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ABSTRACT: We develop a functional derivative approach to calculate the chemical potentials of second-order perturbation theory
(MP2). In the functional derivative approach, the correlation part of the MP2 chemical potential, which is the derivative of the MP2
correlation energy with respect to the occupation number of frontier orbitals, is obtained from the chain rule via the noninteracting
Green’s function. First, the MP2 correlation energy is expressed in terms of the noninteracting Green’s function, and its functional
derivative to the noninteracting Green’s function is the second-order self-energy. Then, the derivative of the noninteracting Green’s
function to the occupation number is obtained by including the orbital relaxation effect. We show that the MP2 chemical potentials
obtained from the functional derivative approach agree with that obtained from the finite difference approach. The one-electron
Hamiltonian, defined as the derivative of the MP2 energy with respect to the one particle density matrix, is also derived using the
functional derivative approach, which can be used in the self-consistent calculations of MP2 and double-hybrid density functionals.
The developed functional derivative approach is promising for calculating the chemical potentials and the one-electron Hamiltonian
of approximate functionals and many-body perturbation approaches dependent explicitly on the noninteracting Green’s function.

■ INTRODUCTION
The chemical potential, defined as the derivative of total
energy E with respect to N, the total number of electrons at the
fixed external potential, is one of the most important concepts
for studying fundamental electronic properties in molecules
and materials, such as electron transfer and chemical
reactivity.1 The chemical potentials of the electron removal
and addition processes are equal to the negative of the
ionization potential (IP) and the electron affinity (EA) based
on the exact E(N) linear condition.2,3 Although these
quantities can be measured by photoemission and inverse
photoemission spectroscopy, the computational study can
provide insights into understanding electronic structures from
basic principles. In the past decades, much effort has been
devoted to develop quantum chemistry approaches to predict
chemical potentials. Kohn−Sham density functional theory1,4

(KS-DFT), as the most popular approach in modern quantum
chemistry, has been widely used for molecular and periodic
systems.5−7 In the (generalized) KS-DFT formalism, the
orbital energies of the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital
(LUMO) have been shown to be rigorously the chemical
potentials for electron removal and electron addition for
exchange−correlation energy functionals that are continuous
in the KS density matrix.8 In such cases, which include all
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commonly used exchange−correlation energy functional
approximations such as GGA, meta GGA, hybrid, and
perturbation-theory-based approximations, the HOMO and
LUMO energies are well justified to approximate the negative
of the IP and EA because the chemical potentials of the exact
functional are the negative of the IP and EA based on the
linearity condition for fractional electron numbers.2,8 For the
exact functional, it has been shown to be discontinuous for
strongly correlated systems.9 Therefore, for strongly correlated
systems, the chemical potentials are equal to the HOMO and
LUMO orbital energies plus the discontinuity contributions.
However, DFT has an undesired dependence on the density
functional approximations (DFAs), and its accuracy is affected
by the intrinsic delocalization error.10,11 Alternatively, Green’s
function formalisms such as GW12−15 and T-matrix16−18

approximations can be applied for reliable predictions of the
chemical potential. In Green’s function formalism, the IP and
EA are predicted by the quasiparticle energy that directly
measures the charged excitation energy. It has been shown that
Green’s function approaches substantially improve the
accuracy of predicting energy levels over the KS-DFT
approach for both occupied and unoccupied states, which
are the key quantities to calculate IPs, EAs, and core-level
binding energies.16,17,19−25,25−33

The second-order perturbation theory34,35 (MP2) has been
a long-standing method in the quantum chemistry community.
MP2 has been widely employed for predicting many energetic
and geometric properties including the electron density,
geometry, and energy barrier for both molecular and periodic
systems.36−40 The success of MP2 stems from the improve-
ment over the Hartree−Fock (HF) method and the favorable
computational cost compared with those of coupled cluster
methods. In addition, the MP2 density matrix is broadly used
to generate natural orbitals for the quantum embedding
theory.41,42 However, it is well-known that MP2 fails to
describe open-shell systems and transition-metal com-
plexes.43−45 To address this issue, various methods based on
conventional MP2 including spin-component-scaled
MP243,46,47 (SCS-MP2), orbital-optimized MP245,48−50 (OO-
MP2), and regularized MP251,52 have been developed. The
form of the MP2 correlation energy has also been applied in
DFT as an approximation to the Görling−Levy second-order
perturbation correlation energy,53 which leads to the double-
hybrid functional. In the double-hybrid functional calculations,
in addition to the hybridization of the HF exchange, the MP2
correlation energy evaluated with KS orbitals is mixed with a
certain portion of the correlation energy.54−56 A large number
of double-hybrid functionals have been developed in the past
decades, which significantly outperform conventional DFAs for
predicting a broad range of properties including geometries,
dissociation energies, thermochemistry, and thermochemical
kinetics.57−77 Recently, the Møller−Plesset adiabatic con-
nection approach that recovers MP2 at small coupling
strengths and the correct large-coupling strength expansion
has been shown to describe the noncovalent interaction
well.78,79 To calculate the chemical potential, the ΔMP2
approach, which calculates the IP and EA by the total energy
difference at integer electron numbers, has been used.80−86

