Highly Efficient Layered Syndrome-based Double
Error Correction Utilizing Current Summing in
RRAM Cells to Simplify Decoder

Shruti Dutta!, Sai Charan Rachamadugu Chinni?, Abhishek Das?, Dr. Nur A. Touba*

Department of Electrical and Computer Engineering, The University of Texas at Austin

1,2,4

Intel Corporation’
shrutidutta@utexas.edu!, rcsaicharan@utexas.edu?, abhishekdas@utexas.edus, touba@utexas.edu®

Abstract— Applications involving machine learning and
neural networks have become increasingly essential in
the AI revolution. Emerging trends in Resistive RAM
technologies provide high-speed, low-cost, scalable solutions for
such applications. These RRAM cells provide efficient and
sophisticated memory hardware structures for machine-learning
applications. However, it is difficult to achieve reliable multilevel
cell storage capacity in these memory technologies due to
the occurrence of soft and hard errors. As these memories
can store multi-bits per cell, exploring limited magnitude
symbols(multi-bit) error correction in RRAM is important. This
paper proposes a new syndrome-based double error correcting
code that divides the syndromes into groups and, uses addition
and XOR operations to correct double limited magnitude errors
in the RRAM cells. The key idea is to use the built-in current
summing capability of RRAM cells to perform the addition
operations that are used for the error correction thereby greatly
reducing the overhead of the decoding logic needed to implement
the ECC. This effectively avoids the need for explicit adder
hardware in the decoding logic making it smaller and faster than
conventional ECC codes with similar error-correcting capability.
Experimental results show that the proposed code reduces the
number of check symbols and significantly reduces the decoder
area and power by using the RRAM cells to perform the addition.

Keywords — Error Correcting Codes(ECC), Double Error
Correcting codes (DEC), resistive RAM (RRAM), Orthogonal
Latin Square (OLS), syndromes, soft errors

I. INTRODUCTION

The field of machine learning and artificial intelligence
is evolving rapidly. The need for efficient hardware solutions
to implement these software applications is more than ever.
Resistive Random-Access Memory (RRAM) technology
is one of the coherent hardware solutions for these use
cases. Its cross-bar structure helps in performing array-based
applications such as matrix multiplication through current
summation. RRAM cells make use of resistance switching
materials that can change their resistance level under the

application of electric field [1].
However, these memories are susceptible to soft and hard

errors. In case of hard errors, which are generally modeled as
stuck-at-0 (high resistance state) or stuck-at-1(low resistance
state), the RRAM cells become practically unusable as the
resistance level cannot be changed under these conditions
[2]. Previous work mostly aims at alleviating hard errors
which in turn aim at retraining the models. A method to

detect stuck cells by extracting test vectors was proposed in
[3]. Quiescent-Voltage comparison is used for fault detection
followed by neuron re-ordering in [4].

The effect of soft errors cannot be overlooked, however,
limited research has been done in this domain. [5] determines
the susceptibility of RRAM cells to soft errors.

Limited magnitude errors, a type of soft error, can occur
in these cells due to their ability to store multiple bits
depending on the resistance of the cell. Drifts in resistance
levels can lead to potential errors. Limited magnitude errors
can be either symmetric or asymmetric [6]. For example,
a 3-bits/cell will generate an asymmetric error of +1 to +7
however the symmetric error will range from +1 to +3.
Improvements have been made to nonbinary Hamming codes
which help in achieving better decoding complexity however
they can be used for correcting single magnitude errors
only [7]. For multiple error correction, non-binary majority
decodable Orthogonal Latin Square codes, BCH codes have
been proposed [8] [9]. The new codes discussed in [10] offer
parallel decoding and smaller check bit length.

