L)

Check for
updates

FEO: Efficient Resource Allocation for FaaS at the
Edge

Anirudh Sarma
asarma3l@gatech.edu
Georgia Institute of Technology
Atlanta, USA

Umakishore

Ramachandran
rama@gatech.edu
Georgia Institute of Technology
Atlanta, USA

Abstract

Geo-distributed Edge sites are expected to cater to the strin-
gent demands of situation-aware applications like collabora-
tive autonomous vehicles and drone swarms. While clients
of such applications benefit from having network-proximal
compute resources, an Edge site has limited resources com-
pared to the traditional Cloud. Moreover, the load experi-
enced by an Edge site depends on a client’s mobility pattern,
which may often be unpredictable. The Function-as-a-Ser-
vice (FaaS) paradigm is poised aptly to handle the ephemeral
nature of workload demand at Edge sites. In FaaS, applica-
tions are decomposed into containerized functions enabling
fine-grained resource management. However, spatio-temporal
variations in client mobility can still lead to rapid saturation
of resources beyond the capacity of an Edge site.

To address this challenge, we develop FEO (Federated Edge
Orchestrator), a resource allocation scheme across the geo-
distributed Edge infrastructure for FaaS. FEO employs a novel
federated policy to offload function invocations to peer sites
with spare resource capacity without the need to frequently
share knowledge about available capacities among partici-
pating sites. Detailed experiments show that FEO’s approach
can reduce a site’s P99 latency by almost 3x, while maintain-
ing application service level objectives at all other sites.

This work is licensed under a Creative Commons Attribution International
4.0 License.

DEBS 24, June 24-28, 2024, Villeurbanne, France

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0443-7/24/06
https://doi.org/10.1145/3629104.3666033

78

Jinsun Yoo
jinsun@gatech.edu
Georgia Institute of Technology
Atlanta, USA

Jithin Kallukalam Sojan
jsojan3@gatech.edu
Georgia Institute of Technology
Atlanta, USA

Myungjin Lee
myungjle@cisco.com
Cisco Research
Bellevue, USA

CCS Concepts

- Computer systems organization — Peer-to-peer ar-
chitectures.

Keywords

Serverless Computing, FaaS, Edge Computing

ACM Reference Format:

Anirudh Sarma, Jinsun Yoo, Jithin Kallukalam Sojan, Umakishore
Ramachandran, and Myungjin Lee. 2024. FEO: Efficient Resource
Allocation for FaaS at the Edge. In The 18th ACM International Con-
ference on Distributed and Event-based Systems (DEBS "24), June 24—
28, 2024, Villeurbanne, France. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3629104.3666033

1 Introduction

The recent proliferation of geo-distributed Edge micro-data-
centers [22, 34] is well-timed to meet the need for situation-
awareness applications like collaborative Autonomous Ve-
hicles (AVs), Drone Swarm Navigation and Video Analytics.
These applications are typically latency critical and band-
width heavy and can benefit from resources at close proxim-
ity to the source of data. However, unlike Cloud datacenters,
computing resources at the Edge are limited. Yet, we want
to preserve the elasticity of the Cloud so that developers are
oblivious of the resource scarcity at the Edge.

In recent years, Cloud providers have increasingly adopted
the Function-as-a-Service (FaaS) model that provisions re-
sources at the granularity of functions instead of dedicating
Virtual Machines (VMs). On Cloud, the FaaS paradigm is at-
tractive more for its ease in development, deployment and

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3629104.3666033&domain=pdf&date_stamp=2024-07-22

DEBS ’24, June 24-28, 2024, Villeurbanne, France

Overloaded
Edge Site

Offloaded Edge Site with
invocation spare capacity

pd e
b (Y

Figure 1: Spatio-Temporal variance in AV traffic can
saturate proximal Edge clusters. Opportunistic of-
fload of function invocations to peer clusters can help
protect application SLO.

the economic incentive of not having to pay for unused ser-
vices. On capacity-limited Edge, however, FaaS instead pro-
vides a suitable resource allocation model that enables func-
tion containers to be rapidly provisioned for an application
commensurate with variances in the current workload.

There could be periods when an Edge site is overwhelmed

by heavy workload while other sites in the vicinity are un-

der utilized. This load imbalance will be commonplace for

situation-aware applications that experience workloads with
high variance both in space and time. The variance rises

from the non-uniformity in the distribution of activity (e.g.,

vehicles or pedestrians) [33]. To illustrate, we conduct a trace-
driven simulation of Edge-assisted AVs [2] (see §6.1 for setup

details) wherein each vehicle generates function invocations

to its network-proximal Edge site. Fig. 2 shows a 1-minute

snapshot of the workload for three representative Edge sites.

Such unpredictable traffic conditions can lead to rapid sat-

uration of a specific site. Consider the scenario depicted in

Fig. 1 where Site 1 is overloaded with requests. Intuitively,

Site 1 can benefit from offloading excess function invoca-

tions (yellow/hatched) to a peer site (Site 2) to mitigate queu-

ing delays and meet the application’s latency constraints.

Devising an offloading scheme comes with several challenges.

The system should be aware of the network proximity be-
tween clients and Edge-sites, as well as among Edge-sites.
It should also be aware of the resource availability of peer
sites and choose candidates that have spare capacity at that
instant to offload excess requests.

We propose FEO (Federated Edge Orchestrator), a resource al-
locator for efficiently offloading function requests in a fully
decentralized manner at each Edge site. Each FEO instance
dynamically discovers and utilizes spare resources at peer
sites to serve function invocations.

There exists vast prior work in load balancing in Cloud com-
puting [25], including Nginx [24] and HAProxy [14]. FEO is
distinguished from such prior work since it is built for each
Edge site to make autonomous offloading decisions concur-
rently to achieve a global load balance that meets an appli-
cation’s Service Level Objectives (SLOs).

79

Sarma et al.

There is also prior art in resource allocation policies for geo-
distributed Edge infrastructure. We first conduct a simula-
tion-based study comparing such policies with FEO to show-
case the performance of FEO relative to such prior art. We
have also implemented an end-to-end distributed FaaS plat-
form that incorporates FEO to validate the simulation re-
sults with both microbenchmarks and trace based applica-
tion studies.

In this work, we make the following contributions:

e FEOQ, a fully decentralized resource orchestrator for func-
tion offloading with minimal state exchange among the
participating Edge sites to achieve a global load balance
while respecting application SLOs.

A simulation-based study to compare FEO with other
contemporary offloading policies.

An end-to-end system implementation of a FaaS plat-
form that incorporates FEO. The platform provides the
flexibility to incorporate other offloading policies and is
made available to the community as open-source soft-
ware!.

An evaluation study of the end-to-end system using mi-
crobenchmarks and two exemplar situation-aware appli-
cations (Drone-Swarm Navigation and Vehicular Video
Analytics). FEO’s P99 latency reduction ranges from 2x-
35x per-site depending on the application. Among the
evaluated policies, FEO’s federated policy alone helps
meet application SLOs across all participating sites with-
out dropping requests. An ancillary contribution is the
conversion of these two applications from their mono-
lithic versions into the FaaS paradigm.

