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LCD-RIG: Limited Communication Decentralized Robotic Information

Gathering Systems
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Abstract—Effective data collection in collaborative
information-gathering systems relies heavily on main-
taining uninterrupted connectivity. Yet, real-world
communication disruptions often pose challenges to
information-gathering processes. To address this issue,
we introduce a novel method —a limited communi-
cation decentralized information gathering system for
multiple robots to explore environmental phenomena
characterized as unknown spatial fields. Our method
leverages quadtree structures to ensure comprehensive
workspace coverage and efficient exploration. Unlike
traditional systems that depend on global and syn-
chronous communication, our method enables robots
to share local experiences within a limited transmission
range and coordinate their tasks through pairwise and
asynchronous communication. Information estimation
is facilitated by a Gaussian Process with an Attentive
Kernel, allowing adaptive capturing of crucial behavior
and data patterns. Our proposed system is validated
through simulated scalar field studies in non-stationary
environments where multiple robots explore spatial
fields. Theoretical guarantees ensure the convergence of
distributed area coverage and the regret bounds of dis-
tributed online scalar field mapping. We also validate
our method empirically in a water quality monitoring
scenario featuring three Autonomous Surface Vehicles,
tasked with constructing a spatial field.

Index Terms—Limited communication, decentralized
information gathering, Gaussian process, spatial fields.

I. Introduction

R
OBOTIC Information Gathering (RIG) is a process
of optimizing an information-theoretic metric from

efficient exploration of a continuous area of interest by
robots with motion constraints while considering infer-
ences from a probabilistic model within a limited mission
time. A recent development has improved the uncertainty
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quantification of a probabilistic model using a nonstation-
ary kernel (i.e., different locations have different degrees
of variability) to identify critical locations for efficient
information collection [1]. However, such a RIG planner
only applies to a single robot application and fails to
utilize a team of cooperative robots to collect spatial
data from large-scale environments efficiently. Further-
more, recent decentralized robotic information gathering
systems [2, 3] rely on strong connectivity with consensus-
based cooperative coordination to map a spatial scalar
field with confidence intervals. However, real-world con-
ditions such as unstable networks, radio interference, and
robot failures can easily disrupt this connectivity. In the
event of disruptions, such systems become ineffective,
especially when there is limited communication bandwidth
available for transmitting information among a group of
robots. One such scenario is underwater environments
where traditional communication modalities such as radio
frequency (RF) have only a limited reach, and acoustic-
based communication devices have low ranges. Despite
significant advancements in optical communication, their
capabilities can be affected by water turbidity and line-of-
sight disconnection events [4]. Moreover, in adversarial sce-
narios, RF communication can be intentionally jammed.

The coordination and communication among robots,
along with their computational constraints, significantly
impact system performance [5, 6]. For instance, centralized
coordination methods [7, 8] suffer from the single point
of failure problem. On the one hand, decentralized meth-
ods often necessitate the communication of entire past
and anticipated trajectories or the coefficients of antici-
pated trajectories of each robot [9], which can result in
computational burden. A state-of-the-art resource-efficient
cooperative online field mapping method [5] requires pe-
riodical strong connectivity among all robots to enable
distributed sparse Gaussian process regression. However,
this assumption of perfect, stable connectivity is unre-
alistic in real-world scenarios where network conditions
are unpredictable. The tight coupling between robots also
limits flexibility and robustness, as even brief disruptions
in connectivity can cause the complete breakdown of
consensus-based coordination.

In contrast, decentralized systems are desired to operate
robustly despite unreliable connectivity. If the network
connectivity drops, robots continue to execute their local
plans. Four key capabilities enable decentralized systems
to gather information efficiently: (i) Probabilistic mod-
els: Each robot maintains a probabilistic model such as
Gaussian process regression (GPR) to predict informa-
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tive locations. Well-calibrated uncertainty allows accurate
prediction with limited samples. (ii) Information-theoretic
planning: Robots plan trajectories locally to maximize
information gain based on their uncertainty models. This
drives efficient exploration without global oversight. (iii)
Reactive control: Robots reactively avoid collisions with
neighbors while exploring regions of high uncertainty.
This maintains coordination locally. (iv) Task allocation:
Robots asynchronously communicate to allocate tasks and
avoid redundant work. This cooperation prevents conflicts
without the need for long-term planning.

