
Double Adjacent Error Correction in RRAM Matrix
Multiplication using Weighted Checksums

Kenrick Xavier Pinto1, Krishnaja Kodali1, Abhishek Das2, Nur A. Touba1

University of Texas at Austin1, Intel Corporation2

kenrickpinto@utexas.edu, krishnajakodali@utexas.edu, abhishekdas@utexas.edu, touba@ece.utexas.edu

Abstract—Artificial Intelligence (AI) has permeated various
domains but is limited by the bottlenecks imposed by data
transfer latency inherent in contemporary memory technologies.
Matrix multiplication, crucial for neural network training and
inference, can be significantly expedited with a complexity of
O(1) using Resistive RAM (RRAM) technology, instead of the
conventional complexity of O(n2). This positions RRAM as a
promising candidate for the efficient hardware implementation of
machine learning and neural networks through in-memory com-
putation. However, RRAM manufacturing technology remains
in its infancy, rendering it susceptible to soft errors, potentially
compromising neural network accuracy and reliability. In this
paper, we propose a syndrome-based error correction scheme
that employs selective weighted checksums to correct double
adjacent column errors in RRAM. The error correction is done
on the output of the matrix multiplication thus ensuring correct
operation for any number of errors in two adjacent columns. The
proposed codes have low redundancy and low decoding latency,
making it suitable for high throughput applications. This scheme
uses a repeating weight based structure that makes it scalable to
large RRAM matrix sizes.

Index Terms—Resistive RAM, Error Correcting Codes (ECC),
Weighted Checksums, Double Adjacent Error Correction

I. INTRODUCTION

The rapid growth of machine learning and AI applications
has created a growing demand for hardware that can accelerate
these workloads. This can be achieved by speeding up matrix
multiplication operations that form the bedrock of neural
network algorithms. The conventional approach towards this
has been to read matrices from memory and use a specialized
hardware unit to achieve high throughput. However, this
approach is limited by data transfer latency of modern memory
technologies that aren’t able to meet the demands of compute.
Resistive RAM (RRAM) technology has tremendous potential
in alleviating this bottleneck due to it’s inherent crossbar
structure that provides in-memory computation capabilities
[1]. Storing neural network weights in the RRAM matrix can
perform matrix multiplication with O(1) complexity [2].

However, RRAM adoption is made difficult due to it’s
many challenges. The primary challenge is RRAM’s low yield
and error prone nature compared to existing technologies [3]
[4]. RRAM fabrication technology is at a stage where it’s
susceptible to a high error rate. These errors fall into two
major categories: hard errors and soft errors. Hard errors
manifest in the form of stuck-at-0 and stuck-at-1 faults at
multiple points in the array. Soft errors on the other hand

are more dynamic, caused usually by reading and writing
to the RRAM array. There has been considerable amount of
work done in the area of hard error correction in RRAM.
[5] proposes using various matrix transformations like row-
flipping, permutation and redefinition of the weight range to
make RRAM more robust to stuck-at faults. Performing all the
three transformations results in better recovery but is disruptive
and adds additional computational overhead. To attain better
coverage in this method, each weights needs to be represented
by more than one memristor, which further increases the
redundancy. [6] introduces SAFER, a method that effectively
partitions data blocks to recover from stuck-at faults, reducing
the hardware overhead compared to traditional error recovery
techniques. However, the dynamic partitioning and inversion
processes used in this paper introduce additional complexity
and require careful hardware implementation.

Soft errors, on the other hand, are harder to detect as their
occurance is random. There has been limited work on soft error
detection and correction in RRAM. [7] proposes X-ABFT,
which extends algorithm-based fault tolerance along the time
dimension to correct hard and soft errors in RRAM. In this
method, the RRAM matrix is divided into sub-arrays with two
checksum columns per sub-array, weighted and non-weighted,
to help locate the fault’s column address. Row address of the
faults is identified by applying additional test input vectors and
monitoring the RRAM output. Though the proposed method
helps correct soft errors, it has a low coverage of two cells
per submatrix. Additional X-ABFT requires storing of RRAM
output data across multiple clock cycles to accurately locate
the fault. In our paper, we propose a decoding scheme that
offers increased error coverage to any number of rows within
two adjacent columns, while also achieving lower redundancy.

