

�

;

ŒHk.˛; �/Bu�.k; z/ D ŒBH.˛; �/u�.k; z/:

(3.8)

We see that SpecL2
0
.Hk.˛; �// (with the domain given by H 1

0 ) is discrete and

SpecL2.CIC4/.H.˛; �// D
[

k2C=ƒ�
SpecL2

0
Hk.˛; �/:

The Hamiltonian (2.1) possesses other important symmetries called the parity-

inversion/time-reversal symmetry, the particle-hole symmetry and the mirror symme-

try – see [12, Section II.2] for a concise review. One consequence of the symmetries

is the existence and properties of protected states. The name comes from the fact that

these zero energy states exist for all ˛ at k D ÛK (the K points): they are protected

by the symmetries of the Hamiltonian.
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Theorem 1 ([2, 3]). For the Hamiltonian (3.8) with U and V satisfying (2.3), (2.4),

and ˛; � 2 R,

dim kerH 1
0
HÛK.˛; �/ � 2; K D 4

3
�; (3.9)

In addition, for ˛ 2 C,

dim kerH 1
0
.D.˛/ÛK/ � 1: (3.10)

Moreover, we can find a holomorphic function

C 3 ˛ ! uÛK.˛/ 2 .C1 \ L2
0/.CI C2/ n ¹0º;

such that

.D.˛/ÛK/uÛK.˛/ D 0; u�K.˛/ D �.K/E�.K/uK.˛/;

�.K/uK.0/ D
�

1

0

�

; �.ÛK/uÛK.˛/ 2 L2
ÛK;0;

E

�

u1.z/

u2.z/

�

´
�

u2.�z/
�u1.�z/

�

; �.k/u.z/ ´ eihz;kiu.z/:

(3.11)

This was essentially established in [2, 3], but for a streamlined proof of (3.9) see

[12, Proposition 2], and for the proofs of (3.10) and (3.11), [7, Propositions 2.2 and

2.3], respectively. An alternative proof of (3.10) which does not involve H.˛; 0/ is

presented in [4].

Open Problem 2. Do upper and lower bands for the Bistritzer–MacDonald Hamilto-

nian have conic singularities at ÛK for all real values of ˛ and �? That would mean

that ÛK are Dirac points:

3.2. Flat bands in the chiral limit

The first advantage of the chiral model (2.6) is that the spectrum ofHk.˛/´Hk.˛;0/

is symmetric with respect to 0 (that is not true in the case of BMH – see Section 4). In

view of (3.10) we know that two bands always touch at 0. Hence, it is natural to label



Mathematical results on the chiral models of twisted bilayer graphene 1073

the spectrum of Hk.˛/ as follows:

SpecL2
0
Hk.˛/ D ¹E`.˛; k/º`2Zn0; E`C1.˛; k/ � E`.˛; k/;

E`.˛; k/ D �E�`.˛; k/; EÛ1.˛;ÛK/ D 0; for all ˛ 2 C.
(3.12)

We note that E`.˛; k/, ` � 1, are the ordered sequence of the singular values of the

non-self-adjoint operator D.˛/C k.

A flat band at zero energy occurs at a given value of the parameter ˛ if one has

E1.˛; k/ D 0 for all k 2 C. We recall that in the BMH, 1
˛

is proportional to the angle

of twisting of the two sheets of graphene. For a specific potential U satisfying (2.3),

the magic ˛ (that is magic angles) and their multiplicities were defined as follows

in [5].

Definition (Magic angles and their multiplicities). A value of ˛ in (2.2) is called

magical if H.˛/ has a flat band at zero

E1.˛; k/ � 0; k 2 C:

The set of magic ˛’s is denoted by A or A.U / if we specify the dependence on the

potential. The multiplicity of a magic ˛ is defined as

m.˛/ D mU .˛/ ´ min¹j > 0 W max
k
Ej C1.˛; k/ > 0º: (3.13)

Magic angles are (up to physical constants) reciprocals of ˛ 2 A

A numerical illustration of the sets A for different potentials satisfying (2.3) is

shown in Figure 3. Multiplicities are indicated there and in the linked animation. The

computation was done based on the spectral characterization described in Section 5.

The protected nature of multiplicities one and two will be reviewed in Section 7.

Although the proof relies on the material presented in Section 5, we recall here a

result stating that if E1.˛; k/ touches 0 at some k away from the K-points then the

band has to be perfectly flat.

Theorem 2 ([3, 7]). For any U satisfying (2.3) and ˛ 2 C,

9k … ¹�K;Kº Cƒ� E1.˛; k/ D 0 H) 8k 2 C E1.˛; k/ D 0:

For the Bistritzer–MacDonald Hamiltonian (2.1) perfectly flat bands are not

expected. The fact that the antichiral modelH.0;�/ cannot have flat bands was shown

in [2].

A perfectly flat band at 0 energy for a periodic Hamiltonian corresponds to an

eigenvalue of infinite multiplicity at 0 for the Hamiltonian acting on L2 (in our case

L2.CIC4/ with the domain given byH 1.CIC4/). Physical properties, such as super-

conductivity, are then related to the decay of the corresponding eigenfunctions. That
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Figure 3. Magic angles ˛ for U1.z/ D UBM.z/ given in (2.5) (left) and U2.z/ D .UBM.z/ �
UBM.�2z//=

p
2 (right). Multiplicity of the flat bands (no number ! simple magic angle,

2 ! two-fold degenerate magic angle) in the figure. The movie httpsW//math.berkeley.edu/

~zworski/Interpolation.mp4, visited on 12 July 2024, shows the magic angles for interpola-

tion between these potentials: U.z/ D .cos � � sin �/U1.z/C sin �U2; multiplicity one magic

angles are coded by � and multiplicity two by �.

in turn is related to the topology of the flat band – see [33, Section 8.5] and refer-

ences given there. Trivial topology gives exponential decay while non-trivial topology

forces the blow up of moments of the probability distribution of the Wannier functions

[33, Theorem 9]. We will discuss the topology of flat bands for TBG in Section 8.

Open Problem 3. Show that the Hamiltonian (2.1), H.˛; �/, with U and V 6� 0 sat-

isfying (2.3) and (2.4), cannot have flat bands when �¤ 0. (Or give a counterexample

to this claim.)

Open Problem 4. Numerics indicate (see [7, Figure 2]) that for U D UBM, k 7!
E1.˛; k/=Œmaxp2C E1.˛; p/� does not vary much with ˛, in particular in neighbour-

hoods of ˛ 2 A, and its graph is close to that of k 7! jUBM.z.k//j, where zWƒ� !ƒ,

see (3.5). What is the explanation of this phenomenon? For an animation of rescaled

bands, see httpsW//math.berkeley.edu/~zworski/KKmovie.mp4, visited on 12 July 2024.

4. BMH as a perturbation of the chiral model

The Bistritzer–MacDonald Hamiltonian (BMH) (2.1) could, for small values of the

coupling constant �, be considered as a perturbation of the chiral model. The actual

physical value of � (see [13, 34]) is approximately given by � D 0:7˛.

https://math.berkeley.edu/~zworski/Interpolation.mp4
https://math.berkeley.edu/~zworski/Interpolation.mp4
https://math.berkeley.edu/~zworski/KKmovie.mp4
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Figure 4. Plots of k 7! EÛ1.˛; �; k/ for ˛ the first real magic element of A and � D
10�3; 10�2; 10�1. We see that for very small coupling the flat bands “move together” and

split only when the coupling gets larger; the quadratic term controls the splitting of the bands,

see Figure 1. For an animated version, see httpsW//math.berkeley.edu/~zworski/Chiral2BM.mp4,

visited on 12 July 2024.

The simplest case to consider is of ˛ 2 A which is positive and simple (which,

in the case of the potential in (2.5) we know rigorously for the smallest magic ˛ and

numerically for other real ˛’s – see Section 7). Then, in the notation of (3.12),

E�2.˛; k/ < E�1.˛; k/ D 0 D E1.˛; k/ < E2.˛; k/; for all k.

This means that, for j�j � 1 in (3.12), the bands EÛ1.˛; �; k/ are well defined.

A standard application of perturbation theory (see Section 9), the symmetries of

D.˛/ and H.˛; �/, and of some basic properties of theta functions (see (6.8), (6.6),

and (6.7) below) gives the following simple but (to us) surprising result:

Theorem 3 ([12]). Suppose that ˛ 2 A \ R is simple and that k 7! EÛ1.˛;�; k/ are

the two lowest bands (in absolute value) of BMH in (2.1). Then there exist e.˛; �/;
f .˛; �/ 2 C1.C=ƒ�/ such that

EÛ1.˛; �; k/ D e.˛; k/�Û jf .˛; k/j�2 C O.�3/; � ! 0;

f .ÛK/ D 0, (!K � K modƒ�, K ¤ 0), and

e.˛; k/ D �e.˛;�k/ D �e.˛; Nk/ D e.˛; !k/; ! D e2�i=3:

The surprising fact is that the leading linear term (for very small �) does not

depend on the band: when � is switched on the two bands initially move together –

see Figure 4. However, je.˛; k/j � jf .˛; k/j (except at the crossing points k D ÛK)

and hence the quadratic term quickly dominates and is responsible for the splitting of

the bands – see [12, Figure 2]. For the first magic ˛ (and the potential in (2.5)), the

quadratic approximation provides an accurate description of the bands when �D 0:7˛

(the physical �). For a discussion of the splitting of bands in the case of double ˛’s,

see [12, Section 5].

https://math.berkeley.edu/~zworski/Chiral2BM.mp4
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Open Problem 5. Show that jf .˛;ÛK C �/j � j�j which is equivalent to showing

that the Jacobian does not vanish: j@kf .˛;ÛK/j2 � j@ Nkf .˛;ÛK/j2 ¤ 0. This is a

simpler (infinitesimal) version of Problem 2 at a magic angle.

