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ABSTRACT
Kohn–Sham density functional theory has been themost popular method in electronic structure calculations. To fulfill the increasing accuracy
requirements, new approximate functionals are needed to address key issues in existing approximations. It is well known that nonlocal
components are crucial. Current nonlocal functionals mostly require orbital dependence such as in Hartree–Fock exchange and many-body
perturbation correlation energy, which, however, leads to higher computational costs. Deviating from this pathway, we describe functional
nonlocality in a new approach. By partitioning the total density to atom-centered local densities, a many-body expansion is proposed. This
many-body expansion can be truncated at one-body contributions, if a base functional is used and an energy correction is approximated.
The contribution from each atom-centered local density is a single finite-range nonlocal functional that is universal for all atoms. We then
use machine learning to develop this universal atom-centered functional. Parameters in this functional are determined by fitting to data that
are produced by high-level theories. Extensive tests on several different test sets, which include reaction energies, reaction barrier heights, and
non-covalent interaction energies, show that the new functional, with only the density as the basic variable, can produce results comparable
to the best-performing double-hybrid functionals, (for example, for the thermochemistry test set selected from the GMTKN55 database,
BLYP based machine learning functional gives a weighted total mean absolute deviations of 3.33 kcal/mol, while DSD-BLYP-D3(BJ) gives
3.28 kcal/mol) with a lower computational cost. This opens a new pathway to nonlocal functional development and applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0179149

I. INTRODUCTION

Among many electronic structure methods, because of its
favorable accuracy and reasonable cost, density functional theory
(DFT)1,2 is most often used in very broad applications, ranging
from predicting molecular and bulk material structures, study-
ing chemical reaction mechanisms, to understanding charge and
energy transfers. Although the DFT is formally exact, its success
is attributed to the Kohn–Sham scheme2 and approximations to
the exchange–correlation energy. Many semi-local density function-
als approximations (DFAs) have been developed.3–8 Great success
has been achieved by semi-local approximations, while challenges
still present. Semi-local DFAs are known to have large delocaliza-
tion errors.9,10 Commonly used semi-local DFAs also fail to describe
the van der Waals interaction.11 Even in applications where the
above issues are considered insignificant, semi-local DFAs may still

produce results with insufficient accuracy. Systematic improvements
of (meta-)generalized gradient approximations (GGAs) with data
indicate that, the local form might limit the accuracy that semi-local
functionals can achieve.12 Nonlocal components in the functional
are necessary to overcome these difficulties.

Nonlocal functionals have already been developed and widely
used for many years. One way to introduce nonlocality into the
functional is to mix Hartree–Fock nonlocal exchange into a semi-
local functional, making the resulting approximation a hybrid
functional.13,14 Hybrid functionals partially reduce the delocaliza-
tion error10 and are generally more accurate than semi-local func-
tionals. In recent years, double-hybrid functionals have attracted
much research interest.15–18 In addition to the nonlocal exchange,
double-hybrid functionals use nonlocal correlation energies, which
are usually derived from many-body perturbation theories, such
as the second-order Møller–Plesset perturbation theory (MP2) and
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the random phase approximation (RPA). Double-hybrid function-
als outperform approximations in other categories, but at higher
computational costs.

Though hybrid and double-hybrid functionals have appealing
accuracy, they still have significant delocalization and/or static cor-
relation error for general applications across systems and sizes.19
In addition, the relatively high computational cost may prohibit
their practical applications, especially when used to calculate large
molecules and periodic systems. It remains a challenge on how to
go beyond hybrid and double-hybrid functionals. Is there a way to
design a nonlocal DFA such that orbitals are not required and its
performance is possible to be systematically improved?

The main challenge is that, the nonlocal exchange–correlation
energy is much harder to approximate. In some instances, the
nonlocal contributions can be explicitly derived. All approximate
treatments of the van der Waals interactions involve nonlocal con-
tributions, at different levels of approximations, from empirical
corrections, the use of exchange-hole, to approximations to the ran-
dom phase approximations.20–29 There is no known general pathway
to build nonlocal contributions.

To explore developing DFAs, we focus on machine learning
(ML), which has generated major impact in science and technology.
For example, ML has been used in predicting protein structures,30,31

constructing potential energy surfaces based on quantum mechani-
cal calculations,32–34 calculating total energies of molecules,35–37 and
developing general molecular force fields.38–42 Recent reviews have
described some updated progress.42–47

ML has also generated much interest in DFT. The appli-
cation of artificial neural networks was made very early on for
approximating the exchange–correlation potentials from electron
densities48 and for improving exchange–correlation density func-
tional approximations based on a given DFA.49 In the modern
era of machine learning, many different ML approaches have been
applied in various aspects of DFT, approximating the Kohn–Sham
kinetic energy functional,50–52 improving bandgap prediction,53–55

learning the functional derivative discontinuity,56 bypassing solv-
ing the Kohn–Sham equations,57–62 approximating the Kohn–Sham
Hamiltonian,63,64 learning a DFA,65 directly approximating the
Kohn–Sham exchange–correlation potentials,66–68 learning the elec-
tron density,69 running direct molecular dynamics,70 allowing the
direct use of nonlocal pseudopotentials in orbital-free DFT,71
describing excited states72 and core electron binding energies,73 and
finally improving the exchange–correlation energy functional,74–81

a key challenge in DFT. Progress in ML for DFT has been summa-
rized in some recent reviews.47,82–85 There are two main challenges
in developing ML for the exchange–correlation energy functional.

