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Abstract— Intelligent Autonomous Systems (IAS), which en-
compass Unmanned Aerial Systems (UAS), Unmanned Surface
Vehicles (USV), and Unmanned Underwater Vehicles (UUV),
are set to play a pivotal role across multiple domains. However,
due to the demanding nature of their missions (e.g., disaster
response and underwater exploration), common communication
methods are often limited. This makes it essential to use
efficient communication strategies for learning and decision-
making. This paper introduces a novel approach, leveraging
distributed machine learning algorithms along with data pro-
jection to achieve sublinear communication costs. Particularly,
we incorporate Convolutional Neural Networks for feature
extraction prior to projection, significantly enhancing efficiency
and accuracy in autonomy tasks within bandwidth-constrained
environments. This method uses the Johnson-Lindenstrauss
transform for dimensionality reduction of both data and model
parameters, facilitating efficient inter-agent communication by
transmitting only projected model parameters. We further
outline theoretical underpinnings showcasing the Johnson-
Lindenstrauss transform’s effectiveness in maintaining con-
vergence properties for Online Gradient Descent algorithms.
Through experimental validation using image recognition tasks
relevant to maritime surveillance, our approach demonstrates
substantial reductions in communication cost while preserving
high model performance.

Index Terms— Distributed algorithms, Convolutional neural
networks, Machine learning, Maritime communication

I. INTRODUCTION

Communication challenges for networks of autonomous

vehicles often arise in the maritime domain. As the use of un-

derwater autonomous vehicles continues to rise, they become

vital for operations such as infrastructure monitoring, mine

countermeasures, and environmental conservation. Due to

the limitations of conventional communication methods like

radio frequency and acoustics in underwater settings, these

missions face communication barriers that negatively affect

their performance and efficiency. Additionally, communica-

tion bandwidth can be affected in adversarial scenarios such

as jamming and blocking for ground and aerial groups of

autonomous vehicles.

Many maritime surveillance tasks, such as traffic monitor-

ing, illegal fishing, border smuggling detection, and pollution

management, rely heavily on computer vision techniques.

Studies [1] and [2] show how Deep Learning techniques–

specifically, Convolutional Neural Networks (CNNs)–have

proved invaluable for image and satellite-based ship detection
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Fig. 1: Visual representation of IAS in a distributed network; each IAS can
communicate small amounts of data and they navigate within a region of
interest W .

and classification. Utilizing CNNs combined with the k-

Nearest Neighbor (kNN) method trained with aerial images

of ships, [1] achieves a classification success rate of over

90%, surpassing traditional methods and other CNN-based

strategies. Findings reported in [2] offer similar insight, in-

stead using YOLOv3, YOLOv4, and YOLOv5 architectures

to detect ships within two datasets.

Using a distributed architecture allows for improved scal-

ability and robustness. If an individual machine fails, the rest

of the network can continue to operate and process data. It

is known that, in communication-constrained environments,

the complexity of communication typically outweighs the

complexity of learning. Therefore, it is still favorable to

distribute the learning amongst various agents, regardless of

potentially higher learning costs.

This study introduces a novel approach centered around a

distributed machine learning (ML) algorithm leveraging the

Johnson-Lindenstrauss (JL) transform. The main idea is to

utilize this transform for both data and model parameters,

effectively projecting them into a lower dimension. This en-

sures the learning process operates within a reduced dimen-

sional space, facilitating efficient communication between

agents by transmitting only the projected model parameters.

Our focus lies particularly on CNN architectures due to their

relevance in computer vision tasks and their adaptability

through transfer learning to other domains. Building upon

the work presented in [3], we employ CNNs as feature

extractors. Initially, raw data is preprocessed via a pre-trained

CNN to extract essential features, reducing dimensionality

and minimizing communication overhead. This step acts as

a preliminary projection, significantly trimming down the

number of features that need to be processed by the system.



However, the resulting feature vectors are still fairly large,

keeping the same order as the original data, so we must

perform a projection on the feature data to ensure sublinear

communication costs.

Furthermore, we provide theoretical insights into how the

JL transform guarantees certain convergence properties for

Online Gradient Descent (OGD). Specifically, we examine

the convergence behavior of models trained using raw data

versus those trained with projections from the JL transform.

These theoretical underpinnings underscore the efficacy of

this approach.