5. Spectral characterization of magic angles

In Section 3 we gave the definition of A � C, the set of magic parameters ˛ (corre-

sponding to the reciprocals of magic angles). The purpose of this section is to give

a general argument [20] for the discreteness of A which relies only on holomorphy

of ˛ 7! D.˛/, Fredholm properties, and existence of protected states. In the case of

operators appearing in [3, 4, 34, 38], it also characterises magic angles as eigenvalues

of a compact operator, which in turn allows their accurate numerical computation (see

Figure 3).

We replace the operatorD.˛/C k by a family of operators acting between Banach

spaces X and Y . We let � � C be an open set and assume that for .˛; k/ 2 � � C

Q.˛; k/WX ! Y is a holomorphic family of Fredholm operators of index 0,

�Y .p/Q.˛; k/�X .p/
�1 D Q.˛; k C p/; k 2 C; p 2 ƒ�;

(5.1)

where the maps ��.p/ W � ! �, � D X;Y , are invertible bounded linear maps, andƒ�

is a lattice in C. (The last condition can be significantly weakened but we leave in the

form relevant to periodic problems.)

We have the following for dichotomy: for a fixed ˛ 2 �,

k 7! Q.˛; k/�1 is meromorphic for k 2 C with poles of finite rank (5.2)

or

kerX Q.˛; k/ ¤ ¹0º for all k 2 C. (5.3)

(See [20] and also [19, Appendix C] for a brief introduction to Fredholm theory and

families of meromorphic operators. For the above dichotomy we use the fact that

Q.˛; k/ is assumed to have index zero so that invertibility is equivalent to having a

trivial kernel. The invertibility for a single k, and analytic the Fredholm theory on

[19, Appendix C] imply the meromorphy of k 7! Q.˛; k/�1.)

We now define multiplicity as follows: if (5.2) holds, then

m.˛; k/ ´ 1

2�i
tr

I

@D

Q.˛; �/�1@�Q.˛; �/d�; (5.4)

where the integral is over the positively oriented boundary of a discD which contains

k as the only possible pole of � 7! Q.˛; �/. Otherwise, that is when (5.3) holds, we

put m.˛; k/ D 1 for all k 2 C.
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Although seemingly very general and abstract, this definition is necessary in nat-

ural examples as will be indicated in Sections 5.1 and 5.2.

Theorem 4 ([20]). Suppose that (5.1) holds and that for some ˛0 2 � and every

k 2 C, we have

m.˛; k/ � m.˛0; k/ ¤ 1:

Then there exists a discrete set A � � such that for all k 2 C

m.˛; k/ D
´

1; ˛ 2 A;

m.˛0; k/; ˛ … A:

We illustrate the theorem with some simple examples.

Examples. (1) Consider

Q.˛; k/ D eixDx C
�

˛ � 1

2

�

eix C k; x 2 R=2�Z; Dx ´ 1

i
@x :

Then, in the notation of Theorem 4, X D L2.R=2�Z/, Y D H 1.R=2�Z/ and

m.0; k/ � 0; ƒ� D Z; A D Z C 1

2
:

In this case, we do not have the second condition in (5.1) but the proof in [20] still

applies as m.0; k/ � 0. A direct elementary verification is of course much simpler.

This is a special case of the class of one-dimensional examples constructed by See-

ley [31] to show pathological properties of non-normal operators.

(2) We can consider Q.˛; k/ D D.˛/C k given in (2.2) with U satisfying (2.3).

In [3] we took

X D L2.C=3ƒI C2/; Y D H 1.C=3ƒI C2/:

In that case, the assumptions were satisfied by

m.0; k/ D 21 1
3 ƒ�.k/; �.p/u.z/ ´ eihp;ziu.z/:

(3) In [7] we took the point of view closer to the physics literature and had D.˛/

act on

X D L2
0.CI C2/; Y D H 1

0 .CI C2/;

where the spaces were defined in (3.4), so that

m.0; k/ D 1K0
.k/; K0 ´ ¹K;�Kº Cƒ�; �.p/u.z/ ´ eihp;ziu.z/:

(The protected states were reviewed in Theorem 1.) The sets A are the same in both

cases. However, there are multiplicity issues illustrated in [7, Figure 4].

More interesting examples, in which m.˛0; k/ > dim kerQ.˛0; k/, will be given

the next two sections.
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5.1. Spectral characterization

For operators appearing in TBG (see the examples above) but also in the study of

multilayer graphene – see [4,38] and references given there – the structure of operators

Q.˛; k/ in Theorem 4 is more special.

A natural generalization of D.˛/ in (2.2) is given as follows:

D.˛/ ´ 2D Nz ˝ ICn CW.z/C ˛V.z/WH 1
loc.CI Cn/ ! L2

loc.CI Cn/;

H.˛/ ´
�

0 D.˛/�

D.˛/ 0

�

;
(5.5)

where V.z/;W.z/ 2 C1.CICn ˝ Cn/. Here 2D Nz ´ @x1
C i@x2

, z D x1 C ix2, and

we will write 2D Nz for the diagonal action on Cn-valued functions.

In (2.2), we had n D 2 and W D 0, but the presence of W is needed for other

models. Mathematically, having that term seems essential when n > 3 is considered

as it helps in controlling the number of protected states, see (5.7) below. We could

consider an even more general case of W.z/C ˛V.z/ replaced by V.˛; z/.

Let

ƒ D cƒ.Z C !Z/; cƒ 2 C�; ! D e2�i=3:

One nice choice is cƒ D 1 (used in [11] and later papers and in Section 2.1 above),

but the lattices in the physics literature have different cƒ. Let

ƒ� ´ c�1
ƒ

�4�ip
3

�

ƒ;

be the dual (reciprocal) lattice.

The class of very general periodicity conditions is given as follows:

V.z C 
/ D �.
/�1V.z/�.
/; W.z C 
/ D �.
/�1W.z/�.
/;

�.
/ ´ diagŒ.exp.ih
; kj i//nj D1�; kj 2 C=ƒ�:
(5.6)

We remark that �.
/ is, up to a change of coordinates on Cn a general unitary repre-

sentation of the group ƒ on Cn.

We then have

L
D.˛/ D L
D.˛/; L
u.z/ ´ �.
/u.z C 
/;

and Bloch–Floquet theory follows the same path as in Section 3.1 by considering the

spectrum of

Hk.˛/ ´
�

0 D.˛/� C Nk
D.˛/C k 0

�

WH 1
� ! L2

�;

L2
� ´ ¹u 2 L2

loc.CI Cn/; L
u D uº; H 1
� ´ H 1

loc \ L2
�:
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Equivalently, we can consider

D�.˛/ WD �.z/D.˛/�.z/�1 D diagŒ.2D Nz � kj /
n
j D1�CW�.z/C ˛V�.z/;

��.z C 
/ D ��.z/; ��.z/ ´ �.z/ � .z/�.z/�1; � D V;W;
(5.7)

which is a periodic operator with respect to ƒ and look at the corresponding H�;k.˛/

on ƒ-periodic functions.

By putting

Q.˛; k/ ´ D.˛/C k; X D L2
�; Y D H 1

� ;

we can apply Theorem 4 to this case provided that D.0/ (corresponding to ˛0 D 0)

has discrete spectrum. If the eigenvalues of D.0/ are semisimple, then

m.0; k/ D dim kerH 1
�
.2D Nz CW.z/C k/: (5.8)

This happens when W.z/ � 0, in which case

m.0; k/ D j¹j 2 Œ1; : : : ; n�W k � kj modƒ�ºj:

The advantage of the special form of D.˛/ is that for k … SpecH�
D.0/, the oper-

ator .D.0/C k/�1WL2
� ! L2

� is compact. Combined with Theorem 4, this gives the

following.