First, to make a ML approximation to the universal
exchange–correlation density functional, the invariance of the
resulting functionals with respect to translation and rotation of the
molecular geometries and permutation of identical atoms are neces-
sary. The same requirement for ML has been addressed in learning
the total molecular energy.32–34 The satisfaction of the symmetry
requirement can be achieved readily when the energy or energy
density is expressed directly as a function of electron density and
the Kohn–Sham density matrix, as in many ML developments,
including the DM21.76 Amore general approach from real space dis-
tribution information is possible: Behler and Parrinello represented
the total energy as a sum of atomic contributions and used a set of

atom-center basis functions to construct input features.32,86 This has
been used in may ML applications,87 including approximating the
exchange–correlation energy functional78 and learning the bandgaps
of materials.55 This framework has also been used in our work on
accelerating free energy calculations in hybrid QM/MM (quantum
mechanics/molecular mechanics) simulations88,89 and developing
general force fields.90–92 An interesting recent development in pre-
serving the rotation symmetry is the harmonic networks in convo-
lution neural networks;93,94 its application in learning a DFA shows
promise.79

Second, a particularly challenging aspect in approximating
the exchange–correlation energy functional is the nonlocal quan-
tum effects. While the classical Coulomb interaction is nonlo-
cal, its functional is known and is used in all DFT calculations
with any DFA. The remaining nonlocal effect is in the quantum
mechanical exchange–correlation energy: Electron density far away
from a given point in space can play an important role in the
exchange–correlation energy contribution from this point. In other
words, the exchange–correlation contributions from electron den-
sity far apart can be correlated, not simply as additive. Key exact
constraints of the density functionals demand such nonlocal con-
tributions: the fractional charge conditions presented in the work
of Perdew et al.,95 the fractional spin conditions presented in the
work of Cohen et al.,96,97 and the flat-plane combined conditions of
fractional charges and spins presented in the work of Mori-Sanchez
et al.98 The violation of these exact conditions in the commonly
used DFAs, which do not have such nonlocal contributions, leads to
systematic delocalization and static correlation errors.9,99,100 There-
fore, the nonlocal contributions needed for satisfying these exact
conditions are critical for DFT development.

Another prominent nonlocal effect is the van der Waals
interaction.22,23,25,26,101,102 Not only is it nonlocal, it is also a many-
body correlation.29 The nonlocal van derWaals interaction is critical
for intermolecular interactions in many chemical, biological, and
materials systems.

In the present work, we explore the development of a finite-
range nonlocal functional based on a many-body expansion and
ML. Because of the limitation of finite range, it only includes par-
tial nonlocal contributions. We will describe our idea on how such a
development can be compatible and combined with recent analyti-
cal developments in nonlocal functional contributions, which can be
ultralong-range.103,104

The rest of this paper is organized as follows: In Sec. II, we
present the theoretical justification for using the atom-center expan-
sion for energy correction, as well as details about the procedure of
input generation for machine learning. Section III presents compu-
tational details. Section IV provides an analysis of the performance
of the machine learning functional with discussions on how to fur-
ther improve it with more training data. Finally, we summarize our
work in Sec. V.

II. THEORY
A. Many-body expansion in DFT

The many-body expansion is commonly used in computa-
tional chemistry to reduce the computational cost. Its success has
been witnessed in fragment based methods105–107 and the method
of increments.108,109 In terms of the total electron density, a similar
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definition for the many-body expansion can also be made: A part
of the total energy is expressed as a summation of one-body and
two-body energies and terms that consist of more bodies,

ΔE[ρ] =∑
i
ΔE1[ρi] +∑

i<j
ΔE2[ρi, ρj] + ∑

i<j<k
ΔE3[ρi, ρj , ρk] + ⋅ ⋅ ⋅ ,

(1)

where ρ is the total electron density and ρi is the density for one body.
The choice of the one-body density ρi is crucial for the quality of
the many-body expansion. One-body densities should be local, such
that the many-body expansion can converge. It is natural to define
the body as the local density around the nuclei. In this work, the
Hirshfeld partition scheme110 is used to generate the local densities:

ρi(r) =
ρ0i (∣r − Ri∣)

∑
a
ρ0a(∣r − Ra∣)

ρ(r), (2)

where ρ0a is the spherical electron density of free atom a, although
this is only one of many possible choices. See Fig. S1 for an example
on how the partitioned density compares to the total density.

It is also important to determine which part of the total energy
should be approximated by the many-body expansion. The total
energy, or even the much smaller exchange–correlation energy, may
require many terms in the many-body expansion to achieve good
accuracy. We demonstrate this point here. As shown in Fig. 1, the
one-body expansion approximation fails to recover the BLYP5,6,114

exchange–correlation energy. A much smaller quantity, the differ-
ence between total energies produced by different DFAs, can be
much better approximated. This approximating difference approach

FIG. 1. Left: Exchange–correlation energy in HF for nuclear separations from 0.6 to
1.7 Å. The “BLYP” curve means EBLYP

xc evaluated with BLYP self-consistent density
(ρBLYP

). The “LDA ρ” curve is EBLYP
xc evaluated with LDA self-consistent density

(ρLDA
). The curve labeled as “Expansion” means we directly decompose Exc

using partitioned densities: Exc = EBLYP
xc [ρLDA

H ] + EBLYP
xc [ρLDA

F ]. The “Correction”
curve is computed by using Exc = ELDA

xc [ρLDA
] + (EBLYP

xc − ELDA
xc )[ρLDA

H ] + (E
BLYP
xc

− ELDA
xc )[ρLDA

F ]. Right: Total energy of HF molecule computed in the ways as
discussed before. It is noteworthy that even though there is a difference in the
exchange–correlation energy when using different densities, the total energy still
agrees very well. This can be attributed to the variational property of the total
energy.