In this context, this paper proposes a Limited Com-
munication Decentralized Robotic Information Gathering
(LCD-RIG) system to improve the robustness and flexibil-
ity of cooperative online scalar field mapping. Each robot
maintains a local representation of the target area using a
quadtree data structure. The quadtree dynamically subdi-
vides the area as the robot explores, effectively directing
future actions toward unvisited regions and minimizing in-
terference between robots. Communication between robots
occurs when they come within a transmission range in a
pairwise manner. This ad-hoc interaction enables efficient
experience sharing and task coordination while avoiding
redundant computations. The absence of periodic global
communication [5] also empowers individual robots to
operate with greater autonomy. This decentralized archi-
tecture improves robustness against network disruptions
while facilitating efficient parallel exploration. To manage
the inherent complexity of decentralized information gath-
ering, we propose the implementation of behavior trees.

The key contributions of this paper are: (i) We introduce
a novel LCD-RIG system that removes the assumption
for periodical strong connectivity among robots [5]. Our
method enables robots to share local experiences and
coordinate tasks through pairwise communication when
within a defined transmission range, reducing reliance
on network connectivity, as explained in Section IV. (ii)
By implementing the LCD-RIG using behavior trees, our
system benefits from a modular architecture. This effec-
tively handles the complexities associated with decentral-
ized operation, such as constraints on time, memory, and
communication, as shown in Table I. (iii) We provide
theoretical proofs for the convergence of the proposed
algorithm and establish bounds on its regret, as illustrated
in Section V. (iv) Through physical experiments with
autonomous surface vehicles (ASVs), we demonstrate the
real-world applicability and performance of the LCD-RIG
system in Section VI.

II. Related Work

In multi-robot information gathering, Gaussian mix-
tures [10] and Gaussian Processes (GP) [6, 11] enable
efficient mapping, and their cycle consistency improves
data association [12]. Collaboration schemes conserve bat-
tery life, as indicated in [13]. Swarm gradient algorithms
explore unknown environments [14], although they fall
short in providing precise mapping. However, existing

methods overlook inconsistent collaboration under inter-
mittent communication.

To speed up Gaussian process regression, sparse [15, 16]
and parallel [17, 18] methods have been proposed. How-
ever, these methods entail a central node with access to
global data. Distributed aggregation [19, 20] offers a way
of reducing communication, and aggregation techniques
that rely on average consensus are proposed in [21, 22] for
decentralized networks. Applications of online distributed
GP strategies for scalar field mapping are proposed in [23].
However, these strategies often lack bounded error guaran-
tees or sparsity. Alternatively, local methods [6, 24] involve
evaluating partial data to reduce computational burden
and communication between robots.

Moreover, recent efforts have combined Bayesian op-
timization and motion planning [25, 26]. However, these
approaches often assume knowledge of environments and
dynamics, limiting their applicability in real-world scenar-
ios [1, 27]. Previous reinforcement learning approaches [28]
cannot handle partial observability or multi-robot sys-
tems. Methods handling partial observability face trade-
offs between optimality, speed, and scalability [29, 30].
Therefore, key open problems remain in achieving reliable
decentralized planning under incomplete knowledge and
limited perception.

III. Preliminaries

We consider a team of n robots, A1, . . . , An, tasked with
exploring an environmental phenomenon.

Definition 1 (Environmental phenomenon). The envi-
ronmental phenomenon is defined as a spatial field with
an unknown function ϕ such that ϕ : W → R. It is
spatially distributed over a shared 2D workspace W such
that W ¦ R

2.

Let X i be the state space of a robot Ai such that
X i ¦ R

n, U i be the action space such that U i ¦ R
u,

and f i : X i × U i → X i be the state transition function.
A joint state space is defined as the states of all robots,
X = X 1 × X 2 × · · · × X m. Each robot is equipped with
onboard sensors to measure ϕ in a point-wise manner.
Therefore, to accomplish the above task, at time t, the ith

robot at a state xi
t (i.e., pi

t represents the robot’s location
in W) takes an action ui

t, obtains a noisy measurement yi
t,

and updates its state to a new state xi
t+1 based on its state

transition function f i(xt, ut) in such a way that optimizes
an objective function. Each robot must avoid inter-robot
collisions to safely collect measurements yi

1:t from W.

Definition 2 (Inter-robot collisions). Inter-robot colli-
sions can be characterized in terms of a dynamic obstacle
region. Formally, a dynamic obstacle region X ij

obs is a subset
X ij

obs ¦ X i that corresponds with the ith robot state xi
t in

collision with the jth robot state xj
t as:

X ij

obs =
{

xt ∈ X
i|Ai(pi

t) ∩ A
j(pj

t ) ̸= ∅
}

, (1)

where Ai(p) denotes the set of points exclusively surround-
ing the rigid body of the robot Ai at a position p. Any
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obstacle intersecting this set is considered to be colliding
with the robot.