Theorem 5 ([3, 7, 20]). Suppose that

Q.˛; k/ ´ D.˛/C k;

where D.˛/ is given in (5.5) and that D.0/ has discrete spectrum. If, for all k (see

definition (5.4)),

m.˛; k/ � m.0; k/; (5.9)

then the Birman–Schwinger operator,

Tz ´ .D.0/ � z/�1W.z/WL2
� ! H 1

� ,! L2
�; z … Spec.P.0//; (5.10)

has discrete spectrum independent of z and, in the notation of Theorem 4,

m.k; ˛/ D
´

1; 1
˛

2 Spec.Tz/;

m.k; 0/; otherwise.
(5.11)

In particular, H.˛/ in (5.5) has a flat band at 0 if and only if 1
˛

2 Spec.Tz/.

Conversely, if the spectrum of Tz is independent of z … SpecD.0/, then (5.9)

and (5.11) hold.
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Figure 5. Left. The spectrum of D.˛/ (in the k plane) as ˛ varies (vertical axis). Flat surfaces

indicate that 1
˛

is a magic angle. Right. Level surface of k.D.˛/ � k/�1k D 102 as a function

of k and ˛: the norm blows up at magic angles for all k (˛ near the magic values 0:586 and

2:221). The thickening of the “trunks” reflects the exponential squeezing of the bands. This

figure comes from [3].

As pointed out above, this spectral characterization, with magic angles as the spec-

trum of a compact operator, has been very useful in computing elements of A. Since

Tz is non-self-adjoint, pseudospectral issues (see [17] and references given there),

that is the large size of the norm of the resolvent of Tz , enter for large values of ˛. An

explanation of this is provided in Section 10.1 but a striking numerical illustration is

given in Figure 5.

An example of an operator with nD 3 can be found in [4] where trilayer graphene

was studied (and (5.8) holds). A more interesting case is given by twistedm-sheets of

graphene studied mathematically in [38].

Example. Let us rename the operator D.˛/ in (2.2) as D1.˛/. Following [38] and

the physics papers cited there, we put, for N > 1,

D.˛/ D DN .˛; t/ ´

0

B

B

B

B

B

B

B

B

B

@

D1.˛/ t1TC
t1T� D1.0/ t2TC

t2T� D1.0/
: : :

: : :

tN �1TC
tN �1T� D1.0/

1

C

C

C

C

C

C

C

C

C

A

; (5.12)

with t D .t1; t2; : : : ; tN �1/ and

TC D
�

1 0

0 0

�

; T� D
�

0 0

0 1

�

:
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To find a suitable � in (5.6), we first choose k1 and k2 which work for D1.˛/ (for

instance, as in (3.1)) and then check that kj for 3� j � 2N can be chosen consistently

so that (5.6) holds. Then D.˛/ is an example of an operator to which Theorem 5

applies with n D 2N . In this case, m.0; k/ D N 1K.k/ > dim ker.DN .0/ C k/ D
1K.k/ (K D ¹K;�Kº Cƒ in the case of (3.1)). A direct argument in [38, Section 4.2]

showed that set of ˛’s for which the spectrum ofD.˛/ is a discrete set and that implies

that the spectrum Tz in (5.10) is independent of z … K . Hence, Theorem 5 implies

that (5.9) holds but it would be interesting to have a direct argument for that.

5.2. A scalar model

One of the difficulties of dealing with the operatorD.˛/ given in (2.2) is that it acts on

vector valued functions – some of that will be highlighted in Section 10. By increasing

the order, of the operator a scalar model non-equivalent to D.˛/ but exhibiting flat

bands was proposed in [20].

We first observe that D.�˛/ is the co-adjoint matrix of D.˛/ and hence

D.�˛/D.˛/ D Q.˛/˝ IC2 C
�

0 ˛2D NzU.z/
�˛Œ2D NzU �.�z/ 0

�

;

Q.˛/ ´ .2D Nz/
2 � ˛2U.z/U.�z/:

(5.13)

From the semiclassical point (as ˛ ! 1) of view, the non-scalar term in (5.13) is of

lower order (see Section 10) and is natural to consider the operator Q.˛/ on its own.

We can then consider a self-adjoint Hamiltonian on L2.CI C2/ with the domain

given by H 2.CI C2/ (note that D2
Nz is an elliptic operator),

H.˛/ ´
�

0 Q.˛/�

Q.˛/ 0

�

: (5.14)

This is a periodic operator with respect to the lattice ƒ (note that for U satisfy-

ing (2.3), U.z/U.�z/ isƒ-periodic). And Floquet theory (as reviewed in Section 3.1)

corresponds to studying the spectra of

H.˛; k/ D
�

0 Q.˛; k/�

Q.˛; k/ 0

�

; Q.˛; k/ ´ .2D Nz C k/2 � ˛2U.z/U.�z/;

on L2.C=ƒI C2/ and with the domain H 2.C=ƒI C2/.

A flat band of H.˛/ given in (5.14) corresponds to

8k 2 C 0 2 SpecHk.˛/ () 8k 2 C kerH 1.C=ƒ/Q.˛; k/ ¤ ¹0º: (5.15)

To apply Theorem 4, we need to verify the first inequality in (using the definition (5.4))

m.˛; k/ � m.0; k/ D 21ƒ�.k/ > dim kerQ.0; k/ D 1ƒ�.k/;
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Figure 6. Comparison of the set of magic ˛’s, A for the potential U D UBM given in (2.5)

(shown as ı) and Asc the set for which (5.15) holds (with the same U ; shown as �). The real

elements of Asc are shown as �. They appear to have multiplicity two. When we interpolate

between the chiral model and the scalar model, the multiplicity two real ˛’s split and travel

in opposite directions to become magic ˛’s for the chiral model, see httpsW//math.berkeley.edu/

~zworski/Spec.mp4, visited on 12 July 2024.

see [20, Section 3]. (Just as in the case of (5.12) it is important to consider the gen-

eralised multiplicities.) It then follows that there exists a discrete set Asc such that

(5.15) holds if and only if ˛ 2 Asc – see Figure 6.

The next two problems are probably the most doable on the list.

Open Problem 6. Adapt the theta function argument recalled in Section 6 to the

scalar model and show that the multiplicity of the flat bands is at least 2.

Open Problem 7. Adapt the trace argument is Section 7 to show that for the potential

U D UBM in (2.3), jAscj D 1.

The situation is less clear for the next open problem.

Open Problem 8. Is the spectrum of Q.˛; k/ discrete for all ˛ and k? Characterise

the set for which SpecQ.˛; k/ D ;. (We should stress that this is a mathematical

curiosity: only the fact that 0 2 SpecQ.˛;k/ is relevant to the question of band theory,

bands being given by characteristic values of Q.˛; k/ as k varies.)

The next problem is the analogue of Open Problem 1. One would like to hope that

the scalar nature of the operator could be of some help in the semiclassical analysis

(see Section 10).

Open Problem 9. If ˇ1 < ˇ2 < � � � is the ordered sequence of elements of Asc \
Œ0;1/ then, for the potential (2.5),

ǰ C1 � ǰ D 2
 C o.1/; j ! 1;

where 
 ' 3
2

is the asymptotic spacing between the elements of A \ Œ0;1/ (see (2.9)).

What happens for more general potentials satisfying (2.3)?

https://math.berkeley.edu/~zworski/Spec.mp4
https://math.berkeley.edu/~zworski/Spec.mp4
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6. Theta function argument for magic angles

Magic angles for the chiral model were described in [34] using a different approach

than that recalled in Section 5 and coming from [3]. It was based on an idea which

appeared earlier, in a different but related context, in the work of Dubrovin and

Novikov [18]. It was revisited in [7] and here we present a slightly different variant.

The operator 2D Nz ´ 1
i
.@x1

C i@x2
/, z D x1 C ix2, acting on L2.C=ƒI C/ with

the domain given by H 1.C=ƒI C/, is a normal operator (a sum of two commuting

sel-adjoint operators). Its spectrum is given by ƒ� with simple eigenvalues and nor-

malised eigenfunctions given by v.p/ D �.p/v.0/, v.0/ ´ jC=ƒj� 1
2 , Œ�.p/u�.z/ D

eihz;piu.z/, p 2 ƒ�. Hence, its resolvent

.2D Nz C k/�1WL2.C=ƒI C/ ! H 1.C=ƒI C/;

is a meromorphic family of operators with simple poles at p 2 ƒ� and residues

jv.p/ihv.p/j. Since 2D Nz is translation invariant, the inverse of 2D Nz C k is given

by a convolution with a distribution Gk:

.2D Nz C k/�1f .z/ D
Z

C=ƒ

Gk.z � �/f .�/dm.�/;

.2D Nz C k/Gk.z/ D ı0.z/;

with k … ƒ�. If a.k/ is any entire function with the zero set given by simple zeros

at ƒ�, then

k 7! Fk.z/ ´ a.k/Gk.z/ is a holomorphic family of distributions,

.2D Nz C k/Fk.z/ D a.k/ı0.z/:
(6.1)

If uK is the protected state described in Theorem 1 and z0 2 C=ƒ, then (6.1) gives

(note that uK is valued in C2 and Fk is scalar valued)

.2D Nz C k/.Fk�K.z � z0/uK.˛; z// D a.k �K/uK.˛; z0/ı.z � z0/: (6.2)

Hence,

9z0 uK.˛; z0/ D 0 H) 8k 9u.k/ 2 H 1
0 .D.˛/C k/u.k/ D 0; ku.k/kL2

0
D 1:

(6.3)

The required vanishing condition is strong: we are looking for simultaneous vanishing

of two complex valued functions of the complex variable (components of uK).