was already used in the early work on machine learning for DFT in
the work of Zheng et al.49 and is now known as the Δ learning.46
Therefore, to truncate at the one-body terms, we express the DFT
total energy as

E[ρ] ≈ Ebase
[ρ] +∑

i
ΔE1[ρi], (3)

where E is the exact energy and Ebase is the ground level we start
from. As pointed out before, Ebase should already contain an approx-
imate Exc (usually a semi-local functional), otherwise terminating
at one-body terms will not suffice. Even if in Fig. 1, we have
shown that, with the aid of an one-body correction, EBLYP can
be recovered from a local density approximation (LDA) calcula-
tion; this observation, however, does not necessarily apply to the
exact energy. Long-range correlation effects, such as the van der
Waals interaction, may require two and more body terms, if the
base functional does not fully capture the long-range correlation. In
this work, we capture the two-body van der Waals interaction with
the DFT-D3 model,112,113 similar to the development of DM21.76
Note that other many-body interactions, such as many-body van
der Waals interactions,29 and ultralong-range effects, corrections
to delocalization and static correlation errors, are not considered
presently.

In Eq. (3), we retain only the one-body terms in the many-
body expansion of Eq. (1), as throughout present work. This
form with one-body terms only is then the atom-center expansion
in the work of Behler and Parrinello for neural network learn-
ing.32 In machine learning for exchange and correlation energy in
DFT, this atom-center expansion was also used in NeuralXC78 and
DeePKS.80

The usage of one-body correction is based on the observa-
tion that the effects are mostly “local.” However, it does not imply
that the resulting functional is local. Indeed, ΔE1[ρi] is relatively
“local” as compared to the entire chemical system. Its functional
form, however, can be completely nonlocal in terms of the atom-
centered density ρi. Hence, each one-body term ΔE1[ρi] may be
called a finite-range nonlocal functional. The finite-range charac-
ter comes from the fact that ρi resides only within a certain range.
Beyond that range, ΔE1 does not play a role. This greatly simplifies
the procedure of approximating ΔE1. By expressing the approximate
functional as a base semi-local functional plus one-body correc-
tions, although the resulting functional is not completely nonlocal,
it already goes beyond traditional semi-local functionals. The com-
bination of locality in the atom scale and nonlocality in terms of the
functional form enables the development of a density functional that
captures most of the short-range correlation effects, without needing
virtual orbitals.

One feature in our work, as expressed in Eq. (3), is that we
only have a single functional, ΔE1[ρ], for any system, molecules, or
bulk materials. This design has been used in a previous work,80 but
many previous atom-center expansions use atom-dependent expres-
sions for the one-body expansion.32,78 The use of atom-independent
one-body expansion is possible because the one-body electron den-
sities, as in Eq. (2), encode the information of electron density
and hence the atom. Thus, only one universal functional ΔE1[ρi]
is needed. Likewise, in future development when we include two-
body terms in the expansion of Eq. (1), we only need another
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universal functional ΔE2[ρi, ρj] of two-body densities. This greatly
simplifies the model development and also its applications. After
reducing to atom-centered subproblems, the energy correction auto-
matically becomes translationally and permutationally invariant and
size-extensive. This removes the restrictions that one may encounter
when designing a global nonlocal functional, thus making it pos-
sible to machine-learn the exchange–correlation energy functional
(by learning the one-body energy correction).

B. Machine learning the finite-range
nonlocal functional

Even if the subproblems seem simple, an explicit functional
form is still impractical to be derived for ΔE1[ρi]. Machine
learning is an excellent tool to develop this finite-range non-
local functional numerically. Machine learning has already been
applied in quantum chemistry,114,115 and particularly, in the field
of DFT.47–57,63–79,82–85,116 In this work, the subproblem is suitable
to be solved by machine learning, because of the finite-range char-
acter of the local density ρi. ρi is an atom-centered density that
is partitioned from the molecular total density, and in general
it is not too different from the electron density of free atom i.
Therefore, by feeding high-quality data for various element types
to the machine learning model, it is possible that this one-body
energy correction can be predicted for any given input local density
(in the interpolation range), with a low computational cost. Then,
the correction to the total energy of the chemical system is a sim-
ple summation of atomic contributions, as given by the many-body
expansion.

Designing an approximate functional by machine learning is
very distinct from what has been done for conventional function-
als. Currently available functionals all strive for as few parameters as
possible and are often fitted to exact constraints and limited num-
ber of data. In this way, the functional developed hopefully can be
applicable in most systems. By contrast, machine learning methods
usually have a huge amount of parameters, rely heavily on the train-
ing data, and are expected to produce good interpolation quality.
In this sense, it may appear that machine learning is not relevant
to functional development; however, because the nonlocal density
functional has no known explicit form, machine learning is in fact
particularly suitable for this task because of its black box nature. As
long as enough training data are provided, there is no prior knowl-
edge required on the form of the function fitted. The use of data
in the functional development has already been well established in
the development of functionals like Minnesota functionals117,118 and
ω-B97 series.119,120 Machine learning is simply another tool to utilize
the data.