2 Background

2.1 Serverless Computing and FaaS Platforms

Serverless in the Cloud. Serverless Computing enables de-
velopers to design, develop and deploy their applications
as a composition of interconnected functions, such that re-
sources are provisioned at the granularity of function invo-
cations. Cloud service providers (such as Amazon and Mi-
crosoft) deal with auto-scaling function instances based on
load, relieving auto-scaling burden from the clients.

FaaS Platforms. App developers may choose to use the
FaaS facilities provided by the service providers (e.g., Azure
functions and AWS Lambda), or use an open-source imple-
mentation like OpenWhisk[1] for deploying their functions.
Typically, a function invocation arrives at a platform proxy,
which is then routed to a resource orchestrator (such as Ku-
bernetes [7]). The resource orchestrator deploys a container
to host the function provided by the developer, which then
awaits further function requests from the user.

!https://github.com/gt-epl/feo

FEO: Efficient Resource Allocation for Faa$S at the Edge

340F_Sites
3200 — 1
n — 2
&300 3
280

260

00 10 20 30 40 50
Time (s)

Figure 2: Aggregate requests at each Edge site varies
spatio-temporally over a minute period due to mobil-
ity of clients in the SFCabs dataset.

Serverless at the Edge. Latency-sensitive and bandwidth-
hungry applications from different application domains (e.g.,
gaming, Edge-assisted AV control, and Augmented/Virtual
Reality) could benefit from extending the serverless para-
digm from the Cloud to the Edge. Orchestration for server-
less at the Edge has to necessarily be aware that resources
are limited at individual Edge sites. Therefore, autoscaling
decisions to deal with load fluctuations would need to con-
sider peer Edge sites for function offloading. To date, the
Edge offerings from the Cloud providers [22, 34] use orches-
trators residing in the Cloud with little or no autonomy for
the Edge in resource allocation decisions. There has been re-
cent research work, namely, OneEdge [31], which is a hy-
brid scheme to give partial autonomy to the Edge for re-
source allocation decisions. It should be noted, however, that
neither the Edge offerings from the Cloud providers nor
OneEdge is specific for serverless computing at the Edge.

2.2 Resource Orchestration for FaaS$ at the Edge

FaaS platforms typically defer autoscaling decisions to the
central orchestrators situated in the Cloud. Measurement
studies [34] have shown that inter-Edge latencies are often
shorter than the Edge-Cloud latencies. These studies suggest
examination of offloading policies at the Edge that do not ne-
cessitate wide-area-network (WAN) traversals to the Cloud.

2.3 Prior art in Function Offloading

For efficient function offloading, each Edge site must de-
cide on a policy for accomplishing two key objectives for
optimally balancing the load across the Edge infrastructure.
First, an Edge site (also referred to as an “offloader”) should
decide quickly and locally which peer node to offload to
(also referred to as an “offloadee”). Second, the independent
decisions taken by each Edge site should lead to a globally
balanced schedule. Achieving the two key objectives requires
policies to perform two tasks: 1) Become aware of the avail-
able resource capacities at their peer sites and 2) Decide
when to offload functions.

There is limited prior art specific to function offloading in an
Edge infrastructure. However, there is considerable prior art

80

DEBS ’24, June 24-28, 2024, Villeurbanne, France

on the topic of load balancing in distributed systems. For ex-
ample, load balancers such as Ngnix [24] and HAProxy [14]
are centralized systems that aim to reduce load imbalance
for application deployment in the Cloud. Such systems were
not designed specifically for function offloading wherein
multiple Edge sites make autonomous decisions. There is
also prior art in resource orchestration for Edge infrastruc-
tures. For example, Fado [32] relies on a central orchestrator
in the Cloud to perform function offloading decisions be-
tween Edge sites. Similarly, OneEdge [31] tries to execute
requests locally and only offload when the site is saturated.
However, it still relies on the Cloud for these requests and
cannot handle FaaS requests.

We first describe policies derived from such prior art and
their limitations that serve as motivations for the Federated
Edge Orchestrator (FEO) to be described in §3. We use these
derived policies as points of comparison to FEO in our sim-
ulation studies §4 and system evaluation §6.

Round Robin (rr): Round-robin is a time-tested schedul-
ing policy and is the default for many Cloud-based load bal-
ancers such as HAProxy [14] and Nginx [24]. In adapting
this policy to FaaS at the Edge, every Edge site autonomously
offloads to its peer sites in a round-robin fashion. As this
policy is oblivious to the resource availability of its peers, it
does not need to track and/or disseminate this knowledge.

Centralized (central): This policy is derived from central-
ized in-Cloud orchestrators (such as Fado [32]). Resource
availability of every site is periodically communicated to
the centralized orchestrator that maintains the global state.
Every Edge site consults the centralized orchestrator (by
traversing the WAN) to determine an offloadee for handling
function invocations. The central policy addresses both the
challenges of estimating the resource availability at every
Edge site and achieving a globally optimal schedule. Yet, cen-
tralizing offloading decisions for invocations incurs expen-
sive WAN traversals on the critical path of decision-making
and potentially inflate end-to-end latencies.

Hybrid (hybrid): This policy draws inspiration from OneEdge
[31] wherein the Edge site is allowed to retain local auton-
omy for control decisions. This policy improves the central
policy by restricting expensive WAN traversals to a central
orchestrator to only those invocations that are likely to vi-
olate their SLO during busy periods at the offloader. In the
function offloading context, hybrid prioritizes handling most
function invocations locally, while offloading those invoca-
tions to the central orchestrator that are likely to violate
their SLO. For such offloaded invocations, the central or-
chestrator recommends a suitable offloadee with spare ca-
pacity to service them. Like central, every Edge site locally
monitors resource availability and reports it to the central
authority to facilitate offloading decisions.

DEBS ’24, June 24-28, 2024, Villeurbanne, France

Response Time Based (rtime): This policy is based on the
work of Cicconetti, et al. [4] and implements a variant of
weighted round-robin and obviates the need for a central-
ized orchestrator. Every Edge site independently maintains
its own table of weights for sites that can handle the func-
tion invocation. The offloader then selects the offloadee with
the lowest weight to offload the function invocation. These
weights are dynamically updated at each Edge site based on
the response time for function execution at the offloadee.

Limitations: Although these policies derived from prior art
address the objectives we identified, they come at a cost.
For instance, both rtime and rr incur high data movement
(shown in §4.2.1) to balance the load globally due to their
eager approach to offloading. Both central and hybrid rely
on the appropriate frequency of state exchange to minimize
staleness and reduce data movement. However, both cen-
tral and hybrid may still be vulnerable to erroneous offload-
ing and expensive WAN traversals. The limitations of exist-
ing policies motivate a new design that avoids a centralized
state, in-turn reducing WAN traversals and data staleness.