Following [34], we observe

�.K/uK.˛; z/ D
�

 .z/

'.z/

�

H) 8˛ '.z.K// D 0:
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(Here we use the notation of (6.8) and recall from (3.7) and (3.11) that

L
�.K/uK.˛/ D eih
;Ki�.K/uK.˛/

and that �.K/uK.˛; !z/ D �.K/uK.˛; z/ which then implies, following the defini-

tions, that '.z.K// D x!'.z.K//.) Using (3.11), we have

�.�K/uK.˛; z/ D
�

'.�z/
� .�z/

�

:

Since D.˛/.�.ÛK/uÛK.˛// D 0, the Wronskian of �.ÛK/uÛK is a holomorphic

ƒ-periodic function. Hence, it is a constant depending only on ˛:

vF .˛/ ´  .z/ .�z/C '.z/'.�z/
kuK.˛/k2

D  .z.K// .�z.K//
kuK.˛/k2

: (6.4)

(For an interesting physical interpretation of vF .˛/ as the Fermi velocity see [34, (8),

(21), and (22)]. We lose holomorphy in ˛ because of the normalization.) We conclude

that

9z0 uK.˛; z0/ D 0 () vF .˛/ D 0 () 9" 2 ¹C;�º uK.˛; "z.K// D 0:

This argument, essentially from [34], establishes one implication in the first statement

of the following theorem.

Theorem 6 ([3,7,34]). For any potential U satisfying (2.3), A defined in Section 3.2

and vF .˛/ defined in (6.4), we have

vF .˛/ D 0 () ˛ 2 A:

Moreover, if ˛ 2 A is simple, then

uK.˛; z0/ D 0 H) z0 D z.K/; (6.5)

and the zero is simple: uK.˛; z/ D .z � z.K//w.z/, w 2 C1, w.z.K// ¤ 0.

The implication vF .˛/ ¤ 0 H) ˛ … A follows easily from building a formula

for .D.˛/C k/�1 using uÛK.˛/ – see [3, Proposition 3.3]. The implication (6.5) is

a special case of [7, Theorem 3]. The point z.K/ µ �zS is called a stacking point –

see Figure 10. The proof of (6.5) was simplified in [4] in a way which allowed an

adaptation to the trilayer case. For an animation showing the behaviour of uK.˛/ as

˛ increases along the real axis (for the potential (2.5)), see httpsW//math.berkeley.edu/

~zworski/magic.mp4, visited on 12 July 2024.

We recall another characterization of simple ˛ 2 A.

https://math.berkeley.edu/~zworski/magic.mp4
https://math.berkeley.edu/~zworski/magic.mp4
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Theorem 7 ([7]). We have the following equivalence (using definition (3.13) and

denoting K0 ´ ¹K;�Kº Cƒ�)

m.˛/ D 1 () 8k 2 C dim kerL2
0

.C=ƒ/.D.˛/C k/ D 1;

() 9p … K0 dim kerL2
0

.C=ƒ/.D.˛/C p/ D 1:

Returning to (6.2) and (6.3), we see that for ˛ 2 A, simple, we can take (see

[11, (3.32)])

u.k; z/ D c.k/Fk.z/u0.z/; kerH 1
0
D.˛/ D Cu0; kerH 1

0
.D.˛/C k/ D Cu.k/;

(6.6)

where c.k/ is the normalizing constant so that ku.k/kL2
0

D 1. (We know that in this

case u0 has a simple zero at 0 – see [11, Proposition 3.6]. Please note that u0 2 L2
0

exists only for ˛ 2 A, unlike �.ÛK/uÛK 2 L2
ÛK ,D.˛/�.ÛK/uÛK D 0 which exist

for all ˛.) Using symmetries ofD.˛/, we can also describe the kernel of .D.˛/C k/�

and that can be done in different ways. Following [11, (3.43)], we can take (with the

advantage that it works also for more general potentials (7.6))

u�.k;z/D c.k/F�k.z/

�

'0.z/

� 0.z/

�

; u0 µ
�

 0

'0

�

; kerH 1
0
.D.˛/C k/� D Cu�.k/;

(6.7)

and ku�.k/kL2
0

D 1. (For other choices of u�.k/ when D.˛/ is given by (2.2), see

[12, (2.9)].)

There are many choices for Fk (that is, choices of entire functions a.k/ with

simple zeros precisely at ƒ�) and we can for instance follow [11] and take

Fk.z/ ´ e
i
2 .z�Nz/k �.z � z.k//

�.z/
; z.k/ D

p
3

4�i
k; a.k/ ´ 2�i�.z.k//

� 0.0/
;

�.z/ ´ �1.zj!/ ´ �
X

n2Z

exp
�

�i
�

nC 1

2

�2

! C 2�i
�

nC 1

2

��

z C 1

2

��

;

(6.8)

that is, � is the first Jacobi theta function and its simple zeros coincide with ƒ –

see [29] or [24]. The Weierstrass � function was used explicitly in [18] and the theta

function in [34], but in fact it is only the canonical nature of Green’s function and the

setƒ� that matter (though of course constructing a function which vanishes precisely

at ƒ� hides those special functions).

7. Existence and multiplicities of magic angles

So far, we have not addressed the question of existence of magic ˛’s, and in particular

of existence of real simple ˛’s (see the definition in Section 3.2). It is not clear if there
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exist more than one physical magic angle and the current experimental and theoreti-

cal evidence suggests that there may only be one. The work of Becker, Oltman, and

Vogel [9] on random perturbations of TBG provides some mathematical evidence for

that.

In the chiral model rigorous existence and simplicity of the first real magic angle

has however been established.

Theorem 8 ([6, 37]). For the potential (2.5) and for the (discrete) set of magic ˛’s,

A, defined in Section 3.2, we have

min A \ Œ0;1/ D ˛1 ' 0:586: (7.1)

In addition, in the sense of (3.13),

m.˛1/ D 1; (7.2)

that is, ˛1 is simple.

Watson and Luskin [37] followed the approach of [34] and proved existence of a

zero of vF .˛/ given in (6.4) (see Theorem 6). That was done by a careful analysis

of the Taylor series at 0, with precise estimates of the remainder, and floating point

arithmetic.

The approach of [6] was based on the spectral characterization from [3]

(see Section 5) and the evaluation, theoretical and numerical, of sums of powers of

magic ˛’s.

Theorem 9 ([3, 6]). For the potential in (2.5), we have

X

˛2A

˛�4 D 8�p
3
; (7.3)

and, more generally, for p 2 N C 2,

X

˛2A

˛�2p 2 �p
3

Q: (7.4)

In the above sums. the multiplicity of ˛ 2 A is given by the algebraic multiplicity of 1
˛

as an eigenvalue of Tk , k … ƒ�, where Tk is the Birman–Schwinger operator (5.10).

These identities are based on writing
P

˛2A
˛�2p D trT

2p

k
, and (7.3) was proved

in [3, Section 3.3] (the sum in (7.4) with p D 4 was also given as 80�p
3

; since there we

considered action on L2.C=3ƒ/ rather than on L2
0, the multiplicities were nine fold

higher; we note that for odd powers of Tk the traces are 0 in view of (2.8)). The far

reaching generalization in (7.4) happened thanks to the expansion of the collaboration
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in [6]. It holds for a greater class of potentials. The existence of algebraic multiplic-

ities greater than geometric multiplicities (Jordan blocks) is suggested by numerical

experiments – see [5, Section 10.1].

The method for proving (7.3) provides an algorithm for finding the rational num-

ber
p

3
�

trT
2p

k
. This allows a precise evaluation of regularised determinants of I � Tk

and that leads to an alternative proof of (7.1) and a proof of (7.2).

An immediate consequence of (7.3), (7.4), the transcendental nature of �p
3

, and

of Newton identities is the following result. (See [6, Theorem 6] for a more general

version).

Theorem 10 ([6]). For the potential (2.3),

jAj D 1: (7.5)

Before moving to the discussion of higher multiplities, we present some open

problems related to the above theorems. They all seem quite hard.

Open Problem 10. Show that (7.5) holds for any non-zero potential satisfying (2.3).

Open Problem 11. Using Theorem 5, it is not difficult to see that j¹˛ 2 A W j˛j � rº �
Cr2. Do we have lower bounds? Is there a way to use methods of Christiansen [16]

(“plurisubharmonic magic”) to obtain results for generic potentials?

Open Problem 12. Show that for the potential (2.5) and ˛1 given in (7.1) we have

1

2
˛

2p
1

X

˛2A

˛�2p ! 1; p ! 1; p 2 N:

This seems to be the case numerically as, min¹j˛j W ˛ 2 A n ¹Û˛1ºº > 1. Any type of

asymptotic result about trT
2p

k
would be interesting.

We now turn attention to higher multiplicities. Figure 3 showed numerically com-

puted multiplicities, including ˛ 2 A \ R withm.˛/ > 1 (see (3.13) for the definition

of multiplicity). For the BM potential (2.5) “half” of the complex ˛’s have multiplicity

two (indicated by circles; we show ˛’s is the first quadrant):

Using Theorem 12 below and analysis of traces of T
2p

k
restricted to different

spaces L2
p;k

, we obtain a partial mathematical confirmation of the above figure.
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Theorem 11 ([5]). For the Bistritzer–MacDonald potential (2.5),

j¹˛ 2 A W m.˛/ > 1ºj D 1;

that is, there exist infinitely many (complex) degenerate magic ˛’s.