Similar to ΔMP2, IPs and EAs can be obtained from the total
energy difference of double-hybrid functional calculations at
integer electron numbers, which are shown to provide
improved accuracy over HF and conventional DFAs.87 MP2
has also been applied in Green’s function formalism. The

second-order Green’s function theory (GF2), which corrects
the HF orbital energy by the second-order self-energy, has also
been applied to predict accurate IPs and EAs HF.88 Recently,
the equation-of-motion MP2 (EOM-MP2) approach has also
been developed to calculate IPs and EAs of molecules and
solids.89,90 However, IPs and EAs obtained from these
approaches are not the rigorous MP2 chemical potentials,
which are the derivatives of the MP2 energy with respect to the
particle number.
The extension of MP2 to fractional charge and fraction spin

systems has been established by Yang et al.,91 which allows one
to obtain the rigorous MP2 chemical potential. As shown in ref
91, MP2, random phase approximation88,92 (RPA), particle−
particle random phase approximation93,94 (ppRPA), and a
large class of many-body perturbation approaches can be
expressed as functionals of the noninteracting Green’s
function. The fractional formulation of the MP2 correlation
energy is achieved by using the ensemble average of the
noninteracting Green’s function, which is constructed with
occupation-scaled orbitals.91 In fractional MP2 calculations,
the fractional charge self-consistent HF calculation is
performed first, and then the MP2 correlation energy is
evaluated with the HF orbitals obtained for the fractional
charge system.8 With the MP2 correlation energies of the
integer and fractional systems, the MP2 chemical potential can
be obtained by the finite difference approach, which differ-
entiates the MP2 energy expression with respect to the frontier
occupation number with the finite difference. It shows that
using the MP2 chemical potential provides better agreement
with the experiment IP and EA results compared with using
HF orbital energy.95 By using the fractional formulation of
MP2, the analytical approach to calculate the MP2 chemical
potential was developed in ref 96. In the analytical approach,
the derivative of the MP2 correlation energy to the occupation
number is evaluated explicitly, where the orbital relaxation
effect is included by solving the coupled-perturbed HF97−99

equation. It shows that chemical potentials obtained from the
analytical approach agree well with those obtained from the
finite difference approach.96 Then, the analytical approach was
further applied to calculate the chemical potential of double-
hybrid functionals, which shows that the chemical potential of
double-hybrid functionals provides smaller errors for predict-
ing IPs and EAs compared with those of HF and conventional
DFAs.87 The analytical approach only needs a system with an
integer electron number and thus avoids systems with
fractional charge. However, the analytical approach for MP2
cannot be easily extended to other many-body perturbation
approaches relying on the noninteracting Green’s function.
In the present work, we introduce a functional derivative

approach to calculate the MP2 chemical potential. As shown in
ref 91, the MP2 correlation energy can be expressed as the
integration of the noninteracting Green’s function and the
second-order self-energy on the real frequency axis, which
allows us to calculate the MP2 chemical potential with the
chain rule via the noninteracting Green’s function. In the
functional derivative approach, we first take the functional
derivative of the MP2 correlation energy with respect to the
noninteracting Green’s function, which gives the second-order
self-energy. Then, the derivative of the noninteracting Green’s
function with respect to the occupation number is obtained by
solving the CP-HF equation. We show that the MP2 chemical
potentials obtained from the functional derivative approach
agree with those obtained from the finite difference approach.
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As shown in Section 2 in the Supporting Information, for MP2,
the functional derivative approach is equivalent to the
analytical approach in ref 96. However, the functional
derivative approach developed in this work can be easily
applied to approximate functionals and many-body perturba-
tion approaches relying on the noninteracting Green’s
function, such as RPA and ppRPA. Previously, the self-
consistent calculation of perturbation theory-based functionals
was performed with the optimized effective potential
method.100,101 In this work, we derive the MP2 Hamiltonian
using the functional derivative approach, which can be used in
the self-consistent calculations of MP2 and double-hybrid
functionals in the generalized KS framework with a nonlocal
one-electron effective potential.