3 Federated Edge Orchestrator (FEO)
3.1 Key Assumptions

To coordinate resource allocation across the Edge infrastruc-
ture, FEO relies on five key assumptions:

Inter-Edge site Latency: An important assumption is that
the inter-Edge site latency is considerably shorter and more
predictable than WAN latency. This assumption is based on
the fact that there typically is fiber-optic direct connectiv-
ity between central offices of telcos [10], and supported by
published data from providers such as Alibaba [34].

Cumulative Resource Availability: The focus in our work
is on alleviating site-local hotspots. We assume that the cu-
mulative resource capacity across all Edge sites always ex-
ceeds the cumulative workload. With this assumption, an
over-saturated site can find peer-sites with sufficient spare
capacity to offload and preserve application SLO.

Availability of Warm Containers: There are orthogonal
efforts in keeping containers warm [13, 23] that could be ap-
plied to resource orchestration for Faa$S at the Edge to miti-
gate performance loss due to cold starts. To ensure our study
of policies is predictable and repeatable, FEO assumes the
availability of warm containers at the target offloadee Edge
sites deduced via the per-function queue-depths obtained
from peers (described in §3.3.2).

Per-Function Offload Granularity: An application can
be decomposed into a Directed Acyclic Graph (DAG) of mul-
tiple function components. The application developer must
specify the target latency. FEO operates with the promise

81

Sarma et al.

Edge Site Control Plane (State Management)
e Data Plane (Offloaded Request)
@.“_’ FEO Platform /1
/ ’ FEO Faa$ Platform
(5= ’
T) K Offload Faas
Edge Site Edge Site Controller runiime
FaasS Faas P Fn Execution
FEO nn FEO Monitor
Platform [Platform (Network, Load) o o _____
T 7= ~o

== o o
Figure 3: FEO (in yellow) seamlessly integrates with
the Faa$S Platform (in blue) at every edge site.

of achieving per-function SLOs by monitoring load at a per-
function per-invocation granularity. This fine-grained orches-
tration results in efficient use of scarce Edge resources.

Offloading Stateless Invocations: In this work, we focus
on addressing the challenges of efficient offloading policies
for stateless functions. Orchestrating stateful functions re-
quires additional machinery for application state maintenance
and is beyond the scope of this paper.

3.2 The federated approach in FEO

FEO’s ability to effectively offload function invocations is
reliant on the novel federated policy. It achieves the two ob-
jectives identified in §2.3 in a manner that avoids WAN tra-
versals on the critical path.

Under this policy, Edge sites minimize the amount of state
messages needed to be exchanged to learn about the resources
atits peer sites while meeting the application-specified SLOs.
A key insight inspiring the federated approach is that of-
floaders can “fail fast” while attempting to offload and in
the process learn the offloadee’s resource availability.

The federated offload policy works as follows independently
at each Edge site:

e Upon the need to offload, an Edge site initiates an offload
request to a random peer Edge site.

e Uponreceiving the request, the offloadee may either choose
to accept or decline the request.

o A declined request is returned immediately to the of-
floader and is scheduled for execution locally to ensure
timeliness of the function execution.

e On the other hand, an accepted request is executed and
the response is returned to the offloader, allowing the
continuation of the downstream functions in the appli-
cation’s DAG.

e The response (either acceptance or denial) from the of-
fload request contains the resource availability of the of-
floadee (including the availability of warm containers
for the desired function) and is used by the offloader
to construct a local view of resource availability at peer
Edge sites.

FEO: Efficient Resource Allocation for Faa$S at the Edge

3.3 Architecture of FEO

Fig. 3 presents an overview of the FEO architecture within
an Edge site and its interplay with its peers. FEO runs along-
side a Faa$S platform and forwards function invocations to
the Faa$ platform instance of the appropriate Edge site(§5).
It consists of two main entities: a Monitor and a Controller.
The Monitor consists of network and load monitoring com-
ponents. The network component conducts network prox-
imity estimation to determine inter-Edge site latency; the
load component keeps track of the local resource usage as
well as resource information gleaned from peers. The Con-
troller implements the federated policy that we outlined ear-
lier. It utilizes the monitored load information to make of-
floading decisions. At each Edge site, the Controller inter-
cepts all incoming function requests. It then leverages the
information learned during monitoring to determine a tar-
get offloadee site to forward the invocation.

3.3.1 Monitor

Load Monitor. The load monitor at an Edge site is responsi-
ble for bookkeeping per-function capacities of peers in the
same latency equivalence class. FEO expresses capacity in
terms of queue-depth of the outstanding invocations, which
was empirically(§6.2) found to be more effective at handling
function invocation bursts. This is because the queue-depth
metric inherently captures the processing capacity of a site
by approximating the containers available to handle func-
tion invocations. A deep queue likely indicates a saturated
site. The Monitor keeps track of per-function queue depths
across the peer sites. FEO’s federated policy relies on this
knowledge to select the peer site with the least enqueued
requests for the function to be offloaded.

Network Monitor. The network monitor at each Edge site
maintains a list of peer sites that are in the same latency
equivalence class. We use Network Coordinates [8, 18], which
is a low overhead method of estimating latency proximal
peers. The Network Coordinate algorithm maps sites to syn-
thetic coordinates such that their Euclidean distance approx-
imates the latency between the sites. Every site thus main-
tains its own peer list for offloading.

3.3.2 Controller

The Controller is the heart of FEO and is designed to be in-
dependent of the associated FaaS platform.

Application Deployment. When an application represented
as a DAG is deployed at an Edge site, that Edge site becomes
the home for that application. The schema associated with
the DAG specifies the data and control flow between the
components of the application. Akin to the classic dataflow
architecture, the controller is responsible for launching a
function when its inputs are ready. The client that deployed
the application sends requests to the entry point function

82

DEBS ’24, June 24-28, 2024, Villeurbanne, France

Can Execute Local Re5ult

Request
Check&Enq
Locally? Execution
No l
o v Alread Fall Success
es rea
Refuse Request: o ‘;? Force Local
Send State Offloade Enq
9 No l e Remote
Policy Specific Offload

Find Target

d Success?
Functions

Figure 4: FEO Controller. Plug-and-play design allows
the Policy Specific components (in blue) to be changed
without affecting the overall FEO architecture. The
control loop keeps track of per-function queue depths
to aid the policy component make offload decisions.

of the DAG always to the home Edge site. FEO has machin-
ery for migration of the home for an application to a peer
Edge site based on the mobility of the client. Description of
the DAG migration machinery is outside the scope of this
paper. We only describe the actions at an Edge site when a
function becomes ready to be launched. The Controller at
an Edge site uses the associated FaaS platform to launch a
function if the decision is made to execute the function lo-
cally. The Controller shields the client from the details of
the underlying FaaS platform used in the system.

Function Launch. The Controller is designed to be plug
and play with respect to the function offload policy. Fig. 4
depicts the control loop of the FEO Controller.

® When a function is ready to be launched the policy deter-
mines if the request can be enqueued at the local site. The
default policy of FEO uses the load monitor component to
decide if the function can be launched locally.

