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Abstract—Low-power IoT sensing nodes can be deployed on
the surface of different water bodies for various purposes, includ-
ing water quality monitoring and pollution detection. Two of the
most formidable challenges towards such goals are (1) making
the nodes resilient against rough water and extreme weather
conditions, and (2) enabling the nodes to establish reliable
wireless links. In this paper we share our experience in deploying
low-power and resilient IoT nodes on the surface of different
water bodies – on a small lake, North Biscayne Bay, Crandon
Beach, and South Beach, in Miami, Florida. Furthermore, the
paper closely examines how link quality was affected by pre-
deployment configurations as well as the characteristics and the
motion of the waters. Based on the analyses of a vast amount
of statistics, the paper establishes a theoretical (mathematical)
and generalized model to characterize and predict link quality
fluctuations. We shall show that the realization of the model using
the Kalman Filter enables link quality prediction with accuracy
exceeding 90%.

Index Terms—Water quality monitoring, wireless sensor net-
works, Internet of Things, link quality fluctuation, RSSI. surface
water deployment

I. INTRODUCTION

Water is a precious and scarce resource. When the quality

of a body of water deteriorates, the consequences are often far-

reaching and long-lasting [1]. In some continents, water is a

frequent cause of tension and conflict, both between and within

nations [2]. The factors affecting water quality can be natural

or man-made. Some of the most significant natural factors

are climate change, a significant rise in water temperature

worldwide, and heavy rainfall causing sediment and nutrient

fluxes and pollution to overflow water bodies. Some of the

most significant man-made factors include improper solid

and liquid management, urbanization, fast population growth,

agricultural intensification, and reliance on harmful fertilizers

which may eventually end up in water bodies [3].

Scalable and sustainable water quality monitoring is crucial

to ensure the well-being of water bodies. One of the most
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formidable challenges associated with deploying cost-effective

water quality monitoring systems is that some of the sensing

nodes have to be deployed on the surfaces of rough and restless

water bodies, which severely affect the wireless links the nodes

establish. As the first contribution of this paper, we offer rich

experimental insights into this challenge. To the best of our

knowledge, ours is the most comprehensive study involving

the deployment of low-power wireless sensing networks on

the surface of different water bodies. The paper addresses

the impact of experimental setups on the performance and

stability of the wireless links. While the rough motion of the

surfaces of water bodies is the main cause of link quality

deterioration, device imperfections, impedance mismatch, and

other hardware/system configuration aspects further exacerbate

link quality fluctuation. The second contribution of the paper

is establishing a theoretical (mathematical) and generalized

model to express and predict link quality fluctuations in

deployments involving rough and restless water surfaces.

The rest of this paper is organised as follows: In Section II

we discuss water quality monitoring in different contexts. In

Section III, we discuss our experiment settings and network

configurations. In Section IV, we present some interesting pre-

deployment observations. In Section V we present a detailed

account of link quality fluctuation as a result of deploying

wireless sensor networks on the surface of a lake, Atlantic

Ocean, and North Biscayne Bay. In Section VI we discussed

papers which undertook similar studies as ours. Finally, in

Section VII we outline future work and give concluding

remarks.

II. WATER QUALITY MONITORING

Water quality monitoring takes place in different ways.

The first approach relies on laboratory tests, after water

samples are collected manually. This approach, though widely

employed, requires skilled personnel [4] and it is time-

consuming, tedious, inconsistent, and unreliable. The second

approach is automated and consists of monitoring and control

stations/substations permanently deployed at various locations

[5]. A substation collects representative samples from a par-

ticular body of water and a station aggregates the data from

multiple substations. A control station controls and manages

multiple monitoring stations [6]. This approach is reliable but

not widespread. Typically, it is deployed in a limited number

of critical water bodies supplying drinking water. The third

approach relies on remote sensing [7]–[9]. Here, the spectrum

of electromagnetic waves radiating, reflected, and/or scattered
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from water bodies is analyzed to extract several features.

While capable of monitoring extensive water bodies, it is,

however, expensive and highly affected by weather and other

environmental factors [10].