In addition to theoretical analysis, we implement a dis-

tributed OGD algorithm tailored for training ML models,

particularly focusing on image recognition tasks pertinent

to oceanic surveillance. Our approach extends previous

methodologies applied to both neural networks (NNs) and

CNNs. Notably, while our results are demonstrated within

the context of OGD, they are expected to generalize to other

optimization algorithms, such as Stochastic Gradient Descent

(SGD) and Gradient Descent (GD) directly.

II. RELATED WORK

A. Communication Complexity

The work presented in this paper is based on Commu-

nication Complexity [4], [5], [6], a subarea of Theoretical

Computer Science that tries to understand the amount of

communication required to solve a problem when the input

to the problem is distributed among two or more parties. In

a multi-robot system, especially where a large number of

robots are present and the amount of bandwidth is limited,

reducing the size of the communicated messages can tremen-

dously benefit the coordination process. The study presented

in [3] provides a framework for sequential data analysis

that guarantees sublinear communication costs. Utilizing the

JL lemma, we embed the data to be communicated into a

lower dimensional space, which dramatically diminishes the

amount of data to be communicated. A key component of our

contribution is the employment of a CNN for the initial fea-

ture extraction. Employing CNNs enables us to concentrate

on processed features instead of the high-dimensional raw

data, significantly diminishing communication complexity

and improving the system’s overall efficiency in bandwidth-

constrained scenarios. Our ideas are also connected to the use

of communication complexity in multi-robot systems [7], [8].

B. The Johnson-Lindestrauss Lemma and its Construction

The JL lemma asserts that for a set of points X ¦ R
N

and 0 < ϵ < 1, there is a dimension n = O(ϵ−2 log(|X|))
and a linear transformation T : RN −→ R

n such that

(1− ϵ)||x− y|| f ||T (x)− T (y)|| f (1 + ϵ)||x− y||. (1)

Various bounds exist to calculate n. For instance, [9] shows

that it is enough to satisfy

n g
4 ln(N)

ϵ2/2− ϵ3/3
(2)

to ensure the existence of T .

Complementing the lemma, there are numerous efforts to

give random, sparse, and deterministic constructions of the

transformation T .

1) Random JL Transforms: The first efforts to do trans-

formations for dimensionality reduction relied on building

random matrices where each matrix entrance is drawn i.i.d.

from a normal distribution N (0, 1/n); [9], [10], [11] prove

its properties as a JL transform and show its benefits for ML

applications.

2) Sparse JL Transforms: These are variations that con-

struct the embedding using sparse matrices, significantly

reducing the computational complexity of applying the trans-

form, especially useful for sparse high-dimensional data.

These transformations operate by setting most of the T ’s

matrix representation values to zero; in [12], the distribution

for each entry of the matrix [MT ]ij is considered as

[MT ]ij =











1√
n

with probability 1/6

0 with probability 2/3

− 1√
n

with probability 1/6.

(3)

3) Deterministic Versions: While the original lemma and

many of its extensions rely on random constructions, there

have been efforts to develop deterministic versions of the

lemma, though these often come with trade-offs in bounds

or applicability. Work presented in [13] replaces the random

variables used to generate the matrix entrances with hash

functions that can perform the same task; moreover, these

matrices can be built so that they can keep a certain degree

of sparsity.

C. Efficient Federated Learning

Our work aligns with [14], which presents structured and

sketched updates to improve communication efficiency in

federated learning. Federated learning is a specific type of

distributed learning focused on training algorithms across

decentralized devices or servers holding local data sam-

ples without exchanging them. Structured updates limit the

changes to the model by restricting them to a predefined

space, thus reducing the number of variables that need to be

communicated. This method can involve selecting a subset

of the model’s parameters to update or using a low-rank

approximation. Sketched updates, on the other hand, involve

compressing the entire model update (for example, through

sparsification) before it is sent to the server. This approach

reduces the size of the data transmitted by only sending

the most crucial information for updating the model. It is

also important to note that many federated learning applica-

tions, detailed in [15], focus on improving and maintaining

security. Even when bandwidth is not limited, it is crucial

to ensure secure communication between agents, especially

when handling sensitive data.