@ If the function can run locally, the request is forwarded
to the local Faa$S platform.

® On the other hand, the policy is consulted to determine
an offload target in light of site saturation. The default pol-
icy of FEO is to use queue-depths at network proximal peer
Edge sites (as determined by the load monitor component)
and the availability of warm containers for that function at
the target site.

® The Controller then proxies the request to the offloadee
and awaits the status of the invocation.

® Upon offload failure, the default policy decides to locally
enqueue the request regardless of the current site capacity.
In FEO, we disallow nested offloads to prevent perpetual of-
floading.

® At the offloadee, if the request cannot be processed, a neg-
ative acknowledgment is sent back to the offloader. Note
that the state of the offloadee is piggy-backed with the ac-
knowledgment regardless of the status of the offload request,

DEBS ’24, June 24-28, 2024, Villeurbanne, France

and the offloader uses this to update its own state about its
peers.

Function Completion. Upon successful completion of the
function execution by the FaaS platform, the Controller would
either send the result back to the offloader if it was an of-
floaded request. The Controller at the home site for the DAG
would collect the result of the function execution and decide
on the next steps for downstream execution based on the
schema associated with the DAG.

Offload Predicate. The default policy engine in the Con-
troller uses the queue-depth for a function at an Edge site
and the availability of warm containers for that function
in its offload decision. The queue-depth parameter is better
equipped to handle invocation bursts than coarse-grained
metrics like CPU utilization and observed request rates. The
request inter-arrivals are often bursty and unpredictable, lead-
ing to rapidly fluctuating queue lengths. Reacting to the in-
stantaneous queue-length can lead to erroneous offloads at
an offloader site and corresponding denials at an offloadee
site. The FEO Controller instead considers the hysteresis of
fluctuating queue-depths by calculating the smoothed mov-
ing average of queue lengths over a fixed timed window. We
show in §6.2.3 that for bursty inter-arrival behavior of invo-
cations belonging to mobile clients, a short window of 1 sec-
ond with a 70% weight on historical queue length suffices to
use as a signal to offload.

4 Simulation Studies

Using a discrete-event simulator, we conduct studies to un-
derstand the efficacy of FEO’s federated policy(§3.2) in com-
parison to the policies we derived from prior art (§2.3). The
primary figure of merit used in the study is end-to-end la-
tency.

4.1 Simulation Setup

We simulate the offload policies using faas-sim[28], a trace
driven simulator powered by SimPy python simulation frame-
work. faas-simis designed to simulate invocation traces on
a single FaaS deployment. We modify the framework to ex-
tend it to handle resource orchestration across multiple FaaS
deployments (i.e., multiple Edge sites).

SimPy’s clock tick is assumed to be 1 ms long. Our analyses
focus on function invocations that incur around 100 ms of
simulated processing latency on average similar to end-to-
end latencies observed in AV [35] and drone navigation [16].
Finally, we source inter-site latencies from [34] that observe
5 ms round trip time (RTT) for Edge-Edge and around 20 ms
RTT for Edge-Cloud connections.

Workload Generation. We devise a synthetic workload

generator per-site based on a mobile user’s behavior and
incorporate the following characteristics: 1) A user’s initial

83

Sarma et al.

Parameter values
A 0.007 — 0.013s~!
tmean 281 — 485s

Table 1: Workload Parameters. Extracted from the
mock-up simulation of cabs in SFCabs dataset [26]
over a 1 hour period (see details in §6.1).

connection to their proximal Edge is dictated by Poisson ar-
rivals with a mean rate of A; 2) The user may stay connected
to an edge node for some time ¢, which is exponentially dis-
tributed around mean t,,¢4,; and 3) The user typically gener-
ates requests at a fixed rate r which corresponds to the rate
of sensor streams. We then vary A and t,,e4, by randomly
choosing values from the ranges specified in Table 1 to ob-
tain request arrival traces per-site. The traces for all Edge
sites are collectively referred to as a profile.

Baselines. We consider two baselines: 1) no-offload: Edge
sites are unaware of spare resources of its peers and hence
do not offload any request. Observing per-site and aggregate
end-to-end latencies under this scenario will help us exam-
ine the pitfalls of local hotspots. 2) state-aware: The simula-
tion setup allows us to evaluate the policies against a state-
aware offload policy (state-aware) in which every Edge site
is aware of the instantaneous resource capacity of all their
peers and incurs no cost in learning this information. A sat-
urated site relies on the already available information on
peer capacities to select an offloadee with the most avail-
able capacity. Note that the site’s foresight does not extend
to the decisions taken by peers and can result in a sub-op-
timal offloading decision. Nevertheless, the state-aware pol-
icy obviates staleness in state. Its performance gap over the
other policies helps compare policies with respect to their
costs associated with maintaining latest information about
resource availability of peers.

4.2 Simulation Results

We structure our simulation experiments to determine the

optimal policy to use for cross-site orchestration by answer-

ing the following questions:

(1) What impact does the choice of policy have on per-site
(local) and global latencies of function invocations?

(2) Is the performance of the policy sensitive to the number
of peer-sites in the system and to the inter-site latencies?

4.2.1 Policy Performance

End-to-End Latency. We setup 10 Edge sites where for
each site, we generate function invocations according to the
site’s inter-arrival trace in the profile. This setup is kept iden-
tical across runs while we employ different offload policies.
Fig. 5 summarizes the results from this experiment where
we see the end-to-end latencies observed across all of the
Edge sites for a function with average execution time of 100

FEO: Efficient Resource Allocation for Faa$S at the Edge

Policies

2300 I no-offload
- =3 rr
QZOO | &z3 central
S .
2100 == h,\'/br/d
= =1 rtime

0 B federated

state-aware

Percentiles

Figure 5: Impact of various load profiles on End-to-
End latency.

ms. First, the baseline no-offload policy indicates that only
a small fraction of requests suffer from site-local saturation.
We observe a 1.7x and 2.5x inflation in P90 and P99 over me-
dian (P50). The goal of offloading should be to ameliorate
higher percentiles. The state-aware offload policy (in pink)
helps identify our improvement potential. It reduces the in-
flation in P90 and P99 to 1.4x and 1.7x respectively. Inter-
estingly, P50 latencies are also reduced by 10% as the policy
strives to globally balance the load. The naive rr shows a sim-
ilar performance to no-offload as each site in rr is oblivious
to the load on the target site and aggregate load experienced
by a site post offloading is similar to no-offload. Next, on one
end of the spectrum, federated closely tracks the latencies of
state-aware as a result of agile target determination. On the
other end, the central policy is not viable as a candidate be-
cause of high latencies (even at the P50) due to WAN traver-
sals to a centralized load balancer lying on the critical path
for every request. Moreover, this is exacerbated by incor-
rect offload decisions arising from staleness in state. hybrid
alleviates the latency inflation for median requests, yet suf-
fers the same inflation as central for higher percentiles. This
is because the fraction of requests offloaded in hybrid are
susceptible to the same pitfalls observed in central. rtime is
similarly unable to perform well because it awaits the actual
execution of the function.