The double ˛’s shown in the above figure are protected as we have a surprising

rigidity result expressed using the spaces defined in (3.7).

Theorem 12 ([5]). For any potential satisfying (2.3), we have, with the definition of

multiplicity (3.13),

m.˛/ D 1 H) dim kerL2
0;2
D.˛/ D 1;

m.˛/ D 2 H) dim kerL2
0;0
D.˛/ D dim kerL2

0;1
D.˛/ D 1:

In particular, a multiplicity two ˛ 2 A cannot be split into simple ˛’s by deforming a

potential within the class (2.3).

In [5, Theorem 4] we also have an analogue of Theorem 7 for the case of double

˛’s.

Open Problem 14. As suggested by (6.3), the multiplicity of ˛ is closely related to

the number of zeros (counted with multiplicity) of the eigenstate of D.˛/. For 1 �
m.˛/ � 2, Theorem 12 can be used to obtain the precise description (see Section 8).

What is the situation for higher multiplicities?

It is natural to ask if generically we only have simple or double magic ˛’s. We

have established it by expanding the class of allowed potentials:

D.˛/ ´ 2D Nz ˝ IC2 CW.z/; W.z/ ´
�

0 ˛UC.z/
˛U�.z/ 0

�

; (7.6)

where the potentials satisfy

UÛ.z C 
/ D eÛih
;KiUÛ.z/; 
 2 ƒ; (7.7a)

UÛ.!z/ D !UÛ.z/: (7.7b)

The self-adjoint HamiltonianH.˛/ is defined by (2.6) and commutation relations (3.2)

and (3.3) still hold. We then have the same Bloch–Floquet theory as in Section 3.1 and

the same definitions of A and m.˛/ (see Section 3.2).

As the space of allowed potentials W , we use a Hilbert space of real analytic

functions equipped with the following norm: for a fixed ı > 0,

kW k2
ı ´

X

Û

X

k2ƒ�=3

jaÛ
k j2e2jkjı ; UÛ.z/ D

X

k2KCƒ�
aÛ

k e
Ûihz;ki:
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Then we define V D Vı by

W 2 V () W satisfies (7.7), kW kı < 1:

With this in place, we can state the following.

Theorem 14 ([5]). There exists a generic subset (an intersection of open dense sets),

V0 � V, such that if W 2 V0 then for all ˛ 2 A (defined using (7.6))

1 � m.˛/ � 2:

A more precise formulation related to Theorem 12 is given in [5, Theorem 3].

Open Problem 15. Does Theorem 14 hold for a generic set of potentials satisfy-

ing (2.3)?

8. Topology of flat bands

Topology of flat bands refers to the topology of vector bundles over the k-space torus

C=ƒ� obtained by considering eigenfunctions of Hk.˛/ D Hk.˛; 0/ (see (3.8)) for

˛ 2 A, that is, for ˛’s at which we have perfectly flat bands. The eigenfunctions are

given by

ˆ ´
�

u

v

�

; u 2 kerH 1
0
.D.˛/C k/; v 2 kerH 1

0
.D.˛/� C Nk/; Hk.˛/ˆ D 0:

(8.1)

The two components u and v are completely decoupled and hence we can consider

them separately. Symmetries of D.˛/ (see [12, Section II.2] for a quick review)

show that we only need to consider kerH 1
0
.D.˛/C k/. As we already mentioned, the

non-trivial topology implies blow up of moments of Wannier functions corresponding

to lack of localization – see [33, Theorem 9, Section 8.5] and references given there.

We now assume that ˛ 2 A and that

1 � m.˛/ � 2; (8.2)

that is, the band has multiplicity one or two in the sense of Section 3.2. In view of

Theorem 7, and [5, Theorem 4], we have

V.k/ ´ kerH 1
0
.D.˛/C k/ � L2

0; dimV.k/ D m.˛/; k 2 C;

and we can define a trivial vector bundle zE ! C of rank m.˛/:

zE ´ ¹.k; v/ W v 2 V.k/º � C � L2
0.C=ƒI C2/:
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To define a vector bundle over the torus C=ƒ�, we need an equivalence relation on

C � L2
0.C=ƒI C2/ based on

�.p/�Hk.˛/�.p/ D HkCp.˛/; �.p/�.D.˛/C k/�.p/ D D.˛/C k C p;

�.p/�1V.k/ D V.k C p/; Œ�.p/u�.z/ ´ eihz;piv.z/; p 2 ƒ�:

It is given as follows:

9p 2 ƒ� .k; u/ �� .k C p; �.p/�1u/:

Using this (see [33, Lemma 8.4] or [7, Lemma 5.1]),

E ´ zE= ��! C=ƒ� (8.3)

is a holomorphic vector bundle over C=ƒ�. In the case ofm.˛/D 1 (and up to precise

definitions), this observation was made by Ledwith et al. [26]. In view of (6.6), the

line bundle can be identified with a theta bundle over the torus – see [7, Section 5.3].

A natural connection on this vector bundle can be defined either as the Chern

connection or the Berry connection, as they are equal in the holomorphic case – see

[5, Section 9, Proposition 9.1] for a detailed presentation and definitions. The scalar

curvature of this connection is a two form on C=ƒ�,

tr‚ D H.k/d Nk ^ dk; (8.4)

see [5, Section 9]. Here ‚ is the curvature form taking values in Hom.E; E/. The

following observations were made in [7, Section 5.2] and [5, Section 9.3]:

H.k/ � 0; H.!k/ D H.k/; H.k/ D H.�k/:

In particular, K D ¹0; K;�Kº (see (3.6)) is contained in the set of critical points

of H .

Open Problem 16. Show that, for the potential (2.3) (or for a more general class of

potentials?) and ˛ 2 A \ R (or simply for ˛1 in (7.1)), K is the set of all critical points

ofH.k/, and that the maximum is attained at 0 (the � point) and the minimum at ÛK
(the K-points): see Figure 7. For a discussion of analogous issues when multiplicity

is equal to 2, see [5, Section 10.2].

The Chern number for complex vector bundles over a torus is defined using (8.4):

c1.E/ ´ i

2�

Z

C=ƒ�

tr‚ D � 1
�

Z

F

H.k/dm.k/; (8.5)

where F is a fundamental domain of ƒ� and dm.k/ D dxdy, k D x C iy, the

Lebesgue measure. We have c1.E/ 2 Z (see [33, Theorem 6] and references given
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K0

K

0:5

1
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0:3

0:5

0:6

0:7

0:4
0:5

0:2

0:40:4

0:60:6

0:8

0

0

1

Figure 7. Open Problem 16.

there) and, if c1.E/ ¤ 0, then the vector bundle is non-trivial, that is it is not home-

omorphic to C=ƒ� � Cn. For complex vector bundles over tori, c1.E/ is the only

topological invariant. (For instance, for a simple ˛ we could consider the complex

vector bundle defined using kerH 1
0

.C;C4/Hk.˛/, see (8.1). Its Chern number vanishes

and the bundle is trivial.)

For simple ˛’s, an evaluation of c1.E/ follows easily from (6.6) – see [26] for a

direct calculation and [7, (5.9), (B.8)] for an argument based on general principles. It

turns out [5, Theorem 5] that the Chern number does not change if ˛ is double.

Theorem 15 ([5, 7]). Suppose that (8.2) holds and that the complex vector bundle E

is defined by (8.3). Then the Chern number defined in (8.5) is given by

c1.E/ D �1: (8.6)

Yang [38] provided a mathematical justification of the Chern number calculation

in [27, 35] (and of other issues related to flat bands in their setting) for two twisted

n-layer wafers of graphene. In that case, the analogue of the line bundle (8.3) satisfies

c1.E/ D �n.

Open Problem 17. Does (8.6) hold without the assumption (8.2)?
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Figure 8. The dynamics of Dirac points for HB in (9.1) with the BM potential (2.5). The

magnetic field given by B D B0e
2�i� with B0 D 0:1. Colour coding (shown in colour bars)

corresponds to different values of � on the left, and different values of ˛ on the right. In the

left figure, ˛ varies between 0:1 and 0:9 and curves of different colour trace the corresponding

Dirac points – see httpsW//math.berkeley.edu/~zworski/B01.mp4, visited on 12 July 2024, for an

animated version. When 3� 2 N, we showed in [11, Theorem 3] that the Dirac points move

along straight lines – see httpsW//math.berkeley.edu/~zworski/Rectangle_1.mp4, visited on 12

July 2024, where � D 1
3

. In the right figure, � varies and curves of different colour trace the

corresponding Dirac points. The predominance of green (corresponding to the range between

0.5 and 0.6) means that most of the motion happens near the (first) magic alpha – for the dance of

Dirac points for fixedB and as ˛ varies, see httpsW//math.berkeley.edu/~zworski/first_band.mp4,

visited on 12 July 2024, which shows E1.˛; k/=maxk E1.˛; k/. (The boundary Brillouin zone

is also shows; we take the image of the k plane by the map k 7! z.k/, see (3.5) so that ƒ� is

mapped to Z C !Z.)