■ METHODS
The traditional MP2 correlation energy35,102 has been
extended to include fractional electrons as91,95

E n n n n
pq rs rs pq1

4
(1 )(1 )

pqrs
p q r s

p q r s
c
MP2 =

+
(1)

where n is the occupation number, ϵ is the orbital energy, and
the two-electron integral is defined as ⟨pq∥rs⟩ = ⟨pq|rs⟩ − ⟨pq|

sr⟩ with pq rs x xd d
x x x x

r r

( ) ( ) ( ) ( )p r q s| = | | . We use i, j, k, and l
for occupied orbitals; a, b, c, and d for virtual orbitals; and p, q,
r, and s for general orbitals. Equation 1 is initially used as the
finite-temperature extension of MP2 with the fractional
occupations from finite temperature excitations103 and then
is derived for fractional systems at zero temperature in ref 91.
As shown in ref 91, the MP2 correlation energy can be

expressed as the integration of the noninteracting Green’s
function and the second-order self-energy on the real
frequency axis
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where ω is the frequency and η is a positive infinitesimal
number. In eq 2, the fractional extension of the noninteraction
Green’s function G0 in the real space is defined as91
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Note that the fractional orbital is considered to be both the
occupied orbital and the virtual orbital. Thus, the fractional
orbitals enter both occupied and virtual sets in eq 3.
The second-order self-energy in eq 2 is defined as88,91,104
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which can be separated into two parts
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As shown in eqs 5 and 6, Σ+(2) has poles below the real
frequency axis and Σ−(2) has poles above the real frequency
axis. The second-order self-energy in eq 4 is used in GF2 to
calculate dissociation energies, band structures, and other
properties of molecular and periodic systems.88,105−109

With eq 2, the derivative of the MP2 correlation energy to
the occupation number can be obtained from the chain rule via
the noninteracting Green’s function

E
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As shown in eq 2, the functional derivative of the MP2
correlation energy to the noninteraction Green’s function in eq
7 is simply the second-order self-energy
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Then, with eq 3, the derivative of the noninteracting Green’s
function with respect to the occupation number consists of
three parts
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where the derivative of the orbital energy to the occupation
number
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and the derivative of the orbital to the occupation number

n
U

d

d
q

p r
r qr

p=
(11)

are solved from the CP-HF equation.97−99 In eq 10, the partial
derivative of the orbital energy to the occupation number

qp qp
n

q

p
= is also called the “higher-order term” in ref 82.
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Then, we evaluate the three parts in eq 9 separately. The first
part in eq 9 is the explicit dependence of the noninteracting
Green’s function on the orbital occupation number
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The second part in eq 9 is the dependence of the
noninteracting Green’s function on the orbital energy
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The third part in eq 9 is the dependence of the noninteracting
Green’s function on the orbital
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With eqs 12−14, the integral in eq 7 can be performed on
the complex plane by using the residue theorem with the
contour closing on either the upper half or the lower half plane.
Then, the resulting derivative of the MP2 correlation energy
with respect to the occupation number consists of the
following three parts.
Using eq 12, the first part is

I ( ) ( ) ( )pp p pp p pp p
(2) (2) (2)= = ++

(16)

which is simply the diagonal element of the second-order self-
energy, as shown in refs 91 and 95.
Using eq 13, the second part is
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where the diagonal element of the first-order derivative of the
second-order self-energy to the frequency is
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Using eq 14, the third part is
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Combining the above three parts together leads to the full
derivative of the MP2 correlation energy to the occupation
number
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Because the derivative of the HF total energy to the occupation
number is the HF orbital energy,8,95 the MP2 chemical
potential, which is the derivative of the MP2 total energy to the
occupation number, is given by

E
n

E
n

d
d

d
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p
p

MP2
HF c

MP2

= +
(22)

Equation 22 gives the IP when p is the HOMO index and the
EA when p is the LUMO index.
The chain rule used for the MP2 correlation energy in eq 7

can be generalized as

E
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=
(23)

