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Abstract— Intelligent Autonomous Systems (IAS), which en-
compass Unmanned Aerial Systems (UAS), Unmanned Surface
Vehicles (USV), and Unmanned Underwater Vehicles (UUV),
are set to play a pivotal role across multiple domains. However,
due to the demanding nature of their missions (e.g., disaster
response and underwater exploration), common communication
methods are often limited. This makes it essential to use
efficient communication strategies for learning and decision-
making. This paper introduces a novel approach, leveraging
distributed machine learning algorithms along with data pro-
jection to achieve sublinear communication costs. Particularly,
we incorporate Convolutional Neural Networks for feature
extraction prior to projection, significantly enhancing efficiency
and accuracy in autonomy tasks within bandwidth-constrained
environments. This method uses the Johnson-Lindenstrauss
transform for dimensionality reduction of both data and model
parameters, facilitating efficient inter-agent communication by
transmitting only projected model parameters. We further
outline theoretical underpinnings showcasing the Johnson-
Lindenstrauss transform’s effectiveness in maintaining con-
vergence properties for Online Gradient Descent algorithms.
Through experimental validation using image recognition tasks
relevant to maritime surveillance, our approach demonstrates
substantial reductions in communication cost while preserving
high model performance.

Index Terms— Distributed algorithms, Convolutional neural
networks, Machine learning, Maritime communication

I. INTRODUCTION

Communication challenges for networks of autonomous
vehicles often arise in the maritime domain. As the use of un-
derwater autonomous vehicles continues to rise, they become
vital for operations such as infrastructure monitoring, mine
countermeasures, and environmental conservation. Due to
the limitations of conventional communication methods like
radio frequency and acoustics in underwater settings, these
missions face communication barriers that negatively affect
their performance and efficiency. Additionally, communica-
tion bandwidth can be affected in adversarial scenarios such
as jamming and blocking for ground and aerial groups of
autonomous vehicles.

Many maritime surveillance tasks, such as traffic monitor-
ing, illegal fishing, border smuggling detection, and pollution
management, rely heavily on computer vision techniques.
Studies [1] and [2] show how Deep Learning techniques—
specifically, Convolutional Neural Networks (CNNs)-have
proved invaluable for image and satellite-based ship detection

IN. Cruz and J. Fuentes, and L. Bobadilla are with the School of Com-
puting and Information Sciences, Florida International University, Miami,
FL 33199, USA {ncruz071@, jfuent099@,bobadilla@cs. }fiu.edu

This work is supported in part by NSF grants 11S-2034123, 11S-2024733,
11S-2331908, the Office of Naval Research grant N00014-23-1-2789, U.S.
Dept. of Homeland Security grant 23STSLA00016-01-00.

IAS

Fig. 1: Visual representation of IAS in a distributed network; each IAS can
communicate small amounts of data and they navigate within a region of
interest WV.

and classification. Utilizing CNNs combined with the k-
Nearest Neighbor (kNN) method trained with aerial images
of ships, [1] achieves a classification success rate of over
90%, surpassing traditional methods and other CNN-based
strategies. Findings reported in [2] offer similar insight, in-
stead using YOLOV3, YOLOv4, and YOLOVS architectures
to detect ships within two datasets.

Using a distributed architecture allows for improved scal-
ability and robustness. If an individual machine fails, the rest
of the network can continue to operate and process data. It
is known that, in communication-constrained environments,
the complexity of communication typically outweighs the
complexity of learning. Therefore, it is still favorable to
distribute the learning amongst various agents, regardless of
potentially higher learning costs.

This study introduces a novel approach centered around a
distributed machine learning (ML) algorithm leveraging the
Johnson-Lindenstrauss (JL) transform. The main idea is to
utilize this transform for both data and model parameters,
effectively projecting them into a lower dimension. This en-
sures the learning process operates within a reduced dimen-
sional space, facilitating efficient communication between
agents by transmitting only the projected model parameters.
Our focus lies particularly on CNN architectures due to their
relevance in computer vision tasks and their adaptability
through transfer learning to other domains. Building upon
the work presented in [3], we employ CNNs as feature
extractors. Initially, raw data is preprocessed via a pre-trained
CNN to extract essential features, reducing dimensionality
and minimizing communication overhead. This step acts as
a preliminary projection, significantly trimming down the
number of features that need to be processed by the system.