Techniques for detecting and correcting limited magnitude
errors specifically in RRAM cells have not been explored
much. [2] proposes a scheme to detect and correct
single-column errors, however, there are no codes proposing
double-column error correction. In this paper, we propose a
scheme for correcting limited magnitude errors in the symbols
in double columns. The key idea is to use the built-in current
summing capability of RRAM cells to perform the arithmetic
operations that are used for the error correction thereby
greatly reducing the overhead of the decoding logic needed
to implement the ECC. This effectively avoids the need
for explicit adder hardware in the decoding logic making it
smaller and faster than conventional ECC codes with similar
error-correcting capability.

The structure of the paper is as follows: Section II
explains the details of RRAM memory technology, and Section
III discusses the details of OLS codes and their decoding
procedure. The proposed new codes are explained in Section
IV followed by the results and conclusion in Section V.

II. RRAM TECHNOLOGY

RRAM resistive technology is a novel non-volatile memory
type that has a metal-insulator-metal structure and stores data
by modulating the resistance of this insulator material. The
RRAM structure as shown in Fig. 1 looks like a typical
crossbar with N bit-lines and M word-lines. These memory
cells are capable of storing multi-bit per cell thus offering high
density.

The RRAM cells function in the following manner :

G14
a11+612\J g13+G1
. \K _K
G21+G22 G23+G24
) \K \K
G31+G33 G33+G34"

///
G41 G42 G43 G44
G41+G42 434G

Vi

R
o

. 1

/

b Wl

/i\[\(

V2|
vV

G12
;K G23

Fig. 1. RRAM crossbar structure

o The current passing(/) from each RRAM cell is given
by (1) when a Voltage V is applied (Let G denote the
conductance).

I=GV (N

o The arithmetic sum from each RRAM cell gives us the
final current. The final current across a bit line is given
in (2).

« It can be concluded that the dot product of input voltage
at the word-lines and the conductance G can give us the
value of the final current 1.

o This is effectively matrix multiplication in the analog
domain. Finally, an ADC converter is used to get the
digital output result of the matrix multiplication.

The conductances are usually mapped at discrete levels
using integral values which act as the weights of the neural
network. As the number of distinct quantized levels is limited,
online error correction gets restricted to smaller matrices.
Further, using weighted checksum-based decoding would
involve integer division which is an expensive operation.
Also, in the weighted sum approach, as the number of bits
increases, the area and delay overhead increases exponentially
as shown in (3). [2] explores limiting selective-checksum
decoding technique but only for single-bit errors. Hence, in this
paper, a direct syndrome group-wise-based decoding technique
for decoding and correcting double-column errors is proposed.

#Syndromes/symbol = 2> — 1 3)

Consider the following example with a 2x8 RRAM crossbar
where each cell stores a 3-bit value. The conductance value
Gy is the weighted checksum as shown in (4). As each cell
can store from 0-7, the value of G 1 pqq Will be 252 as shown
in (5). Total I would be G; plus G is equal to 2 times 252,
that is, 504. Hence this would require a 9-bit ADC and as the
size of the matrix increases, this number keeps on increasing
exponentially.

Gyl = G1"1 + Q.GLQ + 3.G1,2 + 8G1 8 “4)
Cyiman = T.(1 42+ 3.+ 8) = 252)
III. OLS CODES

A Latin square is a matrix of size m x m, where m is the
order of the matrix, consisting of m unique symbols such that
no element appears more than once in a given row or column.
OLS codes are formed using such mutually orthogonal Latin
squares [8]. Unlike Hamming codes, which can be used to
correct one data symbol error, OLS codes can correct multiple
data errors. In general, to correct ¢ errors, m OLS matrices
would be required where k data symbols can be corrected
(k<m?). These matrices will require 2tm check symbols. OLS
codes have the ability to correct multiple-data symbols, unlike
Hamming codes which can correct single errors. The OLS
code’s parity check matrix (H) is constructed as shown below
in (6).

M,y
H=| M,
M3

In the above equation, I, is the identity sub-matrix of
which represents the parity portion of the parity check matrix.
The sub-matrices M7, Ms and so on are m x m size matrices
that satisfy the OLS properties. M and M, are shown in (7)

Lot (6)

and (8).
11
M, —(. 1) @)
1 1
M; —(1 1) @®)
OLS codes wuse the majority decoding property.