Because the derivative of the noninteracting Green’s function
to the occupation number in eq 23 is not dependent on the
correlation energy, it is possible to apply this functional
derivative approach to calculate the chemical potential of other
approximate functionals and many-body perturbation ap-
proaches relying on the noninteracting Green’s function.
Similar to eq 7, the correlation part of the MP2 Hamiltonian

can also be derived using the functional derivative approach by
taking the derivative of the noninteracting Green’s function G0

to the density matrix ρ

H
E E
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c
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As shown in Section 3 in the Supporting Information, the
derivative of the noninteracting Green’s function to the density
matrix is
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where ρs is the density matrix, Is s= is the density matrix
of the virtual space, and f Hxc is the Hartree-exchange-
correlation (Hxc) kernel defined as the functional derivative
of the Hxc potential to the density matrix
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and the function g(x1, x2, ω) is defined as
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Then, the resulting expression of the Hamiltonian is
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In eq 28, the last term that contains the second-order self-
energy is dominant, which is similar to the GF2 Hamiltonian
with quasiparticle approximation. Similar to the MP2
correlation energy in eq 1 and the second-order self-energy
in eq 4, the MP2 Hamiltonian has a divergence issue for
systems with a small or vanished band gap, where further
studies are needed in future works.

■ COMPUTATIONAL DETAILS
We implemented the functional derivative approach for MP2
chemical potential in the QM4D quantum chemistry pack-
age.110 In calculations of the correlation part of MP2 chemical
potentials obtained from the functional derivative approach
and the finite difference approach, the cc-pVTZ basis
set111−113 was used for CH4, NH3, and H2O. The cc-pVQZ
basis set111−113 was used for the remaining atomic systems.
Geometries of CH4, NH3, and H2O were taken from ref 114.
In the finite difference approach, the difference in the electron
number was 10−4. In the calculations of the IPs and EAs of
molecular systems, the cc-pVTZ basis set111−113 was used.
Geometries and experiment values were taken from ref 19. The
CCSD(T) results calculated from GAUSSIAN16 A.03
software115 were also used as a reference. All other calculations
were performed with a QM4D. QM4D uses Cartesian basis
sets and the resolution of identity86,116,117 (RI) technique to
compute two-electron integrals in calculations for the MP2

chemical potential. All basis sets and corresponding fitting
basis sets were taken from the Basis Set Exchange.118−120

■ RESULTS
Validation of the Functional Derivative Approach for

the MP2 Chemical Potential. We first examined the
correlation part of the MP2 chemical potential obtained
from the functional derivative approach at different levels of
approximations. The finite difference approach and the finite
difference approach with frozen orbitals were used as the
reference. In the finite difference approach with frozen orbitals,
the MP2 correlation energy of fractional charge systems was
evaluated with the HF orbitals of the corresponding integer
electron system. The finite difference of the electron number
was set to 10−4 in two finite difference approaches. The mean
absolute errors (MAEs) of the derivative of the MP2
correlation energy to the HOMO and the LUMO occupation
numbers obtained from the functional derivative approach at
different levels of approximations compared with the results
obtained from two finite difference approaches are listed in
Table 1 and Table 2. The first-level approximation (I) only

considers the explicit dependence of the MP2 correlation
energy on the occupation number, which is simply the diagonal
element of the second-order self-energy, as shown in eq 16. It
shows that the first-level approximation provides an MAE
smaller than 0.2 eV for the derivative to the HOMO
occupation number and smaller than 0.1 eV for the derivative
to the LUMO occupation number, which agrees with the
results in ref 96. Because the orbital relaxation effect is ignored
in the first-level approximation, the results from the first-level
approximation and the finite difference approach with frozen
orbitals are very close. At the first-level approximation, the
functional derivative approach underestimates the derivative to
the HOMO occupation number and overestimates the
derivative to the LUMO occupation number. The first-level
approximation gives similar results to the orbital energies

Table 1. MAEs of the Correlation Part of the MP2
Correlation Energy with Respect to the HOMO Occupation
Number Obtained from the Functional Derivative Approach
at Different Levels Compared with the Finite Difference
Approach and the Finite Difference Approach with Frozen
Orbitalsa

finite diff finite diff (frozen) I I + II I + II + III

Be −0.27 −0.56 −0.56 −0.47 −0.27
B 0.50 0.22 0.22 0.19 0.50
C 0.83 0.60 0.60 0.58 0.83
N 1.25 1.07 1.08 1.05 1.25
O 1.26 1.17 1.17 1.17 1.26
F 2.11 2.12 2.13 2.07 2.11
CH4 1.09 0.79 0.79 0.77 1.09
NH3 1.93 1.62 1.63 1.56 1.93
H2O 2.73 2.57 2.58 2.46 2.73
MAE 0.27 0.26 0.29 0.00