However, the resulting feature vectors are still fairly large,
keeping the same order as the original data, so we must
perform a projection on the feature data to ensure sublinear
communication costs.

Furthermore, we provide theoretical insights into how the
JL transform guarantees certain convergence properties for
Online Gradient Descent (OGD). Specifically, we examine
the convergence behavior of models trained using raw data
versus those trained with projections from the JL transform.
These theoretical underpinnings underscore the efficacy of
this approach.

In addition to theoretical analysis, we implement a dis-
tributed OGD algorithm tailored for training ML models,
particularly focusing on image recognition tasks pertinent
to oceanic surveillance. Our approach extends previous
methodologies applied to both neural networks (NNs) and
CNNs. Notably, while our results are demonstrated within
the context of OGD, they are expected to generalize to other
optimization algorithms, such as Stochastic Gradient Descent
(SGD) and Gradient Descent (GD) directly.

II. RELATED WORK
A. Communication Complexity

The work presented in this paper is based on Commu-
nication Complexity [4], [5], [6], a subarea of Theoretical
Computer Science that tries to understand the amount of
communication required to solve a problem when the input
to the problem is distributed among two or more parties. In
a multi-robot system, especially where a large number of
robots are present and the amount of bandwidth is limited,
reducing the size of the communicated messages can tremen-
dously benefit the coordination process. The study presented
in [3] provides a framework for sequential data analysis
that guarantees sublinear communication costs. Utilizing the
JL lemma, we embed the data to be communicated into a
lower dimensional space, which dramatically diminishes the
amount of data to be communicated. A key component of our
contribution is the employment of a CNN for the initial fea-
ture extraction. Employing CNNs enables us to concentrate
on processed features instead of the high-dimensional raw
data, significantly diminishing communication complexity
and improving the system’s overall efficiency in bandwidth-
constrained scenarios. Our ideas are also connected to the use
of communication complexity in multi-robot systems [7], [8].

B. The Johnson-Lindestrauss Lemma and its Construction

The JL lemma asserts that for a set of points X C RV
and 0 < € < 1, there is a dimension n = O(e~2log(| X))
and a linear transformation 7" : RN — R™ such that

(1 =allz =yl <[|T(x) =TI < (A +e)llz—yll. D

Various bounds exist to calculate n. For instance, [9] shows
that it is enough to satisfy
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to ensure the existence of 7.
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Complementing the lemma, there are numerous efforts to
give random, sparse, and deterministic constructions of the
transformation 7.

1) Random JL Transforms: The first efforts to do trans-
formations for dimensionality reduction relied on building
random matrices where each matrix entrance is drawn i.i.d.
from a normal distribution N'(0,1/n); [9], [10], [11] prove
its properties as a JL transform and show its benefits for ML
applications.

2) Sparse JL Transforms: These are variations that con-
struct the embedding using sparse matrices, significantly
reducing the computational complexity of applying the trans-
form, especially useful for sparse high-dimensional data.
These transformations operate by setting most of the 7”s
matrix representation values to zero; in [12], the distribution
for each entry of the matrix [Mr];; is considered as

ﬁ with probability 1/6

0 with probability 2/3 3)

—ﬁ with probability 1/6.

3) Deterministic Versions: While the original lemma and
many of its extensions rely on random constructions, there
have been efforts to develop deterministic versions of the
lemma, though these often come with trade-offs in bounds
or applicability. Work presented in [13] replaces the random
variables used to generate the matrix entrances with hash
functions that can perform the same task; moreover, these
matrices can be built so that they can keep a certain degree
of sparsity.