Data Movement. Among the policies, both rr and rtime
tend to de-prioritize site-local executions to ensure a glob-
ally balanced utilization of resources at the cost of ferrying
large volumes of offload requests amounting to 70-80% of
all requests on average for the given workload profile. The
offloaded requests are ferried either on horizontal commu-
nication links between sites.

The capacity-aware policies (hybrid and federated) minimize
data movement costs over these links by prioritizing local
execution that yields a lower fraction of offload requests
amounting to 5-10% of all requests. The federated approach
however, has a lower footprint of control plane data move-
ment as it piggybacks state information on the offloadee ac-
knowledgments instead of regular periodic updates.

84

DEBS ’24, June 24-28, 2024, Villeurbanne, France

4.2.2 Sensitivity Analyses

Scaling across sites. Pervasive deployment of geo-distributed
sites can result in a large number of peers for a site. There-
fore, this experiment assesses the ability of every policy to
scale gracefully with an increasing number of participating
sites. The workload for each additional site is generated sim-
ilar to §4.1. Fig. 6a shows the impact on the end-to-end la-
tency as the number of sites is scaled to 50. Most policies’
performance does not suffer with increases in site counts
(e.g., the hybrid approach sees a mere 9% increase in P99
when moving from 10 to 50 sites.). rtime in particular ob-
serves a latency decrease with increasing site-count. How-
ever, its absolute latencies still remain high. federated tracks
state-aware independent of the site-count similar to the re-
sults seen in §4.2.1. We note that the insensitivity to site
count is tied to the small fraction of requests that are of-
floaded for the specific workload profile.

—e— no-offload central rtime state-aware
—~rr —<— hybrid —— federated
10 Sites 30 Sites 50 Sites
) /
Ezoo— MV/‘K /] {/‘1;‘/
I
5
0 5‘0 9‘0 9‘5 9§ 95.9 5‘0 9‘0 9‘5 9‘9 99‘.9 5‘0 Qb 9‘5 9‘9 95.9
(a) Workload with low skew across sites (as in §4.1)
10 Sites 30 Sites 50 Sites
200 28 k| oS 1o
% _
0 50 90 95 99 99.9 50 90 95 99 99.9 50 90 95 99 99.9
Percentiles

(b) Workload with high skew across sites.
Figure 6: Impact of number of Edge sites on End-to-
End latency.

A workload profile with sufficiently high skew across sites
can force more requests to be offloaded, thus amplifying dif-
ferences in policies as we vary the site count. To test this
principle, Fig. 6b uses a manually constructed profile con-
sisting of a high skew in workload among Edge sites that
results in a larger fraction (~20-25%) of the requests being
offloaded. Under this scenario, we observe a noticeable im-
pact on performance as we increase the number of partici-
pating sites. However, each policy is differently impacted by
increasing site-counts. For example, the poor scalability for
central and hybrid is attributed to the increased search space
for an offload candidate coupled with the staleness in global
state that leads to erroneous offloading. With increasing site-
count, additional sites are similarly susceptible to becoming
hotspots. The federated approach adopts a state-minimal ap-
proach and does not rely on periodic updates and yields a
similar performance to state-aware in both scenarios. These

DEBS ’24, June 24-28, 2024, Villeurbanne, France

I no-offload [Z1 central E=HE rtime state-aware
B=a rr I hybrid EEE federated
10ms

Latency (ms)

Percentiles

Figure 7: Impact of varying Inter-Edge-site latencies
on the policy performance. Capped at 250ms to high-
light marginal differences across graphs.

advantages make federated scalable with the site-count and
generalize well across workload profiles.

Impact of peer latencies. Although the latencies were sourced

from existing datasets on real-world public Edge-Cloud mea-
surements [34], we also examine the impact of inter-site la-
tencies on the efficacy of the various policies. To this end,
Fig. 7 summarizes results for the various policies as we vary
the inter-site latencies. For the most part, inter-site latencies
do not appear to have a significant impact on the policy’s be-
havior already captured by the previous experiments, other
than the universal but marginal increase in end-to-end la-
tency with the increasing peer latencies. We note that it is
not viable to offload to peer sites that are greater than 20
ms away or take longer to reach than reaching the nearest
Cloud that has abundant resources. However, a large differ-
ence between Edge-Edge and Edge-Cloud is not essential to
demonstrate the efficacy of the federated approach.

4.2.3 Summary

The policy experiments simulate the orchestration of resources

across multiple Edge sites by offloading function invocations
across the deployed FaaS clusters. The end-to-end latency
observations and sensitivity analyses suggest that a feder-
ated approach that actively learns peer capacities through
offload-request acknowledgments is expected to scale and
generalize better compared to other policies. Alternatively,
it highlights the inherent weaknesses with policies that re-
quire centralized state (central) or are capacity-oblivious (rr,
rtime). These weaknesses are exacerbated in the presence
of real systems effects (network, memory, CPU, runtime,
etc.) resulting in further performance degradation. Findings
from the simulated study help narrow our focus towards the
prototype implementation and a real-world evaluation of a
cross-site orchestrator equipped with a practical and scal-
able policy variant in the next section.

5 Implementation

The components described in §3 are all implemented in Go.
FEO runs as a standalone binary and is provisioned on re-
sources allocated for the site’s control plane. FEO implements

85

Sarma et al.

a proxy HTTP server to intercept requests similarly to cur-
rent FaaS platforms. Client communications upto the fron-
tend gateway are encrypted while backend connections are
assumed to be unencrypted. FEO then forwards requests to
either the site-local FaaS platform, or offloads the invocation
to a FEO instance on a peer site. We use an HTTP header (or
lack thereof) to convey to the site if a request is an offloaded
one. The target site then sets another header in the response
to indicate its acknowledgment. We use an in-house FaaS
platform that disables cold starts by pre-provisioning con-
tainers in line with the key assumptions in §3.1.

Monitor. For Network, we leverage Serf’s [15] implementa-
tion of the Network Coordinate protocol. The monitor esti-
mates inter-site RTTs from the network coordinates and up-
dates the per-function peer lists. For Load, we periodically
monitor the queue-depths as recorded by the control-loop
at a per-function basis.

5.1 Policy Implementation Details

The study conducted in §4.2.3 suggests the infeasibility of
central and rr approaches to offloading even in the absence
of real world systems effects. We thus limit our real system
implementation to 2 policies and discuss the details below:

federated. This is the policy used by FEO. As discussed in §3,
we rely on smoothed average queue lengths to determine
whether a site is saturated. To offload, a saturated site’s of-
floader bootstraps the site’s state by first issuing offloading
requests at random to its peers. The recipient site sets a re-
sponse header to indicate the status of the execution and the
queue lengths observed in the recent past for the function.
The offloader uses this to update its state about the offloadee.
The per-site queue-lengths are used as weights to perform a
weighted random selection of the offloadee for subsequent
offload requests.

hybrid. The hybrid implementation consists of two com-
ponents: 1) A central state aggregator that implements a
gRPC server that periodically receives per-site updates for
per-deployed-function queue lengths. The central aggrega-
tor provides an API for each site to query for the optimal
target to handle a function invocation. 2) A site-local offload
component that leverages the smoothed-average queue length
to determine if a request is to be offloaded. It then queries
the central state aggregator, obtains the target site, and of-
floads the request. The target site services the request and
returns the response to the source site. However, it may also
choose to deny the offload request upon which the offloader
must locally handle the invocation request.