A two-layered syndrome-based error correcting code has
been proposed in [8] that can correct limited-magnitude double
column errors in the RRAM matrix. The first layer is used
to shortlist a set of possible error locations and the second
layer identifies the exact error location and the magnitude
of correction. The decoding logic performs addition using
RRAM cells, thus bringing down the decoder area and power.
However, this method can only correct limited magnitude
errors, and has a higher redundancy compared to the proposed
scheme of double adjacent column error correction.

[9] uses selective checksum to correct any number of errors

Fig. 1: Structure of a 4x8 RRAM matrix

in a single column in the RRAM matrix. This is accomplished
by treating the output of matrix-vector multiplication as a
single codeword, reducing multiple errors within a column into
a single error in the output current. This approach shifts error
correction focus from individual RRAM cells to columns. In
this paper, we further extend the coverage to correct double
adjacent column errors using weighted selective checksums.
When we try to read or write to a column in an RRAM
array, there is a possibility of faults being introduced. Instead
of being localized to the column in question, they can also
propagate to nearby columns, and can affect multiple rows at
a time. We propose a scheme to correct errors present either
in a single column or double adjacent columns. Our approach
uses weighted checksums with repeated weights to obtain a
low decoding latency, low redundancy and also simplicity in
the decoder design. The rest of the paper is organized as
follows. Sec. II discusses the RRAM structure for in-memory
computation, Sec. III explains the proposed codes in detail.
The decoder design is elaborated in Sec. IV and the results
are presented in Sec. V. Finally, Sec. VI concludes the paper.

II. RRAM STRUCTURE

Resistive RAM (RRAM) is an emerging non-volatile mem-
ory technology which has a metal-insulator-metal stack struc-
ture, where the insulator layer exhibits resistive switching be-
havior. Voltage pulses are applied to RRAM during write/read
operations to induce a localized change in the resistance of the
insulator layer, thereby altering the cell’s state. This resistance
level is proportional to the data that needs to be stored. RRAM
exhibits high scalability and high-density integration which
makes it a popular choice for next-generation non-volatile
memory solutions.

RRAM can be used to implement multi-level memory. This
means each RRAM cell can store multiple bits of data per
cell, for example, in [10] each RRAM cell can store upto 3
bits. It consists of a metal-insulator-metal structure and data is
stored by varying the resistance level of the insulator. Figure 1
shows the crossbar structure of RRAM using which it performs

weighted sums. For a voltage vector (V1, V2, ..., Vn−1, Vn)
applied at the rows, the current vector obtained in the jth

column is given by the equation

dj = G1jV1 +G2jV2 +G(n−1)jVn−1 +GnjVn (1)

This is essentially a dot product between the voltage vector
and the jth column of the RRAM matrix. In effect, the current
vector obtained is a matrix multiplication of the voltage vector
and the conductances stored in the RRAM array. We use
this property to design an efficient decoding scheme using
weighted checksums. The coefficients of the checksum will
be stored as additional parity columns in the RRAM array
and help us identify and correct double adjacent errors.

III. PROPOSED ERROR CORRECTION METHODOLOGY

We use weighted checksums to correct double adjacent
column errors. For an 8x8 RRAM matrix, we use the following
four parity equations:

p1 = d1 + 2d3 − d5 − 2d7 (2)
p2 = d1 + 2d2 + d3 + 2d4 + d5 + 2d6 + d7 + 2d8 (3)
p3 = 2d1 + d2 + 2d3 + d4 + 2d5 + d6 + 2d7 + d8 (4)
p4 = d2 + 2d4 − d6 − 2d8 (5)

The parity check matrix for the 8x8 RRAM matrix is: 1 0 2 0 −1 0 −2 0 1 0 0 0
1 2 1 2 1 2 1 2 0 1 0 0
2 1 2 1 2 1 2 1 0 0 1 0
0 1 0 2 0 −1 0 −2 0 0 0 1


Accordingly, the syndrome values calculated by the decoder

are defined as follows. Any non-zero syndrome implies the
presence of an error.