To express the finite-range nonlocal functional as a machine
learning function, the local density needs to be preprocessed to
provide finite number of features as inputs. A conventional DFA,
such as a generalized gradient approximation (GGA), needs to be
provided as the base functional Ebase

xc , and the base total energy
functional is expressed as

Ebase
[ρ] =∑

A<B

ZAZB

∣RA − RB∣
−∫ ρ(r)∑

A

ZA

∣RA − r∣
dr

+
1
2∬

ρ(r)ρ(r′)
∣r − r′∣

dr dr′ + Ts[ρ(r)] + Ebase
xc [ρ(r)]. (4)

The base exchange–correlation functional is used not only to
provide the base energy but also to produce the density.

The goal of this work is to use a machine learning functional
( f ) to approximate the unknown one-body energy correction func-
tional (ΔE1) in Eq. (3). To set the target for machine learning,
we require that even with only one-body terms and the DFT-D3
dispersion energy112,113 (with the Becke and Johnson damping23),
accurate energies generated by high-level theories can be precisely
reproduced:

∑
i

f [ρi(r)] + ED3 ≡ Eaccurate
[ρ(r)] − Ebase

[ρ(r)]. (5)

Here, the D3(BJ) dispersion energy is to partially recover the ignored
two-body terms in the many-body expansion and the parameters for
the D3(BJ) model are to be re-optimized during the training pro-
cess of the machine learning model. Many machine learning models
are available and each serves its particular purpose. In this work, we
use the feed-forward artificial neural network (multilayer percep-
trons, MLP), and the theory developed here should apply in most
other machine learning models. Because neural networks do not
have any built-in symmetry, special care needs to be taken when
designing the input. The many-body expansion already takes care
of the translational and permutational invariance; hence, the rota-
tional invariance should be guaranteed by the transformed input.
One common choice of making rotational invariant features is using
the power spectrum:121

p(A)nl =
l

∑
m=−l
(c(A)nlm )

∗c(A)nlm . (6)

Here, c(A)nlm is the coefficient that the density projects on a basis
function, which is centered at atom A,

c(A)nlm = ⟨ρA(r)∣gn(∣r − RA∣)Ym
l (r̂ − RA)⟩, (7)

Ym
l ’s are spherical harmonics, and gn is a Gaussian function given by

gn(r) = (
2σn
π
)

1
4
exp [−σn(r − μn)2], (8)

where {μn} is the set of nodes that the radial functions are sampled
on and σn is determined in the following way:

σn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c2

(μ1 − μ0)2
, n = 0,

4c2

(μn+1 − μn−1)2
, 0 < n < nmax − 1,

c2

(μn − μn−1)2
, n = nmax − 1.

(9)

In this work, {μn} is chosen to be the set that includes zero
and scaled roots of the Gauss–Laguerre polynomial (linearly scaled
to make the largest root become μmax, a given parameter), and
c is another adjustable parameter. Figure S2 shows a typical radial
function setup used in this work. Since the creation of the power
spectrum for each atom is limited to a finite region around the atom,
this further imposes a limit on the range that the nonlocal functional
can explore.
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With the power spectrum to discretize the local density, the
machine learning functional in Eq. (5) turns to an explicit function
of the power spectrum:

f [ρi(r)] = f ({p(i)nl }). (10)

It should be highlighted that this function is a universal one. In other
words, it is not tied to a specific molecule or element type and will
be used for all entries in the database.

To handle spin-unrestricted calculations properly, we need to
keep the symmetry that E[ρ↑, ρ↓] = E[ρ↓, ρ↑] (when no external mag-
netic field is applied). The goal can be easily achieved by using the
summation of spin up and down power spectra as the input for the
neural network:

ΔE[ρ↑, ρ↓] =∑
i

f ({p(i)↑nl + p
(i)↓
nl }) =∑

i
f ({p(i)↓nl + p

(i)↑
nl })

= ΔE[ρ↓, ρ↑]. (11)

Notice that this is not the same as taking the total density ρ↑ + ρ↓ as
the input; hence, it is possible that this form can take into account
the effect of spin polarization.

The details about the neural network and the form of the
cost function used in this work are described in Sec. III. Here, we
describe the way of scaling the data when constructing the cost func-
tion. Since reaction energies in the database can differ in the order
of magnitude, the reaction energy data need to be scaled first to
avoid ignoring small numbers. We follow the idea of weighted total
mean absolute deviations (WTMADs) as presented in Ref. 122. The
reaction energy and stoichiometry for each reaction are scaled by

scale =
81.24 kcal/mol

∣ΔEi∣
, (12)

where ∣ΔEi∣ is the mean reaction energy for subset i that the reaction
belongs to. 81.24 kcal/mol is the average value of ∣ΔEi∣ for all subsets.

III. COMPUTATIONAL DETAILS
The accuracy of the machine learning model is mostly con-

trolled by the quantity and quality of the training data. The data
we used in this work are from MGCDB8419 and GMTKN55122
databases. These databases include non-covalent interaction ener-
gies, isomerization energies, thermochemistry, and barrier heights,
whose values are compiled from many previous works that
stand as best theoretical estimates. The methods used are usu-
ally coupled cluster with singles, doubles, and perturbative triples
[CCSD(T)]123,124 at the complete basis set (CBS) limit, and compos-
ite methods such as Weizmann-4 theory.125–127 Some modifications
were done to remove duplicated subsets.

To train and test and neural network, we mainly used reac-
tion energy data that have elements in first four rows of the periodic
table. In Fig. S3, we show how many times each element appears in
the molecules that are used in the database. We reserve 10% of the
total data as the test set, while the remaining 90% is used for train-
ing. The GMTKN55 database has some data involving main group
heavy elements, which will first be completely excluded from the
training set, and later they will be used to show the transferability of

the machine learning functional upon the addition of new training
data.