[Mr]ij =

C. Efficient Federated Learning

Our work aligns with [14], which presents structured and
sketched updates to improve communication efficiency in
federated learning. Federated learning is a specific type of
distributed learning focused on training algorithms across
decentralized devices or servers holding local data sam-
ples without exchanging them. Structured updates limit the
changes to the model by restricting them to a predefined
space, thus reducing the number of variables that need to be
communicated. This method can involve selecting a subset
of the model’s parameters to update or using a low-rank
approximation. Sketched updates, on the other hand, involve
compressing the entire model update (for example, through
sparsification) before it is sent to the server. This approach
reduces the size of the data transmitted by only sending
the most crucial information for updating the model. It is
also important to note that many federated learning applica-
tions, detailed in [15], focus on improving and maintaining
security. Even when bandwidth is not limited, it is crucial
to ensure secure communication between agents, especially
when handling sensitive data.

D. Convolutional Neural Networks

Traditional NNs are not ideally suited for processing high-
resolution images, as they often require a large number
of parameters. This not only increases the computational



complexity and the time required to train the model but also
heightens the risk of over-fitting, especially if the training
data is limited or not diverse enough, as may be the case in
real-world scenarios. CNNs are preferred for image classifi-
cation tasks to reduce communication complexity because
they efficiently process and extract features directly from
image pixels with minimal pre-processing [16]. Their archi-
tecture leverages spatial hierarchies, significantly reducing
the amount of data that needs to be communicated for
learning. By automatically learning feature representations,
CNNss eliminate the need for manual feature extraction and,
thus, reduce the dimensionality and complexity of data,
leading to more efficient communication in distributed or
federated learning environments.

IIT. PROBLEM FORMULATION

Given the aforementioned limitations inherent in under-
water environments, we strive to solve tasks for autonomous
systems using a restrictive bandwidth. Particularly in learning
processes, when considering datasets or model parameters
with O(NN) bits, we would like to send o(N) bits among the
agents so the autonomy task can be learned and executed in
sublinear time. In this scenario, we allow the group’s agents
to agree on a strategy before starting the learning process.

We consider a group of p agents navigating within a d-
dimensional space (d = 2,3), denoted as W C R?. This
workspace is partitioned into the obstacle space O and the
free space £ = W/O. The agents naturally traverse through
& while avoiding O, collecting and processing samples, each
of size O(NN) bits. Given limited communication capabilities,
which are expected to be small compared to the sample size,
each agent independently constructs their part of the joint
dataset D; forz = 1,...,p to be used in a distributed learn-
ing algorithm. Consequently, the joint dataset is represented
as the disjoint union D = U?_, D,.

Problem: Solving autonomy tasks in sublinear time
Given a set of p agents navigating in W, learn and execute
distributed ML-based autonomy tasks using o(N') communi-
cation complexity.

IV. METHODS

Our scenario of interest encompasses the p agents moving
throughout an environment W . They take in data via sensors
(e.g. camera, sonar, acoustic); the data is treated as samples
of size O(N) bits and acquired independently by each
machine a; to build their part of the dataset D; = (X, y;).
Each machine can send or broadcast data to the rest of
the machines in the network. We aim to extend the results
presented in [5] since they provide a theoretical framework
for distributed ML using sublinear communication to train
classic ML models using GD or its variants like SGD and
OGD.

A. Johnson-Lindenstrauss Transform and Online Gradient
Descent

This transformation is useful when working with long fea-
ture vectors where the number of samples is in the same order

or bigger than the number of features, i.e. | X| = O(N). This
enables the projection of data while nearly preserving the
distances between the points in X, allowing us to examine
two connected optimization problems simultaneously.

Consider a scenario where we have a set of features
X C RY along with their corresponding labels ¥ C RF,
which we will use to train an ML model M. We denote the
loss function for this model as ¢(w; (X, y)). Let T be a JL
transform that maps X onto 7'(X), allowing us to consider
the same training problem by replacing X with T'(X). This
involves adjusting the ML architecture and the loss function
to handle features of size n instead of size N. Given an ML
model M originally trained on features of size N, we define
a surrogate model of M represented by M; this surrogate
architecture is built by adapting M’s architecture (often, by
shrinking it) to handle features of size n while keeping its
structure. The surrogate model concept is illustrated in Fig 2.
To maintain the same training structure, we need to define an
adaptation of the loss function ¢ to be used on M. We define
this surrogate loss function {(i; (T(X),y)) as the result of
adapting ¢ to M. Despite operating on the projected dataset
T(X) instead of the raw dataset X, / maintains analogous
behavior to /. Certainly, the labels remain unaltered in both
instances. Here, w corresponds to the parameters to be found
when optimizing the loss function { defined on the dataset
T(X).