FEO: Efficient Resource Allocation for Faa$S at the Edge

Figure 8: The map of San Francisco shows 9 sites (trian-
gles) obtained by clustering cellular towers (dots) and
a sample trajectory of a vehicle from SFCabs dataset.

—0 —1 —2 —3 —4 —5 —6 — 7 8

[sites

—_—1

iy =

L++309%013%02%03%0:490:5°

Time (Minutes:Seconds)

| S I Nl N
00:00 00:10 00:20 00:30 00:40 00:50 01:00 ,0:9%03%02%03%0:430:5°
T|me (Hours MlnuteS) Time (Minutes:Seconds)

Figure 9: Space-time Varying Load at Edge Sites. Ve-
hicles generate requests at 10RPS to their respective
proximal Edge sites along their routes specified in the
SFCabs dataset.

6 Evaluation

In this section, we evaluate FEO on the policies we imple-

mented in §5. We first discuss microbenchmark evaluations

to answer the following questions.

(1) How well do different policies employed by FEO fare in
meeting a synthetic function’s SLO?

(2) What facets of a policy can help in meeting the applica-
tion SLO?

We then demonstrate benefits of FEO on two real world ap-
plications that have been adapted for a FaaS deployment.

Experimental Platform. We provision Intel(R) Xeon(R) Sil-
ver 4114 nodes on Cloudlab [6], each with 20 cores (10 per
socket) and 192 GB RAM that are inter-connected over a
switch using 10G NICs.

Edge Sites. We emulate Edge Sites on the Xeon Servers,
where each site runs an independent instance of the in-house
FaaS$ platform on socket0.

Clients. Clients are instantiated and generate invocations
on the same server as its network-proximal Edge site.

6.1 Workload Characterization

The SFCabs dataset contains timestamped coordinates of taxis
moving within San Francisco. We examine a snapshot of a

86

DEBS ’24, June 24-28, 2024, Villeurbanne, France

random hour to emulate clients (vehicles, drones) for a reli-
able workload representing client mobility across Edge sites.
We note that the observations from this setup are similar to
other hourly snapshots in the complete SFCabs dataset. Cel-
lular towers [5] are clustered via k-means to obtain 12 clus-
ters. The cluster centroids were further grouped according
to the density of cellular towers within each cluster into 9
representative Edge sites (shown in Fig. 8). This grouping is
done to ensure that the load on sites is not heavily skewed
in favor of offloading.

Next, we emulate vehicles generating requests to their prox-
imal Edge site and model the aggregate requests observed
at each Edge site. Fig. 9 shows the aggregate requests at 10
RPS at 9 Edge sites with spatio-temporal variations. Zoom-
ing in at minute granularity (see subgraphs) highlights non-
determinism over time in RPS load across Sites 1,2 and 3. The
mock-up yields an inter-arrival trace that is used both for
microbenchmark and real-world application study. Specifi-
cally, we randomly sample timestamps in the complete trace
to obtain minute-long traces (similar to subgraphs in Fig. 9)
to evaluate the latency performance of different policies.

6.2 Microbenchmarks

The microbenchmark evaluations use a cpu-intensive func-
tion [17] with an average service time of 100ms and an SLO
of 200 ms.

6.2.1 Policy Performance

We sample 4 timestamps across the hour-long trace as de-
scribed in §6.1 and examine the efficacy of different offload-
ing policies. Fig. 10 shows the P99 latency across the 9 Edge
sites. Unsurprisingly, any amount of offloading can help al-
leviate saturation at specific sites as seen by decrease in P99
for Site 1 at t=2, and Site 7 at t=30 below 300 ms. In compar-
ing different offload policies, federated fares better than all
other policies as it ensures that a site’s P99 latency does not
cross 200 ms. federated’s P99 characteristics remain similar
across the sampled timestamps and shows the performance
generalizability of the approach. Next, while hybrid helps
minimize site-saturation, the cost of doing so is greater than
federated as seen by universal increase in P99 across all sites.

6.2.2 Analyzing Offloads

To understand the P99 results, we look at the cumulative per-
centage of requests arriving on all sites that were offloaded
under each policy in Fig. 11. The translucent portion of the
bars depict the offloads that were rejected. If we consider
the 2nd minute, federated successfully offloads 7.8% of the
requests yet only 0.12% (barely visible in the plot) of the re-
quests are rejected. Alternatively, hybrid only offloads 6%
of the requests while experiencing a rejection of 2% on aver-
age. The increased fraction of rejections negatively affects

DEBS ’24, June 24-28, 2024, Villeurbanne, France

Sarma et al.

I no-offload B federated E= hybrid
0 t=2" t=17" t=30" t=55"
200 f B B.0.g 5 B

P99 Latency (ms)

o

1234567289

123456789

12345617829 12345617829

Site No.
Figure 10: The federated policy alone meets the SLO at 200ms (black dotted line) across all sites at various minute-

timestamps in the SFCabs trace.

B federated E=H hybrid

10

% of Total
Requests
w

0 2 17 30 55

Minute Timestamps
Figure 11: Percentage of total requests offloaded
across different timestamps under different policies.
hybrid rejects a larger portion of offloaded requests
as shown by the translucent portions.

the P99 latency. Increased rejections can arise due to the
staleness in the resource capacity information as they are
only periodically exchanged.

6.2.3 Sensitivity to federated parameters

Next, we conduct a sensitivity study (Fig. 12) for the pa-
rameters that determine the performance for the federated
policy. We first analyze the queue-depth threshold required
for the best latency profile on a site with 10 warm contain-
ers. Fig. 12a shows that a threshold of 10 (same as number of
warm containers) offers a good tradeoff between suffering
too many rejections vs. offloading too late.

Similarly, the optimal smoothing weight for capturing a site’s
capacity incorporates only 30% of the new instantaneous

queue-depth as seen by lower latencies for site 1 and 7 in Fig. 12b.

6.3 Real World Evaluations

In this subsection, we make real-world situation-aware ap-
plications FaaS-compliant and evaluate FEO’s ability to honor
per-function SLO requirements under a realistic scenario in-
corporating client mobility.

6.3.1 Video Analytics Pipeline

Video analytics applications on the edge take and provide
meaningful insight. We take a publicly available monolithic
application [11] and decompose it into a sequence of multi-
ple functions. The overall pipeline could be represented as
a DAG, where each vertex is the function and the edge rep-
resents data dependency between functions. Handling this

87

Queue Depth Threshold
[no-offbad [—1 5 [10

(a) Maximum queue-depth threshold

. 20

Latency (ms)

o
o

Smoothing Weight

[no-offload 0.3 05

e

(b) Queue-depth smoothing weight
Figure 12: The sensitivity study for the federated policy
at t = 2" minute in terms of latency impact shows the
optimal depth threshold and smoothing weight to be
10 and 0.7 respectively (lowest whisker).