The AE18 set (absolute atomic energies of hydrogen through
argon)128 fromMGCDB84 is used purely for training. In addition, it
does not participate in the dataset splitting process, neither does it
receive the WTMAD2 scaling as described in Eq. (12) (instead, the
scale is 10). In other words, every training task uses the entire atomic
absolute energy set regardlessly, and the set gets a constant amplifi-
cation of 10. This is because they are precious appropriate norms
that control the absolute energies the machine learning functional is
going to produce.

In this work, BLYP5,6,114 is chosen as the base GGA functional.
Gaussian 16129 is used for base functional calculations and the result-
ing wave functions are stored as extended wave function files (.wfx
files). Def2-QZVPPD basis130 is used. A pruned (99, 590) grid and
tight convergence criteria (root of mean squared change in the den-
sity matrix <10−8) are used for most of the calculations, with the
exception that a finer grid (500, 974) is adopted in the calculations
of 18 atom absolute energies. Broken-symmetry unrestricted calcu-
lation is preferred if it lowers the total energy. For calculations that
involve elements that are heavier than Kr, empirical core potentials
(ECPs) are used. However, core electron densities from ECPs are not
used in the following computation of the power spectrum.

The generation of the power spectra from densities is done by
a Python script utilizing PySCF,131,132 which can be accessed accord-
ing to the Data Availability Statement. It uses the wave function
file generated by Gaussian 16 to reproduce the density and com-
putes c(i)nlm numerically with standard DFT integration grids. It also
supports the generation of power spectra from a PySCFDFT calcula-
tion. Free atom calculations are also performed by Gaussian 16 with
high-spin configurations. These free atom densities are averaged
over the angular degree of freedom to produce spherically symmet-
ric free atom densities, which will be used in the Hirshfeld density
partition.

The number of power spectra elements reflects how accurately
the density is discretized. It is determined by the number of radial
functions (nmax) and the angular momentum cutoff in the angular
expansion (lmax). Usually the more radial functions are used, and
the higher angular momentum cutoff is set, the better quality the
discretization will have. However, a high resolution in the power
spectra does not necessarily improve the performance of the neu-
ral network. In this work, we will experiment with nmax from 5 to 15,
and lmax from 2 to 6.

For each molecule, the terms in the DFT-D3(BJ) energy expres-
sion are computed and output to data files with a locally modified
dftd3 program.133 From these data files, during the neural net-
work training process, the training script can conveniently produce
DFT-D3(BJ) energies while adjusting DFT-D3(BJ) parameters
(s6, s8, a1, and a2).

The machine learning function in this work is to estimate the
atomic energy correction from the power spectrum generated by the
local partitioned density, as explained by Eqs. (5) and (10). There-
fore, the size of the input layer is tied to the shape of the power
spectrum, as specified by the parameters nmax and lmax. The output
layer has a single node to directly produce the energy correction. The
neural network model used in this work is fixed to have two hidden
layers (we will experiment with 16, 32, and 64 neurons per layer in

J. Chem. Phys. 160, 014105 (2024); doi: 10.1063/5.0179149 160, 014105-5

Published under an exclusive license by AIP Publishing

 23 January 2024 21:55:27

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

this work), thus this model is controlled by three weight matrices
(W0, W1, and W2) and three bias vectors (b⃗ 0, b⃗ 1, and b⃗ 2). Hyper-
bolic tangent is used as the activation function for hidden neurons.
The cost function used to optimize the neural network is defined as

L({Wk
},{b⃗ k

}) =
1
N

N

∑
i

log (cosh (ŷi − yi)) + β∑ ∣wk
ij ∣, (13)

where N is the number of entries in the database, ŷ is the reference
value, and y is the value produced by the base GGA along with the
neural network energy correction, given the set of weights {Wk

} and
biases {b⃗ k

}. The second term in the cost function is the L1 regular-
ization, which is used to prevent overfitting. Since a single neural
network function f produces an energy correction for one atom in a
molecule, while reference data are usually reaction energies, in most
cases y is a linear combination of atomic contributions. For exam-
ple, for reaction X + Y→ Z, the reaction energy produced by this
functional is

y = Ebase+D3
Z − Ebase+D3

X − Ebase+D3
Y +∑

i∈Z
f ({p(i)nl })

−∑
j∈X

f ({p( j)nl }) −∑
k∈Y

f ({p(k)nl }). (14)

PyTorch134 is used to train the model and the Adam opti-
mizer135 is used (with learning rate = 0.001). The weights of the
neural network are initialized with the Kaiming uniform initial-
izer136 and the biases are zero-initialized. 10-fold cross-validation
(CV) is used to produce cross-validation errors when tuning the
parameters in the input features and hyperparameters in the training
process. For each split, one fold is used to produce the test score, and
the remaining nine folds are divided as eight folds for training and
one fold for validation (to early-stop the training process). Optimal
hyperparameters are determined as follows: 512 for the batch size
and 5 × 10−8 for the L1 regularization factor.

We note that in this work, the resulting neural network func-
tional is only used as a post-SCF energy correction. It is possible to
achieve self-consistency, as through the iterative training procedure
described in Ref. 78; however, iterative training is computation-
ally demanding when such a large dataset and large basis sets are
used. Though there exist regularized trainingmethods that can avoid
iterative training,137 high-quality reference densities are required as
inputs. Unfortunately, MGCDB84 andGMTKN55 are purely energy
databases with no density/force labels provided. Without high-
quality densities/forces to regularize the training, it is possible that
the resulting densities/forces can be inaccurate or even unphysical,
and when worse densities are fed to the model, worse energy pre-
dictions can be produced. In future developments, a self-consistent
version of this model could be developed using base functional den-
sities as the regularizer, and high-quality density/force data can be
amended to the training set used here.