Corresponding to each data bit, there are 2t parity bits.
For any t-errors, -/ syndromes will indicate no change
while 7+1 syndromes will have their data bit flipped. A clear
majority will indicate whether data bits were flipped or not.
XOR is then used with the corresponding data bits to get the
correct output.

A. Non-binary OLS Codes

This decoding technique is set over finite rings [11]. This
code uses the same binary OLS H matrix (n, k) for t-errors.
These conditions are valid as the non-binary H-matrix satisfies
the RC constraint and the minimum weight of the column is
also 21, thus keeping the 2r+1 distance constant. The same
binary OLS code encoder, decoder, and syndrome generator
can be re-used just by adding additional circuitry for the rings

(XOR gates over GF(2%)).

The decoder makes use of the majority decoding logic,
quite like the one used in Binary OLS codes [8]. Instead of
using traditional n-2" decoders, it counts the number of 1’s in
a binary digit.

B. One-step decodable limited magnitude OLS codes [12]

The codes in [11] are different from the Non-binary OLS
codes due to the following changes:

« XOR and AND operations are replaced with the decimal

arithmetic operation, SUM and MULTIPLICATION.

e The parity check matrix is repeated for more data
symbols such that more than one data symbol will have
2t independent sources.

According to the second point, repetitions can be infinite.
However, this is limited by the factor that none of the data
symbols should generate the same syndrome. If this happens
then it is not possible to distinguish the erroneous bits.

The H-matrix for (8,4) OLS code is shown in Fig. 2.

d0 dl d2 d3 d4 d5 d6 d7 p0 pl p2 p3
1 1 0 0 2 2 0 0 o 0 0 0
H=<0 o 1 1 0 0 1 10 1 0 0
1 o 1 ©0 2 © 2 0 0 0 1 o
o 1 o 1 o0 2 0 2 o0 0 0 1

Fig. 2. H-matrix for limited magnitude errors for SEC

C. Layered OLS ECC for DEC

This scheme described in [10] consists of two layers and is
valid for data bits rather than symbols. Single Error correcting
OLS codes, that form the first layer find the possible error
location. The second layer is made using the following two
conditions :

o The added columns should be unique so they are not

repeated.

o The sum of two columns of the entire H-matrix shouldn’t

repeat with any other two columns.

The first condition helps in ensuring that the syndrome
produced by double errors is non-zero. The second condition
helps in finalizing the location of the short-listed error
locations. The two groups are formed by considering m
data symbols where m=k'/? make up the first group. The

remaining data bits belong to group 2.
In this paper, this scheme is extended to symbols by using

SUM instead of OR gates and continuing to use the XOR
gates.

IV. PROPOSED SCHEME

The proposed approach aims for Double Error Correction
in RRAM cells using the arithmetic properties of the same.
The goal is to correct n-bit data symbols using n-bit check
symbols for limited magnitude errors. This scheme consists
of two ECC layers. As mentioned in the previous section, the
first layer helps in getting a shortlist of possible error locations

for single errors while the second layer helps in getting to the
final error location. As these are a type of arithmetic code,
after constructing the H-matrix using binary 1s and Os, the
matrix can be repeated in such a way that the sum of any
two columns should not be equal. For example, as shown in
Fig. 3, the H-matrix is constructed using a repetition factor
of 2. Hence, correcting 32 data symbols will require only one
additional check symbol compared to 16 data symbols.

