
Color-based Lightweight Utility-aware Load Shedding
for Real-Time Video Analytics at the Edge

Harshit Gupta∗

Enrique Saurez∗

guptaharshit@microsoft.com
esaurez@microsoft.com

Georgia Institute of Technology
USA

Henriette Röger
henriette.roger@ipvs.uni-

stuttgart.de
University of Stuttgart

Germany

Sukanya Bhowmik
sukanya.bhowmik@uni-

potsdam.de
University of Potsdam

Germany

Umakishore
Ramachandran
rama@gatech.edu

Georgia Institute of Technology
USA

Kurt Rothermel
kurt.rothermel@ipvs.uni-

stuttgart.de
University of Stuttgart

Germany

ABSTRACT

Real-time video analytics typically require video frames to

be processed by a query to identify objects or activities of

interest while adhering to an end-to-end frame processing la-

tency constraint. This imposes a continuous and heavy load

on backend compute and network infrastructure . Video data

has inherent redundancy and does not always contain an ob-

ject of interest for a given query. We leverage this property of

video streams to propose a lightweight Load Shedder that can

be deployed on edge servers or on inexpensive edge devices

co-located with cameras. The proposed Load Shedder uses

pixel-level color-based features to calculate a utility score for

each ingress video frame and a minimum utility threshold to

select interesting frames to send for query processing. Drop-

ping unnecessary frames enables the video analytics query

in the backend to meet the end-to-end latency constraint

with fewer compute and network resources. To guarantee

a bounded end-to-end latency at runtime, we introduce a

control loop that monitors the backend load and dynami-

cally adjusts the utility threshold. Performance evaluations

show that the proposed Load Shedder selects a large portion

of frames containing each object of interest while meeting

∗Author currently works at Microsoft Corporation.

This work is licensed under a Creative Commons Attribution-NoDerivs 
International 4.0 License.
DEBS ’24, June 24–28, 2024, Villeurbanne, France
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0443-7/24/06
https://doi.org/10.1145/3629104.3666037

the end-to-end frame processing latency constraint. Further-

more, it does not impose a significant latency overhead when

running on edge devices with modest compute resources.

CCS CONCEPTS

• Information systems→ Data streams; Stream manage-

ment; • Computing methodologies → Computer vision.

KEYWORDS

Video Analytics, Load Shedding, latency bound, QoS.

ACM Reference Format:

Harshit Gupta, Enrique Saurez, Henriette Röger, Sukanya Bhowmik,

Umakishore Ramachandran, and Kurt Rothermel. 2024. Color-based

Lightweight Utility-aware Load Shedding for Real-Time Video

Analytics at the Edge. In The 18th ACM International Conference

on Distributed and Event-based Systems (DEBS ’24), June 24–28,

2024, Villeurbanne, France. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3629104.3666037

1 INTRODUCTION

Real-time video analytics has been gaining rapid popular-

ity due to its utility in applications such as surveillance[1],

driving assistance and safety[2], and factory automation[3].

Such applications are typically structured as a pipeline of op-

erators, where each operator executes a piece of the overall

application logic, e.g., object detection, classification, activity

recognition, etc., and extracts relevant insights from camera

frames. We specifically focus on video analytics pipelines

with stringent end-to-end latency constraints, such that the

extracted insight from video processing could be used to trig-

ger a real-time response, e.g., alert to car driver. The increas-

ing availability of high quality and high frame rate cameras

123

https://creativecommons.org/licenses/by-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3629104.3666037&domain=pdf&date_stamp=2024-07-22


DEBS ’24, June 24–28, 2024, Villeurbanne, France Gupta et al.

put significant pressure on the backend compute and net-

working resources. Although the use of edge resources for

running geo-distributed video analytics has been proposed

to minimize backhaul bandwidth usage [4], the resource

capacity of edge sites is typically limited due to space and

power constraints [5]. Oftentimes complex operators like

object detection pose heavy compute requirements, such as

access to a GPU, which imposes limitations on the number

of cameras that can be served at a given edge site.

Video streams possess two key characteristics that en-

able serving more number of cameras with limited resources.

Firstly, the appearance of the object-of-interest for a given

analytics query is not frequent[6], implying that a large frac-

tion of camera frames do not contain useful information.