9. Dynamics of Dirac points for in-plane magnetic field

Interesting mathematical phenomena arise when a constant magnetic field in the

direction parallel to the two twisted layers of graphene is added. Following Kwan,

Parameswaran, and Sondhi [25] and Qin and MacDonald [30], the new Hamiltonian

for the chiral model is given by

HB.˛/ ´
�

0 DB.˛/
�

DB.˛/ 0

�

; DB.˛/ ´ D.˛/C B; B ´
�

B 0

0 �B

�

;

(9.1)

where B D jBje2�i� with jBj corresponding to the strength of the magnetic field and

2�� is its in-plane direction; D.˛/ is the same as in (2.2). See Figure 8.

For the BMH and the chiral model, the bands close to zero touch at 0 at ÛK
(see (3.6) – these are theK-points in our coordinates) and the intersection is expected

to be conic (except for the perfectly flat bands), that is we see two Dirac points –

https://math.berkeley.edu/~zworski/B01.mp4
https://math.berkeley.edu/~zworski/Rectangle_1.mp4
https://math.berkeley.edu/~zworski/first_band.mp4
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see Open Problem 2 and the figure there. Theorem 2 shows that for the chiral model,

H.˛/ D H.˛; 0/ in the notation of (2.1), once the bands touch 0 away from ÛK, the

bands are perfectly flat.

It was observed numerically in [25] that for the chiral model with in-plane mag-

netic field (9.1) flat bands disappear when B ¤ 0 and the two Dirac points move.

Moreover, for ˛ 2 A the Dirac points seem to coalesce at the � point forming a

quadratic band crossing point (QBCP) – see Figure 9. In [11], we provided a more

precise description of the dynamics of Dirac points for small magnetic fields. In par-

ticular, finer analysis and numerical evidence suggest that exact QBCP appear only

when Dirac points move along straight lines which happens when 3� 2 N (the direc-

tion of the magnetic field is given by 2�� ) – see [11, Theorem 3 and Figure 5].

The reason for the Dirac points appearing close to � when ˛ is close to (simple)

elements of A can be elegantly described using properties of theta functions. Since

it is a simple consequence of (6.6) and (6.7), we recall it, referring to [11, Section 4]

for additional details. This also allows to present an approach to perturbation theory

based on Schur’s complement formula (via Grushin problems in the terminology of

Sjöstrand who turned Schur’s complement formula into a systematic tool) – see [33,

Section 2.6]. The same approach is used to obtain Theorem 3.

Suppose that ˛ 2 A is simple, and in the notation of (6.6) and (6.7) the operator

(see Section 1 for the review of notation)

D.˛; k/ ´
�

D.˛/C k ju�.k/i
hu.k/j 0

�

WH 1
0 � C ! L2

0 � C;

1
0 1

1
0

1

Re k Im k

0:01

0:02

0:01

0

0:02

0:02

0:01

0

0:01

E

0:02

1
0 1

1
0

1

Re k Im k

0:01

0:02

0:01

0

0:02

0:02

0:01

0

0:01

0:02

E

Figure 9. When B is real, in (9.1) the two Dirac cones approach � point as ˛ ! ˛� D
N
˛ C

O.B3/ (
N
˛ a simple real magic ˛) on the line Imk D 0 (left). For ˛ D ˛�, the quasi-momentum

k at which the bifurcation happens are the boundary of the Brillouin zone and the �-point which

is shown in the figure (right). The animation httpsW//math.berkeley.edu/~zworski/Rectangle_1.

mp4, visited on 12 July 2024 shows the motion of Dirac points in this case.

https://math.berkeley.edu/~zworski/Rectangle_1.mp4
https://math.berkeley.edu/~zworski/Rectangle_1.mp4
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is invertible with the inverse given by

E.˛; k/ D
�

E.k/ ju.k/i
hu�.k/j E�C.k/

�

WL2
0 � C ! H 1

0 � C;

where E�C.k/ � 0 is the effective Hamiltonian: from Schur’s complement formula

[33, (2.15)], we see that D.˛/ C k is invertible if and only if E�C.k/ D 0. Since

˛ 2 A, SpecL2
0
D.˛/ D C, this is consistent with E�C.k/ � 0. For jBj � 1, we can

consider DB.˛/ as a perturbation of D.˛/ and we still have invertibility

�

DB.˛/C k ju�.k/i
hu.k/j 0

��1

D
�

EB.k/ EB
C.k/

EB
� .k/ EB

�C.k/

�

;

EB
�C.k/ D �hu�.k/jBju.k/i C O.B2/;

see [33, Proposition 2.12]. From (6.6) and (6.7), we then obtain that

EB
�C.k/ D �c.k/�2B.G.k/C O.B//;

G.k/ D 2

Z

C=ƒ

Fk.z/F�k.z/'0.z/ 0.z/dm.z/;

where Fk is defined in (6.8). This definition combined with a theta function identity

�.z C u/�.z � u/�
�1

2

�2

D �2.z/�2
�

uC 1

2

�

� �2
�

z C 1

2

�

�2.u/;

and symmetries of  0 and '0 (see [11, Section 4.1]) gives

G.k/ D g0

�.z.k//2

�
�

1
2

�2
; g0 D g0.˛/ ´ 2

Z

C=ƒ

�
�

z C 1

2

�2'0.z/ 0.z/

�.z/2
dm.z/: (9.2)

For the Bistritzer–MacDonald potential and the first magic angle ˛1 (see Theorem 8),

jg0j ' 0:07 ¤ 0. We now see that k is a Dirac point for (9.1) with ˛ D ˛1 if and only

if EB
�C.k/ D 0, and in particular

k 2 SpecL2
0
DB.˛1/ H) �.z.k//2 C O.B/ D 0: (9.3)

(For g0.˛/ for other real magic ˛’s, see [11, Table 1].)

Since �.z.k//2 vanishes quadratically at 0 (the � point), equation (9.3) shows

that, at ˛ D ˛1 and for B small, the Dirac points are near the � point. It also suggests

QBCP – see Figure 9 and [11, Section 5] for a discussion of the bifurcation at � and

other points.

The study of the effective Hamiltonian EB
�C.k/ (a scalar function in our case)

and some additional arguments give the following result (see [11, Section 2] for more

detailed statements).
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Theorem 16. Suppose
N
˛ 2 A is simple and g0.N

˛/ ¤ 0, where g0 is defined in (9.2).

Then there exists ı0 > 0 such that for 0 < jBj < ı0 and j˛ �
N
˛j < ı0, the spectrum of

DB.˛/ on L2
0 is discrete (that is the set of Dirac points), and

j SpecL2
0
.DB.˛// \ C=��j D 2;

where the elements of the spectrum are included according to their (algebraic) mul-

tiplicity. In addition, for a fixed constant a0 > 0 and for every ", there exists ı such

that, for 0 < jBj < ı, j˛ �
N
˛j < a0ıjBj,

SpecL2
0
.DB.˛// � ƒ� CD.0; "/;

where we recall that elements of ƒ�; in particular 0, correspond to the � point.

A more detailed description would be very desirable. Among things which were

left open in [11], there is the behaviour near K points when 3� 2 N – see [11, Figure

5]. We state one, somewhat vaguely formulated, problem.

Open Problem 18. Is there a dynamical system which fully explains Figure 8? Basic

symmetries of Dirac points are described in [11, (2.10)], but the clean structure may

be due to the special BM potential (2.5). It becomes more complicated for other poten-

tials – see [11, Figure 1].

The quantitative behaviour of Dirac points seems to remain similar for BMH and

clarifying that would also be nice. The agreement is particularly striking for 3� 2 N.1

It is harder to catch Dirac points when � ¤ 0 as we do not have a simple characteri-

zation as spectrum of DB.˛/ on L2
0. Hence, the neighbourhoods of the Dirac points

are shown.

10. Small angle limit as a semiclassical limit

The small angle limit corresponds to letting ˛ ! 1. In that case, it is natural to write

˛ D �
h

, h 2 .0; 1�, � 2K b C n 0, and to consider the asymptotic behaviour as h! 0.

When considering real and positive alpha, we can simply take � D 1.