The fourth approach is in situ monitoring [11] in which

physical sensors are deployed to directly sample and evaluate

water quality. It may be carried out in different ways (by

deploying boats, Unmanned Surface Vehicles, buoys, etc.), but

involves expensive devices and setup. For example, Florida

International University (FIU) has deployed five research

buoys (not related to this work) in strategic locations (Coral

Gables Canal, Little River, Miami River, North Biscayne

Bay, and Biscayne Canal) to measure eight water parameters

(pH, temperature, conductivity, dissolved oxygen, turbidity,

chlorophyll, fluorescent dissolved organic matter, and direc-

tional flows peed)1 which are sampled every 15 minutes and

transmitted to a cloud server via satellite links. Since the

distance between the buoys is several kilometers, the Institute

of Environment carries out a boat tour twice a month (and

whenever interesting events are detected) to take samples from

several locations at a much higher spatio-temporal resolution.

The mobile as well as the stationary sensing and data logging

devices are price-intensive, each of which costs more than

$20,000.

A more affordable and scalable water quality monitoring is

necessary to achieve scalable and ubiquitous sensing. Towards

this end, two formidable challenges have to be overcome.

The first concerns the sensing task. Both affordable and

highly reliable water quality sensors are essential. The second

challenge concerns wireless communications. Most of the

water quality monitoring devices are either deployed or have

components which are deployed on the surface of water. These

devices should be able to endure the rough movement of water

and function in extreme weather conditions. In this paper we

shall share our expedience with deploying low-power wireless

sensor networks on the surface of different water bodies.

III. EXPERIMENTAL SETTING

We identified four different locations in Miami, Florida, to

investigate the predominant factors that affect the link quality

of low-power networks deployed on the surface of a water

body. The first location was one of the lakes on the Florida

International University (FIU) main campus. Situated in front

of the School of Computing and Information Sciences, the

lake is calm, but three fountains in the middle of the lake

cause constant ripples in all directions. The second location

was North Biscayne Bay, which is a lagoon with characteristics

of an estuary, located near Miami. Here the water is salty.

When there are no boats around, the water is relatively calm,

otherwise, it makes considerable and random ripples. Of late,

the quality of the bay has been deteriorating on account of

several external causes (a rise in temperature, low tide, heavy

rainfall, and sanitary sewer overflow, among others), which

resulted in a considerable algae bloom and the death of a

large quantity of fish and other species [12], [13]. Our third

and fourth locations were South Beach, Miami, and Crandon

1https://crestcache.fiu.edu/research/research-buoys/

Fig. 1: A wireless sensor node placed in a waterproof box and

deployed on the surface of water.

Item Capacity Cost

Waterproof box ca. 335 cm3 $10
Herdio Waterproof Ma-
rine Antenna

ca. 15 cm high above the
water surface

$16

IMu 9 DOF $10
Zolertia platform CC2538 SoC (2.4 GHz),

CC1200, sub-GHz
$190

Big power bank 30000 mAh, integrates so-
lar panel

$50

Small power bank 6000 mAh $10

TABLE I: Description and cost of the components we used to

build our sensing buoy.

Beach, Miami, respectively. In both locations, the water was

salty, the waves were large, and the direction of the wind

changed appreciably.

The sensor networks we deployed were of two types. The

first type consisted of nodes placed in open floating boxes,

while the second consisted of nodes sealed in waterproof

boxes. This differentiation was important in order to quantify

the cost we incurred (in terms of the performance degradation

of the wireless links) when we sealed the sensor nodes in

waterproof boxes (we sometime refer to these nodes as buoys).

Fig. 1 displays a sensor prototype. Tab. I summarizes the

description and cost of the components we put together to

setup the sensing buoys. The nodes can be deployed with

small or big power banks. One of the big power banks we

used, besides having 30000 mAh capacity, added weight to

the buoy to make it stable. Where the water body is relatively

calm, more affordable and lighter power banks can be used

(as shown in Fig. 1 (right)).

Fig. 2 shows the wireless sensor networks we deployed with

Fig. 2: A wireless sensor network consisting of nodes placed

inside open floating boxes and deployed on the surface of

different water bodies.
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Fig. 3: A wireless sensor network (with nodes sealed in

waterproof boxes) deployed on the surface of different water

bodies.

open floating boxes on a lake on the FIU main campus and in

North Biscayne Bay. In addition to the essential differences in

terms of the waters characteristics (sweet versus salty; water

motion), the two settings differ from each other in terms of

the cross-technology interference (CTI) the wireless sensor

networks experienced. FIU’s main campus has an extensive

WiFi coverage, which affected the performance of our net-

works considerably. Similarly, Fig. 3 displays the deployment

of buoys in three different settings (lake, South Beach, and

Crandon Beach).