Secondly, when an object-of-interest exists in a video stream,

due to the high frame rate of cameras it usually is present in

multiple frames. Dropping a small portion of the frames that

an object-of-interest appear in does not affect the overall

fidelity of the results. These characteristics motivate the use

of load shedding techniques to shed irrelevant frames, to

reduce the workload on the application pipeline. Previous

work in load shedding has focused on using linear selectiv-

ities [7] and work with structured queries and data [8, 9].

Such techniques haven’t been explored for content-based

shedding of unstructured data such as video. Previous work

in early-discard of video frames either require expensive

hardware for feature extraction [10, 11] or do not tune the

filtering parameters according to the processing load on the

backend video analytics pipeline [12].

In this work, we present a lightweight load shedding tech-

nique that uses a per-query content-based utility function to

determine if a frame should be shed. The utility of a frame is

calculated as a function of its color distribution. Each query

undergoes a learning phase during which the utility function

is built. The Load Shedder receives all ingress frames and it

drops those whose utility is below the baseline utility thresh-

old. Due to inherent variations in video streams’ contents,

the utility threshold needs to be dynamically tuned so that

the load on backend analytics pipeline is within manageable

levels, and the end-to-end processing latency constraint of

the query is continuously met. The Load Shedder includes a

feedback control-loop that dynamically updates the utility

threshold based on the current load on the later stages of

the video processing pipeline. This feedback from the later

stages ensures that the overall query processing pipeline

functions correctly despite differences in the content of the

video stream compared to the training set. We incorporate

the proposed load shedding technique on a video analytics

platform and perform extensive evaluations with real-world

analytics queries and video datasets. Our contributions can

be summarized as follows:

• A workflow for building the per-frame utility function,

given a query and a labeled training data set. The light-

weight utility function processes a high rate of ingress

frames without imposing significant latency overhead.

• A control loop that dynamically tunes the utility threshold

based on the current query operator load, thus keeping

the end-to-end latency under a query-specific bound.

• Performance evaluation of the proposed load shedding

approach to demonstrate its efficacy.

2 BACKGROUND AND PROBLEM
STATEMENT

We, first, describe the context of our proposed approach,

followed by a formal definition of the problem statement.

2.1 Context

This section sets the context for the proposed contributions,

in terms of the target application scenarios and representa-

tive deployment scenarios for the proposed system.

2.1.1 Target Application Scenarios. We target real-time video

analytics queries for which the target objects can be de-

scribed using a specific set of colors. Such queries are com-

mon in the domains of surveillance (e.g, tracking red cars in

response to an AMBER alert [13]), traffic control (e.g., detect-

ing if an emergency vehicle is stuck in traffic [14]), search

and rescue (e.g., locating humans in open water using drones

[15]), etc. Such queries typically process multiple frames

containing a given target object (e.g., a suspicious red car in

first example) to extract insights about the object (such as

its direction of motion, or which street it went to from an

intersection). The query could be designed to process frames

containing target objects of a single color (e.g., red suspicious

vehicle), frames containing at least one object from the target

colors (e.g., containing either a white ambulance or a red fire

truck) or frames containing objects of all target colors (e.g.,

frames containing both a red car and another white car).

Figure 1: High-level query model: proposed filter mod-

ule filters the camera streams processed by the query’s

operators.

A high-level query model is composed of three compo-

nents: a filter, a sequence of one or more video processing

operators (e.g., Deep Neural Network based object detec-

tion), and a sink (Fig. 1). The filter discards frames with no

useful information - for instance, dropping frames without

contiguous groups of pixels (blobs) of a certain color larger

124



Color-based Lightweight Utility-aware Load Shedding for Real-Time Video Analytics at the Edge DEBS ’24, June 24–28, 2024, Villeurbanne, France

than a certain size. The video processing operators form the

core of the query logic. Finally, the sink analyzes the output

labels of the video processing operators and sends informa-

tion downstream, either to perform an action or to execute

further downstream video processing queries. Depending on

the dynamic content of video streams, the fraction of frames

processed by the video processing operators (e.g., heavy-

weight DNNs) and the sink varies with time. This variation

in processing load causes significant variation in end-to-end

latency of the system as well. To ensure real-time response,

the queries have a constraint on end-to-end latency of pro-

cessing a frame containing a target object. The end-to-end

processing latency of a frame is the total time taken between

the generation of the frame by the camera to the time when

it is executed completely by the application query (including

communication delay).

