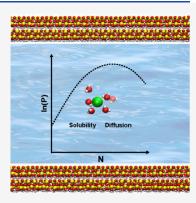


pubs.acs.org/JPCL Letter

Molecular Density Fluctuations Control Solubility and Diffusion for Confined Aqueous Hydrogen

3 Khang Quang Bui, Tran Thi Bao Le, Gabriel D. Barbosa, Dimitrios V. Papavassiliou, Sepideh Razavi, 4 and Alberto Striolo*

Cite This: https://doi.org/10.1021/acs.jpclett.4c01684


ACCESS

III Metrics & More

Article Recommendations

s Supporting Information

s ABSTRACT: Hydrogen's contribution to a sustainable energy transition requires intermittent storage technologies, e.g., underground hydrogen storage (UHS). Toward designing UHS rites, atomistic molecular dynamics (MD) simulations are used here to quantify thermodynamic and transport properties for confined aqueous H_2 . Slit-shaped pores of width 10 and 20 Å are carved out of kaolinite. Within these pores, water yields pronounced hydration layers. Molecular H_2 distributes along these hydration layers, yielding solubilities up to \sim 25 times those in the bulk. Hydrogen accumulates near the siloxane surface, where water density fluctuates significantly. On the contrary, a dense hydration layer forms on the gibbsite surface, which is, for the most part, depleted of H_2 . Although confinement reduces water mobility, the diffusion of aqueous H_2 increases as the kaolinite pore width decreases, a consequence of water density fluctuations. These results relate to H_2 permeability in underground hydrogen storage sites.

urrently, 70 million tons per annum of H₂ is produced ✓ globally¹ predominantly from natural gas and coal.² In 19 the future, blue, green, and turquoise hydrogen³ could help 20 industry achieve ambitious decarbonization objectives, 4 21 provided novel methodologies are available for the intermittent 22 storage of substantial quantities of this gas. Traditionally, 23 storing large amounts of hydrogen gas has proven to be 24 challenging because of its low volumetric energy density, high 25 reactivity in the presence of oxygen, and potential high leakage 26 rate, among other hurdles. As a potential approach, large-scale 27 underground hydrogen storage (UHS) might offer a more 28 economical and safer technology compared to conventional 29 surface storage technologies. ^{10,11} In addition to salt caverns, $_{30}$ depleted underground reservoirs could serve as UHS sites due 31 to their vast storage space, abundance across the US territory, 32 and pre-existing infrastructure. 12,13 However, several funda-33 mental questions need to be addressed. For example, because 34 H₂ molecules are much smaller than hydrocarbon ones, and 35 because they are likely to interact with other fluid components 36 as well as with mineral surfaces, it is necessary to understand 37 how confinement in the subsurface, where multiple fluids are 38 present, including water and brines, affects thermodynamic and 39 transport properties of H₂ gas. Indeed, a large body of 40 literature shows that confinement affects the behavior of a 41 variety of fluids. 14-16 The US Department of Energy's (DoE) 42 National Hydrogen Storage Project boosted the development 43 of novel materials for on-site reversible hydrogen storage and 44 contributed to the transition to a hydrogen economy. 17–19 For 45 example, prior studies show that adsorption in porous ₄₆ materials could increase H₂ density to 70.4 (g_H,·L⁻¹) for

novel carbon—boron—nitrogen (CBN) heterocycle materials.²⁰ 47 Only recently, the community has started to investigate the 48 behavior of H_2 in confined water, with direct relevance to 49 UHS.^{15,21,22} In this regard, confinement in kaolinite clay is 50 relevant, as this material is one of the most common minerals 51 found in subsurface reservoirs.²³

Hydrogen solubility and diffusivity in hydrated clay 53 nanopores are expected to affect storage capacity and 54 permeability in potential UHS sites. For example, H₂ 55 dissolution in hydrated cap rocks could not only lead to 56 leaks but also to undesired chemical reactions that compromise 57 sealing capacity. 10,24 Water is ubiquitous in the subsurface, and 58 in fact, it is frequently used to control hydrocarbon production. 59 Although H₂ has low solubility in bulk water, confinement 60 effects are likely to affect water structure and dynamics, 61 potentially altering aqueous H_2 behavior. This hypothesis is 62 supported by some recent experiments. For instance, 63 Firuznia et al.¹⁵ reported a significant increase in hydrogen 64 solubility in confined water when the pore size of zeolite is 65 smaller than 2 nm; at those conditions, the orientation of water 66 molecules was found, based on FT-IR experiments, to have a 67 significant impact on H₂ uptake. NMR results from Miachon et 68 al. 25 revealed a considerable increase in the solubility of H_2 in 69

Received: June 6, 2024 **Revised:** July 18, 2024 **Accepted:** July 19, 2024

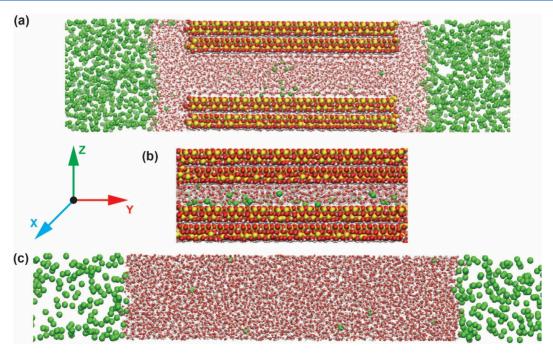


Figure 1. Schematic representation of the simulated systems. Panel (a) represents the system used to model the solubility of H_2 in confined water. Note that the water-filled pore is exposed to gaseous H_2 . When equilibrium is reached and the number of H_2 molecules in the pore is constant, system (b) is used to model the diffusion coefficient for both water and H_2 . In this system, the pore is effectively infinite along the X and Y directions. System (c) is used to obtain H_2 solubility in bulk water. The thickness of the water film is large enough to obtain bulk-like properties in its interior. Color code: Si, Al = yellow; O = red; H = white; $H_2 = green$. Water molecules are scaled down in size for better visualization.

 $_{70}$ γ-alumina nanopores. Wang et al. 26 found that the diffusivity of hydrogen in pulverized shale samples at 30 °C (i.e., 1.3×10^{-8} $_{72}$ (m $^2 \cdot s^{-1}$)) was higher than that of methane. To generalize these rapractical observations, one must uncover the molecular mechanisms that control H_2 behavior in confined water, an requisite fundamental quest.

Molecular simulations provide a powerful tool to interrogate 77 confined systems. 15,22,28-31 For example, using Monte Carlo methods (MC), Zhang et al.²⁹ found that the H₂ loading density in 2 nm-wide pores filled with water was ~3 times 80 higher than the bulk solubility; this ratio can reach 27 in pores 81 of width 0.55 nm. Yu et al., 30 using molecular dynamics (MD), 82 found that kaolinite nanopores could enhance the H2 solubility 83 in water up to 10 times compared to bulk values. However, the 84 pores considered were confined by surfaces of identical 85 hydrophilicity, which is not realistic. 32 The differences 86 among these results suggest that both pore width and surface 87 chemistry have a strong impact on H2 solubility in confined 88 water. To rationalize these observations, the molecular 89 mechanisms responsible for the increased solubility, which 90 currently remain unknown, need to be identified and 91 understood. As for H₂ diffusivity, Liu et al.²² reported that 92 the H₂ diffusion coefficient in montmorillonite nanopores 93 partially filled with water was $\sim 10^{-8}$ (m²·s⁻¹), the value being 94 significantly affected by temperature, pore size, and pressure. 95 On the other hand, Choudhary et al. 31 recently reported a 96 marked preference for clustering of CO₂ and H₂ within 97 nanopores. In these systems, water forms well-formed 98 layers, $^{21,22,33-35}$ which might lead to different H_2 behavior 99 throughout the pore. To generalize the above observations 100 concerning H2 solubility and diffusivity in confined water, this 101 work identifies and quantifies said variations from a molecular 102 perspective.

In this letter, MD simulations were implemented to study H₂ 103 solubility and diffusion behavior in water-filled kaolinite slit 104 pores. The pore widths considered, 20 and 10 Å, allow us to 105 test conditions at which the severity of confinement effects on 106 water properties increases. 35-37 To maintain a realistic 107 description of the clay system, the pore volume is confined 108 by gibbsite and siloxane surface terminations; the former is 109 considered hydrophilic, the latter hydrophobic.³⁸ As we 110 discussed elsewhere,³⁹ in realistic systems most of the pore 111 volume is likely to be found when gibbsite and siloxane basal 112 surfaces face each other, which could occur when the clays 113 expand as well as when kaolinite particles agglomerate. As 114 such, edge effects are not considered explicitly herein. These 115 effects are likely to affect the mechanisms of H2 penetration 116 and release from the slit-shaped pores. The model details are 117 discussed in the Supporting Information section (SI). A visual 118 for the simulated systems is displayed in Figure 1. The pressure 119 fl was set at either 100 or 200 bar, relevant for UHS. 10 The 120 temperature for all simulations was 298 K, slightly cooler than 121 the reservoir temperature of 318 K.⁴⁰ The small temperature 122 difference is not expected to alter the results significantly, while 123 conducting the simulations at 298 K allows validation of the 124 computational results with future experiments, conducted at 125 ambient conditions.