—3jo.1 3 0.7 I 0.9

= N
ul o
o o

Latency (ms)

=
o
o

application requires FEO to maintain the queue information
of multiple applications.

Fig. 13 depicts the P99 latency for two of the functions (fil-
ter, detect) at timestamp t = 2. Sitel is overloaded with re-
quests beyond its local resource availability and cannot han-
dle the requests without offloading. Compared to other poli-
cies, FEO is able to distribute the load most evenly.

[no-offload

B federated
filter

E== hybrid

P99 Latency
(ms)
N
8

o

detect

N
o
S

P99 Latency
(ms)
N
8

0

Site No.
Figure 13: FEO performs best across different func-

tions of the vehicle application at t = 2"¢ minute.

FEO: Efficient Resource Allocation for Faa$S at the Edge

6.3.2 Drone Navigation

We modify a drone navigation application [16] to be FaaS-
compliant by decomposing it into two parts: stateful and
stateless. Since the stateful portion of the app cannot be of-
floaded, we focus primarily on benefits accrued by offload-
ing the stateless part of the drone application.

We model a cab from the SFCabs dataset as a single drone.
Along the drone’s route, it requests resources at its prox-
imal site. These resources at a site are apportioned to ac-
count for fluctuations in drone arrivals. The maximum num-
ber of drones that can be supported by an Edge site is typ-
ically capped by resources available for both stateful and
stateless components. However, by offloading the stateless
components, FEO makes room for for the deployment of ad-
ditional stateful components (and by extension additional
drones). We demonstrate this in Fig. 14 which shows the P99
latencies observed for one representative timestamp. With
FEO’s offloading, more drones can meet the application SLO
of 110ms.

I no-offload B federated E=3 hybrid

N
Ul
o

P99 Latency
(ms)

0

1 2 3 45 6 7 89
Site No.
Figure 14: P99 latency across 9 sites for the drone ap-

plication at ¢ = 2"¢ minute.

7 Related Work

Resource Orchestration for Geo-Distributed Edge Sites.

Prior work propose agile and flexible control planes and
adopt a hybrid Cloud-Edge approach to orchestration [3, 31]
for long running services on the Edge. In FEO, autonomous
sites are viewed as peers which participate in tandem for
resource orchestration for FaaS.

Serverless Computing. A wide variety of work has been
carried out in the field of serverless computing which im-
prove video analytics [30], optimize machine learning infer-
ence tasks [29], and improve serverless DAG scheduling [21].
Several others propose improvements for resource schedul-
ing and systems optimizations within a FaaS platform de-
ployment [19, 20, 27]. FEO extends the problem scope to
geo-distributed environments consisting of multiple Edge
sites which independently run FaaS platforms.

Load Balancers. In this work, we examined policies com-
monly incorporated in state-of-the-art load balancers [14,
24]. These load balancers are typically solitary deployments
and therefore do not have the necessary mechanisms to in-
teract with geo-distributed peers. FEO coordinates across
multiple sites to evaluate the peer node to offload requests.

88

DEBS ’24, June 24-28, 2024, Villeurbanne, France

FaaS Orchestrators. Prior serverless systems have explored
invocation balancing across sites using a centralized load
balancer [32], and examined policies in a single-tenant en-
vironment [4]. FEO instead explores the broad applicability
of various policies in past work and proposes a federated
load-aware orchestrator for multi-tenant deployments.

8 Discussion and Future Work

Enhancements to federated Policy. FEO adopts the fed-
erated approach that helps meet SLOs across a range of ap-
plications. The same policy can be embellished further to
reduce the impact of failed offload requests. One option is
to hedge function invocations [9] to multiple offloadees, ig-
noring redundant results from stragglers as long as they are
idempotent. Alternatively, byzantine infrastructure failures
can be handled by incorporating transactions [12]. Unsuc-
cessful offloads can be retried to other candidate offloadees
as a future optimization. We leave the evaluation of such
enhancements to future work.

Configurable Policies. The facility to configure new poli-
cies in a plug-and-play manner is a key consideration in
the design of FEO. Adding a new policy is simple. One only
needs to implement the ‘Check&Enq‘ and ‘FindTarget’ func-
tions in Fig. 4. Such flexibility allows us to consider other
policy variants before settling in the federated approach. For
example, in our analysis of spatio-temporal traffic patterns,
we found short periods of time (termed “epoch) over which
resource availability of a site is relatively stable. Exchang-
ing state just at the start of such epochs could enable au-
tonomous sites to perform state-aware offloads during the
epoch. We have open-sourced our implementation for re-
searchers to explore other policies in a similar manner.

9 Conclusion

We presented FEO, a scalable orchestrator to mitigate work-
load imbalance across geo-distributed Edge sites for applica-
tions using the FaaS paradigm. FEO meets application SLOs
via its federated policy which fails-fast to learn about a peer’s
resource availability. We studied the efficacy of FEO relative
to other policies via discrete-event simulation, and followed
the simulation studies with a distributed systems implemen-
tation to evaluate system effects beyond policy effects using
both microbenchmarks and application workloads.

10 Acknowledgements

We thank our anonymous reviewers and members of the
Embedded Pervasive Lab at Georgia Tech for their insightful
feedback and suggestions, which substantially improved the
content of this paper. This work was funded in part by NSF
CNS-1909346, Cisco, and a gift from Microsoft Corp.

DEBS ’24, June 24-28, 2024, Villeurbanne, France

References

[1] Apache OpenWhisk. Open Source Serverless Cloud Platform, 2023.

[2

—

[t

—
S
=

—_
(=)
—

—
~
—

—
[e)
—

[10

(11

[12

(13

(14

(15

[20

=

= =

]

—

=

=

[t

https://openwhisk.apache.org/.

Joy Arulraj, Abhijit Chatterjee, Alexandros Daglis, Ashutosh Dhekne,
and Umakishore Ramachandran. eCloud: A Vision for the Evolution
of the Edge-Cloud Continuum. Computer, 54(5):24-33, 2021.
Giovanni Bartolomeo, Mehdi Yosofie, Simon Biurle, Oliver
Haluszczynski, Nitinder Mohan, and Joérg Ott. Oakestra: A Light-
weight Hierarchical Orchestration Framework for Edge Computing.
In 2023 USENIX Annual Technical Conference (USENLX ATC 23), pages
215-231, Boston, MA, July 2023. USENIX Association.

Claudio Cicconetti, Marco Conti, and Andrea Passarella. A Decen-
tralized Framework for Serverless Edge Computing in the Internet of
Things. IEEE Trans. Netw. Serv. Manag., 18(2):2166-2180, 2021.