Furthermore, to establish a clear relationship between w
and w, we demonstrate that a JL transformation defined on
the feature space T : RV — R™ implies the existence of
a JL transformation in the parameter (weight) space, Ty :
RM — R™ that maps w into . This transformation can
potentially be applied in the case of more complex models
such as NNs or CNNs. In this domain, when the feature
vector dimension is [V, a typical NN exhibits a weight vector
w of size M = O(N™), where n; is the number of layers
in the NN. Analogously, a surrogate NN trained using the
projected feature vectors in T%(X) C R™ has a weight vector
of size m = O(n™) = O(log(N)™), making it larger than
the smallest dimension w can be projected down to, which
is O(n;log(N)). This observation underscores the feasibility
of projecting weight vectors via a JL transform Ty .

In this section, our primary goal is to provide theoretical
reasoning that demonstrates the regret convergence rate of
optimizing ¢ using OGD is approximately equivalent to that
of £. To do so, let us define the regret function for a loss
function I(w; (X,y)) as

Ri(w) = l(w; (X, y)) — l(w*; (X, y)) “4)

where w* = argmin [(w; (X,y)). To avoid excessive nota-
RN
tion we will dr%?) the dataset D = (X, y) from the notation
on the loss functions i.e. I(w) := [(w;(X,y)) for any
loss function [. Furthermore, we leverage the notation for
a loss function and its surrogate loss function to 4(w) :=
((w; (X,y)) and (@) := (b; (Te(X),y)), respectively.
From now on, we will assume that the relationship between a
variable z and Z will be £ = Ty (2) or £ = Ty (z) depending



(a) Logistic regression model trained us- (b) Surrogate logistic regression model
ing raw data of size V. This is equivalent trained using projected data of size n.
to a single NN layer.

(¢) Deep NN model, trained with pro-
jected data of size N.

(d) NN surrogate model trained with pro-
jected data of size n.

Fig. 2: ML models for binary classification and their surrogate models.

on whether z is an element of the parameter space or the
feature space.

Using the regret definition, we study the relationship
between Ry(w) and R;(w), which is presented in Theorem
1. Before that, we need to determine a bound for the angles
formed between the gradient of a loss function at a certain
value w; and the vector df = w; — w*, which is the vector
pointing to the optimal value when executing OGD at time
t.

Lemma 1: Let f(w) = iw"Aw + h(w) be a scalar
function such that A is a positive-definite matrix and there
is an open neighborhood V' containing the origin such that
[|[Vh(w)]| < €|Jw]||. Then, we have that

(V7 (@), 0)]  Amin—€
VA Tl = o e <0 ©)

for w € V, Anin and A4 are the minimum and maximum
eigenvalues of A and € < Apyin.

Proof: Computing the inner product and using triangle
inequalities gives
(Viw),w)| _ |w"Aw+ Vh(w)uwl
V) lw]] [[Aw + Vh(w)]] [|w]]
[[w Aw| — [Vh(w)w||
~ [[Aw + Vh(w)[| [[w]]
[lw " Aw| — [Vh(w)w|
~ ([[Awl + [[Va(w)][)[w]]”

and using the bounds for positive-definite matrices, h, and
the spectral norm we obtain

[|wT Aw| — [Vh(w)w| Amin|[w|[* — ef|w]]?
(I[Aw][ + [[VA(w)[Dl|w]| — ([[Aw[] + [[Vh(w)][)|w]]
)\mzn||w||2 —GH’LU||2

(6)

>
" (Amaz|[w]] + €] [w|])|Jw]|
o >\min — € o
N >\maz + €
(7
as desired. |

Lemma 1 tells us that the angle between the gradient and
the vector w of the canonical form %wTAw must be acute.