D. Convolutional Neural Networks

Traditional NNs are not ideally suited for processing high-

resolution images, as they often require a large number

of parameters. This not only increases the computational



complexity and the time required to train the model but also

heightens the risk of over-fitting, especially if the training

data is limited or not diverse enough, as may be the case in

real-world scenarios. CNNs are preferred for image classifi-

cation tasks to reduce communication complexity because

they efficiently process and extract features directly from

image pixels with minimal pre-processing [16]. Their archi-

tecture leverages spatial hierarchies, significantly reducing

the amount of data that needs to be communicated for

learning. By automatically learning feature representations,

CNNs eliminate the need for manual feature extraction and,

thus, reduce the dimensionality and complexity of data,

leading to more efficient communication in distributed or

federated learning environments.

III. PROBLEM FORMULATION

Given the aforementioned limitations inherent in under-

water environments, we strive to solve tasks for autonomous

systems using a restrictive bandwidth. Particularly in learning

processes, when considering datasets or model parameters

with O(N) bits, we would like to send o(N) bits among the

agents so the autonomy task can be learned and executed in

sublinear time. In this scenario, we allow the group’s agents

to agree on a strategy before starting the learning process.

We consider a group of p agents navigating within a d-

dimensional space (d = 2, 3), denoted as W ¦ R
d. This

workspace is partitioned into the obstacle space O and the

free space E = W/O. The agents naturally traverse through

E while avoiding O, collecting and processing samples, each

of size O(N) bits. Given limited communication capabilities,

which are expected to be small compared to the sample size,

each agent independently constructs their part of the joint

dataset Di for i = 1, . . . , p to be used in a distributed learn-

ing algorithm. Consequently, the joint dataset is represented

as the disjoint union D = ∪p
i=1Di.

Problem: Solving autonomy tasks in sublinear time

Given a set of p agents navigating in W , learn and execute

distributed ML-based autonomy tasks using o(N) communi-

cation complexity.

IV. METHODS

Our scenario of interest encompasses the p agents moving

throughout an environment W . They take in data via sensors

(e.g. camera, sonar, acoustic); the data is treated as samples

of size O(N) bits and acquired independently by each

machine ai to build their part of the dataset Di = (Xi, yi).
Each machine can send or broadcast data to the rest of

the machines in the network. We aim to extend the results

presented in [5] since they provide a theoretical framework

for distributed ML using sublinear communication to train

classic ML models using GD or its variants like SGD and

OGD.

A. Johnson-Lindenstrauss Transform and Online Gradient

Descent

This transformation is useful when working with long fea-

ture vectors where the number of samples is in the same order

or bigger than the number of features, i.e. |X| = O(N). This

enables the projection of data while nearly preserving the

distances between the points in X , allowing us to examine

two connected optimization problems simultaneously.

Consider a scenario where we have a set of features

X ¦ R
N along with their corresponding labels Y ¦ R

P ,

which we will use to train an ML model M. We denote the

loss function for this model as ℓ(w; (X, y)). Let T be a JL

transform that maps X onto T (X), allowing us to consider

the same training problem by replacing X with T (X). This

involves adjusting the ML architecture and the loss function

to handle features of size n instead of size N . Given an ML

model M originally trained on features of size N , we define

a surrogate model of M represented by M̂; this surrogate

architecture is built by adapting M’s architecture (often, by

shrinking it) to handle features of size n while keeping its

structure. The surrogate model concept is illustrated in Fig 2.

To maintain the same training structure, we need to define an

adaptation of the loss function ℓ to be used on M̂. We define

this surrogate loss function ℓ̂(ŵ; (T (X), y)) as the result of

adapting ℓ to M̂. Despite operating on the projected dataset

T (X) instead of the raw dataset X , ℓ̂ maintains analogous

behavior to ℓ. Certainly, the labels remain unaltered in both

instances. Here, ŵ corresponds to the parameters to be found

when optimizing the loss function ℓ̂ defined on the dataset

T (X).
Furthermore, to establish a clear relationship between w

and ŵ, we demonstrate that a JL transformation defined on

the feature space TF : RN −→ R
n implies the existence of

a JL transformation in the parameter (weight) space, TW :
R

M −→ R
m that maps w into ŵ. This transformation can

potentially be applied in the case of more complex models

such as NNs or CNNs. In this domain, when the feature

vector dimension is N , a typical NN exhibits a weight vector

w of size M = O(Nnl), where nl is the number of layers

in the NN. Analogously, a surrogate NN trained using the

projected feature vectors in TF (X) ¦ R
n has a weight vector

of size m = O(nnl) = O(log(N)nl), making it larger than

the smallest dimension w can be projected down to, which

is O(nl log(N)). This observation underscores the feasibility

of projecting weight vectors via a JL transform TW .