City and County of San Francisco Planning Department. Existing
Commercial Wireless Telecommunication Services Facilities in San
Francisco, 2021.

CloudLab. https://www.cloudlab.us/, (accessed Feb, 2024).

CNCF. Kubernetes. https://kubernetes.io/, 2024.

Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi:
A Decentralized Network Coordinate System. In Proceedings of the
2004 Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communications, SSIGCOMM 04, page 15-26, New
York, NY, USA, 2004. Association for Computing Machinery.

Jeffrey Dean and Luiz André Barroso. The Tail at Scale. Communica-
tions of the ACM, 56:74-80, 2013.

FOA. FOA Reference Guide: Fiber In Communications. https://www.
thefoa.org/tech/ref/OSP/nets.html, 2018.

Frank Schmitz. Object Detection with Yolo, OpenCV and Python
via Real Time Streaming Protocol (RTSP), 2020. https://github.com/
foschmitz/yolo-python-rstp.

Suyash Gupta, Sajjad Rahnama, Erik Linsenmayer, Faisal Nawab, and
Mohammad Sadoghi. Reliable transactions in serverless-edge archi-
tecture. In 2023 IEEE 39th International Conference on Data Engineering
(ICDE), pages 301-314, 2023.

Adam Hall and Umakishore Ramachandran. Opportunities for Opti-
mizing the Container Runtime. In 2022 IEEE/ACM 7th Symposium on
Edge Computing (SEC), pages 265-276, 2022.

Haproxy. HAProxy: The Reliable, High Performance TCP/HTTP Load
Balancer, 2023. https://www.haproxy.org/.

Hashicorp. Serf: Network Coordinates, 2024. https://www.serf.io/
docs/internals/coordinates.html.

Samira Hayat, Roland Jung, Hermann Hellwagner, Christian Bettstet-
ter, Driton Emini, and Dominik Schnieders. Edge Computing in 5G
for Drone Navigation: What to Offload? IEEE Robotics and Automation
Letters, 6(2):2571-2578, April 2021.

Indeed. Fibtest, 2024. https://github.com/indeedeng/fibtest.
Jonathan Ledlie, Paul Gardner, and Margo Seltzer. Network Coor-
dinates in the Wild. In 4th USENIX Symposium on Networked Sys-
tems Design & Implementation (NSDI 07), NSDI'07, page 22, USA, 2007.
USENIX Association.

Suyi Li, Wei Wang, Jun Yang, Guangzhen Chen, and Daohe Lu.
Golgi: Performance-Aware, Resource-Efficient Function Scheduling
for Serverless Computing. In Proceedings of the 2023 ACM Symposium
on Cloud Computing, SoOCC *23, page 32-47, New York, NY, USA, 2023.
Association for Computing Machinery.

David H. Liu, Amit Levy, Shadi Noghabi, and Sebastian Burckhardt.
Doing More with Less: Orchestrating Serverless Applications without
an Orchestrator. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 1505-1519, Boston, MA,
April 2023. USENIX Association.

89

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Sarma et al.

Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh El-
nikety, Somali Chaterji, and Saurabh Bagchi. ORION and the Three
Rights: Sizing, Bundling, and Prewarming for Serverless DAGs. In
16th USENLX Symposium on Operating Systems Design and Implemen-
tation (OSDI 22), pages 303-320, Carlsbad, CA, July 2022. USENIX As-
sociation.

Microsoft. Azure private multi-access edge compute, 2023.
https://azure. microsoft.com/en-us/solutions/private-multi-access-
edge-compute-mec.

Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. Agile Cold Starts for Scalable
Serverless. In 11th USENLX Workshop on Hot Topics in Cloud Comput-
ing (HotCloud 19), Renton, WA, July 2019. USENIX Association.
NGINX. NGINX: Advanced Load Balancer, Web Server, & Reverse
Proxy, 2023. https://www.nginx.com/.

Klaithem Al Nuaimi, Nader Mohamed, Mariam Al Nuaimi, and
Jameela Al-Jaroodi. A Survey of Load Balancing in Cloud Computing:
Challenges and Algorithms. In 2012 Second Symposium on Network
Cloud Computing and Applications, pages 137-142, 2012.

Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Gross-
glauser. CRAWDAD epfl/mobility. https://dx.doi.org/10.15783/
C7J010, 2022.

Shixiong Qi, Leslie Monis, Ziteng Zeng, lan-chin Wang, and K. K.
Ramakrishnan. SPRIGHT: Extracting the Server from Serverless
Computing! High-Performance EBPF-Based Event-Driven, Shared-
Memory Processing. In Proceedings of the ACM SIGCOMM 2022 Con-
ference, SIGCOMM °22, page 780-794, New York, NY, USA, 2022. As-
sociation for Computing Machinery.

Philipp Raith, Thomas Rausch, Alireza Furutanpey, and Schahram
Dustdar. faas-sim: A trace-driven simulation framework for server-
less edge computing platforms. Software: Practice and Experience,
53(12):2327-2361, 2023.

Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos
Kozyrakis. INFaaS: Automated Model-less Inference Serving. In 2021
USENIX Annual Technical Conference (USENIX ATC 21), pages 397-411.
USENIX Association, July 2021.

Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar, and Christos
Kozyrakis. Llama: A Heterogeneous & Serverless Framework for
Auto-Tuning Video Analytics Pipelines. In Proceedings of the ACM
Symposium on Cloud Computing, page 1-17, New York, NY, USA, 2021.
Association for Computing Machinery.

Enrique Saurez, Harshit Gupta, Alexandros Daglis, and Umakishore
Ramachandran. OneEdge: An Efficient Control Plane for Geo-
Distributed Infrastructures. In Proceedings of the ACM Symposium
on Cloud Computing, pages 182-196, 2021.

Christopher Peter Smith, Anshul Jindal, Mohak Chadha, Michael
Gerndt, and Shajulin Benedict. FaDO: FaaS Functions and Data
Orchestrator for Multiple Serverless Edge-Cloud Clusters. In 2022
IEEE 6th International Conference on Fog and Edge Computing (ICFEC),
pages 17-25, 2022.

A. Stathopoulos and M. Karlaftis. Temporal and Spatial Variations
of Real-Time Traffic Data in Urban Areas. Transportation Research
Record, 1768(1):135-140, 2001.

Mengwei Xu, Zhe Fu, Xiao Ma, Li Zhang, Yanan Li, Feng Qian, Shang-
guang Wang, Ke Li, Jingyu Yang, and Xuanzhe Liu. From cloud to
edge: a first look at public edge platforms. In Proceedings of the 21st
ACM Internet Measurement Conference, pages 37-53, 2021.

Xumiao Zhang, Anlan Zhang, Jiachen Sun, Xiao Zhu, Y. Ethan Guo,
Feng Qian, and Z. Morley Mao. EMP: Edge-Assisted Multi-Vehicle
Perception. In Proceedings of the 27th Annual International Conference
on Mobile Computing and Networking, pages 545-558, New Orleans
Louisiana, October 2021. ACM.