2.1.2 Representative Deployment Scenarios. We consider a

connected camera deployment which could (but not nec-

essarily) be assisted by an edge compute node available in

proximity. We assume cameras to contain limited compute

capability for running background subtraction and feature

extraction (to be discussed in Section 4.2). Cameras send

the foreground of frames along with the associated features

downstream. The possible scenarios of the deployment of

downstream components, i.e., the Load Shedder and Applica-

tion Query, are shown in Fig. 2. In each such scenario, either

the compute resource on the edge or the network bandwidth

between edge and cloud or between camera and cloud is

the bottleneck resource, whose over-utilization results in

excessive queuing of video frames, eventually resulting in

violation of the end-to-end processing latency constraint.

Hence, the Load Shedder’s effective operation is crucial to

make sure that the bottleneck resource is not overloaded.

The objective of the Load Shedder is to maximize the fraction

of frames containing each target object that are sent down-

stream to the application query after shedding. It optimizes

this objective while maintaining the end-to-end processing

latency below the query-specific bound.

2.2 Problem Statement

We now formally define the problem statement to be solved

by the Load Shedder by mathematically expressing the ob-

jective function and latency constraint. A video stream 𝑉
is a continuous sequence of frames 𝑉 = [𝑓1, 𝑓2, · · · , 𝑓𝑚]. We

define an application query as 𝑄 = [𝑞1, · · · , 𝑞𝑛], where 𝑞𝑖
denotes a video processing operator (including filtering),

which reads the output of 𝑞𝑖−1 and outputs to 𝑞𝑖+1. The first
operator in a query always reads the combined video stream

coming from the multiple cameras it is serving. We denote

the output stream of operator 𝑞𝑖 with input stream 𝑣 as 𝑞𝑖 (𝑣).
We define the set of target objects detected by a query 𝑄

in video 𝑉 as 𝑇𝑄 (𝑉 ) as in Eq. (1). We represent frame 𝑓
containing target object 𝑜 by the relation 𝑜 ∈ 𝑓 .

𝑇𝑄 (𝑉 ) = {target objects in 𝑉 detected by 𝑄} (1)

Now, introducing the Load Shedder component into the

video query𝑄 , we construct a query𝑄 ′ of the form [𝑞0, 𝑞1, · · · , 𝑞𝑛],
where 𝑞0 is the Load Shedder component, also denoted by

𝐿𝑆 . The Quality of Result (QoR) metric we use in this work is

designed to measure the number of frames for each target

object that are sent downstream by the Load Shedder 𝐿𝑆 in

query 𝑄 ′, i.e., belonging to the output stream 𝐿𝑆 (𝑉 ). We

define the per-target-object QoR for target object 𝑜 in Eq. (2).

QoR metric has a value between 0 and 1.

𝑄𝑜𝑅𝑄 (𝑜, 𝐿𝑆,𝑉 ) =
|𝑓 ∈ 𝐿𝑆 (𝑉 ) : 𝑜 ∈ 𝑓 |

|𝑓 ∈ 𝑉 : 𝑜 ∈ 𝑓 |
(2)

The overall QoRmetric for query𝑄 with the Load Shedder 𝐿𝑆
against source video𝑉 is calculated as the average per-object

QoR metric over all target objects in 𝑉 (Eq. (3)). Thus, this

metric quantitatively measures the aggregate performance

of the Load Shedder for a given source video.

𝑄𝑜𝑅𝑄 (𝐿𝑆,𝑉 ) =

∑
𝑜∈𝑇𝑄 (𝑉 ) 𝑄𝑜𝑅𝑄 (𝑜, 𝐿𝑆,𝑉 )

|𝑇𝑄 (𝑉 ) |
(3)

For a given video stream 𝑉 = [𝑓1, 𝑓2, · · · , 𝑓𝑚], we define
the end-to-end (E2E) delay experienced by frame 𝑓 of video

𝑉 when processed by query 𝑄 ′ as 𝐸2𝐸𝑉 ,𝑄 ′ (𝑓 ) which is ex-

pressed as shown in Eq. (4), where 𝑞𝑘 is the last operator in

𝑄 ′ that processes frame 𝑓 .