S1 = p1 − (d1 + 2d3 − d5 − 2d7) (6)
S2 = p2 − (d1 + 2d2 + d3 + 2d4 + d5 + 2d6 + d7 + 2d8) (7)
S3 = p3 − (2d1 + d2 + 2d3 + d4 + 2d5 + d6 + 2d7 + d8) (8)
S4 = p4 − (d2 + 2d4 − d6 − 2d8) (9)

We can obtain the parity values p1, p2, p3 and p4 using the
inherent summing capability of the RRAM crossbar structure.
These parity values are represented in additional redundant
columns in the RRAM matrix. We assume that each cell in
RRAM can store upto 3 bits. This results in the possible
conductances per cell ranging from 0 to 7. To correct the
proposed errors, we need a unique syndrome for every possible
error value which ranges from ± 0 to ± 7 in each cell. For
double adjacent errors, the range of syndrome values in each
row corresponding to these errors is shown in Table I.

Syndrome Possible errors Range of error values
S1 One column -14 to +14
S2 Two columns -21 to +21
S3 Two columns -21 to +21
S4 One column -14 to +14

TABLE I: Range of syndromes in 8x8 RRAM matrix

Since errors could be both negative and positive, we use 2’s
complement form to represent negative values. To represent
these as conductances without overflow we need atleast 6 bits

Fig. 2: 4x8 RRAM matrix augmented with parity columns

per row. However, each RRAM cell can only store 3 bits.
Therefore, each parity equation is subsequently split across
two columns. For example, in Figure 2, the conductance in
row i for parity p2 gets split into p21 and p22 as shown below

{Ki2, Hi2} = Gi1 + 2Gi2 + ...+ 2Gi8 (10)
Hi2 = (Gi1 + 2Gi2 + ...+ 2Gi8)(mod 8) (11)
Ki2 = ((Gi1 + 2Gi2 + ...+ 2Gi8) ≫ 3)(mod 8) (12)

Each of these Hij and Kij are 3 bits each and can be stored
within a single cell. In an RRAM array having n rows, the
current observed in each of these columns is shown below

p21 = Σn
i=1Hi2 ∗ Vi (13)

p21 = Σn
i=1(Gi1 + 2Gi2 + ..+ 2Gi8)(mod 8) ∗ Vi (14)

p22 = Σn
i=1Ki2 ∗ Vi (15)

p22 = Σn
i=1((Gi1 + 2Gi2 + ..+ 2Gi8) ≫ 3)(mod 8) ∗ Vi (16)

To obtain the parity equations p1 through p4, the decoder
combines the two components and recreates the original parity
as shown in Figure 3. For example,

p2 = p21 + (p22 ≪ 3) (17)
p2 = Σn

i=1(Hi2 + (Ki2 ≪ 3)) ∗ Vi (18)
p2 = Σn

i=1{Ki2, Hi2} ∗ Vi (19)
p2 = Σn

i=1(Gi1 + 2Gi2 + ...+ 2Gi8) ∗ Vi (20)
p2 = Σn

i=1Gi1Vi +Σn
i=12Gi2Vi + ...+Σn

i=12Gi8Vi (21)
p2 = d1 + 2d2 + d3 + 2d4 + d5 + 2d6 + d7 + 2d8 (22)

Similar results can be proven for other equations.