Each robot independently observes the field ϕ : W → R

and gets the measurements yi
t ∈ R with zero-mean Gaus-

sian noise ei
t at time t.

Definition 3 (Observation model). The observation
model for each robot i is given by

y
i
t = ϕ(f i(xi

t, u
i
t)) + e

i
t, e

i
t ∼ N (0, Ã

2). (2)

Each robot Ai has a local dataset Di
t at time t, contain-

ing observations X i
t = {xi

k}t
k=1 and Yi

t = {yi
k}t

k=1 from
the start up to time t. To effectively gather information,
the robot Ai uses Gaussian process regression on its
local training data Di

t = (X i
t , Yi

t) to predict the value
of the latent function ϕ(x) at a new input x ∈ X . This
assumes that ϕ follows a Gaussian process. The regression
model provides probabilistic predictions for ϕ(x) using the
robot’s current observations.

Definition 4 (Gaussian Process Regression). A Gaussian
process regression (GPR) models an unknown function
ϕ(x), which is a collection of random variables that follow
a joint Gaussian distribution. This is specified by two com-
ponents: the mean function µ(x), which defines the average
value, and the covariance function or kernel k(x, x′), which
specifies how the variables are related to each other.

To foster collaboration, robots engage in opportunistic
communication to assign tasks and prevent redundant
efforts. This collaborative approach mitigates conflicts
without the need for extensive long-term planning.

Definition 5 (Communication Network Model). The
communication network at time t can be represented by
a directed graph G(t) = (V, E(t)) with an edge set E(t) ¦
V × V . We consider that (i, j) ∈ E(t) if and only if node i
communicates to node j at time t and the distance between
Ai and Aj is less than equal to a predefined threshold
value ¶. The matrix Adj(t) := adjij,t, i, j = 1, . . . , |V |,
represents the adjacency matrix of G(t) where adjij,t ̸= 0
if (i, j) ∈ E(t), and |V | is the cardinality of V .

Once the GP model is trained with Di
t, the ith robot can

make predictions about the environmental phenomenon
at unobserved locations by sampling from the posterior
distribution. Given mean µi

t and covariance »i
t functions

of a GP, the posterior function is a multivariate Gaussian
distribution N (¿, Σ) with a mean vector ¿ and a covari-
ance matrix Σ. The posterior mean ¿ is used to predict the
measurements at unobserved locations, and the covariance
matrix Σ is used to quantify uncertainties associated with
these predictions.

Problem. Given n GP models for a team of n robots in a
shared workspace W with an unknown spatial function ϕ,
find controls ui

t

⋆
for i = 1, . . . , n at time t in such a way

that they communicate compressed data with each other
in pairs within a threshold distance ¶ to effectively sample

new (informative) locations that minimize the predictive
uncertainty as:

u
i
t

⋆
= arg min

ui
t

H

(

Σfi(xi
t
,ui

t
)

)

, (3)

where H is the Gaussian posterior entropy calculated for
the robot i.

IV. Distributed LCD-RIG System

Figure 1 depicts the architecture of an individual RIG,
which employs a behavior tree-based structure. The plan-
ner component integrates information-theoretic planning
with dynamic quadtree decomposition to facilitate effec-
tive exploration in unknown environments. The explorer
component enables robots to track informative waypoints
assigned by their respective planner components while
contributing to a coordinated and safe exploration strat-
egy. Additionally, the learner component trains a Gaus-
sian Process Regression (GPR) model to predict essen-
tial sampling locations and rapidly gather valuable data.
The individual RIG systems are interconnected through
a parallel behavior tree node, allowing them to operate
asynchronously for efficient environmental exploration.

Fig. 1: The proposed LCD-RIG system comprises five compo-
nents: the Planner Selector, Explorer Sequence, Neighbor Se-
quence, Communicator, and Conflict Handler. The Planner in-
tegrates information-theoretic sampling with dynamic quadtree
decomposition to generate a plan, illustrated by the purple line.
The Explorer guides robots to informative waypoints provided
by the Planner, enabling coordinated strategies. The Learner
employs an Attentive Kernel to train a Gaussian Process
Regressor (GPR) with few samples (black dots), identifying
valuable sampling locations on the colored map.