In this section, our primary goal is to provide theoretical

reasoning that demonstrates the regret convergence rate of

optimizing ℓ using OGD is approximately equivalent to that

of ℓ̂. To do so, let us define the regret function for a loss

function l(w; (X, y)) as

Rl(w) = l(w; (X, y))− l(w⋆; (X, y)) (4)

where w⋆ = argmin
w∈RN

l(w; (X, y)). To avoid excessive nota-

tion we will drop the dataset D = (X, y) from the notation

on the loss functions i.e. l(w) := l(w; (X, y)) for any

loss function l. Furthermore, we leverage the notation for

a loss function and its surrogate loss function to ℓ(w) :=
ℓ(w; (X, y)) and ℓ̂(ŵ) := ℓ̂(ŵ; (TF (X), y)), respectively.

From now on, we will assume that the relationship between a

variable z and ẑ will be ẑ = TW (z) or ẑ = TW (z) depending
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Fig. 2: ML models for binary classification and their surrogate models.

on whether z is an element of the parameter space or the

feature space.

Using the regret definition, we study the relationship

between Rℓ(w) and R
ℓ̂
(w), which is presented in Theorem

1. Before that, we need to determine a bound for the angles

formed between the gradient of a loss function at a certain

value wt and the vector d⋆t = wt − w⋆, which is the vector

pointing to the optimal value when executing OGD at time

t.
Lemma 1: Let f(w) = 1

2w
¦Aw + h(w) be a scalar

function such that A is a positive-definite matrix and there

is an open neighborhood V containing the origin such that

||∇h(w)|| f ϵ||w||. Then, we have that

|ï∇f(w), wð|

||∇f(w)|| ||w||
g

¼min − ϵ

¼max + ϵ
= c > 0 (5)

for w ∈ V , ¼min and ¼max are the minimum and maximum

eigenvalues of A and ϵ < ¼min.

Proof: Computing the inner product and using triangle

inequalities gives

|ï∇f(w), wð|

||∇f(w)|| ||w||
=

|w¦Aw +∇h(w)w|

||Aw +∇h(w)|| ||w||

g
||w¦Aw| − |∇h(w)w||

||Aw +∇h(w)|| ||w||

g
||w¦Aw| − |∇h(w)w||

(||Aw||+ ||∇h(w)||)||w||
,

(6)

and using the bounds for positive-definite matrices, h, and

the spectral norm we obtain

||w¦Aw| − |∇h(w)w||

(||Aw||+ ||∇h(w)||)||w||
g

¼min||w||
2 − ϵ||w||2

(||Aw||+ ||∇h(w)||)||w||

g
¼min||w||

2 − ϵ||w||2

(¼max||w||+ ϵ||w||)||w||

=
¼min − ϵ

¼max + ϵ
= c

(7)

as desired.

Lemma 1 tells us that the angle between the gradient and

the vector w of the canonical form 1
2w

¦Aw must be acute.

In our main theorem, we seemingly use the Cauchy-

Schwartz inequality in reverse order to bound ||∇f(w)|| ||w||
using 1

c
|ï∇f(w), wð| for a certain constant c (which turns out

to be the angle between ∇f(w) and w). In general, it is not

possible to do so, since c might be too close to zero or zero

directly, indicating that both vectors are orthogonal. Lemma

1 prevents this from happening, allowing us to prove and use

Lemma 2.

Lemma 2: Let l(w) be a loss function that is minimized

using OGD, and let w⋆ and d⋆t be defined as before. Suppose

that OGD generates a convergent sequence of iterations

{wt}t∈N with lim
t→∞

d⋆t = 0. Then, there is a constant c > 0

and a natural number T such that

||∇l(wt)|| ||d
⋆
t || f

1

c
|ï∇l(wt), d

⋆
t ð| (8)

for t g T .

Proof: Expand l(w) towards w⋆ using its Taylor’s series

representation and the fact that ∇l(w⋆) = 0

l(wt) = l(w⋆) + d⋆t
¦Hl(w

⋆)

2
d⋆t + hl(d

⋆
t )||d

⋆
t ||. (9)

Where Hl(w
⋆) is the l’s Hessian matrix evaluated at w⋆.

Finally, since lim
d⋆
t
→0

hl(d
⋆
t ) = 0, {wt}t∈N is convergent and

Hl(w
⋆) is positive definite, choose T such that |hl(d

⋆
t )| f ϵ

and apply Lemma 1 on the function l(wt)− l(w⋆) using d⋆t
as its variable.