In our main theorem, we seemingly use the Cauchy-
Schwartz inequality in reverse order to bound ||V f(w)]| ||w]]|
using 1|(V f(w), w)| for a certain constant ¢ (which turns out
to be the angle between V f(w) and w). In general, it is not
possible to do so, since ¢ might be too close to zero or zero
directly, indicating that both vectors are orthogonal. Lemma
1 prevents this from happening, allowing us to prove and use
Lemma 2.

Lemma 2: Let l[(w) be a loss function that is minimized
using OGD, and let w* and d} be defined as before. Suppose
that OGD generates a convergent sequence of iterations
{wt }ten with *lim dy = 0. Then, there is a constant ¢ > 0

and a natural number T such that
1
[[VI(w)]| [ld7]| < E|<Vl(wt)»dt*>| (8)

fort >1T.
Proof: Expand [(w) towards w* using its Taylor’s series
representation and the fact that VI(w*) = 0

Hl(w*)
2

Where H;(w*) is the I’s Hessian matrix evaluated at w*.
Finally, since dlimo hi(d;) = 0, {w:}ten is convergent and
=

L(wy) = l(w*) +d} " dy + h(d)||d;ll. )

H;(w*) is positive definite, choose T" such that |h;(d})| < e
and apply Lemma 1 on the function !(w;) — l(w*) using d}
as its variable. [ ]

Now, we present our main result, supported by the appli-
cation of Lemma 2.

Theorem 1: Let X C R with |X| < N, consider Tr
and Ty : two JL transforms satisfying (1) for the feature
and parameter spaces, respectively. £ is a loss function and 1
is a surrogate loss function. Suppose that ¢ and ? are L-
bi-Lipschitz and ﬁ—bi—Lipschitz respectively, and they are



minimized using OGD. Then, there are two constants k£ and
K and two sequences s; and S; such that

kRj(w:) + sy < Re(wy) < KRy(we) + S, (10)

with lim s; = lim S; = 0.

t— o0 t— o0

Proof: Let Aw; = wy — wy—1 and d} as in Lemma 2.
We expand ¢(w) around w; to estimate ¢(w*)

Lw*) = L(wy) — VE(wy) - df — re(dy), (11)
r¢ is the error in the Taylor’s expansion. We bring the regret
definition for ¢ and consider a finite difference scheme to
approximate V¢(w;)

Re(wy) = VEe(wy) - df + re(dy)
_ E(U}t) — é(wt_l)
[|Aw|

(12)
Here, r;, and d, are the remainders after doing Taylor’s
approximation and the finite scheme, respectively. We bound
Ry(w;) using the triangle inequality, the Cauchy-Schwartz
inequality, and the Lipschitz condition on ¢

L(wye) — £(we— . .
Re(uwr) SH : t|)|Aw£||t 1)HHAWH [[d} || + we(Awy, df)
Awyl|? N .
SL”'Awtt”' [ld; 1] + we(Aw, 7).

13)
where ug(Awy, d}) = ||de(Awy)|| ||dF||+ |re(df)|. We make
usage of the JL transform property stated in (1) to relate R,
and R;, transforming Aw; into Atw; and d into dr. As a
result, (13) becomes

(1+€)°L || Ay
(1—e) [[Auw]

Now, we apply the same logic for / to obtain

Ry(we) < 17 1] + we(Awy, df). (14)

(1+ )L ||6(in) —

i(ie) .
Ol Ay 112

Belwd) < 0T A
+ ug(Awy, dy)
(1+e3L, _~ . S
SWHV“U%)H |||
(1+¢°L T *
T g i) 1)+ e ).

15)
At this point, we apply Lemma 2, as it allows us to “reverse”
the Cauchy-Schwartz inequality, providing a constant ¢ > 0
such that

A A 1 A N
VeIl lldz || < Z[(VE(@y), 7). (16)

Awy - di + de(Awy) - df + 1(d}).

We plug (16) into the last inequality to obtain

(1 +6)3L Tk

m“vawt)»dtﬂ
+(1 + E)3L

(1-eL
_(1 +€)3L
Cc(1-e)L

1+e€)3L y
+@||d (D) N1 1]+ e Doy, d).