A. Planner Component

The planner component enables efficient multi-robot
exploration of unknown environments through a combina-
tion of Gaussian Process Regression (GPR) and quadtree
decomposition. Each robot employs an Active Learning
–Attentive Kernel (AK) planner [5] that models the envi-
ronment as a scalar field ϕ using GPR. The AK planner
guides the Ai robot towards informative waypoints wi by
focusing on areas with maximum prediction uncertainty
Σ(wi), where wi is a waypoint in the environment. How-
ever, at each planning time t, a waypoint wi(t) is sampled
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from the entire workspace W, introducing redundancy in
exploration when multiple robots share the environment.

To mitigate potential redundancy in exploration, an
online quadtree decomposition mechanism is employed.
The search space W ¦ R

2 is subdivided into cells q using
a quadtree structure, with each cell characterized by its
visit density d(q). Unexplored areas qu have low d(q), while
densely visited areas qv have high d(q). Each robot Ai

selects its target region Ti from its local quadtree Qi as:

Ti = arg max
q∈Qi

Area(q). (4)

Note that Eqn. (4) is equivalent to Ti = arg minq∈Qi
d(q),

which enhances spatial diversity and minimizes explo-
ration overlap.

The quadtree Q dynamically adapts as exploration pro-
gresses, updating target regions Ti. Informative waypoints
wi are sampled from the target regions Ti for each robot
Ai. This ensures that all robots contribute equally to
exploring the entire environment. By efficiently selecting
informative waypoints, the planner component maximizes
team efficiency and minimizes any redundant effort.

B. Explorer Component

To ensure smooth navigation between waypoints during
multi-robot exploration, the planner employs Bézier curves
to shape trajectories. These parametric curves are defined
by control points that influence their shape and direction,
allowing for the generation of smooth and efficient paths.

Given waypoints wi and wi+1, the planner generates an
m-degree Bézier curve defined by m + 1 control points
such that P0, P1, . . . , Pm. The curve is described by the
following parametric equation:

B(Ä) =

m
∑

i=0

(

m

i

)

(1 − Ä)m−iÄ iPi, Ä ∈ [0, 1]. (5)

Here, P0 and Pm represent the start and end waypoints,
respectively.

The explorer dynamically adjusts these control points
based on the robot’s current position and the distribution
of waypoints. This adaptive approach allows the curve to
respond to environmental changes and maintain optimal
coverage throughout the exploration process. In our de-
centralized setting, the robot Ai does not account for the
target region Tj of Aj robot, this can result in interfer-
ence and uneven waypoint allocation among the team.
To address these issues, the communication and conflict
handler components enable reliable information exchange
and collision avoidance when robots are operating nearby.

1) Communication component: When two robots Ai

and Aj come within a certain communication radius ¶,
they exchange their experiences Ài

t, Àj
t , which are defined

as the observed trajectories X i
t , X j

t along with the field
measurements Yi

t , Yj
t obtained on those trajectories, i.e.,

Ài
t = (X i

t , Yi
t) and Àj

t = (X j
t , Yj

t ).
Reliable asynchronous communication is crucial because

the robots rely on lazy learning with GPs. Therefore,

Ai robot’s GP models improve online as new raw sensor
data is progressively added to the training set Di

t. When
communicating with Aj robot, rather than sharing only

the predicted information À̂i
t, Ai robot directly exchanges

the raw sensor data Ài
t collected along its trajectory.

Given the local training data Dj
t for Aj robot at time

t, communication between robots involves sharing Àj
t such

that Àj
t ¦ Dj

t is a fixed sparse subset of local experiences
sampled from Dj

t to GPR models which improves the
uncertainty estimation. The sparse subset Àj

t is sampled
from Dj

t by selecting K waypoints {w1, ..., wK} such that:

∥wi − wi+1∥ ≈
L

K − 1
, (6)

where L is the length of the robot’s trajectory, ensuring
even coverage. Here, K is the number of points selected to
ensure sufficient coverage while limiting data volume. Each
robot selects a subset of its raw data points spaced evenly
across its trajectory based on the sensing radius. This
sparse sampling provides sufficient coverage for modeling
while limiting the data volume.