Now, we present our main result, supported by the appli-

cation of Lemma 2.

Theorem 1: Let X ¦ R
N with |X| f N , consider TF

and TW : two JL transforms satisfying (1) for the feature

and parameter spaces, respectively. ℓ is a loss function and ℓ̂
is a surrogate loss function. Suppose that ℓ and ℓ̂ are L-

bi-Lipschitz and L̂-bi-Lipschitz respectively, and they are



minimized using OGD. Then, there are two constants k and

K and two sequences st and St such that

kR
ℓ̂
(ŵt) + st f Rℓ(wt) f KR

ℓ̂
(ŵt) + St, (10)

with lim
t→∞

st = lim
t→∞

St = 0.

Proof: Let ∆wt = wt − wt−1 and d⋆t as in Lemma 2.

We expand ℓ(w) around wt to estimate ℓ(w⋆)

ℓ(w⋆) = ℓ(wt)−∇ℓ(wt) · d
⋆
t − rℓ(d

⋆
t ), (11)

rℓ is the error in the Taylor’s expansion. We bring the regret

definition for ℓ and consider a finite difference scheme to

approximate ∇ℓ(wt)

Rℓ(wt) = ∇ℓ(wt) · d
⋆
t + rℓ(d

⋆
t )

=
ℓ(wt)− ℓ(wt−1)

||∆wt||
∆wt · d

⋆
t + dℓ(∆wt) · d

⋆
t + rℓ(d

⋆
t ).

(12)

Here, rℓ and dℓ are the remainders after doing Taylor’s

approximation and the finite scheme, respectively. We bound

Rℓ(wt) using the triangle inequality, the Cauchy-Schwartz

inequality, and the Lipschitz condition on ℓ

Rℓ(wt) f
||ℓ(wt)− ℓ(wt−1)||

||∆wt||
||∆wt|| ||d

⋆
t ||+ uℓ(∆wt, d

⋆
t )

fL
||∆wt||

2

||∆wt||
||d⋆t ||+ uℓ(∆wt, d

⋆
t ).

(13)

where uℓ(∆wt, d
⋆
t ) = ||dℓ(∆wt)|| ||d

⋆
t ||+ |rℓ(d

⋆
t )|. We make

usage of the JL transform property stated in (1) to relate Rℓ

and R
ℓ̂
, transforming ∆wt into ∆ŵt and d⋆t into d̂⋆t . As a

result, (13) becomes

Rℓ(wt) f
(1 + ϵ)3L

(1− ϵ)

||∆ŵt||
2

||∆ŵt||
||d̂⋆t ||+ uℓ(∆wt, d

⋆
t ). (14)

Now, we apply the same logic for ℓ̂ to obtain

Rℓ(wt) f
(1 + ϵ)3L

(1− ϵ)L̂

||ℓ̂(ŵt)− ℓ̂(ŵt−1)||

||∆ŵt||
||∆ŵt|| ||d̂

⋆
t ||

+ uℓ(∆wt, d
⋆
t )

f
(1 + ϵ)3L

(1− ϵ)L̂
||∇ℓ̂(ŵt)|| ||d̂

⋆
t ||

+
(1 + ϵ)3L

(1− ϵ)L̂
||d

ℓ̂
(∆ŵt)|| ||d̂

⋆
t ||+ uℓ(∆wt, d

⋆
t ).

(15)

At this point, we apply Lemma 2, as it allows us to “reverse”

the Cauchy-Schwartz inequality, providing a constant c > 0
such that

||∇ℓ̂(ŵt)|| ||d̂
⋆
t || f

1

c
|ï∇ℓ̂(ŵt), d̂

⋆
t ð|. (16)

We plug (16) into the last inequality to obtain

Rℓ(wt) f
(1 + ϵ)3L

c(1− ϵ)L̂
|ï∇ℓ̂(ŵt), d̂

⋆
t ð|

+
(1 + ϵ)3L

(1− ϵ)L̂
||d

ℓ̂
(∆ŵt)|| ||d̂

⋆
t ||+ uℓ(∆wt, d

⋆
t )

=
(1 + ϵ)3L

c(1− ϵ)L̂
|R

ℓ̂
(ŵt)− r

ℓ̂
(d̂⋆t )|

+
(1 + ϵ)3L

(1− ϵ)L̂
||d

ℓ̂
(∆ŵt)|| ||d̂

⋆
t ||+ uℓ(∆wt, d

⋆
t ).