aIn the finite difference approach with frozen orbitals, the MP2
correlation energy of fractional charge systems was evaluated with the
HF orbitals of integer electron systems. In finite difference
approaches, the difference of the electron number was 10−4. The
cc-pVTZ basis set was used for CH4, NH3, and H2O. The cc-pVQZ
basis set was used for atomic systems. Geometries of CH4, NH3, and
H2O were taken from ref 114. All values are in eV.
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obtained from diagonalizing the MP2 Hamiltonian defined in
eq 28. Then, we examine the second-level approximations (I +
II) that further consider the dependence of the MP2
correlation energy on the orbital energy. It shows that the
second-level approximation provides similar or slightly larger
MAEs compared to those of the first-level approximation. As
shown in Table 1, the second-level approximation further
underestimates the derivative to the HOMO occupation
number by around 0.05 eV. And in Table 2, the second-level
approximation gives values that are more negative compared
with those of the first-level approximation, which leads to
similar MAEs. The results of the second-level approximation in
this work agree well with the results that include the
dependence on the orbital energy in ref 96. The accurate

derivative to the occupation number is obtained by the third-
level approximation (I + II + III). In the third-level
approximation, the full derivative of the MP2 correlation
energy to the occupation number is obtained by further
including the dependence on the orbital. The MAEs of the
third-level approximation for calculating the derivative to the
HOMO and LUMO occupation numbers are 0.0 eV, which
means that the results obtained from the functional derivative
approach completely agree with the finite difference approach
when the orbital relaxation effect is taken into account.
Therefore, we demonstrate that the functional derivative

approach is capable of predicting accurate chemical potentials
of MP2, which has a simpler form than the analytical approach
in ref 96. The equivalence between the functional derivative
approach and the analytical approach in ref 96 for calculating
MP2 chemical potentials is shown in Section 2 in the
Supporting Information.

IPs and EAs Obtained from the MP2 Chemical
Potentials. Then, we examine the performance of using the
MP2 chemical potential for predicting the IPs and EAs of
molecular systems. The MAEs of calculated IPs and EAs
obtained from HF, MP2, ΔHF, ΔMP2, and GF2 compared
with CCSD(T) results and experimental results are shown in
Tables 3 and 4. MP2 means the MP2 chemical potential
obtained from the functional derivative approach. In Table 4 of
the EA results, MAEs of all systems and bound systems are
shown separately. As shown in the literature,121,122 the
prediction of EAs highly depends on basis sets. To obtain
fully converged EA results, augmented basis sets and
extrapolation schemes are needed.121,122 In this work, we
focus on a comparison between the functional derivative
approach and the analytical approach. Thus, the cc-pVTZ basis
set was used.
For the prediction of IPs, using HF orbital energies provides

a relatively small MAE of 0.77 eV for the small molecular
systems in the test set. Because of the lack of correlation
effects, ΔHF is known to have a poor description for anion
systems.96 Thus, ΔHF has a large MAE of 1.16 eV. By
including the correlation effects, ΔMP2 provides the smallest

Table 2. MAEs of the Correlation Part of the MP2
Correlation Energy with Respect to the LUMO Occupation
Number Obtained from the Functional Derivative Approach
at Different Levels Compared with the Finite Difference
Approach and the Finite Difference Approach with Frozen
Orbitalsa

finite diff finite diff (frozen) I I + II I + II + III

Be −0.42 −0.47 −0.48 −0.55 −0.42
B −0.96 −0.96 −0.96 −1.07 −0.96
C −1.67 −1.61 −1.61 −1.75 −1.66
N −2.03 −2.03 −2.00 −2.10 −2.03
O −3.19 −3.19 −3.05 −3.22 −3.19
F −4.53 −4.24 −4.25 −4.48 −4.53
CH4 −0.59 −0.58 −0.58 −0.64 −0.59
NH3 −0.65 −0.61 −0.62 −0.70 −0.65
H2O −0.60 −0.60 −0.55 −0.64 −0.60
MAE 0.07 0.07 0.06 0.00

aIn the finite difference approach with frozen orbitals, the MP2
correlation energy of fractional charge systems was evaluated with the
HF orbitals of integer electron systems. In finite difference
approaches, the difference of the electron number was 10−4. The
cc-pVTZ basis set was used for CH4, NH3, and H2O. The cc-pVQZ
basis set was used for atomic systems. Geometries of CH4, NH3, and
H2O were taken from ref 114. All values are in eV.