2) Conflict handler component: The conflict handler
component addresses the issue of overlapping intermediate
goal regions and potential collisions between robots. This
is achieved through a velocity obstacle method that refines
the robot Ai’s intermediate waypoint location wi within
the workspace W. Let Neighi(t) = {Aj : ∥pi

t −pj
t∥ f ¶} be

the set of neighboring robots within the communication
radius of ¶. The avoidance direction is computed based
on the states of robots in Neighi(t) in three steps. First,
an avoidance search space Γi(t) is defined, centered at pi

t,
with a safe distance rs as:

Γi(t) = {p ∈ R
2 : ∥p − pi

t∥∞ f rs}. (7)

Then Γi(t) is adjusted to ensure it’s fully contained within
W as:

Γ′
i(t) = {p ∈ R

2 : p = w + ∆, w ∈ W}, (8)

where ∆ = (∆x, ∆y) is the minimum shift required to
ensure Γ′

i(t) ¦ W. Finally, the new intermediate waypoint
location w′

i is randomly sampled from the adjusted search
space Γ′

i(t), subject to the safety constraint:

w′
i ∈ {p ∈ Γ′

i(t) : ∥p − pj
t∥ g rs, ∀Aj ∈ Neighi(t)}. (9)

C. Learner Component

Each robot utilizes the AKGPR model [1] to learn from
the training data using Gaussian process regression with
the AK. The key ideas behind AK are: (i) Length scale
selection: At each input x, AK computes a weighting
vector Ä(x; ¹) that assigns weights to a set of nK base
kernels with different length scales ℓm. This allows x to
control the size of the surrounding neighborhood which
will be relevant for the local prediction. Mathematically,
the GP prior to length scale selection is

ϕ(x) =

nK
∑

m=1

Äm(x; ¹)gm(x; ℓm), (10)



REDWAN NEWAZ et al.: LCD-RIG: LIMITED COMMUNICATION DECENTRALIZED ROBOTIC INFORMATION GATHERING SYSTEMS 5

where gm(x; ℓm) ∼ GP(0, k(x, x′|ℓm)). Here Ém(x) are
normalized weights learned from the data x. Each
gm(x; ℓm) is drawn from a GP with a kernel k(x, x′|ℓm)
that uses a length scale ℓm. (ii) Instance selection: AK
also computes a membership vector z(x; ϕ) at each input
x. The dot product z(x; ϕ)¦z(x′; ϕ) between two inputs
x and x′ defines the visibility between them; high dot
product means high visibility. The kernel value is masked
out for low-visibility inputs. This gives the kernel:

km([x, z(x; ϕ)], [x′
, z(x′; ϕ)]) = z(x; ϕ)¦z(x′; ϕ)kbase(x, x

′; ℓm).
(11)

Here, kbase is a base kernel parametrized by ℓm, sim-
ilar to a radial basis function (RBF) kernel. The
membership vectors z(x; ϕ) allow the selection of rel-
evant training instances. Combining the two ideas
and defining ℓ = (ℓ1, . . . , ℓnK

), K(x, x′; ϕ, ℓ) =
diag(k1(x, x′; ϕ, ℓ), . . . , km(x, x′; ϕ, ℓ)), z = z(x; ϕ), z′ =
z′(x′; ϕ), Ä = (x; ϕ), and Ä′ = (x′; ϕ) gives the Attentive
Kernel as:

ak(x, x
′; ¹, ϕ, ³, ℓ) = ³(z¦z′)(Ä¦KÄ

′). (12)

The training optimizes the parameters ¹ and ϕ along
with the kernel hyperparameters ³ and ℓ by maximizing
the GP marginal likelihood on training data. This enables
AKGPR to learn varying length scales and instance rele-
vance functions directly from the data.

To facilitate real-time training when accumulating data
from multiple robots, compressing the training set be-
comes crucial [5]. In our setting, we compressed our train-
ing set to a subset of fixed size K. At each timestamp,
each robot maintains a training set Si

t and then selects a
subset Si

t,k from its aggregated data. This subset selection
ensures that the measurements in Si

t,k are sufficiently
novel, thus avoiding redundancy while still being effective
in predicting the remaining points in Si

t \ Si
t,k.

Achieving this involves minimizing the conditional en-
tropy H(Si

t \ Si
t,k|St,k), which is equivalent to maximiz-

ing the entropy H(Si
t,k). However, finding the Si

t,k that
maximizes H(Si

t,k) is an NP-hard problem. Therefore, we
implement a greedy approximation for rapid compression
[6]. This starts with a temporary data set S0 = ∅ and
iteratively adds points from the unlabeled data Si

t that
results in the largest increase in H(Si

t,j) at iteration j.

The chosen point si
j to be added at step j, i.e.,

Si
t,j = Si

t,j−1 ∪ {si
j}, minimizes the conditional entropy

H(si
j |Si

t,j−1). This iterative process selectively retains the
most uncertain points in the training set at each step to
update the local Gaussian process prediction ϕ̂i

t by max-
imizing information gain from new data Si

t,K . Algorithm
1 summarizes the LCD-RIG execution for each robot.