As shown schematically in Figure S1, the solubility of 127 hydrogen in water, S, can be obtained for both bulk and 128 confined systems, as follows:

$$S = \frac{\rho_{\rm H_2}}{\rho_{\rm H_2O}} \tag{1)}_{130}$$

In eq 1, $\rho_{\rm H_2}$, and $\rho_{\rm H_2O}$ are the molar densities of hydrogen and $_{131}$ water, respectively, in either the pores or in the bulk. The $_{132}$ results, presented in Table 1, show that the H₂ solubility in $_{133}$ tr

Table 1. Hydrogen Solubility in Water for Bulk and Confined Systems^a

System	$S \times 10^3$
100 bar, bulk	1.41 ± 0.01
200 bar, bulk	2.81 ± 0.02
100 bar, 20 Å	3.55 ± 0.71
200 bar, 20 Å	7.34 ± 0.52
100 bar, 10 Å	36.01 ± 1.42
200 bar, 10 Å	35.50 ± 0.72

^aIn all cases, the temperature is 298 K. Confinement is provided by slit-shaped pores carved out of kaolinite.

 $_{134}$ bulk water at 100 and 200 bar is ${\sim}1.41\,\times\,10^{-3}$ and 2.81 \times 135 10⁻³, respectively. These values agree with experimental data 136 reported by Wiebe et al. 41 Our results show that confinement 137 notably enhances H2 solubility in water, with variations due to 138 both pressure and pore size. Although it has been reported for 139 other gases that solubility in confined water changes with 140 respect to bulk; 42-44 it is not always the case that confinement 141 enhances solubility. Our results show that for a kaolinite pore 142 of width 20 Å, the solubility at both 100 and 200 bar is \sim 2.5 143 times that in bulk water. This ratio increases substantially in 144 the smaller pore considered, for which H₂ solubility 145 approaches 25 times that of the bulk. These results are 146 consistent with those found for nonpolar gases, for which 147 confinement is found to enhance solubility in water-an 148 observation that led to the term "oversolubility". 15,25,29,45,46 149 Results for H₂ solubility in confined water seem to be 150 consistent with these trends. Zhang et al.,²⁹ e.g., showed that as 151 the pore width decreases from 2 to 0.55 nm, the H₂ solubility 152 in confined water increases. As another example of nonpolar 153 gas, Phan et al. 45 reported that confinement in silica slit-shaped 154 nanopores could enhance the solubility of methane up to 50 155 times compared to that in the bulk. Luzar et al. 46 reported a

significant increase in solubility for N_2 , as well as for CO_2 , in 156 water due to hydrophobic confinement. On the other hand, the 157 solubility of H_2 in confined water is affected by the chemistry 158 of the confining materials. ^{28,30} For example, while Yu et al. ³⁰ 159 predicted a 10-fold enhancement of H_2 solubility in hydrated 160 kaolinite pores, Ho et al. ²⁸ did not observe H_2 oversolubility in 161 nanopores carved out of montmorillonite. As an example for 162 another gas, Li et al. ⁴⁷ reported that CO_2 solubility in water 163 decreases within hydropholic kaolinite nanopores while it 164 increases within hydrophobic pores. To generalize the results 165 as a function of pore width and pore chemistry, Apostolopoulou et al. ^{48,49} showed that it is possible to employ a mesoscale 167 approach based on kinetic Monte Carlo, once selected results 168 from atomistic MD simulations are available.

However, the mechanism driving oversolubility remains 170 under debate. Ho et al. 50 suggested that, in confinement, the 171 density of octamethylcyclotetrasiloxane (OMCTS) is not 172 uniform, allowing H_2 gas molecules to occupy regions of low 173 OMCTS density. Meanwhile, CH_4 oversolubility was found to 174 be driven by the strong interaction between the CH_4 molecules 175 and the pore surface. However, Badmos et al. 37 reported that 176 for H_2S molecules, the mechanism proposed by H_2S of H_2S molecules, the mechanism proposed by H_2S 178 molecules close to the substrate surfaces. To identify the 179 molecular mechanism responsible for the results observed 180 herein, we start by analyzing the molecular density profiles 181 within the pores.

Figure 2 shows the density profiles of water and H_2 along 183 f2 the direction perpendicular to the pore surface. Pronounced 184 hydration layers are clearly visible. As seen in Figure 2a, the 185 water density near the center of the 20-Å pore approaches that 186 of bulk water, ~33.332 (nm⁻³);⁵¹ conversely, pronounced 187 peaks are found in the middle of the 10-Å pore (Figure 2b), 188 consistent with findings by Liu et al., ²² focused on 189 montmorillonite nanopores. Our results show that water 190

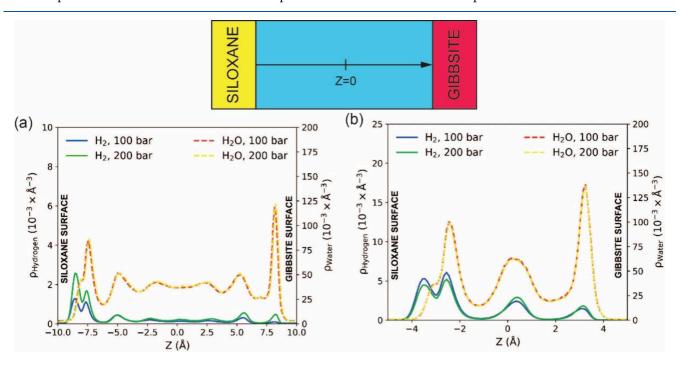


Figure 2. Atomic density profiles for H_2 molecules and water oxygen atoms along the direction perpendicular to the pore surface for different pore sizes: (a) 20 Å and (b) 10 Å. In both cases, the pore center is at Z = 0. The positions of the gibbsite and siloxane surfaces along the Z-direction are indicated on the plots. Only the pore volume is used for these calculations.

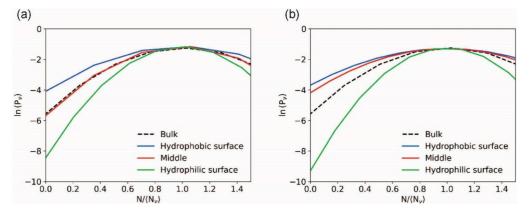


Figure 3. Probability of observing N water molecules, $P_{\nu}(N)$, in small volumes, ν , for pore sizes of (a) 20 Å and (b) 10 Å. The results were obtained from systems containing only water inside the kaolinite pores. For comparison, the results obtained for bulk water are shown as the dotted line in both panels. These simulations were conducted at 298 K and 100 bar.

191 accumulates near the gibbsite hydrophilic surface, where a 192 more intense density peak is observed. In contrast, near the 193 hydrophobic siloxane surface, a small shoulder is found in the 194 density profile, whose peak has lower intensity than the one 195 near the hydrophilic surface.

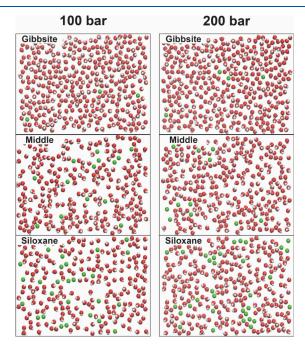
As shown in Figure 2, the distribution of hydrogen 197 molecules across the hydrated kaolinite pores is strongly correlated with the water density distributions. In fact, H₂ 199 accumulates near the siloxane surface, where water density is 200 relatively low. This could lead to the question of whether 201 hydrogen gas can dehydrate the hydrophobic kaolinite pores. 202 Choudhary et al.³¹ showed that even though the hydrophobic 203 nanopore induces the formation of gas dimers or clusters the 204 weak quadrupole moment of H2 makes it less favorable to 205 cluster formation compared to CO₂. In contrast, only a few H₂ 206 molecules are found near the gibbsite surface, presumably 207 because water molecules are highly packed in this hydration 208 layer, leaving little room for guest gas. This behavior aligns 209 with observations by Ho et al.,50 who pointed out that H2 210 accumulates in spaces with low solvent density. While the 211 results just discussed hold true for both pores considered here, 212 significant differences are noted concerning H2 distribution 213 near the center of the hydrated pores. Explicitly, the nearly 214 negligible H₂ density in the middle of the 20-Å pore suggests 215 minimal confinement effects, contrasting with the smaller pore, 216 where abundant H₂ was found near the pore center. This 217 unusual distribution can be explained by considering the mechanism of gas solubility, which consists of the formation of 219 cavities where solute molecules can interact with the 220 surrounding solvent. For nonpolar gases like H₂, this 221 mechanism is likely connected with molecular density 222 fluctuations observed for water. This mechanism has 223 been invoked, e.g., to explain the increased solubility of CO2 due to confinement.54