The operator D.˛/ in (2.2) then becomes (up to an irrelevant factor of h�2)

P.x; hD/ ´
�

2hD Nz �U.z/

�U.�z/ 2hD Nz

�

; D Nz D 1

2i
.@x1

C i@x2
/; (10.1)

1See httpsW//math.berkeley.edu/~zworski/Dirac_BMH.mp4, visited on 12 July 2024, for

(˛0 D �, ˛1 D ˛), where a comparison of the movement of Dirac points for chiral, weakly

interacting, and BMH (� D 0:7˛) is animated.

https://math.berkeley.edu/~zworski/Dirac_BMH.mp4
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which is a semiclassical differential system in the sense of [19, Appendix E.1.1]. Its

matrix valued symbol is given by

p.x; �/ D
�

2 N� U.z/

U.�z/ 2 N�

�

; z D x1 C ix2; � D 1

2
.�1 � i�2/: (10.2)

Theorem 2 shows that (with H 1
0 D H 1

loc \ L2
0 defined in (3.4))

h� 2 A () SpecL2
0
P.x; hD/ D C

() 9u 2 H 1
0 ; u ¤ 0; P.x; hD/u D 0: (10.3)

We note that the E`

�

�
h
; k
�2

, defined in (3.12) (essentially the bands of H.˛/), are the

eigenvalues of the self-adjoint operator

P2.x; hD; hk/ ´ .P.x; hD/C hk/�.P.x; hD/C hk/: (10.4)

Since we only need to consider k in a fundamental domain ofƒ�, hk is a lower order

terms when h ! 0.

In Section 10.1, we will see one reason for the difficulty of finding �’s with exactly

3ƒ–periodic solutions to P.x; hD/u D 0 (or u 2 L2
0) when h is small, that is, the

difficulty of using (10.3) to characterise magic ˛ D �
h

.

Instead of (10.3), one could attempt to analyse semiclassically the spectral char-

acterization of Theorem 5: for k … K (see (3.6), we could take k D 0),

�h 2 A () ��1 2 SpecL2
0
..2hD Nz � hk/�1W.z//; W.z/ ´

�

0 U.z/

U.�z/ 0

�

;

which of course seems like a tautology. The problem here lies in the fact that .2hD Nz �
hk/�1, with the Schwartz kernel explicitely given in (6.8), is essentially independent

of h and is not a semiclassical pseudodifferential operator: hk is a lower order term

and the symbol of 2hD Nz , 2 N� has all of C as its range.

We finally remark that Open Problem 1 (and also 9) is semiclassical in nature: it

states a quantization rule

�nC1 � �n D 
hC O.h2/; 
 ' 1

2
:

10.1. Exponential squeezing of bands

In [3], we observed that the results on the existence of localised quasi-modes for non-

normal semiclassical differential operators with analytic coefficients implies existence

of many exponentially small (as ˛! 1) Bloch eigenvalues for the chiral model. That

means that as ˛ gets large it is hard to distinguish an exactly flat band from many

bands that seem flat. Since the phenomenon, is semiclassical we use the notation of

this section.
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Theorem 17 ([3]). Suppose thatU is given by (2.3) andE`.
1
h
;k/ are defined in (3.12).

Then, there exist constants c0; c1; c2 > 0 such that

ˇ

ˇ

ˇ
E`

�1

h
; k
�
ˇ

ˇ

ˇ
� c1e

�c0=h; j`j � c2

h
:

The proof is based on a result of Dencker, Sjöstrand, and Zworski [17, Theorem

1.20] (see also [21, Section II.2.8]) which in turn was based on works of Hörmander

and of Kashiwara, Kawai, and Sato. Roughly, it states the following fact: suppose that

Q.x; hD; h/ is a (scalar) semiclassical differential operator with analytic coefficients

and q.x; �/ is its principal symbol. Then

q.x0; �0/D 0; ¹Req; Imqº.x0; �0/ < 0 H)

8

ˆ

ˆ

<

ˆ

ˆ

:

9u.h/ 2 C1; ku.h/kL2 D 1;

kQ.x; hD; h/u.h/kL2 � Ce�C=h;

u.h/ is microlocalised at .x0; �0/,

see [17] and references given there. Here ¹a; bº denotes the Poisson bracket which in

our 2D case and using the notation z and � in (10.2) is given by

¹a; bº D @�a@zb � @�b@zaC @ N�a @ Nzb � @ N�b @ Nza;

see [39, Section 2.4] for an introduction to its geometric significance.

The type of microlocalization for u.h/ implies, in particular, that ju.h; x/j �
e�jx�x0j2=C h, which means that u.h/ “lives” in B.x0; h

1
2 �"/, for any " > 0. From

such local approximate solutions, we can built many approximate solutions with

any periodicity properties. (A model to keep in mind is the annihilation operator

Q.x;hD/D hDx1
� ix1 with .x0; �0/D .0;0/2 R2 � R2; we can then take u.h;x/D

c.h/e�x2
1

=h�x2
2

=h.)

At points z0 with U.z0/ ¤ 0, an easy reduction (see [3, Proof of Proposition 4.1])

shows that to construct u.h/ 2 C1.CI C2/ localised at z0 and satisfying

k.P.x; hD; h/C hk/u.h/k � Ce�1=C hku.h/k; (10.5)

it is enough to find v.h/ 2 C1.CI C/, localised to z0 such that

kQ.x; hDx; h/v.h/kL2 � Ce�1=C hkv.h/kL2

whereQ is a scalar operator with the principal symbol given by the determinant of p

in (10.2):

q.x; �/ D .2 N�/2 � �2U.z/U.�z/; z D x1 C ix2; � D 1

2
.�1 � i�2/: (10.6)

In view of the discussion above, we need to look for .x0; �0/ such that q.x0; �0/ D 0

and ¹Re q; Im qº.x0; �0/ < 0. Such points are indeed plentiful – see Figure 10 for the

case of � D 1 and [3, Section 4] for more examples.
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2
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The hexagen

The stacking point zS D
i

p

2

Figure 10. Left. The vertices of the hexagon in a fundamental domain of ƒ are given by the

stacking points ÛzS, zS D ip
3

(we use the coordinates of Section 2.1). They are non-zero

points of high symmetry in the sense that Û!zS � ÛzS mod ƒ. Right. the contour plot of

j¹q; Nqºq�1.0/j for q given by the determinant of the semiclassical symbol of D.˛/ (see (10.6)),

˛ D 1
h

; the set where ¹q; Nqºq�1.0/ D 0 is in red. We should stress that the structure of that

set becomes more complicated for other potentials U satisfying the required symmetries – see

[3, Figure 6].

Once we have (10.5), we obtain an en exponentially accurate approximate solu-

tion to P2.x; hD; hk/u.h/ D 0, where P2 was defined in (10.4). Self-adjointness of

P2 then implies existence of exponentially small eigenvalues. Using many localised

approximate solutions, we can bound their number from below by 1
h

, see [3, Sec-

tion 4].

Open Problem 19. Relate the geometry of level sets of z 7! j¹q; Nqºjq�1.z/D0j (see

Figure 10) to the concentration of mass of the protected states uK

�

�
h

�

(see Theorem 1)

as � varies in a compact set and h ! 0. For an animated example, see httpsW//math.

berkeley.edu/~zworski/bracket_dynamics.mp4, visited on 12 July 2024 where h D 1
8

and � varies on a circle of radius 1. This problem is related to the issues discussed in

Section 10.2 below.

https://math.berkeley.edu/~zworski/bracket_dynamics.mp4
https://math.berkeley.edu/~zworski/bracket_dynamics.mp4
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10.2. Classically forbidden regions

The contour plot of z 7! log juK.˛; z/j, as ˛ changes (and U is given in (2.5)) as

well as the link in Open Problem 19, suggest that solutions to .D.˛/ C k/u D 0,

u 2 H 1
0 (non-trivial only for ˛ 2 A if k 6D ÛK) decay exponentially in ˛ near the

hexagon spanned by the stacking points (see Figure 10) and near the centre of the

hexagon. From the semiclassical point of view presented in this section, this means

decay e�c=h which typically corresponds to classically forbidden regions.

The standard notion of classically forbidden regions is based on ellipticity: if Q

is a principally scalar semiclassical differential operator, elliptic in the classical sense

(that is, for fixed h), with analytic coefficients and a scalar principal symbol q.x; �/,

then (with neigh.x0/ denoting some neighbourhood of x0)

qj��1.x0/ ¤ 0; Qu D 0 in neigh.x0/; kukL2 D 1 H) kukL2.neigh.x0// � Ce�c=h;

(10.7)

see [28, Theorem 4.1.5] and [22, Proposition 6.4]. (A typical example is given by

Q D �h2�C V.x/ where V 2 C1 is real valued – there is no need for analyticity in

that case – see [39, Theorem 7.3]; in that case, the condition is simply that V.x0/ > 0

as then for all � , q.x0; �/ D �2 C V.x0/ > 0.)

In the case of the operator P.x; hD/ given in (10.1), there are no classically for-

bidden regions: for every x 2 R2, there exists � 2 R2 at which the determinant of the

principal symbol (see (10.6)) vanishes, q.x; �/ D 0.

The remedy for this is to use analogues of results on (analytic) hypoelliptic-

ity due to Trépreau (with different proofs, following an approach due to Sjöstrand

and reviewed in [21], provided by Himonas), which followed ideas of Egorov,

Hörmander, and Kashiwara (we defer to [22] for pointers to the literature). Hypoellip-

ticity here refers to having the same conclusion kukL2.neigh.x0// �Ce�c=h as in (10.7),

but without the assumption that qjq�1.x0/ ¤ 0.