The computational cost of our method involves two parts:
the cost of creating the power spectra and the cost of neural net-
work computations. The cost of evaluating a trained neural network
is negligible, and there are N neural networks to compute for a
molecule with N atoms. The more expensive part is the generation
of power spectra, which involves numerical integrations. However,
it is still much cheaper than the base functional calculation (𝒪(N3

)),

because it at most needs 𝒪(N2
) calculations (there are N atoms, and

for each atom, the program needs to loop over the numerical grid
of the entire molecule). For large molecules, the cost can be reduced
to close to 𝒪(N), since Gaussian radial functions decay very quickly
beyond a certain range and we set a cutoff radius for the numerical
integration.

IV. RESULTS AND DISCUSSION
A. Optimal power spectra parameters

Although a larger neural network usually has a higher capa-
bility of learning the unknown function, using an oversized neural
network along with limited number of training data may risk over-
fitting. In this work, there are around 5000 training data points,
while the number of parameters in the neural network can easily
exceed this quantity. Controlling the number of hidden nodes is one
way of limiting the size of the neural network. On the other hand,
since we are generating discrete inputs from a continuous function,
the neural network does not have a fixed input size. The num-
ber of inputs might affect the performance of the neural network
more straightforwardly. As shown in Fig. 2, the contribution from
high angular momentum diminishes quickly. This is also reflected
in Fig. 3(a) that lmax = 4 is sufficient for the angular momentum cut-
off. nmax has a similar effect on the overall performance, as seen from
Fig. 3(b). Though larger neural networks and denser power spectra
can produce smaller cross-validation errors, we choose to continue
the investigation of the neural network with nmax = 10, lmax = 4 and
32 neurons in each hidden layer. In this way, we can achieve a rela-
tively good accuracy with a moderate neural network size (50 input
nodes and 2721 parameters in total).

There are two more parameters for input features, μmax and c,
that need to be optimized. They control the form of radial basis func-
tions and can only be searched by computing the cross-validation
errors for a set of values. This process is shown in Fig. S4, and
finally μmax = 4 bohrs and c = 1.25 are determined as optimal para-
meters. Afterward, the neural network will be trained against the
entire training set. Because machine learning is intrinsically stochas-
tic, we will generate many sets of neural network parameters and

FIG. 2. Superposition of the power spectra computed on the entire database
(excluding molecules containing heavy elements), with BLYP densities and para-
meters μmax = 4 bohrs, c = 1.25. Three figures correspond to nmax = 5, 10, and
15, respectively. lmax is set to 10 in all cases, and the power spectra with a smaller
lmax is simply a subgraph of the graph with lmax = 10.
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FIG. 3. (a) Cross-validation errors for different lmax, with BLYP as the base func-
tional. Other parameters: nmax = 10, μmax = 4 bohrs, and c = 1.25. The size of
the neural network is reflected in the labels. For example, 16 × 16 means a neural
network with two hidden layers, while each hidden layer has 16 hidden nodes. (b)
CV errors for varying nmax, while other settings are the same (lmax = 4).

take the average to reduce the noise. To train this ensemble neural
network for the final test, unlike in previous training events, we will
first fix the set of D3 parameters. However, they are not fixed at the
BLYP-D3(BJ) values. Instead, we first carry out multiple single neu-
ral network training tasks to determine this set of D3 parameters. To
accomplish this goal, we initiate 20 training tasks (those 10 folds in
the CV process are reused as ten different validation sets for early
stopping; each split has two tasks associated with different random
initial guesses) and determine the set of optimal D3 parameters by
observing the smallest combined error from training and validation
sets. These new D3 parameters will be used along with the neural
network model, and their values can be found in training and eval-
uation Python scripts for the ensemble neural network (see Data
Availability).

Finally, we fix the D3 parameters and perform 50 training tasks
(ten splits as before; each split has five different tasks). Consequently,
the final evaluation of the machine learning functional comes from
the ensemble neural network consisting of an average of 50 neu-
ral networks. The standard deviation of predictions generated from
each single neural network is usually large. For example, the mean
correction for the hydrogen atom is about −0.0019 hartree, which
brings the total energy to an accurate value −0.4998 hartree. How-
ever, the standard deviation can be as large as 0.0032 hartree, which
is even larger than the absolute value of the mean correction. There-
fore, the goal of the ensemble evaluation is to use many neural
networks to reduce the standard error.

B. Performance evaluation on the test set
To make a fair comparison, the resulting ensemble neural net-

work and corresponding D3 parameters are tested on the reserved
pure test set. Since we are using a mixture of MGCDB84 and
GMTKN55, here we separate the tests to distinguish where the tests
are from and compare the neural network functional with different
methods for each database. This is because we want to reuse com-
puted values as provided by these databases, but they did not cover

TABLE I. Comparing the neural network functional with ωB97M-V for tests
belonging to MGCDB84. TC, thermochemistry reaction energies; BH, barrier heights;
IE, isomerization energies; NC, non-covalent interaction energies; RG, rare gas
dimmer interaction energies. The unit is kcal/mol.