To test this possibility, a thorough evaluation of changes in water properties as a function of pore size is required. Hydrophobic effects, characterized by the inherent tendency of nonpolar solutes to either repel water molecules or exhibit mutual attraction within aqueous environments, have been studied previously. Notably, Rego et al. Notably showed that higher degrees of hydrophobicity of a solute induce more intensive density fluctuations in the surrounding water. Building on this concept, we quantified water density fluctuations within the simulated pores. Hummer et al. Regord demonstrated that the probability distribution, $P_{\nu}(N)$, of

observing N water molecules within a small, defined volume ν 236 can be approximated by a Gaussian distribution function, as 237 follows:

$$P_{\nu}(N) \approx \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(N - \langle N_{\nu} \rangle)^2}{2\sigma^2}\right]$$
 (2) ₂₃₉

In eq 2, $\langle N_{\nu} \rangle$ and σ are respectively the mean and variance of ²⁴⁰ $P_{\nu}(N)$. Hummer et al. also indicated the relationship between ²⁴¹ the hydration free energy, G_{cav} and $P_{\nu}(N)$: ^{58,59} 242


$$G_{\rm cav} pprox rac{k_{
m B} T}{2} rac{\langle N_{
u} \rangle^2}{\sigma^2}$$
 (3) ₂₄₃

These relations imply that enhanced water density 244 fluctuations promote the formation of solute-size cavities, 245 leading to increased solubility. To quantify water density 246 fluctuations, identical virtual boxes were placed at three 247 locations within the kaolinite pores: near the hydrophobic 248 surface, near the middle of the pore, and near the hydrophilic 249 surface. We minimized the size of the probe volumes $(4 \times 4 \times 250 \text{ J})$ while confirming that statistically meaningful results were 251 achieved.

Figure 3 shows that $P_{\nu}(N)$ values near the siloxane surface 253 f3 are wider than those near the gibbsite one, indicating enhanced 254 water density fluctuations near the siloxane surface. 60 As the 255 pore width decreases (Figure 2b), the density fluctuations near 256 the gibbsite surface become less probable, and those near the 257 siloxane surface become more probable, suggesting that 258 confinement enhances the wetting characteristics of each 259 surface. Considering the probe volume located in the middle of 260 the pore, the $P_{\nu}(N)$ distribution obtained within the 20-Å pore 261 is somewhat comparable to that obtained for bulk water. On 262 the contrary, when the pore width is 10 Å, the water density 263 fluctuations extend to the middle of the pore. Garde et al. 59 264 indicated that enhanced water density fluctuations imply an 265 increased propensity for cavity formation, thereby resulting in a 266 diminished excess chemical potential for the solvation of 267 hydrophobic solutes. Our results are consistent with this 268 observation, as it is found that the H2 solubility in confined 269 water follows the trend: near siloxane surface > middle of the 270 pore > near gibbsite surface. In addition, higher water density 271 fluctuations near siloxane surface and in the middle of the 10-Å 272 pore lead to higher solubility compared to results found in the 273 larger pore considered. The density profiles shown in Figure 2 274

275 confirm that H_2 molecules can be found near the middle of the 276 10-Å pore, but not the 20-Å pore.

To illustrate the results discussed so far, in Figure 4 we report simulation snapshots for water and hydrogen molecules

Figure 4. Top view simulation snapshots representing water and hydrogen molecules found within a probe volume of thickness of 10 Å located, from top to bottom, near the gibbsite, middle, and siloxane surface of the kaolinite pores, respectively. Left and right panels are obtained at P = 100 and P = 200 bar, respectively. In all cases, T = 298 K. Color code: O = red; O = red

279 found within rectangular slabs of thickness \sim 2 Å and parallel to 280 the pore surfaces. From top to bottom, the results are for probe 281 volumes near the hydrophilic surface, the middle of the pore, 282 and the hydrophobic surface. For brevity, we only consider 283 results obtained for the 10-Å pore. Left and right panels are for 284 P = 100 and P = 200 bar, respectively. Results obtained for the 285 20-Å pore can be found in Figure S2 of the Supporting 286 Information.

The snapshots show that confinement affects the structure of water, with different results on the three layers considered. In

the hydration layer near the gibbsite surface (top panels in 289 Figure 4), a dense water layer is observed with few, if any, H_2 290 molecules, even at the largest pressure considered. Near the 291 siloxane surface (bottom panels), the water structure is looser, 292 allowing for more H_2 molecules to be present. In the middle 293 layer it seems like the propensity of water molecules to 294 hydrogen bond among themselves is combined with the 295 appearance of cavities where H_2 molecules can aggregate, 296 although individual hydrogen molecules can also be observed. 297

The results in Figure 4 confirm visually that confinement 298 affects the structure of confined water, which in turn controls 299 the solubility of aqueous hydrogen. Because the size of 300 hydrogen molecules is smaller than that of water and because 301 the enhanced solubility is found to be correlated with density 302 fluctuations, it is of interest to quantify how the diffusivity of 303 hydrogen gas in water changes with confinement. We start by 304 computing the self-diffusion coefficient (D) via the Einstein's 305 equation:

$$D = \frac{1}{2d} \lim_{t \to \infty} \frac{d}{dt} \left[\left\langle \frac{1}{N} \sum_{i=1}^{N} |\mathbf{r}_{d}(t) - \mathbf{r}_{d}(t_{0})|^{2} \right\rangle \right]$$
(4) 307

In eq 4, d is the number of dimensions considered, $r_d(t)$ and 308 $r_d(t_0)$ are the positions of atoms at time t and time t_0 , 309 respectively. The two-dimensional mean square displacement 310 (MSD) (d = 2) was calculated for the confined systems, 311 whereas the three-dimensional MSD (d = 3) was extracted for 312 the simulated bulk systems. The MSD results obtained for 313 water and H_2 in the kaolinite pores are shown in Figure 5. The 314 fs MSD are calculated along the plane parallel to the solid 315 substrate. The correspondent results for bulk systems are 316 shown in Figure S3 of the Supporting Information. The results, 317 in the form of self-diffusion coefficients, are summarized in 318 Table 2. Of note, our bulk diffusion coefficients are comparable 319 t2 to literature experimental and simulation data. 62,63

Visual inspection of the results in Figure 5 shows that while 321 pressure has little effect on the MSD, the pore width has a 322 strong impact on it. It is worth pointing out that the diffusion 323 coefficients obtained for H_2 in the hydrated kaolinite pores are 324 comparable to previous results obtained for C_3H_8 , CH_4 , H_2S , 325 and CO_2 . 34,35,37,64 Ghasemi et al. 21 reported H_2 diffusion in 326 water-saturated slit pores at 300 bar in the range from 4.64 \times 327 10^{-9} to 6.49×10^{-9} ($m^2 \cdot s^{-1}$) for modified montmorillonite and 328 from 7.87×10^{-9} to 12.38×10^{-9} ($m^2 \cdot s^{-1}$) for modified 329 beidellite clay substrates. These results confirm that both 330

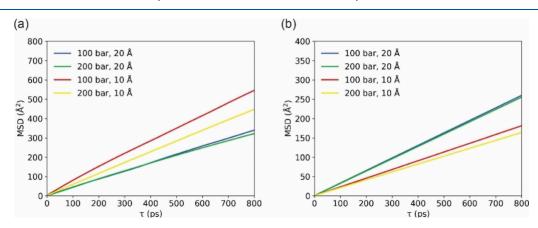
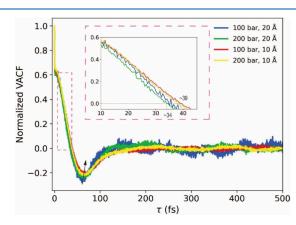


Figure 5. Two-dimensional mean square displacements (MSD) calculated for (a) hydrogen and (b) water confined in the kaolinite pores. Different colors represent different pores and different pressures. In all cases, T = 298 K.