A semiclassical version of a general hypoelliptic result we need is given as fol-

lows: let Q satisfy the same general assumptions as before (10.7);

¹q; Nqºj��1.x0/\q�1.0/ D 0;

¹q; ¹q; Nqººj��1.x0/\q�1.0/ ¤ 0;

Qu D 0 in neigh.x0/; kukL2 D 1

9

>

=

>

;

H) kukL2.neigh.x0// � Ce�c=h; (10.8)

see [22, Theorem 2].

To see why such a result could be true, consider a simple one-dimensional exam-

ple: q.x; �/ D � C ix2, .x; �/ 2 R � R, x0 D 0. Then

¹q; Nqº.x0; �/ D �4ix0 D 0; ¹q; ¹q; Nqºº.x0; �/ D �4i;
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so the condition holds. If one has

0 D q.x; hD/u D
�h

i

��

@x � x2

h

�

u;

then

u.x; h/ D u.0; h/e
1
3 x3=h:

For this to be uniformly bounded near 0, we need u.0; h/ D e�c=h, c > 0. So,

ju.x; h/j � e�c=2h for jxj small. We remark that similar bracket conditions in the

semiclassical setting appeared recently in the work of Sjöstrand and Vogel [32], who

provided fine tunnelling estimates for a model operator. Any extension of their results

to more general operators should have consequences in our setting as well.

As in (5.13), we can reduce the problem of looking at solutions to h.D.˛/C k/D
P.x; hD/C hk to a principally scalar problem, with the principal symbol given by

q.x; �/ in (10.6). It then turns out that the condition in (10.8) holds at any x0 on an

open edge of the hexagon spanned by the stacking points – see Figure 11 for the case

of � D 1 and U given in (2.5). Remarkably, due to the special properties of the BM

potential, the sign properties can be established analytically – see [22, Section 3].

At ÛzS, the condition in (10.8) does not hold. However, ��1.ÛzS/ \ q�1.0/ D
¹.ÛzS; 0/º and

¹q; Nqº.ÛzS; 0/ D 0; ¹q; ¹q; ¹q; ¹q; Nqºººº.ÛzS; 0/ ¤ 0: (10.9)

General hypoellipticity results of Trépreau do not apply to this case, but a detailed

analysis of our specific principal symbol [22, Appendix] allows an application of the

same strategy as in the proof of (10.8) to obtain exponential decay near the stacking

points.

Since the conditions in (10.8) and (10.9) are classical in the sense of involving

the symbol (that is, the “classical observable,” q.x; �/) and Poisson brackets (objects

underlying classical dynamics), we obtain the following result about classically for-

bidden regions.

Theorem 18 ([22, Appendix]). There exists a fixed open neighbourhood, �, of the

hexagon spanned by the stacking points (see Figure 10) and c > 0 such that, if u.h/ 2
H 1

0 satisfies .P.x; hD/C hk/u D 0 and ku.h/kL2
0

D 1, then

ku.h/kL2.�/ � c�1e�c=h:

The situation is more complicated at the centre of the hexagon, z0 D 0. In that case,

the operator is not of principal type, that is, q.0; 0/D 0 (��1.0/\ q�1.0/D ¹.0; 0/º)

and dq.0; 0/D 0. This means that lower order terms should matter. That is confirmed

by comparing (5.13) with the scalar model Q.˛/ (with no lower order terms). For
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Figure 11. Plots of j¹q; Nqºj and of (rescaled) ¹q; ¹q; Nqºº above the intersection of the imaginary

axis and the fundamental domain in Figure 10. The edges of the hexagon emanate right of zS

and left of �zS.

Q.˛/, unlike for the chiral model, we do not see exponential decay near 0 (the decay

near the hexagon based on the properties of pricipal symbol q persists): on the left,

log juj for u a protected state for D.˛/ and on the right same for Q.˛/:

Open Problem 20. Show that there exist a fixed neighbourhood � of 0 (see Fig-

ure 10) and c > 0 such that if .P.x; hD/C hk/u D 0, where P is given in (10.1),

and ku.h/kL2
0

D 1, then ku.h/kL2.�/ � c�1e�c=h.

A. Appendix by Mengxuan Yang and Zhongkai Tao

We prove the existence of conic singularities in the first band of the chiral limit [34] of

the Bistritzer–MacDonald Hamiltonian [13] of twisted bilayer graphene when ˛ … A.

See Figure 12.

Theorem 19. Near ÛK points, the first band E1.˛; k/ is given by

E1.˛; k/ D c.˛/ � jk ÛKj C O.jk ÛKj2/;

where c.˛/ � 0 with the equality holds if and only if ˛ 2 A.
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Figure 12. Two Dirac cones at K and K0 points.

A key fact used in the proof is the existence of protected eigenstates [3, 34]

described in Theorem 1. We also remark that a dual result is the existence of pro-

tected states for the operator D.˛/�: there exists vÛK.˛/ 2 H 1
0 .CI C2/ such that

�.K/vK.0/ D .1; 0/T , �.�K/v�K.0/ D .0; 1/T ,

vÛK.˛/ 2 kerL2
0

.CIC2/.D.˛/
� Û xK/:

It also follows from the proof that the generalised eigenspace also has dimension 1,

i.e., the spectrum is simple.

Now, we prove Theorem 19 by setting up a Grushin problem to compute the first

band E1.˛; k/ near k D ÛK for ˛ … A. We refer to [19, Appendix C] for a presen-

tation of this method. The proof of Theorem 19 is based on the following general

fact. Suppose that X1 � X2 are two Banach spaces and P WX1 ! X2 be a Fredholm

operator of index 0 such that

kerP D span¹'º; kerP � D span¹'�º:

Then there is a dichotomy:

P � z is invertible in a punctured neighbourhood of z D 0;

if moreover the eigenvalue z D 0 is simple, then h'; '�i ¤ 0 (A.1a)

or

P � z is not invertible for all z, and h'; '�i D 0. (A.1b)
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Proof of (A.1). The first part of the dichotomy follows from the analytic Fredholm

theory (see [19, Theorem C.8]), which says if P � z is invertible at one point then

.P � z/�1 is a meromorphic family.

Now, suppose P � z is invertible in a neighbourhood of z D 0 and 0 is a simple

eigenvalue, then .P � z/�1 has the following expansion near z D 0:

.z � P /�1 D A0.z/C …

z

where A0.z/ is holomorphic and … is a rank one projector. From the expansion we

see P… D …P D 0. So,

Im… � kerP D span¹'º; ImP � ker…:

Thus,… is of the form….y/ D hy; v�i' for some v� 2 X�
2 . Moreover, hPx; v�i D 0

for any x 2 X1, which implies P �v� D 0. Thus, v� D c'� for some c 2 C n ¹0º.

Since …2 D …, we conclude h'; '�i ¤ 0.

Suppose P � z is not invertible for any z, then we consider the following Grushin

problem:

�

P � z R�
RC 0

�

WX1 � C ! X2 � C;

where '�.R�1/ D 1 and RC' D 1. One can compute from [19, Proposition C.3]

that E�C.z/ D zh'; '�i C O.jzj2/. By assumption E�C.z/ D 0, so we conclude

h'; '�i D 0.

We can now give the following result.

Proof of Theorem 19. For the chiral Hamiltonian

Hk.˛/WH 1
0 .CI C4/ ! L2

0.CI C4/; ˛ 2 C;

we consider the existence of a Dirac cone at K point, as the point �K is simi-

lar. By the existence of protected states, there exist two normalised protected states

'.˛I z/;  .˛I z/ 2 kerL2
0

.CIC4/HK.˛/ such that

'.˛I z/ D .uK.˛/; 0C2/T ;  .˛I z/ D .0C2 ; vK.˛//
T :

We consider the Grushin problem for the operator Hk.˛/ � z near k D K:

Hk D
�

Hk.˛/ � z R�
RC 0

�

WH 1
0 .CI C4/˚ C2 ! L2

0.CI C4/˚ C2 (A.2)
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with

R�W .u.1/
� ; u.2/

� /T 7! u.1/
� ' C u.2/

�  ; RCWu 7! .hu; 'i; hu; i/T :

For k D K, the Grushin problem (A.2) is invertible with the inverse given by

E D
�

E EC
E� E�C

�

WL2
0.CI C4/˚ C2 ! H 1

0 .CI C4/˚ C2

with

Ev D
X

j ¤Û1

1

Ej � z hv; 'j i'j ;

ECvC D R�vC; E�v D RCv; E�C D
�

z

z

�

;

where ¹'j º is an orthonormal basis of eigenfunctions of HK.˛/ with eigenvalue Ej

such that '1 D ' and '�1 D  . By [19, Proposition C.3], the perturbed Grushin

problem (A.2) is well posed for jk � Kj sufficiently small and the eigenvalues of

Hk.˛/ are given by zeros of the determinant of

F�C D E�C C
1
X

kD1

.�1/kE�A.EA/
k�1EC; A D

�

k �K
k �K

�

:

In particular, the leading order term is given by

E�AEC D
�

.k �K/hvK ; uKi
.k �K/huK ; vKi

�

This yields thatEÛ1.˛;k/D ÛjhvK ;uKij � jk �Kj C O.jk �Kj2/ near kD 0, where

hvK ; uKi D 0 if and only if ˛ 2 A by (A.1).
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