(17)

d
ℓ̂

and r
ℓ̂

are the analogous counterparts for ℓ̂. Then, we split

the terms we are interested in to obtain

Rℓ(wt) f
(1 + ϵ)3L

c(1− ϵ)L̂
R

ℓ̂
(ŵt) +

(1 + ϵ)3L

(1− ϵ)L̂
||d

ℓ̂
(∆ŵt)|| ||d̂

⋆
t ||

+
(1 + ϵ)3L

c(1− ϵ)L̂
|r

ℓ̂
(d̂⋆t )|+ uℓ(∆wt, d

⋆
t ).

(18)

Finally, we define K = (1+ϵ)3L

c(1−ϵ)L̂
and St as the remainder part

of the function that does not contain R
ℓ̂
(ŵt). Immediately,

we conclude that lim
t→∞

Mt = 0 from the properties of the rest

functions rℓ and r
ℓ̂

and the fact that ∆wt, ∆ŵt, d
⋆
t and d̂⋆t

converge to zero. It is important to note that the difference

scheme error functions dℓ and d
ℓ̂

do not necessarily converge

to zero when their arguments do; however, since they are

bounded functions, we may consider the aforementioned

analysis. This proves the first inequality; the second can be

proved similarly by swapping ℓ and ℓ̂ and applying the same

logic.

Theorem 1 states that performing OGD on the raw dataset

and on the projected dataset leads to roughly the same

convergence rate, so we should see similar performance

for both approaches. This result extends [5] to consider a

more complex class of functions. For instance, classical loss

functions defined for neural networks fall in this category

since it is possible to make them fit into the Theorem 1

hypothesis without constricting either M = N or m = n, i.e.

making the size of w be the same as each feature vector x or

their projections. In doing so, we can consider architectures

where the vector sizes of x and w do not necessarily match.

In exchange, we require that one JL transformation TF be

applied to the features x and another JL transformation TW

be applied to w. Again, note that [5] presents a special case

of this by setting TF = TW .

B. Distributed Learning

Following [14], we apply the concepts of structured and

sketched updates in federated learning to a distributed learn-

ing scenario. The CNN model acts as a feature extractor for

classification, mimicking a structured update. The projection

then acts as a sketched update, compressing the data to a

lower dimension before it is used to train the final model.

Extending from [3], we construct a distributed network of

agents in which each trains a portion of the model. Before

projection, the raw data is processed using a predefined



CNN, which allows us to represent each image as a feature

vector. To ensure low communication costs, each agent only

broadcasts the updated model parameters to the next one in

the sequence, and only the final agent acquires the robust

model used for classification.

Algorithm 1: DISTRIBUTED LEARNING(M , D)

Input: Set of agents A = {a1, . . . , ap}, CNN

Headless Model List M, Data Set

D = ∪p
i=1{(Xi, yi)}

Output: Trained optimal weights ŵ⋆, w⋆

1 a1 determines which CNN model to use from M
2 a1 determines the minimum projection dimension n

for the features using JL Lemma

3 a1 determines the matching dimension m for the

weights using JL Lemma and the surrogate model

4 a1 initializes projected weights ŵ0

5 a1 chooses two seeds ¶F and ¶W to generate the JL

transforms TF and TW

6 for i = 2, . . . , p do

7 a1 broadcasts CNN model identity and both

seeds to ai

8 for i = 1, 2, . . . , p do

9 ai sets its data set Di = (Xi, yi)
10 ai passes Xi through the CNN, storing the

resulting feature vectors M(Xi)

11 ai projects data as X̂i = TF (M(Xi))

12 ai preforms OGD on D̂i = (X̂i, yi) and obtains

updated weights ŵi starting by ŵi−1

13 if i < p then

14 ai broadcasts ŵi to ai+1

15 ap preforms reverse transform on ŵ⋆ = ŵp to obtain

w⋆ = T−1
W (ŵ⋆)