Table 2. Diffusion Coefficients Computed for Hydrogen and Water Confined within Kaolinite Pores, Or in the Bulk, at 298 K and Different Pressures

	Self-diffusion coefficients $(10^{-10} \text{ m}^2 \cdot \text{s}^{-1})$	
System	Hydrogen	Water
100 bar, bulk	43.57 ± 1.40	26.07 ± 0.39
200 bar, bulk	68.55 ± 0.71	28.64 ± 0.81
100 bar, 20 Å	10.75 ± 0.51	08.07 ± 0.08
200 bar, 20 Å	10.32 ± 0.78	07.97 ± 0.04
100 bar, 10 Å	15.39 ± 0.22	05.72 ± 0.03
200 bar, 10 Å	13.84 ± 0.34	05.19 ± 0.08


331 confining material and pressure affect transport properties. 33,64 332 On the other hand, Liu et al. 22 reported that the $\rm H_2$ diffusion 333 coefficient in montmorillonite nanopores partially filled with 334 water is $\sim 4.25 \times 10^{-8}~(\rm m^2 \cdot s^{-1})$. This value is significantly 335 higher than those obtained here, a difference explained by the 336 fact that the pores were of width 3 nm, and only partially 337 saturated with water. As water density increased, $\rm H_2$ diffusion 338 becomes slower. 22 As another reference point, Li et al. 47 339 reported diffusion coefficients ranging from 40 to 50 \times 10 $^{-10}$ 340 ($\rm m^2 \cdot s^{-1}$) at 373 K and pressure up to 400 bar for $\rm CO_2$ confined 341 in kaolinite nanopores filled with water. These values are of the 342 same order of magnitude as those obtained in this study.

The results in Table 2 show that reducing the pore width has different effects on the diffusivity of water and H2. In the case 345 of water, decreasing pore width reduces D, even though the 346 results in Figure 3 show that reducing pore width increases 347 water density fluctuations for the systems considered here. These results are consistent with literature observations. 35,65-68 Siboulet et al.,65 e.g., demonstrated the strong 350 impact of hydrophilic surfaces on the diffusion of confined water due to the strong water-substrate interactions. In 352 addition, the reduced diffusion coefficients of water molecules $_{353}$ can be attributed to their increased collision frequency under $_{354}$ tight confinement. 66,67 The results obtained for $\rm H_2$ differ 355 substantially, as they show that reducing pore width increases 356 diffusion. Indeed, at 100 bar, the H₂ diffusion coefficients in 357 the 20 and 10 Å wide pores are 10.75×10^{-10} and $15.39 \times$ 10^{-10} (m²·s⁻¹), respectively. It is noteworthy that the D_{H_2} : D_{H_2O} 359 ratio for the 20-Å pore is lower than that obtained in the bulk, 360 while said ratio is significantly higher than in the bulk in the 10 361 Å pore.

To identify the mechanisms responsible for these observa-363 tions, we refer to Phan et al., who showed that water 364 structure and density fluctuations alter the diffusion mecha-365 nism for methane in hydrated nanopores. Because in the 366 results above water density fluctuations were found to explain 367 H_2 oversolubility in confined water, and because the increased 368 diffusion coefficient of aqueous confined hydrogen seems to be 369 uncorrelated with that of confined water, we suspect that the 370 water density fluctuations are responsible for the enhanced 371 diffusivity of confined aqueous H_2 . To probe molecular 372 differences between the transport of H_2 within the pores 373 considered here, we compute the normalized velocity-velocity 374 autocorrelation function (VACF) in the directions parallel to 375 the pore surface, via:

$$C_{vv}(\tau) = \frac{\langle v(\tau) \cdot v(0) \rangle}{\langle v(0) \cdot v(0) \rangle}$$
(5)

In eq 5, $v(\tau)$ is the velocity of one hydrogen molecule at the 377 time τ . The angular brackets indicate ensemble averages. The 378 results are shown in Figure 6. All the curves are similar, with a 379 f6

Figure 6. Normalized velocity autocorrelation function (VACF) of H_2 molecules in the hydrated pores at T=298 K, P=100, and 200 bar, and pore width 20 and 10 Å. Inset: Magnification (from 10 to 45 fs) shows the time τ that VACFs decay to 0.

quick decay in the first 100 fs, a pronounced minimum 380 indicative of changes in direction, and oscillations around zero 381 in the long time, before the curves decay to zero. These data 382 are consistent with frequent collisions between hydrogen and 383 water molecules within the pores. 69 It is notable that the results 384 obtained in the 10 -Å pore show longer characteristic times (the 385 time at which the curves touch zero for the first time, the 386 position of the minimum, and the long-time oscillations are all 387 shifted to slightly longer times). These differences are 388 consistent with 41 molecules having access to more space 389 for their motion in the smaller pore, confirming the impact of 390 water density fluctuation on the diffusivity of confined aqueous 391 H₂.

As the kaolinite surface is highly structured, we also 393 investigated whether the diffusion of H_2 and water in kaolinite 394 nanopores could be isotropic. The results, together with the 395 projections of molecular trajectories for representative H_2 and 396 H_2O molecules, are displayed in Figure S4 of the Supporting 397 Information. Our observations suggest that, while water 398 diffusion is isotropic, that of H_2 is somewhat anisotropic. 399 This confirms that the behavior of aqueous H_2 is correlated 400 with that of confined water.

To further probe the dynamics features of the confined H_2-402 H_2O system, we quantified the residence time for H_2 molecules 403 in the various hydration layers via the algorithm introduced by 404 Liu et al. 405 and described previously: 64,71 405

$$P(\tau) = \frac{1}{K} \sum_{t=1}^{K} \frac{N(t, t + \tau)}{N(t)}$$
(6) 40

In eq 6, $P(\tau)$ is the probability for H_2 to remain in the 407 interested region, K is the total number of origins averaged 408 over, $N(t,t+\tau)$ and N(t) are the number of hydrogen 409 molecules in that region at the time $t+\tau$ and t. We considered 410 regions near the siloxane surface, near the middle of the pores, 411 and near the gibbsite surface, as identified by the water density 412 profiles. The three layers were denoted as Layers I, II, and III, 413 respectively. The volume of each layer was $52.5 \times 48.5 \times 2$ 414 (\mathring{A}^3) , as shown in Figure S5 of the SI. Our results are shown in 415 Figure 7. To interpret these data, it helps remembering that the 416 f7

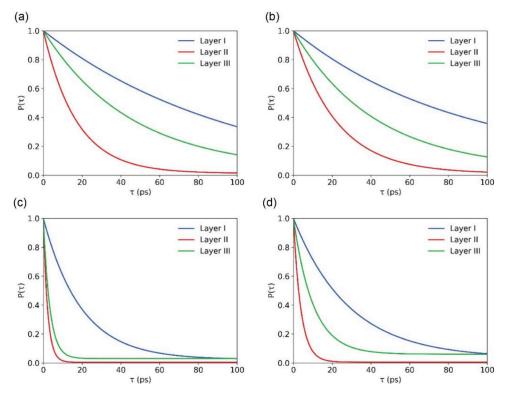


Figure 7. Residence probability of H_2 in different hydration layers for pressures and pore sizes of: (a) 100 bar, 20 Å; (b) 200 bar, 20 Å; (c) 100 bar, 10 Å; and (d) 200 bar, 10 Å. Layers I, II, and III are located near the siloxane surface, the middle of the pores, and the gibbsite surface, respectively. The volume of the probe volumes is constant, for consistency.

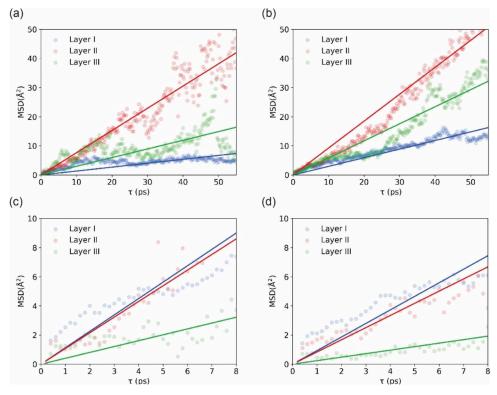


Figure 8. MSD for H_2 molecules found within different hydration layers located within kaolinite pores. Different panels are for different pore widths and different pressures: (a) 100 bar, 20 Å; (b) 200 bar, 20 Å; (c) 100 bar, 10 Å; and (d) 200 bar, 10 Å. In all cases, T = 298 K. Layers I, II, and III are located near the siloxane, middle, and gibbsite surfaces, respectively.