A. Radio Technologies

Our sensor nodes integrate two types of radios: CC1200

and CC2538. The CC1200, a sub-GHz IEEE 802.15.4 ra-

dio, can operate at different sub-Gigahertz frequency bands

(868, 915, 920, 950 MHz) and is capable of data buffering,

burst transmissions, clear channel assessment, and Wake-On-

Radio2. It can transmit at a maximum power of 16 dBm and

has a sensitivity of -123 dBm. Although theoretically it can

achieve a maximum transmission rate of 1.25 Mbps and a

maximum transmission range of 4 km, our experience suggests

that the practically achievable values are much less than the

nominal values, depending on both environmental factors and

network configuration (network size, network topology, packet

size, etc.). With a network size of 6, a linear topology, and

a packet length of 128 bytes, the stable transmission rate

we could achieve was less than 40 kbps and a transmission

range less than 1 km. Similarly, the CC2538 system-on-chip

integrates a 2.4 GHz IEEE 802.15.4 compliant RF transceiver

having a sensitivity of –97 dBm and an adjustable output

power (reaching up to 7 dBm). The radio can transmit at

250 kbps nominal rate and, compared to the CC1200 radio,

is much more stable. However, for most practical purposes,

the achievable transmission range is less than 100 m in free

space.

B. Network Configuration

In our networks, the nodes self-organized using the RPL

Lite protocol implementation in the Contiki operating sys-

tem [14]; medium access was achieved using CSMA/CA. All

2https://www.ti.com/product/de-de/CC1200 Last visit. August 31, 2024,
11:400 AM, CET.

nodes transmitted packets towards the base station, which

was also the root node in the RPL hierarchy. Each time a

node received a packet from its neighbors, it extracted the

RSSI and LQI with which it received the packet, and added a

corresponding timestamp to this piece of information. Initially,

the nodes sent to their neighbors a simple “HELLO” message,

but afterward embedded in the payload of the packet they

transmitted the link quality metrics of the packet they received

from their immediate neighbors most recently, along with two

additional metrics: the number of packets they had transmitted

and the number of packets they had lost up to that point. For

all experiments, the packet length was 128 bytes. When using

the CC1200 chip, nodes transmitted at 2 Hz rate; when using

CC2538, they transmitted at 10 Hz rate.

IV. INITIAL EXPERIMENTS

Initially, we undertook several experiments to obtain refer-

ence values and to quantify the effects of various factors on the

performances of the networks. As previously mentioned, we

had two types of power banks with different heat dissipation

profiles; open and sealed boxes; land versus surface water

deployments; and sweet versus salt water deployments. More-

over, the water bodies exhibited both translational and back-

and-forth (local) motions whose magnitude and movement

patterns differed.

A. Effects of Waterproof Boxes

The most important factor for our choice of waterproof

boxes was their price. Since all deployments were going

to take place in Miami, Florida, the boxes had to protect

the sensor nodes from excessive external as well as internal

heat (dissipation) as well as from harsh weather conditions

(heavy rainfall and high humidity). We were, however, equally

concerned about the boxes, that they did not significantly

affect (attenuate) the electromagnetic signal propagation and

reception. Although this concern was partially addressed by

the use of the waterproof marine antennas, the effect of the

boxes still had to be examined. Consequently, we carried out

multiple point-to-point communications, both on land and on

the surface of water. Each experiment was repeated at least 5

times and with different pairs of persons. For the experiments

on land, we placed one of the sensor nodes on the ground and

the other was carried (at a height of ca. 1.5 m) by a person

walking at a pace of ca. 1.4 m/s away from the ground node,

continuously maintaining a line-of-sight. The person moved

until the link was permanently broken (i.e., the nodes were

unable to reestablish a link afterwards). We measured distance

and compared the link quality fluctuations of the different

configurations (with and without the waterproof boxes and

with big versus small power bank).