16 return ŵ⋆, w⋆

Algorithm 1 sets up a distributed network in which each

agent trains a classification model using the features ex-

tracted from the dataset via a CNN. It takes as inputs a set of

agents A, a list of headless CNN model types M, and an im-

age dataset D. Theoretically, the dataset is provided and set

for each machine; practically, each agent would collect data

in real-time. In steps 1-3, the first machine in the network

chooses a headless CNN from the given list and determines

the minimum projection dimensions for the feature vectors

and the weights. In step 5, the two seeds that will allow

each agent to generate the appropriate JL transforms for

both the data and the model weights are chosen. In step

7, the identity of the chosen CNN is broadcast to the rest

of the agents along with the two seeds. Extrapolating [3],

[13], the complexity of broadcasting the data projection seed

is O(log(n/ϵ) log(N)). The complexity of broadcasting the

model weights projection seed is O(log(m/ϵ) log(M)) =
O(log(n/ϵ) log(N)) if nl = O(1). This process can also be

done simultaneously, in which case all agents agree on the

Agent ai Agent ai+1

Di = (Xi, yi)

D̂i = (X̂i, yi)

Di+1 =

(Xi+1, yi+1)

D̂i+1 =

(X̂i+1, yi+1)

Perform OGD on ℓ̂ Perform OGD on ℓ̂

Build TF and

project Xi

Build TF and

project Xi+1

¶F , ¶W

from a1

¶F , ¶W

from a1

ŵi−1
ŵi

ŵi+1

Fig. 3: Illustration of algorithm 1 between two consecutive agents; each
agent receives the seeds and the projected weights and broadcasts the
updated weights.

CNN identity and the transformation seeds.

To determine the minimum dimension that the data can

be projected down to whilst still preserving the distances

between the data points, we utilize the JL Lemma proven

in [9] and stated in (2). We project the data using the

JL transform stated in [17]. Here, the seed controls which

entries in the matrix are non-zero and their values. This is

critical since the sparsity pattern can significantly affect the

performance and quality of the dimensionality reduction.

Once all machines have agreed on the seed, step 10

shows each agent passing its assigned or collected data

through the CNN and storing the resulting feature vectors.

In step 11, each agent projects its assigned data down to

the specified minimum projection dimension. In steps 12-

14, OGD is performed on the data and the updated weights

ŵi are broadcast to the next agent in the sequence. This

broadcasting step takes O(log(N)nl) for each weight vector

wi. Finally, in steps 15-16, the final agent in the system

performs the inverse transform on the model parameters and

uses this to classify the original high-dimensional data. The

communication complexity is composed of the cost of broad-

casting the seeds ¶F and ¶W plus the cost of broadcasting

the projected weights ŵi, leading to a total complexity of

O(log(N)nl +log(m/ϵ) log(M)+ log(n/ϵ) log(N)); Figure

3 illustrates how the data is sent among two agents.

V. EXPERIMENTAL RESULTS

A. Overview

For our purposes, the datasets had been previously split

into test and train sets. We use three CNN models: ResNet-

50 [18], VGG16 [19] and EfficientNetB0 [20]. These state-

of-the-art models were chosen for their efficiency, scalabil-

ity, and predictability. Efficient execution ensures that the

model can perform inferences quickly and with minimal

computational resources. Scalable architectures can handle

larger, more complex tasks without requiring disproportion-

ate increases in communication. Each model is pre-trained

and imported without the fully connected layers or “head”.

Pre-trained models save substantial training time and reduce



the amount of data transfer needed during deployment. Be-

cause we are primarily interested in reducing communication

complexity, we only need to pass the data through the

convolutional layers to flatten the data and can substitute the

head for logistic regression, a simpler classification method.

In practice, logistic regression has the same behavior as an

NN with one classifying layer. After passing the data through

the final convolutional layer the CNN architectures may still

return fairly large feature vectors, which would be difficult

to process without an additional projection. For example,

VGG-16 returns a feature vector of size 512× 7× 7.

Once the features are extracted from the raw data, they

are shuffled and split among the 10 agents, which represent

autonomous vehicles configured in a distributed fashion.

Each agent does a standard preprocessing step to the data

before using any CNN to extract the features. The calculation

to determine the minimum dimension that the data can be

projected down to is done using (2), which takes the number

of samples and an error value ϵ = 0.2 as inputs and returns

the target dimension n = 2125.

When the final agent in the system is reached, it performs

the inverse transform on the resulting model parameters and

uses this model to classify the original high-dimension data.