417 faster the decay of the probability $P(\tau)$, the faster H_2 molecules 418 leave that layer. The results in both pores show a similar order 419 of decay rate: Layer II > Layer III > Layer I, although the

residence time is significantly longer in the 20-Å than in the 420 10-Å pore. In both pores, and at all pressures considered, the 421 highest decay rate is observed in Layer II (middle of the pore), 422

489

423 suggesting that this region functions as a transition layer for 424 confined aqueous H_2 . Out of the other two hydration layers, 425 the decay rate is faster near the gibbsite surface, where the 426 hydration layer is dense and water density fluctuations are 427 lower, than near the siloxane surface. These results suggest an 428 anticorrelation between density fluctuations and residence time 429 for H_2 . This relation holds, however, only within a single pore. 430 Access to the data in Figure 7 allows us to compute the 431 MSD for H_2 molecules as a function of their location within 432 the hydrated pores, via the following equation: 70

$$\langle \Delta \mathbf{r}^{2}(\mathbf{t}) \rangle_{\{\mathbf{a},\mathbf{b}\}} = \frac{\left\langle \sum_{i \in \{\mathbf{a},\mathbf{b}\}} |\mathbf{r}_{i}(\mathbf{t}) - \mathbf{r}_{i}(\mathbf{0})|^{2} \right\rangle}{N(\mathbf{0}) \cdot P(\mathbf{t})}$$
(7)

434 In eq 7, $\langle \Delta r^2(t) \rangle_{\{a,b\}}$ represents the in-plane MSD of H₂ in 435 layer {a,b}; $\mathbf{r}_i(t)$ and $\mathbf{r}_i(0)$ are the H_2 positions at time t and 436 time t = 0; N(0) indicates the number of H_2 molecules present 437 within the layer at the time t = 0; to account for the fact that 438 the H₂ molecules in a hydration layer diffuse to other layers, 439 P(t) is the residence probability from Figure 7. When a H₂ 440 molecule leaves the region of interest, its displacement stops 441 contributing to the MSD. To maintain reasonable statistical 442 accuracy, the results, shown in Figure 8, were obtained for P(t) 443 > 0.05. It is worth noting that the resultant MSD profiles are 444 only indicative.⁷² Nevertheless, the observations are qualita-445 tively important. In particular, the results show that in the 20-Å 446 pore, H₂ transport is slowest near the siloxane surface, where 447 the density profiles of Figure 2 indicate that aqueous H₂ 448 accumulates in this pore. On the other hand, the results in 449 Figure 8 show that within the 10-Å pore, H₂ diffusion is faster 450 near the siloxane and near the middle of the pore, where most 451 of the H₂ accumulates (see Figure 2). This observation 452 explains why H₂ diffusion is faster in the narrower pore, where 453 water diffusion is the slowest.

In summary, molecular dynamics simulations were used to 455 discover the molecular mechanisms responsible for controlling 456 solubility and diffusion of hydrogen gas within hydrated 457 kaolinite nanopores. The results demonstrate a remarkable 458 enhancement in hydrogen solubility, reaching up to 25 times 459 that in bulk water in the narrower pore considered here (10 460 Å). The density profiles computed along the direction 461 perpendicular to the solid surfaces revealed pronounced 462 hydration layers, which extended across the entire pore for 463 the narrower pore considered (10 Å). Hydrogen molecules 464 show a strong preference for accumulating with respect to the 465 position of the hydration layers. These correlations were 466 explained by water density fluctuations. Because in the 10-Å 467 pore, significant density fluctuations are observed for water 468 even in the middle of the pore, hydrogen solubility in confined 469 water is significantly increased compared not only to that in 470 the bulk but also to that observed in the 20-Å pore. 471 Confinement is also found to affect transport properties. In 472 particular, while water diffusion is hindered by confinement, 473 H₂ diffusion is enhanced. Detailed data analysis, including 474 residence probability distributions, velocity-velocity autocor-475 relation functions, and estimations of the H₂ mobility within 476 different hydration layers, illustrated a pronounced heteroge-477 neous behavior for aqueous H₂ as a function of the pore width. 478 These results support the conclusion that water density 479 fluctuations, which depend on pore surface chemistry and 480 pore width, indirectly affect the properties of aqueous H_{2} , 481 thereby offering a tool for generalizing and predicting the

behavior of $\rm H_2$ in porous matrixes filled with water. Because 482 such behavior controls the permeability of $\rm H_2$, the results 483 presented here are critical for the design of underground 484 hydrogen storage facilities, in particular for preventing leaks. 485 To extrapolate the results presented here to kaolinite pores of 486 various widths, mesoscale approaches such as those based on 487 kinetic Monte Carlo simulations are recommended.

METHODOLOGY

The MD simulations were implemented using the Large-scale 490 Atomic/Molecular Massively Parallel Simulator (LAMMPS) 491 program⁷³ (version second Aug 2023). The Verlet algorithm 492 was applied to solve Newton's equations of motion with the 493 time step of 1.0 fs. 74 The temperature and pressure of the 494 simulation systems were controlled by the Nose-Hoover 495 thermostat^{75,76} and barostat.⁷⁷ The SHAKE constraint 496 algorithm⁷⁸ was used to keep the bond and the angle of 497 water molecules fixed. After energy minimization, the system 498 was initially relaxed with 5 ns running in the canonical 499 ensemble NVT (constant number of particles, volume, and 500 temperature). Subsequently, the system was equilibrated by 20 501 ns run in the isothermal-isobaric NPT ensemble (constant 502 number of particles, pressure, and temperature) followed by 503 another 20 ns of NVT run. After that, 20 ns of NVT run was 504 applied to equilibrate simulation systems. The equilibrium was 505 determined by the following observations: The temperature 506 and pressure of the system were stable, the density of hydrogen 507 and water in the bulk were comparable to thermodynamic data 508 from the National Institute of Standards and Technology 509 (NIST),⁷⁹ the number of hydrogen molecules inside the pore 510 remained constant for 2 ns. Three production runs were 511 performed in the NVT ensemble for 5 ns. The coordinates of 512 the various molecules were recorded every 200 ps of 513 simulations. After that, the fully periodic confinement systems 514 were obtained by carefully removing water and hydrogen in the 515 bulk region. Then, they were relaxed for 15 ns, followed by 516 three production runs of 5 ns, recorded every 200 fs, in the 517 NVT ensemble. The system setups are discussed with more 518

Regarding the force fields, the CLAYFF⁸⁰ and the Extended 520 Simple Point Charge (SPC/E)⁸¹ were used for the kaolinite 521 substrates and water molecules, respectively. The recently 522 developed CLAYFF force field, 82 which is able to describe pore 523 edges, was not implemented here because the behavior of 524 water and hydrogen near pore entrances was not studied. For 525 H_2 , several models have been developed over the past decades. 526 These include single-site models, $^{83-85}$ two-site models, 86 two- 527 site with quadrupole moment models, $^{87-89}$ and three-site with 528 quadrupole moment. 90,91 In this study, the single-site Buch 529 model⁸³ was applied because Tsimpanogiannis et al.⁶² reported 530 that it performs well in predicting several thermodynamic and 531 transport properties. Azeezat et al. 92 conducted a performance 532 comparison between the Buch model and the Marx force field 533 in their ability to describe H2. The findings indicated that the 534 Buch model effectively characterized contact angles and gas- 535 liquid interfacial tensions with the SPC/E water model and 536 brought hydrogen density closer to experimental data. 537 Moreover, implementing this single-site model has the added 538 benefit of reducing simulation costs. 92,93 The force field 539 parameters in this study are displayed in Table S1.

605

541 ASSOCIATED CONTENT

542 Supporting Information

s43 The Supporting Information is available free of charge at s44 https://pubs.acs.org/doi/10.1021/acs.jpclett.4c01684.

Details of simulation setup; force field parameters; atomic density profiles along the *Y*-direction; top view simulation snapshots representing water and hydrogen molecules found within a probe volume of thickness of 20 Å; MSD for hydrogen and water molecules in the bulk; diffusion coefficients in the *X*–*Y* plane and in *X* and *Y* directions of H₂ and H₂O and projection of trajectories of one representative H₂ and H₂O molecule for different conditions of pressures and pore sizes; and schematic representation for Layer I, Layer II, and Layer III (PDF)

556 AUTHOR INFORMATION

557 Corresponding Author

Alberto Striolo — School of Sustainable Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States; orcid.org/ 0000-0001-6542-8065; Email: astriolo@ou.edu

562 Authors

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

545

546

547

548

551

552

553

554

555

Khang Quang Bui – School of Sustainable Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States

Tran Thi Bao Le — School of Sustainable Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States

Gabriel D. Barbosa – School of Sustainable Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States

Dimitrios V. Papavassiliou — School of Sustainable Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States;

orcid.org/0000-0002-4583-0820

Sepideh Razavi — School of Sustainable Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States; orcid.org/0000-0003-1225-6081

580 Complete contact information is available at: 581 https://pubs.acs.org/10.1021/acs.jpclett.4c01684

582 Notes

583 The authors declare no competing financial interest.

584 ACKNOWLEDGMENTS

The authors acknowledge generous allocations of computing resources from the OU Supercomputing Center for Education & Research (OSCER) at the University of Oklahoma, S88 Norman, Oklahoma, U.S.A., and from the Stampede3 at S89 Texas Advanced Computing Center, through allocation TG-590 CHM240008 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, S92 which is supported by National Science Foundation grants \$93 #2138259, #2138286, #2138307, #2137603, and #2138296. S94 K.Q.B. appreciates insightful assistance from Dr. Anh Phan, S95 School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom, and from Dr. S98 Felipe Perez, School of Sustainable Chemical, Biological and

Materials Engineering, University of Oklahoma, Norman, 599 Oklahoma 73019, United States. A.S. acknowledges support 600 from the Asahi Glass Chair of Chemical Engineering at the 601 University of Oklahoma. This work was supported, in part, by 602 the US National Science Foundation under grant number 603 2317726.