MAD RMSD WTMAD

TC BLYP-NN-D3(BJ) 2.59 4.90 2.44
ωB97M-V 2.62 3.53 3.49

BH BLYP-NN-D3(BJ) 1.88 2.68 5.14
ωB97M-V 0.76 0.97 2.06

IE BLYP-NN-D3(BJ) 0.26 0.61 2.46
ωB97M-V 0.33 0.49 4.07

NC BLYP-NN-D3(BJ) 0.17 0.57 2.54
ωB97M-V 0.15 0.35 3.04

RG BLYP-NN-D3(BJ) 0.006 0.013 1.57
ωB97M-V 0.013 0.035 3.29

all available functionals, and the best-performingmethods ranked by
each database are not the same. For tests in the MGCDB84 database,
the comparison with ωB97M-V is presented in Table I. Similarly,
Table II shows the errors on tests that are from the GMTKN55
database, along with the errors produced by DSD-BLYP-D3(BJ). See
Tables S1 and S2 for corresponding training errors. It is intriguing to
note that various error indicators [mean absolute deviation (MAD),
root of mean squared deviation (RMSD), andWTMADwith scaling
factor defined in Eq. (12)] can rank the performance of approxi-
mate functionals differently. The RMSD is known to overemphasize
large absolute errors, which is the reason why the neural network
functional has a large RMSD for the TC category in Table II. For
example, the ionization potential (IP) of the oxygen atom produced
by BLYP-NN-D3(BJ) has an absolute error of 28.3 kcal/mol, while
the relative error is actually only 9%. If this term is absent from
the test set, the RMSD of the TC category immediately drops to
4.54 kcal/mol (drops by 20%), while the MAD and the WTMAD
are relatively stable. (The MAD becomes 2.87 kcal/mol, which is
changed by 12%; the WTMAD becomes 3.24 kcal/mol, which is
changed by only 3%.) The MAD is reliable when errors in similar
reactions are averaged. It, however, can still ignore reactions with
small reaction energies when different datasets aremixed. Therefore,
we advocate using the WTMAD to properly report the quality of a

TABLE II. Comparing the neural network functional with DSD-BLYP-D3(BJ) for tests
belong to GMTKN55. Notations are the same as in Table I. The unit is kcal/mol.

MAD RMSD WTMAD

TC BLYP-NN-D3(BJ) 3.25 5.67 3.33
DSD-BLYP-D3(BJ) 1.74 2.66 3.28

BH BLYP-NN-D3(BJ) 1.74 2.73 6.30
DSD-BLYP-D3(BJ) 1.81 2.73 7.13

IE BLYP-NN-D3(BJ) 1.45 2.57 4.91
DSD-BLYP-D3(BJ) 1.06 1.87 4.44

NC BLYP-NN-D3(BJ) 0.17 0.27 2.44
DSD-BLYP-D3(BJ) 0.37 0.78 4.56
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method when it is tested on a mixture of various different datasets.
As seen from theWTMADvalues, the neural network functional can
at least provide comparable accuracy to the best-performing hybrid
and double-hybrid functionals and in many cases actually outper-
form them. Figure S5 presents the error plot of the neural network
functional, along with (double-)hybrid functionals.

We have taken several steps to avoid overfitting in our model.
First of all, early stopping is used throughout the entire work; there-
fore, we can be assured no severe overfitting is going to happen
because of too many training cycles. Second, we use K-fold cross-
validation scores to determine the proper size of the neural network,
and we chose a relatively small one, but still with reasonably good
accuracy. Lastly, from the training error (Tables S1 and S2) and final
test error (Tables I and II), we can see test errors are not that differ-
ent from training errors. Therefore, we can draw the conclusion that
our model is not overfitted.

Though this neural network functional is intended to be uni-
versal, we should be aware that its performance on a particular
reaction is highly dependent on the training data fed to the model.
We observed that the neural networkmight give some reaction ener-
gies that are worse than those provided by the base method, if the
reactions contain elements that do not occur often in the training
data. Even for elements that have high occurrence rates in the train-
ing data, a few large errors could also bemade, such as the large error
in the IP of the oxygen atom as pointed out before. The reason for
the unsatisfactory performance is because, for electron densities in
those systems, they are in regions that are far from where the neural
network has been trained with. For the oxygen atom IP issue, one
possible explanation is that, molecules containing oxygen included
in the training set are mostly bonded molecules. The local density
of an ionized O atom differs from what the neural network learned
significantly, thus leading to a large error when extrapolating. Even
if the neural network does not take the atomic number as an input
directly, the local density is mostly determined by the element type.
Therefore, before applying this method to systems containing ele-
ments that are currently not well explored by the training set used, it
is necessary to first extend the training database with more data for
those elements.

C. Tests on untrained elements
Next, we study how this functional behaves when faced with

elements that are completely untrained. There are reactions in
the GMTKN55 database that involve elements heavier than Kr. In
addition, the MOR41 database138 can be used to benchmark the per-
formance on transition metals. The details about the datasets can be
summarized as follows:

1. 30 non-covalent interaction energies from the HAL59 set. The
untrained element is I.

2. The HEAVY28 set, which includes 28 non-covalent interac-
tion energies that involve Sb, Te, I, Pb, and Bi.

3. 4 reaction energies from the HEAVYSB11 set. The elements of
interest are Sn, Sb, Te, and Pb.

4. The MOR41 set, which includes 41 closed-shell organometal-
lic reactions, and the metals in this set are all transition metals
(from Ti to Pt).