(11110000000000002222000000000000 |
00001111000000000000222200000000
00000000111100000000000022220000
00000000000011110000000000002222
10001000100010002000200020002000
01000100010001000200020002000200

H 00100010001000100020002000200020

00010001000100010002000200020002

11010100001110112202020000222022

10101001001101012020200200220202

01100010101011100220002020202220

00011010010111000002202002022200

00000101110000110000010222000022

00000000000000001 1111 11111111111 |

Fig. 3. H-matrix of proposed scheme for 32 data symbols

Gsumq,Gsume,Gxror; and Gzxore refers to the partial
sum of the syndrome groups. Here the groups are determined
by the order of the matrix. For an H-matrix of order m, in that
case, Gsum; corresponds to the sum of 2m syndromes. For
example, for 16 data symbols, m is 4, hence G'sum; is the
sum corresponding to Sy - S7 sums and Gsums corresponds
to Sg - S12 sum. Similarly, Gzor; refers to a multi-bit xor of
Sp - S7 and Gzxors is multi-bit xor of Sg - S12. The equations
for Gsumy, Gsumsg, Gror, and Gxors are given in equations

9-(12).

Gsuml = SO + Sl + S2 =+ Sm—l (9)
Gsum2 = Sm + Sm+1 + Sm+2 —+ S2m—1 (10)
Gacorl = 50@51 EBSQ @Sm,1 (]1)

Gzor2 = Sm 5> Sm+1 &b Sm+2 D S2m—1 (12)

The decoding scheme is described below:

o If Gsumi=Gsumo=Grori=Gror,=0 = No error

o If Gsumi=Gsums and Gzori=Grors=Gsums =
Single error condition or Error in multi-bit in distinct
groups if syndrome values are non-zero. In this case, a
simple majority voting logic can be used.

e Grory = 0 and Gzory # 0 = same magnitude error
in distinct groups. (In this case, the group refers to m
columns of the H-matrix having symmetry. For e.g for
16 data symbols, these groups are doy - d — 3,d4 - d7 and
so on). Hence, in this case one error belongs to dy - ds
while the other is either in d4 - d7 or dg - di1 one or
the other.

e Grory # 0 and Grory = 0 = same magnitude error in
same group,

o Gsum; # Gror; = multi-bit error in different groups

o Gsuma# Grory = multi-bit error in the same group

Data Symbols OLS MLD [11] Proposed Code
Check Symbols Area(um?) Latency(ns) | Check Symbols Area(um?) Power Latency(ns)
16 16 672.1 0.12 15 387.89 0.988 0.13
32 28 1362.1 0.19 16 762.13 1.857 0.15
64 32 2838 0.23 25 1578.23 221 0.22
128 64 5755 0.39 26 3412.45 3.96 0.31
256 64 11984 0.39 45 6921.54 8.21 0.35

Table 1. DEC decoder performance parameters for RRAM cells

Apart from the above cases, 2 additional check bits are
required to distinguish between a single error and a double
error in parity. The two check bits basically compute the
parity of each group of parities to detect errors in the parity
bits.

Consider a simple example, with reference to the H-matrix
in Fig. 3, let’s say data symbols dy and dj¢ are in error.
Let’s assume there’s a +1 magnitude error in both of these
data symbols. In the parity cells, we would only be storing
the lower three bits, to account for overflows from computed
parity. In order to calculate the syndromes, we use the
arithmetic sum along with the weights multiplied by the error
magnitude E gives the syndrome. The syndromes S,S54,S5,59
will be 3 and Si3 will be 2. As this is DEC, the possible
combinations of errors from Sy can be deduced to do/dy/d2/d3
and dyg/dq7/d18/d19. From Sy, the only possible combination
satisfying the above conditions are dy and dy6. S13 is 2 which
gives the insight that there’s a +1 error in djs which leads to
the fact that dy has a +1 error as well.

V. RESULTS

The proposed codes were synthesized on Synopsys Design
Compiler using NCSU FreePDk45 library for k=16, 32,
64, 128, and 256 for +1 error magnitude. Table 1. shows
the comparison of check symbols used in DEC OLS MLD
and proposed codes for asymmetric +1 error magnitude
capable of storing 3 bits per cell. The proposed decoding
scheme in RRAM cells for double-error correction makes
use of the inherent property of RRAM cells being able to
provide arithmetic sum. Hence the calculations of Gsum; and
Gsumsy do not require extra adders, thus effectively reducing
the overall decoder area. Furthermore, due to the repetition
factor(weights), the number of check symbols required for 16
data symbols and 32 data symbols only differ by 1. Hence,
this novel decoding scheme is especially effective when the
H-matrix can be used by keeping the order of the matrix the
same as the previous data symbol’s H-matrix. As shown in
Table 1, 16 data symbols and 32 data symbols have almost