Under conditions of no error, each of the four syndromes S1,
S2, S3 and S4 are all zero and a non-zero syndrome implies
the existing of one or more errors. Moreover, in Sec. IV, we
show that a regular and repeating checksum structure makes

Sno. Error Possibility Syndrome Values
1 No error All syndromes are zero
2 Single data column Either S1 or S4 is zero
3 Single parity column Three syndromes are zero
4 Two adjacent data

columns
S1 and S4 are non zero,
At most one of S2 and S3 is zero

5 Two adjacent parity
columns

Two syndromes are zero

6 Last data column and
first parity column

All syndromes are non-zero

TABLE II: Possible error cases in the proposed scheme

Fig. 3: Parity logic for 8x8 RRAM Matrix

the decoder design simple and modular. The proposed scheme
uses 8 parity columns for 8 data columns (50% redundancy).
We use four parity equations for all sizes of the RRAM array.
Due to this, the redundancy values scales well and are shown
in Table III. For sizes 8x8 and 16x16, we need two columns
per parity equation and for 32x32 and 64x64, we need two
parity columns for p2 and p3 but three parity columns for p1
and p4 as described later. The redundancy in the proposed
scheme is better than the single column correcting majority
voting code in [9] and the double column limited magnitude
error correction in [8]. The difference between the redundancy
of the proposed code and the hamming code reduces for higher
order RRAM matrices.

IV. DECODER DESIGN

The main motivation behind using repeated weights in
our parity checksums is to make the equations symmetric.
This makes the decoder design simple and opens up many
optimization possibilities. We can reuse the same hardware
to correct multiple columns. The proposed scheme has six
distinct error possibilities as shown in Table II.

As can be seen, the first five categories are easily distin-
guished by counting the number of syndromes that are zero.
This is achieved by using four comparators to check if each
syndrome is zero or not. These four comparator outputs are
then sent to an adder which returns a 2-bit output. Once
we determine the type of error present, we need to perform
correction only for cases 2 and 4 where data columns are in
error. Parity column errors can be filtered out using the counter
output and don’t need any correction. Case 6 is a special case
with a distinct set of possible syndromes that doesn’t overlap
with the other cases and can be easily detected. The syndromes
corresponding to scenarios 2, 4 and 6 are shown in Table IV.
The detection and correction logic for all possible single and
double adjacent column errors are also shown. Additionally,
note the presence of many recurring equations in the decoding
logic (2S1 + S4, S1 + 2S4 etc) that can be easily implemented
by using shift, add and complement operations and reused
wherever necessary.

To extend the proposed error correction scheme to higher
order RRAM matrices, and preserve the essence of the de-
coding logic, we define a few rules on the coefficients used.
Any set of coefficients following these rules have the same
syndrome behaviour as described before.

Number Single Column Correction Double Column Correction Double Adjacent Column Correction
of Data Majority Voting Code in [9] Hamming Code in [9] Limited Magnitude Correction in [8] Proposed Code

Columns Parity columns Redundancy Parity columns Redundancy Parity Columns Redundancy Parity columns Redundancy
8 - - - - - - 8 50%
16 7 30% 5 24% 15 48.3% 8 33.3%
32 9 22% 6 16% 16 33.3% 10 23.8%
64 12 16% 7 10% 25 28% 10 13.5%

TABLE III: Comparison of redundancy for various sizes of the RRAM matrix

Error in Column(s) S1 S2 S3 S4 Detection Logic Correction Logic
d1 e1 e1 2e1 0 S1 = S2, S4 = 0 S2

d2 0 2e2 e2 e2 S4 = S3, S1 = 0 S3

d3 2e3 e3 2e3 0 S1 = S3, S4 = 0 S2

d4 0 2e4 e4 2e4 S4 = S2, S1 = 0 S3

d5 -e5 e5 2e5 0 S1 = -S2, S4 = 0 S2

d6 0 2e6 e6 -e6 S4 = -S3, S1 = 0 S3

d7 -2e7 e7 2e7 0 S1 = -S3, S4 = 0 S2

d8 0 2e8 e8 -2e8 S4 = -S2, S1 = 0 S3

d1, d2 e1 e1 + 2e2 2e1 + e2 e2 (2S1 + S4) = S3, (S1 + 2S4) = S2 S1, S4

d2, d3 2e3 e3 + 2e2 2e3 + e2 e2 (S1 + S4) = S3, (S1 + 4S4) = 2S2 S4, S1 ≫ 1
d3, d4 2e3 e3 + 2e4 2e3 + e4 2e4 (2S1 + S4) = 2S3, (S1 + 2S4) = 2S2 S1≫ 1, S4 ≫ 1
d4, d5 -e5 e5 + 2e4 2e5 + e4 2e4 (S4 - 4S1) = 2S3, (S4 - S1) = S2 S4 ≫ 1, -S1