It is interesting to know how the neural network functional
performs on those reactions and the impacts on the machine learn-
ing model when part of these data are included in the training set.
Table III lists MADs on HAL59, HEAVY28, and HEAVYSB11 for
the base functional and the neural network functional that are the
model that is trained on light elements only including 50% and 75%
of above data in the training. It can be found that, without includ-
ing any entry in those datasets in the training set, BLYP-NN-D3(BJ)
already outperforms BLYP-D3(BJ) in HAL59 and HEAVY28. This
is because reaction energies in these two sets are all non-covalent
interaction energies. The errors on untrained elements are mostly
canceled. Furthermore, including some of them in the training set
does improve the accuracy. The HEAVYSB11 set involves chemical
reactions, thus the neural network functional can no longer rely on
error cancellation. This is also the case for the MOR41 set, which
is presented in Table IV. Fortunately, by including part of the data
in the training set, the neural network functional in the end can
outperform that of the base method. This clearly demonstrates the
extensibility of the neural network functional. By supplying more
training data on the properties to be measured, the performance of
the functional can be systematically improved.

TABLE III. Errors of the neural network functional for 30 non-covalent interaction energies in the HAL59 set, 28 non-covalent
interaction energies in the HEAVY28 set, and four reaction energies from the HEAVYSB11 set when some portions of these
data are amended to the original training set (indicated by “percentage training”). The extracted four reaction energies from
the HEAVYSB11 set constitute an extremely small set such that they are not further split. The percentage under “MAD” shows
how large the test set is as compared to the entire dataset. Missing entries indicate that training data should not be used to
test the method. For instance, the model trained with 75% data in the dataset can only be tested on the remaining 25%. The
unit is kcal/mol.

HAL59 HEAVY28 HEAVYSB11

MAD MAD MAD MAD MAD MAD MAD
(100%) (50%) (25%) (100%) (50%) (25%) (100%)

BLYP-D3(BJ) 0.81 0.80 0.68 0.35 0.37 0.41 4.26
BLYP-NN-D3(BJ) (0% training) 0.63 0.61 0.52 0.21 0.19 0.13 5.33
BLYP-NN-D3(BJ) (50% training) ⋅ ⋅ ⋅ 0.25 0.16 ⋅ ⋅ ⋅ 0.14 0.16 ⋅ ⋅ ⋅

BLYP-NN-D3(BJ) (75% training) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.15 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.18 ⋅ ⋅ ⋅
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TABLE IV. Errors of the neural network functional in the MOR41 set when some por-
tions of the dataset are appended to the original training set (indicated by “percentage
training”). The percentage accompanying “MAD” shows how large the test set is as
compared to the entire dataset. Missing entries indicate that training data should not
be used to test the method. For instance, the model trained with 75% data in the
dataset can only be tested on the remaining 25%. The unit is kcal/mol.

MAD
(100%)

MAD
(50%)

MAD
(25%)

BLYP-D3(BJ) 5.24 4.47 2.84
BLYP-NN-D3(BJ) (0% training) 5.53 5.57 4.21
BLYP-NN-D3(BJ) (50% training) ⋅ ⋅ ⋅ 4.19 3.29
BLYP-NN-D3(BJ) (75% training) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2.70

In addition to the effect of the training database, the form of
the loss function might also be worth studying. WTMAD2 works
best when similar reactions are grouped together. However, existing
databases may have entries with quite different magnitudes within
a subset. In a subset with a large mean reaction energy (∣ΔE∣),
those reactions with small reaction energies will become insignifi-
cant when training. In this case, other loss function forms such as
the WTMAD1122 might be more appropriate.

D. Fractional charge behavior of ML functional
Finally, when it comes to studying the fundamental difficul-

ties that traditional DFAs have, which are the fractional charge error
and the fractional spin error, because the neural network functional
remains an explicit functional in the density, in theory it is still inca-
pable of dealing with these difficulties. In Fig. 4, we show how the
energy of the carbon atom behaves for fractional number of elec-
trons with conventional BLYP and with NN-corrected BLYP. It can
be found that, as expected, the neural network functional behaves
very similarly as compared to the base functional. Because the delo-
calization error is mostly quadratic in terms of the fractional charge,
it is possible that we can apply the local orbital scaling correc-
tion (LOSC)103,104 to reduce delocalization errors. We also plan to

FIG. 4. Energy of a carbon number with varying number of electrons, produced
by BLYP and BLYP-NN with def2-TZVP basis.139 The dotted lines are linear lines
connecting the adjacent integer systems, which is the ultimate correct result as
required by the Perdew–Parr–Levy–Balduz (PPLB) linearity condition.95,97

incorporate LOSC into the ML process in future functional devel-
opment, meaning to impose the energy linearity conditions through
the LOSC functional form.

V. CONCLUSIONS
In conclusion, we have developed an energy correction to exist-

ing semi-local functionals. This correction takes the electron density
as the input and is expressed as many-body (many-center) expan-
sion, the first term of which is a summation of atomic contributions.
This correction is expressed as a universal functional of atom-
centered electron densities and is determined by artificial neural
networks. Tests have shown that, with a GGA (BLYP) as the base
method, this neural network functional can achieve a level of accu-
racy that is comparable to double-hybrid functionals, while keeping
the method computationally affordable. Meanwhile, the tests on
heavy elements and transition metals show that this method is pos-
sible to be further improved by extending the training dataset with
more accurate reference data. This opens up a new direction in the
development of nonlocal functionals. Further development could
include two-body terms and also the ultra-nonlocal corrections for
delocalization and static correlation error. This directionmay poten-
tially lead to methods that are of broad interests because of their
accuracy for large systems.

SUPPLEMENTARY MATERIAL

Additional tables showing training errors and additional figures
about the density partition, radial basis functions, andmoremachine
learning results.
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