V. Algorithm Analysis

This section demonstrates that the LCD-RIG algo-
rithm guarantees the coverage of the entire space with
the finest sensing resolution via a team of decentralized
robots as the largest unexplored rectangle in the quadtree

Algorithm 1 LCD-RIG Algorithm for Robot i

1: Randomly initiate Ai, . . . ,An robots with pilot data Di
0 =

∅ and Ài
0 = ∅

2: for t = 1, 2, . . . , T do
3: /* Sensing and Marking Visited Locations */
4: Sample independent training point (xi

t, yi
t)

5: Ài
t = Ài

t−1 ∪ {(x
i
t, yi

t)},
6: Update local quadtree Qi(t) with each xi

t in Ài
t

7: /* Communication and Conflict Handling */
8: if Distance(Ai,Aj) f ¶ then
9: Receive À

j
t from neighbors j

10: if Distance(Ai,Aj) f rs then
11: Recompute intermediate waypoint w′

i

12: end if
13: end if
14: /* Distributed Data Compression and Update */
15: Update local quadtree Qi(t) with each À

j
t in Neighi(t).

16: Aggregate data points Si
t ← Di

t−1 ∪ À
j
t

17: if |Si
t | > K then

18: Si
t,0 = ∅

19: for k = 1 to K do
20: for s ∈ Si

t \ Si
t,k−1 do

21: H(s|Si
t,k−1)← 1

2
ln

(

2ÃeÃ2
s|Si

t,j

)

See [6]

22: end for
23: si

t,k ← arg maxs∈Si
t

H(s|Si
t,k−1)

24: Si
t,k ← Si

t,k−1 ∪ {s
i
t,k}

25: end for
26: end if
27: Update training set Di

t ← Di
t−1 ∪ Si

t,K

28: Update local Gaussian process predictions:

ϕ̂
i
t = P(ϕ(x∗)|Di

t, x
∗) ∼ N (µi

t, Σi
t)

29: end for

decreases. Furthermore, by bounding the cumulative re-
gret, the LCD-RIG algorithm guarantees that the robots’
exploration strategies are nearly optimal, minimizing the
inefficiencies in their paths and actions.

Theorem 1. An LCD-RIG system that selects the largest
undivided rectangle for recursive quadtree decomposition
(Algorithm 1, line 6) of a target space W will eventually
terminate after covering W with the finest resolution.
Specifically, after t steps, the area of the biggest unexplored
rectangle in a quadtree is bounded by

max
q∈Q(t)

Area(q) f
Area(W)

4+log4(3t+1),
. (13)

Proof. We start by proving that there are 3t+1 rectangles
in each quadtree Q(t) i.e. |Q(t)| = 3t + 1. In this case, we
proceed by induction; for the base case t = 0, Q(0) = {W},
then |Q(0)| = 1. For the induction step t = k, we have
|Q(k)|| = 3k + 1. When computing the quadtree Q(t +
1), the largest rectangle q′ ∈ Q(t) is replaced with four
child nodes q1

q′ , . . . , q4
q′ , obtained by dividing q′ into four

rectangles. Thus, Q(t + 1) = (Q(k) \ {q′}) ∪ {q1
q′ , . . . , q4

q′}
and |Q(t + 1)| = |Q(k)| + 4 − 1 = 3(k + 1) + 1, thereby
completing this section of the proof.

The algorithm always selects the largest rectangle to
be divided into four equal-area subrectangles, and the
area of each rectangle has the form Area(W)

4a for a certain
integer a. Here, we distinguish two cases (i) The number
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of rectangles is a power of 4, i.e., 3t + 1 = 4a. In this case,
all rectangles have the same area Area(W)

4a = Area(W)

4log4(3t+1) =
Area(W)

4+log4(3t+1), . (ii) The number of rectangles is not a power
of 4; therefore, 3t + 1 = 4a−1 + b where 4a−1 is the largest
power of 4 less than 3t + 1 and b > 0. In this case, there
are rectangles whose area is Area(W)

4a and there is at least

one larger rectangle whose area is Area(W)
4a−1 , bounding the

area of the remaining ones. Furthermore, it can be shown
that +log4(3t+1), = a−1 for this case. Therefore, in both
cases, we have bounded the area of the largest rectangle
by (13).

In our earlier work [25], we have shown that under the
assumptions of a discrete observation set D and a known
field ϕ, the regret between the optimal locational utility
and the utility efficiently obtained through the proposed
algorithm is sub-linear in T .