REFERENCES

- (1) Kazi, M.-K.; Eljack, F.; El-Halwagi, M. M.; Haouari, M. Green 606 Hydrogen for Industrial Sector Decarbonization: Costs and Impacts 607 on Hydrogen Economy in Qatar. *Comput. Chem. Eng.* **2021**, *145*, 608 107144.
- (2) Dawood, F.; Anda, M.; Shafiullah, G. M. Hydrogen Production 610 for Energy: An Overview. *Int. J. Hydrogen Energy* **2020**, 45 (7), 3847–611
- (3) Yu, M.; Wang, K.; Vredenburg, H. Insights into Low-Carbon 613 Hydrogen Production Methods: Green, Blue and Aqua Hydrogen. *Int.* 614 *J. Hydrogen Energy* **2021**, *46* (41), 21261–21273.
- (4) AlHumaidan, F. S.; Absi Halabi, M.; Rana, M. S.; Vinoba, M. 616 Blue Hydrogen: Current Status and Future Technologies. *Energy* 617 Conversion and Management 2023, 283, 116840.
- (5) Lagioia, G.; Spinelli, M. P.; Amicarelli, V. Blue and Green 619 Hydrogen Energy to Meet European Union Decarbonisation 620 Objectives. An Overview of Perspectives and the Current State of 621 Affairs. Int. J. Hydrogen Energy 2023, 48 (4), 1304–1322.
- (6) Bui, T.; Frampton, H.; Huang, S.; Collins, I. R.; Striolo, A.; 623 Michaelides, A. Water/Oil Interfacial Tension Reduction an 624 Interfacial Entropy Driven Process. *Phys. Chem. Chem. Phys.* **2021**, 23 625 (44), 25075–25085.
- (7) Noussan, M.; Raimondi, P. P.; Scita, R.; Hafner, M. The Role of 627 Green and Blue Hydrogen in the Energy Transition a Technological 628 and Geopolitical Perspective. *Sustainability* **2021**, *13* (1), 298.
- (8) Al-Yaseri, A.; Esteban, L.; Yekeen, N.; Giwelli, A.; Sarout, J.; 630 Sarmadivaleh, M. The Effect of Clay on Initial and Residual 631 Saturation of Hydrogen in Clay-Rich Sandstone Formation: 632 Implications for Underground Hydrogen Storage. *Int. J. Hydrogen* 633 *Energy* **2023**, 48 (13), 5175–5185.
- (9) Hassanpouryouzband, A.; Joonaki, E.; Edlmann, K.; Haszeldine, 635 R. S. Offshore Geological Storage of Hydrogen: Is This Our Best 636 Option to Achieve Net-Zero? ACS Energy Lett. 2021, 6 (6), 2181–637 2186
- (10) Zivar, D.; Kumar, S.; Foroozesh, J. Underground Hydrogen 639 Storage: A Comprehensive Review. *Int. J. Hydrogen Energy* **2021**, 46 640 (45), 23436–23462.
- (11) Patanwar, Y. K.; Kim, H.-M.; Deb, D.; Gujjala, Y. K. 642 Underground Storage of Hydrogen in Lined Rock Caverns: An 643 Overview of Key Components and Hydrogen Embritlement 644 Challenges. *Int. J. Hydrogen Energy* **2024**, *50*, 116–133.
- (12) Sambo, C.; Dudun, A.; Samuel, S. A.; Esenenjor, P.; 646 Muhammed, N. S.; Haq, B. A Review on Worldwide Underground 647 Hydrogen Storage Operating and Potential Fields. *Int. J. Hydrogen* 648 *Energy* **2022**, 47 (54), 22840–22880.
- (13) Muhammed, N. S.; Haq, M. B.; Al Shehri, D. A.; Al-Ahmed, A.; 650 Rahman, M. M.; Zaman, E.; Iglauer, S. Hydrogen Storage in Depleted 651 Gas Reservoirs: A Comprehensive Review. *Fuel* **2023**, 337, 127032. 652
- (14) Chakraborty, S.; Kumar, H.; Dasgupta, C.; Maiti, P. K. 653 Confined Water: Structure, Dynamics, and Thermodynamics. *Acc.* 654 Chem. Res. **2017**, 50 (9), 2139–2146.
- (15) Firuznia, R.; Jahanbakhsh, A.; Nazifi, S.; Ghasemi, H. Hydrogen 656 Solubility in Confined Water. *Langmuir* **2024**, 40 (9), 4702–4708. 657
- (16) Knight, A. W.; Kalugin, N. G.; Coker, E.; Ilgen, A. G. Water 658 Properties under Nano-Scale Confinement. *Sci. Rep.* **2019**, 9 (1), 659 8246.
- (17) None, N. 2010 Annual Progress Report Doe Hydrogen Program; 661 EERE Publication and Product Library: Washington, DC (United 662 States), 2011. 663
- (18) Satyapal, S.; Petrovic, J.; Read, C.; Thomas, G.; Ordaz, G. The 664 U.S. Department of Energy's National Hydrogen Storage Project: 665

ı

- 666 Progress Towards Meeting Hydrogen-Powered Vehicle Require-667 ments. Catal. Today 2007, 120 (3), 246–256.
- 668 (19) Klebanoff, L. E.; Keller, J. O. 5 years of Hydrogen Storage 669 Research in the U.S. Doe Metal Hydride Center of Excellence 670 (Mhcoe). *Int. J. Hydrogen Energy* **2013**, 38 (11), 4533–4576.
- 671 (20) Liu, S.-Y. Hydrogen Storage by Novel Cbn Heterocycle Materials; 672 Univ. of Oregon: Eugene, OR (United States), 2015.
- 673 (21) Ghasemi, M.; Omrani, S.; Mahmoodpour, S.; Zhou, T.
- 674 Molecular Dynamics Simulation of Hydrogen Diffusion in Water-675 Saturated Clay Minerals; Implications for Underground Hydrogen
- 676 Storage (Uhs). Int. J. Hydrogen Energy 2022, 47 (59), 24871–24885.
- 677 (22) Liu, J.; Wang, S.; Javadpour, F.; Feng, Q.; Cha, L. Hydrogen 678 Diffusion in Clay Slit: Implications for the Geological Storage. *Energy* 679 Fuels 2022, 36 (14), 7651–7660.
- 680 (23) Detellier, C. Functional Kaolinite. *Chem. Rec.* **2018**, *18* (7–8), 681 868–877.
- 682 (24) Hagemann, B.; Rasoulzadeh, M.; Panfilov, M.; Ganzer, L.; 683 Reitenbach, V. Hydrogenization of Underground Storage of Natural 684 Gas. *Computational Geosciences* **2016**, 20 (3), 595–606.
- 685 (25) Miachon, S.; Syakaev, V. V.; Rakhmatullin, A.; Pera-Titus, M.; 686 Caldarelli, S.; Dalmon, J.-A. Higher Gas Solubility in Nanoliquids? 687 *ChemPhysChem* **2008**, *9* (1), 78.
- 688 (26) Wang, C.; Zhao, Y.; Wu, R.; Bi, J.; Zhang, K. Shale Reservoir 689 Storage of Hydrogen: Adsorption and Diffusion on Shale. *Fuel* **2024**, 690 357, 129919.
- 691 (27) Didier, M.. Study of Reactive Transfer of Hydrogen within Intact 692 Clay-Rock; Grenoble Univ. (France), 2012.
- 693 (28) Ho, T. A.; Jove-Colon, C. F.; Wang, Y. Low Hydrogen 694 Solubility in Clay Interlayers Limits Gas Loss in Hydrogen Geological 695 Storage. Sustainable Energy & Fuels 2023, 7 (14), 3232—3238.
- 696 (29) Zhang, H.; Luo, X.; Yang, D.; Liu, K.; Xie, Q.; Diao, R. 697 Molecular Simulation of H2 Loss by Dissolution in Caprock Water-698 Saturated Nanopores under the Nanoconfinement Effect for Under-699 ground Hydrogen Storage. *Energy Fuels* **2023**, *37* (23), 19357–19368.
- 700 (30) Yu, S.; Zheng, R.; Kang, Q.; Mehana, M. Predicted Tenfold 701 Increase of Hydrogen Solubility in Water under Pore Confinement. 702 Environmental Chemistry Letters 2024, 22 (3), 945–951.
- 703 (31) Choudhary, A.; Ho, T. A. Confinement-Induced Clustering of 704 H2 and Co2 Gas Molecules in Hydrated Nanopores. *Phys. Chem.* 705 Chem. Phys. **2024**, 26 (14), 10506–10514.
- 706 (32) Shang, Z.; Yang, Y.; Zhang, L.; Sun, H.; Zhong, J.; Zhang, K.; 707 Yao, J. Hydrogen Adsorption and Diffusion Behavior in Kaolinite Slit 708 for Underground Hydrogen Storage: A Hybrid Gcmc-Md Simulation 709 Study. *Chem. Eng. J.* **2024**, *487*, 150517.
- 710 (33) Bui, T.; Phan, A.; Cole, D. R.; Striolo, A. Transport Mechanism 711 of Guest Methane in Water-Filled Nanopores. *J. Phys. Chem. C* **2017**, 712 121 (29), 15675–15686.
- 713 (34) Ali, A.; Striolo, A.; Cole, D. R. Co2 Solubility in Aqueous 714 Electrolyte Solutions Confined in Calcite Nanopores. *J. Phys. Chem. C* 715 **2021**, 125 (22), 12333–12341.
- 716 (35) Phan, A.; Cole, D. R.; Striolo, A. Factors Governing the 717 Behaviour of Aqueous Methane in Narrow Pores. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and 719 Engineering Sciences* **2016**, 374 (2060), 20150019.
- 720 (36) Le, T.; Striolo, A.; Cole, D. R. Co2—C4h10 Mixtures Simulated 721 in Silica Slit Pores: Relation between Structure and Dynamics. *J. Phys.* 722 Chem. C 2015, 119 (27), 15274—15284.
- 723 (37) Badmos, S. B.; Striolo, A.; Cole, D. R. Aqueous Hydrogen 724 Sulfide in Slit-Shaped Silica Nanopores: Confinement Effects on 725 Solubility, Structural, and Dynamical Properties. *J. Phys. Chem. C* 726 **2018**, 122 (26), 14744–14755.
- 727 (38) Le, T. T. B.; Finney, A. R.; Zen, A.; Bui, T.; Tay, W. J.; 728 Chellappah, K.; Salvalaglio, M.; Michaelides, A.; Striolo, A. Mesoscale 729 Simulations Reveal How Salt Influences Clay Particles Agglomeration 730 in Aqueous Dispersions. *J. Chem. Theory Comput.* **2024**, 20 (4), 731 1612 1634
- 732 (39) Zen, A.; Bui, T.; Bao Le, T. T.; Tay, W. J.; Chellappah, K.; 733 Collins, I. R.; Rickman, R. D.; Striolo, A.; Michaelides, A. Long-Range 734 Ionic and Short-Range Hydration Effects Govern Strongly Aniso-