d5, d6 -e5 e5 + 2e6 2e5 + e6 -e6 -(2S1 + S4) = S3, -(S1 + 2S4) = S2 -S1, -S4

d6, d7 -2e7 e7 + 2e6 2e7 + e6 -e6 -(S1 + S4) = S3, -(S1 + 4S4) = 2S2 -S4, -S1 ≫ 1
d7, d8 -2e7 e7 + 2e8 2e7 + e8 -2e8 -(2S1 + S4) = 2S3, -(S1 + 2S4) = 2S2 -S1 ≫ 1,−S4 ≫ 1
d8, p1 x 2e8 e8 -2e8 S2 = -S4, S2= 2S3 S3

TABLE IV: Possible syndromes and correction logic for 8x8 RRAM matrix

Rule 1 Coefficients in p1 should contain odd data columns
and be distinct to each other

Rule 2 Coefficients in p4 should contain even data columns
and be distinct to each other

Rule 3 Coefficients in p2 and p3 should alternate between 1
and 2 for data columns, in distinct order

Rule 4 Number of columns per parity equation is determined
by the allowable range of syndrome values

Applying these rules for a 16x16 RRAM matrix, we can
generate the four parity equations as follows

p1 = d1 + 2d3 − d5 − 2d7 + 3d9 + 4d11 − 3d13 − 4d15 (23)
p2 = d1 + 2d2 + d3 + 2d4 + ...+ d13 + 2d14 + d15 + 2d16 (24)
p3 = 2d1 + d2 + 2d3 + d4 + ...+ 2d13 + d14 + 2d15 + d16 (25)
p4 = d2 + 2d4 − d6 − 2d8 + 3d10 + 4d12 − 3d14 − 4d16 (26)

Since the maximum coefficient in p1 and p4 is 4 , the range
of syndromes for 16x16 RRAM matrix is shown in Table V.
Note that when we use alternating 2 and 1 as coefficients, the
range of syndromes will always be -21 to +21 for p2 and p3
regardless of RRAM size and will require only two columns.

Syndrome Possible errors Range of error values
S1 One column -28 to +28
S2 Two columns -21 to +21
S3 Two columns -21 to +21
S4 One column -28 to +28

TABLE V: Range of syndromes for 16x16 RRAM Matrix

The decoding scheme for the 16x16 RRAM also uses 8
parity columns (2 columns for each parity equation). Simi-
larly, for 32x32 and 64x64 RRAM sizes, we use 2 columns
for p2 and p3 and 3 columns for p1 and p4, giving us a

total of 10 extra parity columns. Note that the redundancy
scales logarithmically with increasing RRAM size. For these
equations, we can clearly observe that the five possible error
configurations can be detected using the same mechanism as
before. Moreover, any coefficient set created using these rules
follows the same pattern. For example, in equations (22) and
(25), we could have chosen powers of 2 i.e +4, +8, -4 and -8 as
the last four coefficients. This would lead to a higher range of
syndromes, resulting in 7 bits needed to represent equations
(22) and (25) i.e 3 columns. The increased redundancy can
be traded-off for lower decoding latency achieved through
usage of powers of 2, thus limiting the decoder complexity.
There is a direct trade-off between the redundancy and latency
of the decoder based on the choice of coefficients. Optimal
coefficients should be selected with careful consideration of
these inherent trade-offs. Additionally, the initial part of each
equation is preserved as we increase the size. Hence, a decoder
used for the 8x8 RRAM can be used modularly to correct the
16x16 RRAM matrix, with additional hardware designed to
handle the remaining cases. Thus, the proposed scheme lends
itself amenable to scalable decoder design.