Lemma 1 ([25]). Let rt be the regret at stage t ∈ [1, T ]. If
the field ϕ is a Lipschitz realization of a GP with mean µi(t)
and variance Ã2

i (t), an asynchronous distributed algorithm
ensures the cumulative regret of the i-th robot RT such that
RT :=

∫ T

1
rt dt is bounded as:

RT f

∫ T

1

c
√

´(t)Ãi(t− 1)xi(t) exp

(

2ϵ2L2

Ãi(t− 1)2

)

dt, (14)

where ´(t) = 2 log(|Di
t|Ãt/∂), c, ¶, ϵ > 0,

∑

tg1 Ã−1
t =

1, Ãt > 0 and xi(t) is the continuous realization of xi
t.

Instead of circular penalization regions, the LCD-
RIG algorithm utilizes rectangular regions utilizing the
quadtree data structure to reduce regrets by avoiding
redundant sampling.

Theorem 2. The cumulative regret for the i-th robot
exploring a workspace W using the proposed LCD-RIG
algorithm scales as O(Area(W)RT ) in the worst case with
a uniform scalar field distribution. However, for typical
non-uniform scalar fields exhibiting spatial locality, the
cumulative regret scales as O(

√

Area(W)RT ) on average.

Proof Sketch. The worst-case analysis considers a scenario
where the ϕ is uniformly distributed across the task extent.
In such a scenario, a perfect recursive z-order curve is
identified as the optimal decomposition. If the robot em-
ploys a row-by-row mapping strategy, it tends to select in-
creasingly large rectangles, deviating significantly from the
optimal path. This deviation leads to a regret that scales
linearly with the grid size, resulting in O(Area(W)RT )
regret.

However, typical scalar fields exhibit non-constant fea-
tures identifying local regions, with informative regions in
unexplored areas. This is justified by the lazy learning
nature of GPR used here. The GPR learner does not
have an explicit predictive model but rather uses all
training data directly for predictions. Thus, its prediction
uncertainty increases for samples far from the training
set. Therefore, selecting the largest rectangle during the
planning phase tends to capture significant portions of
the remaining area, reducing suboptimal choices. This

planning behavior results in a cumulative regret that grows
at a slower rate, approximately O(

√

Area(W)RT ), as the
grid size increases.

In terms of the algorithm’s complexity, the update of
local mapping for each robot yields O(|D|2) time [1] for a
2D workspace, where |D| training points are utilized. In
this method, the training points belong to the quadtree
rectangle in which the robot is located. If K samples are
taken at a given timestamp t, there will be O(tK) samples
divided among the 3K+1 rectangles forming the quadtree.
Assuming uniform distribution for sufficiently large t, the
number of samples in a given rectangle is proportional
to its area, i.e., O( tK

4+log4(3t+1), ) = O( tK
3t+1 ) = O(K). The

last equality arises from the fact that limt→∞ O( tK
3t+1 ) =

O(K). Therefore, this results in O(K2) computation com-
plexity and O(|D|) memory complexity associated with
quadtree storage.

Regarding communication, the proposed algorithm dif-
fers from the one presented in [5] by pairwise communicat-
ing only their experiences À when two robots are within a
fixed distance, rather than at every time step. This leads to
a constant-time communication complexity per time step
per robot. Consequently, the communication structure
is simplified, mitigating congestion issues, especially in
scenarios involving many agents or limited communication
channels.

The proposed methods demonstrate improved commu-
nication efficiency compared to previous methods [16,
6, 24, 5]. In our method, robots communicate pairwise
to exchange compressed experiences of size K, resulting
in a communication complexity of O(K). This is more
efficient than earlier methods that had a communication
complexity of O(|E|K), where n − 1 f |E| f n(n − 1)/2.
It’s important to note that the number of robots in the
proposed ad-hoc network is considered constant.

VI. Experimental Results

We have developed our implementation based on the

existing AK planner code
1

provided by [1] and shared

our LCD-RIG code on GitHub
2
.

We evaluate the LCD-RIG system’s performance in the
Florida International University (FIU) MMC Lake and
three digital elevation maps from the NASA SRTM [1]
simulated environments. A team of ASVs, following Du-
bins’ car kinematic models (max velocity 1 m/s, control
frequency 10 Hz), collects data within a 20 × 20 meter
workspace to model unknown environments. Each ASV
has a single-beam range sensor (3 Hz, unit Gaussian white
noise) and aims to minimize elevation prediction error
given 3500 samples.