Intuitively, one would expect that the link quality would

be better when the boxes were not sealed. But this was not

what we experienced. The link quality was consistently better,

and the transmission range was consistently longer, when the

nodes were sealed inside the waterproof boxes. This was true

regardless of the radios used. In order to exclude the hot
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Fig. 4

Link quality variation on land for different configurations

(CC2538, 2.4 GHz radio). BPB in the legend refers to Big

Power Bank and SPB refers to Small Power Bank.3
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Fig. 5: Link quality variation on land for different configura-

tions (CC1200, 868 MHz radio). BPB in the legend refers to

Big Power Bank and SPB refers to Small Power Bank.

weather as the main cause of poor performance in the unpro-

tected nodes (in the open boxes), we repeated the experiments

both early in the morning and late in the afternoon, when the

temperature was relatively mild, but the results were, by and

large, the same. Hence, the most reasonable explanation for

the slightly improved performance in the waterproof boxes is

that the sensor platforms were protected from electromagnetic

interference.

Fig. 4 shows the link quality fluctuation (reflected by the

variation in the RSSI values of received packets) for three

different configurations corresponding to the experiments con-

ducted on land. The long-term RSSI variations clearly reflect

the relationship between the received power and the distance.

Apparently, the short-term variations were due, partly, to the

movement of the persons (the arms) holding the nodes. For the

three configurations (open with the small power bank; sealed

with the small power bank; sealed with the big power bank, re-

3The plots in Figs. 4 - 6, 13 are produced as follows: Packets were
given sequence numbers and transmitted in succession. Upon receiving these
packets, their RSSI values were measured and associated with their sequence
number (index). Hence, the plots describe RSSI vs. Packet Index.
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Fig. 6: Link quality variation on land vs. lake for open-box vs.

closed-box (i.e., sealed-box) configurations (CC2538, 2.4 GHz

radio). The small power bank was used for these experiments.

spectively) the average transmission ranges we observed were

the following: 48.8 m, 57.8 m, 75.2 m. The corresponding

standard deviations were: 9.60, 10.96, 12.11 m. Note that the

transmission range may not be apparent from the plot due

to the presence of some degree of randomness (both in pace

and stride) in the walking pattern of the persons. Fig. 5 shows

the link quality fluctuation in the three different configurations

when the CC1200 radio was used for the land experiments.

B. Big versus Small Power Banks

For this comparison, we consider the waterproof platforms.

The small power bank was a 3.7 V lithium-polymer 503040,

capable of delivering 600 mAh. The bigger power bank was

a PN-W22 GOODaaa, capable of delivering 36000 mAh.

Both were fully charged before each experiment, and the

radios were transmitting with their maximum power. For both

settings, the experiments lasted much shorter than the times

the power banks took to exhaust their energy. In other words,

the difference in the energy reserve between the two power

banks should have played no significant role on the quality

of the links the nodes established. This, however, was not

what we experienced. In all the experiments we conducted,

the quality of the wireless links was noticeably better, and the

communication range was consistently longer, when the big

power bank was employed, as can be seen in Figs. 4 and

5. This is, in part, due to device imperfection, a problem

which is widely discussed in the literature [15]–[17]. This

imperfection is often manifested in the form of an impedance

mismatch between the output impedance of the power bank

and the input impedance of the sensor platform (maximum

power transfer occurs when the input impedance equals the

output impedance) [18]. The cheaper the power bank, the more

likely the mismatch.

C. Water Characteristics

We repeated the experiments open vs. sealed boxes on the

lake at FIU. In these experiments, we attached the open and

sealed boxes to a long rope. One end of this rope was on the
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Fig. 7: Histogram of the change in Link quality (RSSIt −
RSSIt−1) on land vs. lake for open-box vs. closed-box (i.e.,

sealed-box) configurations (CC2538, 2.4 GHz radio). The

small power bank was used for these experiments.

other side of the lake. At the beginning of the experiments,

the transmitter and the receiver were near to each other. Then,

the sealed box containing the transmitter was slowly (ca. 0.25

m/s ) pulled away by a person on the other side of the lake

whilst the two nodes communicated. The pulling stopped when

the links between the nodes were permanently broken. On

average, deployments on the lake had a superior performance

compared to those on land and the best performance was

achieved when the sealed boxes were used, as shown in Fig. 6

(the small power bank was used in all the experiments).