V. RESULTS

The proposed error correcting code was implemented on
Synopsys Design Compiler using NCSU FreePDK45 library
for RRAM sizes of 8x8, 16x16, 32x32 and 64x64. The redun-
dancy, latency, area and power consumption of the decoder
logic are described in Table VI. The decoder logic involves
checking of several conditions to identify error locations and
calculate the correction vector, which requires multiple adder
units, resulting in non-trivial area overhead. Area overhead can
be reduced through use of look-up tables [8] using existing

RRAM Double Adjacent Column Correcting Code (Proposed Code)
Matrix Size Redundancy Latency (ns) Area (um2) Power (mW)

8x8 50% 1.7 5500 0.90
16x16 33.3% 2.31 15774 2.07
32x32 23.8% 3.48 34153 5.20
64x64 13.5% 4.10 81810 11.30

TABLE VI: Results for proposed codes for different matrix sizes

RRAM structures or some other on-chip memory. Based on
the category of error present (which is filtered early on), only
a certain part of the decoder is active at a time. This results
in low dynamic power consumption as can be seen from the
table.

VI. CONCLUSION

In this paper, we proposed a decoding scheme to correct
double adjacent column errors in RRAM. RRAM dot product
capabilities are utilized to perform parity additions with mini-
mal overhead. We defined rules to construct decoding schemes
for higher order RRAM arrays. The repeating and regular
structure of these equations leads to modular and scalable
decoder designs with low redundancy.

VII. ACKNOWLEDGMENTS

This research was supported as part of the National Science
Foundation under Grant No: CCF-2113914

REFERENCES

[1] Yan, B., Li, B., Qiao, X., Xue, C.X., Chang, M.F., Chen, Y. and Li, H.,
2019. Resistive memory-based in-memory computing: from device and
large-scale integration system perspectives. Advanced Intelligent Systems,
1(7), p.1900068.

[2] Sun, Z. and Huang, R., 2021. Time complexity of in-memory matrix-
vector multiplication. IEEE Transactions on Circuits and Systems II:
Express Briefs, 68(8), pp.2785-2789.

[3] Liu, M., Xia, L., Wang, Y. and Chakrabarty, K., 2018, May. Design
of fault-tolerant neuromorphic computing systems. In 2018 IEEE 23rd
European Test Symposium (ETS) (pp. 1-9).

[4] Xia, L., Huangfu, W., Tang, T., Yin, X., Chakrabarty, K., Xie, Y., Wang,
Y. and Yang, H., 2017. Stuck-at fault tolerance in RRAM computing
systems. IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, 8(1), pp.102-115.

[5] Zhang, B., Uysal, N., Fan, D. and Ewetz, R., 2019. Handling stuck-at-
fault defects using matrix transformation for robust inference of dnns.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 39(10), pp.2448-2460.

[6] Seong, N.H., Woo, D.H., Srinivasan, V., Rivers, J.A. and Lee, H.H.S.,
2010, December. SAFER: Stuck-at-fault error recovery for memories. In
2010 43rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (pp. 115-124).

[7] Liu, M., Xia, L., Wang, Y. and Chakrabarty, K., 2020. Algorithmic
fault detection for RRAM-based matrix operations. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 25(3), pp.1-
31.

[8] Dutta, S., Chinni, S.C.R., Das, A. and Touba, N.A., 2023, October. Highly
Efficient Layered Syndrome-based Double Error Correction Utilizing
Current Summing in RRAM Cells to Simplify Decoder. In 2023 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT) (pp. 1-4).

[9] Das, A. and Touba, N.A., 2020, April. Selective checksum based on-line
error correction for rram based matrix operations. In 2020 IEEE 38th
VLSI Test Symposium (VTS) (pp. 1-6).

[10] Le, B.Q., Grossi, A., Vianello, E., Wu, T., Lama, G., Beigne, E.,
Wong, H.S.P. and Mitra, S., 2018. Resistive RAM with multiple bits
per cell: Array-level demonstration of 3 bits per cell. IEEE Transactions
on Electron Devices, 66(1), pp.641-646.