(1—¢L
A (17
d; and r; are the analogous counterparts for £. Then, we split
the terms we are interested in to obtain

(1+e)3L (1+¢€)3L

Rg(wt)
(Ao ) || |Id7 ]| + we(Awy, df)

|Ry(e) — ()|

Ry(w R;(ay) + dy( dy
) < TR + w1
1+¢)3L .
QL )+ e b, ).
c(l—e)L
(18)
Finally, we define K = (H_G)) 7 and Sy as the remainder part

of the function that does not contain R;(i;). Immediately,
we conclude that tlim M, = 0 from the properties of the rest
—00

functions r, and r; and the fact that Aw;, Ay, df and cf§
converge to zero. It is important to note that the difference
scheme error functions d; and d; do not necessarily converge
to zero when their arguments do; however, since they are
bounded functions, we may consider the aforementioned
analysis. This proves the first inequality; the second can be
proved similarly by swapping ¢ and 7 and applying the same
logic. [ ]

Theorem 1 states that performing OGD on the raw dataset
and on the projected dataset leads to roughly the same
convergence rate, so we should see similar performance
for both approaches. This result extends [5] to consider a
more complex class of functions. For instance, classical loss
functions defined for neural networks fall in this category
since it is possible to make them fit into the Theorem 1
hypothesis without constricting either M = N or m = n, i.e.
making the size of w be the same as each feature vector = or
their projections. In doing so, we can consider architectures
where the vector sizes of x and w do not necessarily match.
In exchange, we require that one JL transformation T be
applied to the features x and another JL transformation Ty
be applied to w. Again, note that [5] presents a special case
of this by setting Tr = Ty .

B. Distributed Learning

Following [14], we apply the concepts of structured and
sketched updates in federated learning to a distributed learn-
ing scenario. The CNN model acts as a feature extractor for
classification, mimicking a structured update. The projection
then acts as a sketched update, compressing the data to a
lower dimension before it is used to train the final model.

Extending from [3], we construct a distributed network of
agents in which each trains a portion of the model. Before
projection, the raw data is processed using a predefined



CNN, which allows us to represent each image as a feature
vector. To ensure low communication costs, each agent only
broadcasts the updated model parameters to the next one in
the sequence, and only the final agent acquires the robust
model used for classification.

Algorithm 1: DISTRIBUTED LEARNING(M, D)

Input: Set of agents A = {a1,...,a,}, CNN
Headless Model List M, Data Set
D = U {(Xi, i)}
Output: Trained optimal weights w*, w*
1 a; determines which CNN model to use from M
2 ap determines the minimum projection dimension n
for the features using JL Lemma
3 a; determines the matching dimension m for the
weights using JL. Lemma and the surrogate model
4 a, initializes projected weights wy
5 aj chooses two seeds dp and dyy to generate the JL
transforms T and Ty

6 fori=2,....,pdo
7 ap broadcasts CNN model identity and both
seeds to a;

g fori=1,2,...,pdo

9 a; sets its data set D; = (X;, ;)

10 a; passes X; through the CNN, storing the
resulting feature vectors M (X;)

11 a; projects data as X; = Tr(M(X;))

12 a; preforms OGD on D; = (Xi, y;) and obtains
updated weights w; starting by w;_

13 if i < p then

14 L a; broadcasts w; to a;41

15 a, preforms reverse transform on w* = 1, to obtain
* _ =1 ~%
w* =Ty, (W)
16 return w*, w*

Algorithm 1 sets up a distributed network in which each
agent trains a classification model using the features ex-
tracted from the dataset via a CNN. It takes as inputs a set of
agents A, a list of headless CNN model types M, and an im-
age dataset D. Theoretically, the dataset is provided and set
for each machine; practically, each agent would collect data
in real-time. In steps 1-3, the first machine in the network
chooses a headless CNN from the given list and determines
the minimum projection dimensions for the feature vectors
and the weights. In step 5, the two seeds that will allow
each agent to generate the appropriate JL transforms for
both the data and the model weights are chosen. In step
7, the identity of the chosen CNN is broadcast to the rest
of the agents along with the two seeds. Extrapolating [3],
[13], the complexity of broadcasting the data projection seed
is O(log(n/e€)log(N)). The complexity of broadcasting the
model weights projection seed is O(log(m/e)log(M)) =
O(log(n/e)log(N)) if n; = O(1). This process can also be
done simultaneously, in which case all agents agree on the