One way to compare the difference in link quality between

the different configurations would be to differentiate the raw

RSSI values with respect to time and evaluate the statistics

thereof. This way, we can confine our evaluation to short-term

variations (the degree to which neighbor values differ from

one another). Fig. 7 compares the histograms of the short-

term link quality variation for the four different configurations.

The figure suggests that the variation was the smallest for the

deployment of the buoy (the closed configuration) on the lake.

V. IMPACT OF WATER MOTION

The motion of water affects the nodes in many respects.

Some of the most important effects are link quality fluctuation

and a change in the physical topology of the network, which,

in turn, affects how nodes self-organize and cooperate. In

the pre-deployment phase, we established that there is a

correlation between the change in the RSSI of successfully

transmitted packets and the movement of the nodes. However,

the complexity of the motion the nodes experience and its

impact on the signal’s propagation and multi-path scattering

greatly depend on the characteristics of the water. Fig. 8

displays the change in the RSSI of three different wireless

links for deployments which took place in three different

locations (lake, Biscayne Bay, and Crandon Beach). In all

the cases, the waterproof buoys were employed. In order

to evaluate the relative change the buoys experienced as a

consequence of the motion of water, we differentiated the raw

values and plotted their statistics (histograms). The motion

of the buoys on the lake and on the bay was restricted by
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Fig. 8: The change in RSSI for three different wireless links.

The plots on the top show the raw data, whereas the plots at

the bottom summarize the change (RSSIt − RSSIt−1) with

histograms.

the ropes to which the they were tied. In Crandon Beach,

on the other hand, the buoys were free to drift. At the time

of the experiments, all the waters were experiencing motion,

the waters of the bay and Crandon Beach more significantly.

The main differences between the motions of the waters of

the bay and Crandon Beach was that the waves of the latter

were higher in magnitude and shorter in wavelength4. These

characteristics are to some extent reflected in the histograms.

The integration of 3D accelerometers and 3D gyroscopes

into the sensing platforms enables to examine the existence

of a correlation between the motion of water and the change

in the link quality. If there is a perceivable cause-and-effect

dependency between the two, then it is plausible to assume

that the link quality is predictable. A predictable link quality

is an essential prerequisite to carry out adaptations at different

abstraction layers: At the physical layer, it enables dynamic

transmission power adaptation; at the MAC layer, it enables

efficient packet transmission scheduling; and at the network

layer, it enables to discover new routes and adapt to changes

to the network’s topology. Fundamental to all is that the

dependency (1) has a theoretical (mathematical) bases and (2)

can be generalized.

A. Simulated Motion

As we did in the pre-deployment phase, we carried out two

sets of experiments on land to establish ground truth. The

first set was intended to establish the change in the RSSI

of successfully transmitted packets in the absence of any

movement. We model this change as a measurement error. We

surrounded the lake on FIU’s main campus with 10 sensor

nodes. The distance between the nodes was about 50 m.

RPL was used as the routing protocol. After the experiments,

we differentiated the RSSI values to determine the change.

Assuming that all external factors (such as weather) remained

4A video of the deployment at Crandon Beach can be found at:
https://youtu.be/u9JWtoZWSNw
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Fig. 9: Histogram of the change in the RSSI values in the

absence of movement. This change is regarded as a measure-

ment error.

constant, this change reflects the uncertainty associated with

the measurement only. To determine the change in the RSSI

due to the movement of water, this error has to be first

subtracted. Fig. 9 displays the histogram of the measurement

error we established by aggregating the RSSI values of all

single-hop links. As can be seen, this change can be modelled

as a normally distributed random variable, which can be

expressed in terms of its mean and variance alone.

In the second set of experiments, the aim was to:

1) distinguish between the effects of water motion and

multi-path scattering; and,

2) establish correlation between the change in the RSSI and

the change in the linear acceleration and angular velocity

the nodes experience.

In these experiments, one of the nodes was stationary and

the other (the transmitter) was carried by a person moving

at a normal pace away from the stationary node, frontal plane

orthogonal to the direction of movement. While moving away,

the person swung the node sideways, imitating the movement

of a node tossed back and forth by the passing of water

waves. In order to ascertain that the effect of acceleration is

visible, the person stopped at some distance (13 m for the

CC2538) for a while; moved some distance (7 m for CC2538)

back without swinging the node; and proceeded swinging the

nodes while moving forward, until the connection was broken.