The last agent has access to both parameters, the projected

ŵ⋆ and the inverse transformed w⋆ = TW (ŵ⋆). Hence, it

can make predictions either on the projected data by using

ŵ⋆ or on the high-dimensional data by using w⋆; these

two possibilities are reflected by the red and green boxplots

in Figures 4 and 6, respectively. Moreover, we performed

baseline experiments with no projection at all corresponding

to the blue boxplots in Figures 4 and 6. For both datasets,

the model trained with projected data outperforms or is on

par with the baseline model. This is due to the projection

itself, which makes the data more manageable for processing

and helps stabilize the training process by reducing the

variability of the model’s performance across different runs.

Each experiment is repeated 50 times, returning the mean

and standard deviation of the prediction accuracies both on

the projected and raw data.

B. CIFAR-10

To test the robustness of the model, we utilize the bench-

mark CIFAR-10 dataset [21] for testing. It consists of 60,000

color images, each with a resolution of 32×32 pixels, divided

between 50,000 training images and 10,000 test images. The

images are evenly distributed across 10 classes, which repre-

sent different objects and animals: airplane, automobile, bird,

cat, deer, dog, frog, horse, ship, and truck. For computational

efficiency, we select a random subset of 10,000 training

samples and 2,000 test samples from the dataset.

Our results, shown in figure 4, are comparable to other

tests conducted on the CIFAR-10 dataset using the same

CNN models [18] [19] [20]. Marginally lower accuracies

can be explained by our use of logistic regression for

classification over the original model head. Despite this, we

show that the accuracy is preserved and even improved for

the models trained on projected data for every architecture.
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Fig. 4: Boxplot of CIFAR-10 dataset accuracies using ResNet-50, VGG-16
and EfficientNetB0 as feature extractors.

Furthermore, the standard deviation was reduced, especially

for ResNet50 and EfficientNetB0, suggesting less variability.

C. Case-Study: Marine Perception

To perform a case study that relates to our goal of

achieving sublinear communication costs for agents carrying

out naval missions, we utilize a subset of the Open Image

dataset [22]. It is composed of 4551 train images and 1325

test images divided between 2 classes: buildings and boats.

Practically, the idea is to have a set of p autonomous agents

continuously collecting data from their environment through

various sensors, classifying the data, and using it for real-

time motion planning. To simulate this, we split the dataset

among the p agents and have them execute Algorithm 1.

Fig. 5: Boat and building images from the dataset [22].

Figure 6 displays the results of the distributed network

test. In each case, the model trained using projected data was

comparable to that trained with the non-projected data. The

classification accuracy remained consistent after projection

and the standard deviation was reduced, signifying a decrease

in variation. Note that this is observed for all 3 CNNs,

showcasing that the effectiveness of the projection method

is robust across different architectures. We demonstrate that

sublinear communication costs can be achieved for classifi-

cation problems without sacrificing accuracy.

VI. CONCLUSIONS

This study explores the application of dimensionality

reduction techniques, specifically the Johnson-Lindenstrauss

transform, combined with CNNs and distributed networks

to address learning challenges in communication-constrained

environments. Our proposed system enhances communica-

tion efficiency among autonomous systems such as UASs,
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Fig. 6: Boxplot of Open Images dataset accuracies using ResNet-50, VGG-
16, and EfficientNetB0 as feature extractors.

UUSVs, and UUVs. The CNN architectures chosen are

designed to manage large-scale data efficiently, enabling

our system to maintain robust performance even as data

volumes grow. This scalability is crucial for naval missions,

which require efficient handling of large and increasing

data volumes, real-time decision-making, and resource usage

optimization.

The experimental results, derived from both the CIFAR-

10 dataset and a tailored case study on marine perception,

confirm the viability of our approach. Across all 3 CNN

architectures, the models trained with projected data achieve

similar accuracy to the baseline model trained with the

original high-dimensional data. Furthermore, the observed

reduction in standard deviation across the tests suggests

an improvement in consistency and reliability of model

performance.

Future work involves expanding testing to real-world sce-

narios, such as highly efficient obstacle detection, marine

life classification, and environmental health monitoring. To

achieve similar accuracy in real time without prior training

data, we plan to explore the use of deep reinforcement learn-

ing (DRL). The adaptability, efficiency, and robustness of

DRL make it a powerful approach for tackling the challenges

of real-time classification across various domains.

Furthermore, the distributed learning framework intro-

duced offers a promising avenue for future research, es-

pecially in federated learning environments where data pri-

vacy and security are paramount. Our findings suggest that

structured and sketched updates can be effectively utilized to

reduce communication demands.
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