T Agent a; T Agent a;41
SF, 0w ‘ O, 0w Dit1 =
D; = (Xi,y:)
from a; from a; (Xit1,Yit1)

] Y ! ] v
| Build Tr and . Build T and
|

|
|
|
|
I
I
I
I
I
X ]
|
|
|
|
I
I
I
I
I

project X; project X; 41
v N
A 5 Diy1 =
D; = (Xi,y:) .
(Xi+1,Yi+1)

R N . b Wit
Perform OGD on ¢ Pt— Wi —> Perform OGD on /

Fig. 3: Illustration of algorithm 1 between two consecutive agents; each
agent receives the seeds and the projected weights and broadcasts the
updated weights.

CNN identity and the transformation seeds.

To determine the minimum dimension that the data can
be projected down to whilst still preserving the distances
between the data points, we utilize the JL Lemma proven
in [9] and stated in (2). We project the data using the
JL transform stated in [17]. Here, the seed controls which
entries in the matrix are non-zero and their values. This is
critical since the sparsity pattern can significantly affect the
performance and quality of the dimensionality reduction.

Once all machines have agreed on the seed, step 10
shows each agent passing its assigned or collected data
through the CNN and storing the resulting feature vectors.
In step 11, each agent projects its assigned data down to
the specified minimum projection dimension. In steps 12-
14, OGD is performed on the data and the updated weights
w,; are broadcast to the next agent in the sequence. This
broadcasting step takes O(log(N)™) for each weight vector
w;. Finally, in steps 15-16, the final agent in the system
performs the inverse transform on the model parameters and
uses this to classify the original high-dimensional data. The
communication complexity is composed of the cost of broad-
casting the seeds dp and dy plus the cost of broadcasting
the projected weights w;, leading to a total complexity of
O(log(N)™ +log(m/e)log(M) +log(n/e) log(N)); Figure
3 illustrates how the data is sent among two agents.

V. EXPERIMENTAL RESULTS
A. Overview

For our purposes, the datasets had been previously split
into test and train sets. We use three CNN models: ResNet-
50 [18], VGG16 [19] and EfficientNetBO [20]. These state-
of-the-art models were chosen for their efficiency, scalabil-
ity, and predictability. Efficient execution ensures that the
model can perform inferences quickly and with minimal
computational resources. Scalable architectures can handle
larger, more complex tasks without requiring disproportion-
ate increases in communication. Each model is pre-trained
and imported without the fully connected layers or “head”.
Pre-trained models save substantial training time and reduce



the amount of data transfer needed during deployment. Be-
cause we are primarily interested in reducing communication
complexity, we only need to pass the data through the
convolutional layers to flatten the data and can substitute the
head for logistic regression, a simpler classification method.
In practice, logistic regression has the same behavior as an
NN with one classifying layer. After passing the data through
the final convolutional layer the CNN architectures may still
return fairly large feature vectors, which would be difficult
to process without an additional projection. For example,
VGG-16 returns a feature vector of size 512 X 7 x 7.

Once the features are extracted from the raw data, they
are shuffled and split among the 10 agents, which represent
autonomous vehicles configured in a distributed fashion.
Each agent does a standard preprocessing step to the data
before using any CNN to extract the features. The calculation
to determine the minimum dimension that the data can be
projected down to is done using (2), which takes the number
of samples and an error value € = 0.2 as inputs and returns
the target dimension n = 2125.

When the final agent in the system is reached, it performs
the inverse transform on the resulting model parameters and
uses this model to classify the original high-dimension data.
The last agent has access to both parameters, the projected
w* and the inverse transformed w* = Ty (w*). Hence, it
can make predictions either on the projected data by using
w* or on the high-dimensional data by using w™; these
two possibilities are reflected by the red and green boxplots
in Figures 4 and 6, respectively. Moreover, we performed
baseline experiments with no projection at all corresponding
to the blue boxplots in Figures 4 and 6. For both datasets,
the model trained with projected data outperforms or is on
par with the baseline model. This is due to the projection
itself, which makes the data more manageable for processing
and helps stabilize the training process by reducing the
variability of the model’s performance across different runs.
Each experiment is repeated 50 times, returning the mean
and standard deviation of the prediction accuracies both on
the projected and raw data.