- tropic Clay Nanoparticle Interactions. J. Phys. Chem. C 2022, 126 735 (18), 8143-8151.
- (40) Kanaani, M.; Sedaee, B. Impact of Dilation and Irreversible 737 Compaction on Underground Hydrogen Storage in Depleted 738 Hydrocarbon Reservoirs. *Energy Fuels* 2022, 36 (22), 13506–13517. 739
- (41) Wiebe, R. Solubility of Hydrogen in Water at 250c from 25 to 740 1000 atm. *Industrial & Engineering Chemistry* 1932, 24 (7), 823–825. 741
- (42) Campos, M. D.; Akkutlu, I. Y.; Sigal, R. F. A Molecular 742 Dynamics Study on Natural Gas Solubility Enhancement in Water 743 Confined to Small Pores. *Proceedings - SPE Annual Technical* 744 Conference and Exhibition 2009, DOI: 10.2118/124491-MS. 745
- (43) Ho, L. N.; Schuurman, Y.; Farrusseng, D.; Coasne, B. Solubility 746 of Gases in Water Confined in Nanoporous Materials: Zsm-5, Mcm-747 41, and Mil-100. *J. Phys. Chem. C* 2015, 119 (37), 21547–21554. 748 (44) Breynaert, E.; Houlleberghs, M.; Radhakrishnan, S.; Grübel, G.; 749

Taulelle, F.; Martens, J. A. Water as a Tuneable Solvent: A 750

- Perspective. Chem. Soc. Rev. 2020, 49 (9), 2557–2569. 751 (45) Phan, A.; Cole, D. R.; Striolo, A. Aqueous Methane in Slit- 752 Shaped Silica Nanopores: High Solubility and Traces of Hydrates. J. 753
- Phys. Chem. C 2014, 118 (9), 4860–4868.
 (46) Luzar, A.; Bratko, D. Gas Solubility in Hydrophobic 755
 Confinement. J. Phys. Chem. B 2005, 109 (47), 22545–22552.
 756
- (47) Li, W.; Nan, Y.; Zhang, Z.; You, Q.; Jin, Z. Hydrophilicity/ 757 Hydrophobicity Driven Co2 Solubility in Kaolinite Nanopores in 758 Relation to Carbon Sequestration. *Chem. Eng. J.* **2020**, 398, 125449. 759
- (48) Apostolopoulou, M.; Santos, M. S.; Hamza, M.; Bui, T.; 760 Economou, I. G.; Stamatakis, M.; Striolo, A. Quantifying Pore Width 761 Effects on Diffusivity Via a Novel 3d Stochastic Approach with Input 762 from Atomistic Molecular Dynamics Simulations. *J. Chem. Theory* 763 *Comput.* **2019**, *15* (12), 6907–6922.
- (49) Apostolopoulou, M.; Stamatakis, M.; Striolo, A.; Dusterhoft, R.; 765 Hull, R.; Day, R. A Novel Modeling Approach to Stochastically 766 Evaluate the Impact of Pore Network Geometry, Chemistry and 767 Topology on Fluid Transport. *Transport in Porous Media* **2021**, 136 768 (2), 495–520.
- (50) Ho, L. N.; Clauzier, S.; Schuurman, Y.; Farrusseng, D.; Coasne, 770 B. Gas Uptake in Solvents Confined in Mesopores: Adsorption Versus 771 Enhanced Solubility. *J. Phys. Chem. Lett.* **2013**, *4* (14), 2274–2278. 772
- (51) Andoh, Y.; Yoshii, N.; Yamada, A.; Fujimoto, K.; Kojima, H.; 773 Mizutani, K.; Nakagawa, A.; Nomoto, A.; Okazaki, S. All-Atom 774 Molecular Dynamics Calculation Study of Entire Poliovirus Empty 775 Capsids in Solution. *J. Chem. Phys.* **2014**, *141* (16), 165101.
- (52) Pollack, G. L. Why Gases Dissolve in Liquids. *Science* **1991**, 251 777 (4999), 1323–1330.
- (53) Israelachvili, J. N. Intermolecular and Surface Forces; Academic 779 press, 2011.
- (54) Ho, T. A.; Ilgen, A. Density Fluctuation in Aqueous Solutions 781 and Molecular Origin of Salting-out Effect for Co2. *J. Phys. Chem. B* 782 **2017**, *121* (51), 11485–11491.
- (55) Hillyer, M. B.; Gibb, B. C. Molecular Shape and the 784 Hydrophobic Effect. *Annu. Rev. Phys. Chem.* **2016**, 67, 307–329.
- (56) Ball, P. Water as an Active Constituent in Cell Biology. *Chem.* 786 *Rev.* **2008**, *108* (1), 74–108.
- (57) Rego, N. B.; Patel, A. J. Understanding Hydrophobic Effects: 788 Insights from Water Density Fluctuations. *Annual Review of Condensed* 789 *Matter Physics* **2022**, 13, 303–324.
- (58) Hummer, G.; Garde, S.; García, A. E.; Pohorille, A.; Pratt, L. R. 791 An Information Theory Model of Hydrophobic Interactions. *Proc.* 792 Natl. Acad. Sci. U. S. A. 1996, 93 (17), 8951–8955.
- (59) Godawat, R.; Jamadagni, S. N.; Garde, S. Characterizing 794 Hydrophobicity of Interfaces by Using Cavity Formation, Solute 795 Binding, and Water Correlations. *Proc. Natl. Acad. Sci. U. S. A.* **2009**, 796 106 (36), 15119–15124.
- (60) Jamadagni, S. N.; Godawat, R.; Garde, S. Hydrophobicity of 798 Proteins and Interfaces: Insights from Density Fluctuations. *Annu.* 799 *Rev. Chem. Biomol. Eng.* **2011**, *2*, 147–171.
- (61) Maginn, E. J.; Messerly, R. A.; Carlson, D. J.; Roe, D. R.; Elliot, 801 J. R. Best Practices for Computing Transport Properties 1. Self- 802 Diffusivity and Viscosity from Equilibrium Molecular Dynamics 803