A high-performing team should achieve a lower predic-
tion error by the end of the task and demonstrate a faster
reduction in the prediction error curve as well as a higher
area coverage rate. This is accomplished by prioritizing

1https://github.com/Weizhe-Chen/attentive kernels
2https://github.com/RedwanNewaz/LCD RIG
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TABLE I: Algorithm Complexity Comparison

Complexity Full GPR RGPR DGPR DRGPR Local SGPR CBDGPR This Letter

[31] [16] [21, 22] [23] [6, 24] [5]

Computation O(n4|D|4) O(n3|D|3) O(|D|4) O(|D|3) O(n3|D||S|2) O(n|D|(|S|2 + |S|3)) O(n(K2 + |D|2))

Memory O(n2|D|2) O(n2|D|2) O(n|D|2) O(n|D|2) O(n3|S|2) O(n|S|2) O(n|D|)

Communication O(n2|D|) O(n2|D|) O(|E|K) O(|E|K) O(n2|S|) O(|E|K) O(K)

visits to the most informative locations that have not been
explored by the team. However, global communication
does not exist, and robots can only communicate within a
fixed communication radius, as illustrated in Fig. 2 with
green circles.

(a) N45W123 Dataset [1]. (b) FIU-MMC Campus Lake.

Fig. 2: Two of the environments used for simulation purposes.
The green balls around the robots indicate potential collation
and the opportunity to exchange information.

We conducted 15 simulation trials for each environment,
varying the team size between 3, 4, and 5 robots. The
results in Fig. 3 show that a higher number of robots leads
to the broader spatial coverage. However, Fig. 4, shows
that in certain simulated environments, a smaller team can
achieve a lower overall root mean square error (RMSE) for
distributed predictions at test points, primarily due to con-
gestion effects from higher robot density. As the number
of robots increases, a trade-off arises between maximizing
area coverage and maintaining inter-robot safety. While
aiming to maximize high-entropy coverage, robots may
diverge in their decisions or states, leading to compromised
coverage. Additionally, asynchronous communication in
larger teams impacts the RMSE.

Table I contrasts our method with previous methods.
Our asynchronous communication method simplifies com-
munication complexity, depending solely on the number
of deployed robots. Moreover, the informative sampling
(Section IV-C) significantly reduces the computational
burden for GP training, while memory usage remains
comparable to other methods. This method relies on pe-
riodic communication among robots. Two extreme cases
illustrate its operation: (i) When robots frequently tar-
get similar locations, asynchronous communication occurs
almost continuously, resembling synchronous communica-
tion. (ii) Rare communication results in robots resorting
to individual GPs, emphasizing the importance of eventual
communication. Strategies to address this include adjust-
ing robot count and communication radius ¶.

We conducted field experiments using three SeaRobotics
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Fig. 3: Coverage trends across simulation stages for varying
team sizes.

Surveyor ASVs to sample and map water temperature
within a 28 m × 28 m workspace at FIU’s MMC Campus
lake. Each ASV, shown in Fig. 5a, was equipped with a YSI
EXO2 sonde to measure various water quality parameters,
but our focus was on mapping temperature using the LCD-
RIG algorithm. The ASVs were localized by combining
GPS and IMU data, and water temperature was measured
at a sample rate of 1 Hz. Throughout the experiment, the
LCD-RIG algorithm effectively coordinated the motion of
the ASVs, enabling them to efficiently sample and map
the temperature field while actively avoiding inter-vehicle
collisions. The algorithm’s performance is validated by the
successful generation of an online temperature map, as
depicted in Fig. 5c.
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Fig. 4: Average RMSE trends across simulation stages for
varying team sizes.

VII. Conclusion

We proposed the Limited Communication Decentralized
Robot Information Gathering (LCD-RIG) system, where
multiple robots collect information in a distributed man-
ner to map online scalar fields under the constraints of
asynchronous and limited communication. Comprehensive
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(a) ASV and sensor sonde (b) Robots within the workspace (c) Final snapshot: temperature map

Fig. 5: Field Experiment at Florida International University’s MMC Campus.

simulations across various non-stationary environments
demonstrated the scalability of the LCD-RIG system, with
distributed area coverage increasing and RMSE decreasing
over time as more data was gathered. Theoretical analysis
proved the convergence and bounded regret of the pro-
posed algorithm, along with low computational, memory,
and communication costs compared to existing methods.
Our physical experiments in a lake environment validated
the real-world applicability of the system. Our future en-
deavors will concentrate on developing low-cost predictive
models to incrementally learn online scalar fields.
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