The experiment was repeated 5 times for each radio. Fig.

10 displays the change in the RSSI and the corresponding

change in the linear acceleration along the z-axis for one of

the experiments, clearly suggesting that the two are correlated.

B. Theoretical Model

Following the experiments with the simulated movement,

we carried out several deployments at South Beach and

Crandon Beach to investigate the change in link quality as

a result of the buoys’ interaction with water in motion. Fig.

11 shows the histograms of the changes in the RSSI values of

successfully transmitted packets for the CC2538 and CC1200

radios for one of the experiments carried out at Crandon
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Fig. 11: Histograms of the change in RSSI (RSSIt −
RSSIt−1) of received packets for the CC2538 (left) and the

CC1200 (right) radios for one of the deployments carried out

at Crandon Beach.

Beach. The plots suggest that the process error in both cases

can be regarded as a normally distributed random variable. If

we consider this observation along with the observation we

made with respect to the measurement error (see Fig. 9), it

seems reasonable to employ the Kalman Filter to predict the

change in the RSSI.

Thus, using the Kalman formulation, the best estimation of

the change in the RSSI at the time instant t can be expressed

as:

r̂(t) = rp(t) +K(t) [rm(t) + rp(t)] (1)

where rp(t) refers to the error due to the prediction made for

time t based on whatever knowledge we had at time t − 1;

rm(t) is the measurement error at time t and,

K(t) =
P (t)

P (t) +R
(2)

where P (t) is the variance of the prediction error and R is the

variance of the measurement error. R is supposed to be time
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invariant. The prediction error consists of two components,

since:

1) the prediction is made based on uncertain past knowl-

edge, this is described by C(t− 1);
2) the system’s future state is inherently uncertain (contains

randomness), this is described by the variance of the

process error, Q, which is supposed to be time invariant.

Hence,

P (t) = C(t− 1) +Q (3)

One of the strengths of the Kalman Filter is its ability to

connect the past, the present, and the future by describing

the overall accumulated error in our estimation up to time t

as follows:

C(t) = [1 +K(t)]2P (t) +K(t)2R (4)

For a more elaborate discussion on the Kalman Formulation,

we refer the reader to [19]. Fig. 12 summarizes our Kalman

Algorithm. In the beginning, we have only rm(0), R, and

Q. Therefore, our best estimate of r̂(0) = rm(0). Likewise,

since no estimation is accumulated so far, our prediction error

consists only of Q. Thus, P (1) = Q. With this, we are ready

to compute the following for P (2):

K(1) =
P (1)

P (1) +R
(5)

C(1) = [1 +K2(1)]P (1) +K2(1)R

P (2) = C(1) +Q

In Fig. 13, three plots are compared with one another for the

two radios. The plots in red refer to actual measurements we

obtained; the plots in green refer to actual measurements minus

measurement errors, assuming that the error in both cases was

normally distributed. The plots in blue refer to the predictions

we made using the Kalman Filter.

The application of Kalman Filter to predict link quality

fluctuation in deployments involving different water bodies

and radio chips confirms that theoretical and generalized

models can be established to express and predict link quality

fluctuation and to support adaptation. The prediction root mean

square error (

√

E{[r(t)− r̂(t)]
2
}), taking the predictions for

all the times and the deployments into consideration, is ca.

10%, with standard deviation of 1.3%.

VI. RELATED WORK

Low-power IoT systems are being increasingly deployed in

rough outdoor environments [20]. The work presented in [21]

explores the effects of water surfaces on radio communications

in the 300 MHz - 3 GHz range. The paper discusses real-

world measurements collected on the Yangtze River (fresh-

water) and on a beach in the East China Sea (salt water)

to demonstrate how different water surfaces backscatter radio

signals due to material and hydrodynamic variances. While

our work focuses on sensor devices placed directly on the

water surface, the work in [21] focuses on radio devices

that were placed between 17 and 50 meters above the water

surface. A similar study was performed in [22], which also

observes that recurrent natural phenomena (tides or waves)

cause shifts in the water level, changing the interference

patterns and causing varying impairments to propagation over

water surfaces. Experiments were performed between a device

onshore and another one on the water surface, using the

2.4 and 5 GHz bands. The primary outcome of the research

is a method to determine optimal link distance and height

combinations, which may not be applicable to sensor networks

with devices that always float directly above the water surface.