the same number of check symbols.
When compared against DEC OLS MLD (Orthogonal

Latin Square Majority Logic Decoding) [11] for limited
magnitude errors where each cell can hold up to 3-bits, we can
see that as the data symbol size increases, the number of check
symbols decreases by a maximum of 60 percent. For example
for 128 symbols, the number of check symbols reduces from
64 to 26, and for 256 symbols the number of check symbols
reduces from 64 to 45 (approximately 30 percent). The decoder

area for the proposed code is significantly smaller when
compared with traditional OLSMLD. For 256 symbols, the
area reduction is around 45 percent as expected earlier and
the reduction in check symbols.

VI. CONCLUSION

This paper proposes Double Error Correcting Codes in
RRAM cells for limited magnitude errors that are capable
of storing multi-bit values. The proposed scheme uses the
inherent arithmetic summation properties of the RRAM cells
to reduce the decoder area substantially. The repetition of
H-matrix columns with selected weight values also leads to
an overall reduction in the decoder area.

VIIACKNOWLEDGEMENTS

This research was supported in part by the National Science
Foundation under Grant No. CCF-2113914.

REFERENCES

[11 F. Zahoor, T. Z. A. Zulkifli, and F. A. Khanday, “Resistive random
access memory (rram): an overview of materials, switching mechanism,
performance, multilevel cell (mlc) storage, modeling, and applications,”
Nanoscale Research Letters, vol. 15, 2020.

[2] A. Das and N. A. Touba, “Selective checksum based on-line error
correction for rram based matrix operations,” in 2020 IEEE 38th VLSI
Test Symposium (VTS), 2020, pp. 1-6.

[3] M. Liu, L. Xia, Y. Wang, and K. Chakrabarty, “Fault tolerance
for rram-based matrix operations,” in 2018 IEEE International Test
Conference (ITC), 2018, pp. 1-10.

[4] L. Xia, M. Liu, X. Ning, K. Chakrabarty, and Y. Wang,
“Fault-tolerant training with on-line fault detection for rram-based neural
computing systems,” in 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC), 2017, pp. 1-6.

[5] G.Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in SCI7: International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2017, pp. 1-12.

[6] T.Klove, B. Bose, and N. Elarief, “Systematic, single limited magnitude
error correcting codes for flash memories,” IEEE Transactions on
Information Theory, vol. 57, no. 7, pp. 4477-4487, 2011.

[71 A. Das and N. A. Touba, “Efficient non-binary hamming codes for
limited magnitude errors in mlc pcms,” in 2018 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2018, pp. 1-6.

[8] M. Y. Hsiao, D. C. Bossen, and R. T. Chien, “Orthogonal latin square
codes,” Ibm Journal of Research and Development, vol. 14, pp. 390-394,
1970.

[9] D. Strukov, “The area and latency tradeoffs of binary bit-parallel bch
decoders for prospective nanoelectronic memories,” in 2006 Fortieth
Asilomar Conference on Signals, Systems and Computers, 2006, pp.
1183-1187.

[10]

[11]

[12]

A.Das and N. A. Touba, “Layered-ecc: A class of double error correcting
codes for high density memory systems,” in 2019 IEEE 37th VLSI Test
Symposium (VTS), 2019, pp. 1-6.

K. Namba and F. Lombardi, “Non-binary orthogonal latin square codes
for a multilevel phase charge memory (pcm),” IEEE Transactions on
Computers, vol. 64, no. 7, pp. 2092-2097, 2015.

A. Das and N. A. Touba, “Efficient one-step decodable limited magnitude
error correcting codes for multilevel cell main memories,” IEEE
Transactions on Nanotechnology, vol. 18, pp. 575-583, 2019.