B. CIFAR-10

To test the robustness of the model, we utilize the bench-
mark CIFAR-10 dataset [21] for testing. It consists of 60,000
color images, each with a resolution of 32x 32 pixels, divided
between 50,000 training images and 10,000 test images. The
images are evenly distributed across 10 classes, which repre-
sent different objects and animals: airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck. For computational
efficiency, we select a random subset of 10,000 training
samples and 2,000 test samples from the dataset.

Our results, shown in figure 4, are comparable to other
tests conducted on the CIFAR-10 dataset using the same
CNN models [18] [19] [20]. Marginally lower accuracies
can be explained by our use of logistic regression for
classification over the original model head. Despite this, we
show that the accuracy is preserved and even improved for
the models trained on projected data for every architecture.
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Fig. 4: Boxplot of CIFAR-10 dataset accuracies using ResNet-50, VGG-16
and EfficientNetB0 as feature extractors.

Furthermore, the standard deviation was reduced, especially
for ResNet50 and EfficientNetB0, suggesting less variability.

C. Case-Study: Marine Perception

To perform a case study that relates to our goal of
achieving sublinear communication costs for agents carrying
out naval missions, we utilize a subset of the Open Image
dataset [22]. It is composed of 4551 train images and 1325
test images divided between 2 classes: buildings and boats.
Practically, the idea is to have a set of p autonomous agents
continuously collecting data from their environment through
various sensors, classifying the data, and using it for real-
time motion planning. To simulate this, we split the dataset
among the p agents and have them execute Algorithm 1.

Fig. 5: Boat and building images from the dataset [22].

Figure 6 displays the results of the distributed network
test. In each case, the model trained using projected data was
comparable to that trained with the non-projected data. The
classification accuracy remained consistent after projection
and the standard deviation was reduced, signifying a decrease
in variation. Note that this is observed for all 3 CNNs,
showcasing that the effectiveness of the projection method
is robust across different architectures. We demonstrate that
sublinear communication costs can be achieved for classifi-
cation problems without sacrificing accuracy.

VI. CONCLUSIONS

This study explores the application of dimensionality
reduction techniques, specifically the Johnson-Lindenstrauss
transform, combined with CNNs and distributed networks
to address learning challenges in communication-constrained
environments. Our proposed system enhances communica-
tion efficiency among autonomous systems such as UASs,
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Fig. 6: Boxplot of Open Images dataset accuracies using ResNet-50, VGG-
16, and EfficientNetBO as feature extractors.

UUSVs, and UUVs. The CNN architectures chosen are
designed to manage large-scale data efficiently, enabling
our system to maintain robust performance even as data
volumes grow. This scalability is crucial for naval missions,
which require efficient handling of large and increasing
data volumes, real-time decision-making, and resource usage
optimization.

The experimental results, derived from both the CIFAR-
10 dataset and a tailored case study on marine perception,
confirm the viability of our approach. Across all 3 CNN
architectures, the models trained with projected data achieve
similar accuracy to the baseline model trained with the
original high-dimensional data. Furthermore, the observed
reduction in standard deviation across the tests suggests
an improvement in consistency and reliability of model
performance.

Future work involves expanding testing to real-world sce-
narios, such as highly efficient obstacle detection, marine
life classification, and environmental health monitoring. To
achieve similar accuracy in real time without prior training
data, we plan to explore the use of deep reinforcement learn-
ing (DRL). The adaptability, efficiency, and robustness of
DRL make it a powerful approach for tackling the challenges
of real-time classification across various domains.

Furthermore, the distributed learning framework intro-
duced offers a promising avenue for future research, es-
pecially in federated learning environments where data pri-
vacy and security are paramount. Our findings suggest that
structured and sketched updates can be effectively utilized to
reduce communication demands.
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