The focus of the work presented in [23] is to develop a

path-loss model for wireless communications in open-sea

environments that considers various effects, such as reflection,

shadowing, divergence, and diffraction caused by the sea

surface. The work includes measurements performed in cold

and calm waters near Norway to validate the developed model

for long-distance communications (up to 45 km). A similar

effort to develop a path loss model was presented in [24];

however, communications over short distances (i.e., up to 60

m) and analyzing the impact of water temperature on radio

transmission quality were the focus of this study.

Unlike previous studies that evaluate RF propagation over

water but did not distinguish maritime-specific factors from

factors affecting terrestrial RF systems, the work presented in

[25] carried out RSSI data collection over land and seawater at

2.4 and 5 GHz bands using different antenna heights. The find-

ings reveal that transitioning from land to seawater with certain

combinations of frequency bands and antenna height leads to

a path loss of 2 to 3 dBm. These insights can be valuable for

optimizing the performance of wireless communication links,

particularly, in scenarios with heterogeneous teams of mobile

sensing systems [26], [27]. Overlooking or oversimplifying

the complex behavior of ocean waves significantly impacts

the stability of wireless links between sensors [28]. In the

work presented in [29], the authors determine the likelihood

of line-of-sight (LoS) link blockages between transmitter and

receiver pairs, considering the effects of wave movements, and

perform an examination of how environmental variables, such

as wind speed, affect this probability. These outcomes provide

feasible avenues for reducing variations in low-power wireless

communications through enhanced wave modeling and the

incorporation of environmental factors.



8

80 100 120 140 160 180 200 220 240

Packet Index

-85

-80

-75

-70

-65

-60

-55

R
S

S
I 

(d
B

m
)

Actual measurement

Measurement error subtracted

Kalman estimation

0 100 200 300 400 500 600 700

Packet Index

-120

-110

-100

-90

-80

-70

-60

R
S

S
I 

(d
B

m
)

Actual measurement

Mesurement error subtracted

Kalman estimation

Fig. 13: Prediction of link quality fluctuation using the Kalman Filter. Left: Snapshot of the predicted values of the simulated

motion. Radio: CC2538. Right: For a measurement taken at Crandon Beach. Radio: CC1200.

A deployment closely related to our current work is pre-

sented in [30], where 10 floating buoys housing 10 sensor

nodes were deployed in the shallow waters of Moreton Bay,

Queensland Australia. The wireless sensor platforms inte-

grated illuminance and temperature sensors and IEEE 802.15.4

compliant 2.4 GHz radios. The authors reported that, despite

strong tidal current conditions, communication between the

buoys was successful, they, nevertheless, did not provide a

detailed account of the extent to which the wireless links were

reliable.

VII. CONCLUSION

In this paper, we experimentally investigated link quality

fluctuation in low-power wireless sensing networks deployed

on the surface of different water bodies. We used waterproof

boxes to seal some of the sensor nodes, so that they can

operate in rough conditions (excessive rainfall and heat as

well as rough water motion). We tested whether or not the

boxes significantly affected link quality. Repeated experiments

in different weather conditions revealed that the boxes, in fact,

slightly improved link quality, both for the deployments we

carried out on land and on the surface of water. We also

observed that link quality was, by and large, more stable on

the surface of water than on land, though the change in RSSI

was proportional to the movement of water. Furthermore, even

though the difference in performance was not appreciable, we

observed that the choice of a power bank affected link quality.

Our experiments with two different power banks, one small

and one large, both in size and in capacity, persistently resulted

in a slightly better performance when the big power bank was

used, both for the land and for the water deployments. This

was partly, due to imperfections – such as poor impedance

matching – in the design of the smaller power bank. More

generally, the change in link quality was proportional to the

movement of water; the rougher the movement, the more

significant the change. Using statistics collected in the absence

of any mobility as measurement error and the changes in RSSI

when the nodes were deployed on the water as process error,

we developed a Kalman Filter to predict the change in link

quality. The results suggested that our approach was plausible.

Our future work involves actual water quality monitoring.

Work is already in progress to integrate water quality sensors

into our sensor platforms.
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