- 804 [Article V1.0]. Living Journal of Computational Molecular Science **2020**, 805 2 (1), 6324.
- 806 (62) Tsimpanogiannis, I. N.; Maity, S.; Celebi, A. T.; Moultos, O. A. 807 Engineering Model for Predicting the Intradiffusion Coefficients of 808 Hydrogen and Oxygen in Vapor, Liquid, and Supercritical Water 809 Based on Molecular Dynamics Simulations. *Journal of Chemical & 810 Engineering Data* **2021**, 66 (8), 3226–3244.
- 811 (63) Krynicki, K.; Green, C. D.; Sawyer, D. W. Pressure and 812 Temperature Dependence of Self-Diffusion in Water. *Faraday Discuss*. 813 *Chem. Soc.* **1978**, 66 (0), 199–208.
- 814 (64) Le, T. T. B.; Striolo, A.; Gautam, S. S.; Cole, D. R. Propane—815 Water Mixtures Confined within Cylindrical Silica Nanopores: 816 Structural and Dynamical Properties Probed by Molecular Dynamics. 817 *Langmuir* **2017**, 33 (42), 11310–11320.
- 818 (65) Siboulet, B.; Molina, J.; Coasne, B.; Turq, P.; Dufreche, J. F. 819 Water Self-Diffusion at the Surface of Silica Glasses: Effect of 820 Hydrophilic to Hydrophobic Transition. *Mol. Phys.* **2013**, *111* (22–821 23), 3410–3417.
- 822 (66) Liu, Y.-C.; Wang, Q.; Lu, L.-H. Water Confined in Nanopores: 823 Its Molecular Distribution and Diffusion at Lower Density. *Chem.* 824 *Phys. Lett.* **2003**, 381 (1), 210–215.
- 825 (67) Corral-Casas, C.; Gibelli, L.; Borg, M. K.; Li, J.; Al-Afnan, S. F. 826 K.; Zhang, Y. Self-Diffusivity of Dense Confined Fluids. *Phys. Fluids* 827 **2021**, 33 (8), 082009.
- 828 (68) Farmahini, A. H.; Bhatia, S. K. Differences in the Adsorption 829 and Diffusion Behaviour of Water and Non-Polar Gases in 830 Nanoporous Carbon: Role of Cooperative Effects of Pore Confine-831 ment and Hydrogen Bonding. *Mol. Simul.* 2015, 41 (5–6), 432–445. 832 (69) Oliver, M. C.; Zheng, R.; Huang, L.; Mehana, M. Molecular 833 Simulations of Hydrogen Diffusion in Underground Porous Media: 834 Implications for Storage under Varying Pressure, Confinement, and 835 Surface Chemistry Conditions. *Int. J. Hydrogen Energy* 2024, 65, 540– 836 547.
- 837 (70) Liu, P.; Harder, E.; Berne, B. J. On the Calculation of Diffusion 838 Coefficients in Confined Fluids and Interfaces with an Application to 839 the Liquid–Vapor Interface of Water. *J. Phys. Chem. B* **2004**, 108 840 (21), 6595–6602.
- 841 (71) Argyris, D.; Cole, D. R.; Striolo, A. Dynamic Behavior of 842 Interfacial Water at the Silica Surface. *J. Phys. Chem. C* **2009**, *113* 843 (45), 19591–19600.
- 844 (72) Mutisya, S. M.; Kirch, A.; de Almeida, J. M.; Sanchez, V. M.; 845 Miranda, C. R. Molecular Dynamics Simulations of Water Confined 846 in Calcite Slit Pores: An NMR Spin Relaxation and Hydrogen Bond 847 Analysis. J. Phys. Chem. C 2017, 121, 6674.
- 848 (73) Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. 849 S.; Brown, W. M.; Crozier, P. S.; in 't Veld, P. J.; Kohlmeyer, A.; 850 Moore, S. G.; Nguyen, T. D.; et al. Lammps a Flexible Simulation 851 Tool for Particle-Based Materials Modeling at the Atomic, Meso, and 852 Continuum Scales. *Comput. Phys. Commun.* 2022, 271, 108171.
- 853 (74) Verlet, L. Computer "Experiments" on Classical Fluids. I. 854 Thermodynamical Properties of Lennard-Jones Molecules. *Phys. Rev.* 855 **1967**, *159* (1), 98–103.
- 856 (75) Nosé, S. A Molecular Dynamics Method for Simulations in the 857 Canonical Ensemble. *Mol. Phys.* **1984**, *52* (2), 255–268.
- 858 (76) Hoover, W. G. Canonical Dynamics: Equilibrium Phase-Space 859 Distributions. *Phys. Rev. A* **1985**, *31* (3), 1695–1697.
- 860 (77) Parrinello, M.; Rahman, A. Polymorphic Transitions in Single 861 Crystals: A New Molecular Dynamics Method. *J. Appl. Phys.* **1981**, *52* 862 (12), 7182–7190.
- 863 (78) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. Numerical 864 Integration of the Cartesian Equations of Motion of a System with 865 Constraints: Molecular Dynamics of N-Alkanes. *J. Comput. Phys.* 866 **1977**, 23 (3), 327–341.
- 867 (79) Linstrom, P. J.; Mallard, W. G. The Nist Chemistry Webbook: 868 A Chemical Data Resource on the Internet. *Journal of Chemical & Begineering Data* **2001**, 46 (5), 1059–1063.
- 870 (80) Cygan, R. T.; Liang, J.-J.; Kalinichev, A. G. Molecular Models 871 of Hydroxide, Oxyhydroxide, and Clay Phases and the Development 872 of a General Force Field. *J. Phys. Chem. B* **2004**, *108* (4), 1255–1266.

- (81) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The Missing 873 Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91 (24), 6269—874
- (82) Pouvreau, M.; Greathouse, J. A.; Cygan, R. T.; Kalinichev, A. G. 876 Structure of Hydrated Kaolinite Edge Surfaces: Dft Results and 877 Further Development of the Clayff Classical Force Field with Metal—878 O—H Angle Bending Terms. J. Phys. Chem. C 2019, 123 (18), 879 11628–11638.
- (83) Buch, V. Path Integral Simulations of Mixed Para-D2 and 881 Ortho-D2 Clusters: The Orientational Effects. *J. Chem. Phys.* **1994**, 882 100 (10), 7610–7629.
- (84) Köster, A.; Thol, M.; Vrabec, J. Molecular Models for the 884 Hydrogen Age: Hydrogen, Nitrogen, Oxygen, Argon, and Water. 885 *Journal of Chemical & Engineering Data* **2018**, *63* (2), 305–320. 886
- (85) Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B.. The Molecular 887 Theory of Gases and Liquids; John Wiley & Sons, 1964.
- (86) Yang, Q.; Zhong, C. Molecular Simulation of Adsorption and 889 Diffusion of Hydrogen in Metal—Organic Frameworks. *J. Phys. Chem.* 890 B **2005**, 109 (24), 11862–11864.
- (87) Marx, D.; Nielaba, P. Path-Integral Monte Carlo Techniques 892 for Rotational Motion in Two Dimensions: Quenched, Annealed, and 893 No-Spin Quantum-Statistical Averages. *Phys. Rev. A* **1992**, 45 (12), 894 8968–8971.
- (88) Bouanich, J. P. Site-Site Lennard-Jones Potential Parameters for 896 N2, O2, H2, Co and Co2. *Journal of Quantitative Spectroscopy and* 897 *Radiative Transfer* **1992**, 47 (4), 243–250.
- (89) Sun, Y.; DeJaco, R. F.; Li, Z.; Tang, D.; Glante, S.; Sholl, D. S.; 899 Colina, C. M.; Snurr, R. Q.; Thommes, M.; Hartmann, M. 900 Fingerprinting Diverse Nanoporous Materials for Optimal Hydrogen 901 Storage Conditions Using Meta-Learning. *Science Advances* 2021, 902 DOI: 10.1126/sciadv.abg3983.
- (90) Belof, J. L.; Stern, A. C.; Space, B. An Accurate and 904 Transferable Intermolecular Diatomic Hydrogen Potential for 905 Condensed Phase Simulation. *J. Chem. Theory Comput.* **2008**, 4 (8), 906 1332–1337.
- (91) Belof, J. L.; Stern, A. C.; Space, B. A Predictive Model of 908 Hydrogen Sorption for Metal–Organic Materials. J. Phys. Chem. C 909 **2009**, 113 (21), 9316–9320.
- (92) Ali, A.; Cole, D. R.; Striolo, A. Cushion Gas Effects on Clay- 911 Hydrogen-Brine Wettability at Conditions Relevant to Underground 912 Gas Storage. *Int. J. Hydrogen Energy* **2024**, 58, 668–677. 913
- (93) Barraco, M.; Neyertz, S.; Benes, N. E.; Brown, D. Comparison 914 of Eight Classical Lennard-Jones-Based H2Molecular Models in the 915 Gas Phase at Temperatures and Pressures Relevant to Hydrogen on- 916 Board Storage Tanks. J. Phys. Chem. A 2023, 127 (30), 6335–6346. 917