Table 3. MAEs of the Calculated IPs of Molecular Systems Obtained from HF, MP2, ΔHF, ΔMP2, and GF2a

HF ΔHF MP2 ΔMP2 GF2 CCSD(T) exp

BeO 10.50 7.72 8.29 10.31 7.78 9.97 10.10
BN 11.15 9.78 13.33 11.70 12.04 11.98
Cl2 12.06 11.10 10.67 11.46 11.00 11.41 11.49
CS2 10.13 8.73 9.28 10.67 9.83 9.99 10.09
MgF2 15.28 13.45 11.93 14.12 11.61 13.68 13.30
F2 18.09 15.35 13.40 17.63 13.58 15.67 15.70
Li2 4.95 4.35 5.02 4.93 5.21 5.22 4.73
MgCl2 12.23 10.65 11.10 11.89 11.31 11.64 11.80
MgO 8.57 4.89 7.40 8.22 6.65 7.77 8.76
Na2 4.52 4.11 4.69 4.71 4.85 4.86 4.89
NaCl 9.57 7.97 8.44 9.14 8.59 9.01 9.80
P2 10.08 10.07 10.11 10.69 10.57 10.66 10.62
PN 12.02 10.08 11.58 13.14 12.04 11.80 11.88
SO2 13.39 11.39 10.79 13.66 11.33 12.21 12.50
MAE CCSD(T) 0.77 1.16 0.90 0.56 0.72
MAE exp 0.65 1.24 1.04 0.59 0.97 0.28

aMP2 stands for the MP2 chemical potential obtained from the functional derivative approach. CCSD(T) results obtained from GAUSSIAN16
A.03 software115 and experiment values were used as references. Geometries and experiment values were taken from ref 19. The cc-pVTZ basis set
was used. All values are in eV.
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MAE of 0.56 eV. The MAE of GF2 for IPs is slightly larger
than that of ΔMP2, which agrees with the results in ref 86. The
IPs predicted by the MP2 chemical potential provide a
relatively large MAE of 0.90 eV because of the deviations of
MP2 from the linearity condition.123 As shown in ref 123, the
accuracy of using the MP2 chemical potential can be improved
by using the two-point formula that averages the derivative to
the HOMO occupation number of the N-electron system and
the derivative to the LUMO occupation number of the (N −
1)-electron system.
For the prediction of EAs, using HF orbital energies

provides the largest MAE of 0.60 eV for all systems and 0.47
eV for the bound system. In addition, HF incorrectly predicts
most bound systems as unbound systems. ΔHF provides
improvements over HF with smaller MAEs around 0.4 eV.
Similar to the prediction of IPs, ΔMP2 provides the smallest
MAE for predicting EAs and correctly describes bound systems
except MgO and P2. Compared with that of HF, using the
MP2 chemical potential correctly describes bound systems.
The EAs obtained from the MP2 chemical potential have
larger MAEs compared with those of ΔMP2, which is similar
to the IP results and can also be improved by using the two-
point formula.123

■ CONCLUSIONS
In summary, we developed a functional derivative approach to
calculate the MP2 chemical potential. By expressing the MP2
correlation energy as an integration of the noninteracting
Green’s function and the second-order self-energy on the real
frequency axis, the MP2 chemical potential is obtained from
the chain rule via the noninteracting Green’s function. First,
the functional derivative of the MP2 correlation energy with
respect to the noninteracting Green’s function leads to second-
order self-energy. Then, the derivative of the noninteracting
Green’s function with respect to the occupation number is
obtained by including the orbital relaxation effect. We showed

that the MP2 chemical potential from the functional derivative
approach agrees with that from the finite difference approach.
Then, the MP2 chemical potential obtained from the
functional derivative approach was used to predict the IPs
and EAs of the molecular systems. It shows that MP2 chemical
potentials outperform HF orbital energies for predicting IPs
and provide good estimations for EAs. The MP2 Hamiltonian
was also derived using the functional derivative approach,
which can be used in self-consistent calculations of MP2 and
double-hybrid functionals. The developed functional derivative
approach for the MP2 chemical potential can be applied to
calculate the chemical potential and the one-electron
Hamiltonian of approximate functionals and many-body
perturbation approaches relying on the noninteracting Green’s
function, which expands the applicability of the Green’s
function formalism.
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