𝐸2𝐸𝑉 ,𝑄 ′ (𝑓 ) =
𝑘∑
𝑖=0

𝑞𝑢𝑒𝑢𝑒 (𝑞𝑖 , 𝑓 ) + 𝑒𝑥𝑒𝑐 (𝑞𝑖 , 𝑓 ) (4)

The objective is to maximize the Quality of Result (QoR),

while dropping frames such that the end-to-end latency

bound 𝐿𝐵 is met, described as follows.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑄𝑜𝑅𝑄 (𝐿𝑆,𝑉 )

s.t. 𝐸2𝐸𝑉 ,𝑄 ′ (𝑓 ) ≤ 𝐿𝐵 ∀ 𝑓 ∈ 𝑉
(5)

3 RELATED WORK

Resource Management in Online Video Analytics: Live

video analytics is an extremely compute and network re-

source intensive application. Prior art has adopted two main

approaches for managing the high resource requirements

of this application - tuning the configuration of the input

stream and video processing operators (e.g., frame rate, reso-

lution, etc.) and early discard of uninteresting frames. Online

adaptation of camera streams and video processing operators

has been explored in several prior works [16–18]. However,

these works target scenarios where end-to-end latency of

the order of a few seconds can be tolerated as their primary

125



DEBS ’24, June 24–28, 2024, Villeurbanne, France Gupta et al.

(a) Edge server hosting the Load Shed-

der and application query. Compute

on the edge is the bottleneck resource.

(b) Load Shedder on the Edge and applica-

tion query on the cloud. Edge-Cloud net-

work bandwidth is the bottleneck.

(c) Load Shedder on the camera and appli-

cation query on the cloud. Camera-cloud

network bandwidth is the bottleneck.

Figure 2: Three candidate deployment scenarios for the proposed load shedding approach.

objective is to optimize cost of resources needed for support-

ing all video streams while also maintaining high accuracy.

Therefore, these approaches cannot be easily applied to our

target application scenarios that have stringent constraints

on end-to-end latency. However, their technique can be

adopted to work complementary to our proposed approach.

Early-Discard Filtering of Video: Multiple works have

explored early discard of unnecessary video frames to avoid

the cost of streaming and processing them. Glimpse [19] pro-

posed a hardware-software add-on that uses low-powered

coarse-grained vision modalities to filter out frames irrel-

evant to the target query. It uses specialized hardware for

motion detection, temperature measurement, etc., which are

not available on cameras in our scenarios. Zhang, et al., [20]

use a multi-stage pipeline of operators to determine if a

frame is relevant to a query, wherein the operators are imple-

mented using GPUs and impose significant latency overhead

to the video processing pipeline. FilterForward [10] consists

of a base DNN whose intermediate layers’ outputs are used

by a per-application binary classifier to decide whether to

filter out a frame. However, in that system, the execution

latency of the base model itself is very high (>200ms). These

approaches do not meet our objective of imposing small

overhead on the end-to-end video processing delay. The Ear-

lyDiscard strategy proposed in Wang, et al., [21] uses an

inexpensive DNN to perform filtering of frames. However,

the filter cannot be tuned to ensure end-to-end video process-

ing latency. Reducto [12] makes use of difference in low-level

visual features (pixels, edges, etc.) across consecutive frames

to determine if processing the new frame would result in a

difference in the query’s result. However, it operates at 1-

second granularity and cannot guarantee end-to-end latency

less than that. It also does not support tuning of the filtering

based on load experienced by backend application query.

EarlyDiscard and Reducto do not possess the ability to tune

the frame filter based on dynamically changing workload

characteristics over time, which is a key requirement in our

target application scenarios to meet the end-to-end latency

bound.

4 UTILITY-AWARE LOAD-SHEDDING

In this section, we present a high-level architecture of the

proposed load shedding system, highlighting the interactions

between different components. Then we describe the design

and functionality of each individual component in isolation.

4.1 System Architecture

Current
Frame Rate

Camera

Operator
1

Operator
2

AApplication Querpplication Queryy

End-To-End Latency

Processing
Latency

Control PathQueueData Path

Control
Loop

Utility
Threshold

Frames

Frame
Utility

Frame
Features

Utility-based
Load Shedder

Utility
Function

Figure 3: Proposed load-shedding architecture.

We extend real-time video analytics systems equipped

with edge-computing capability (either as edge sites or co-

located compute with cameras) with our proposed load shed-

ding system that sheds a portion of the input frames to main-

tain the given latency bound (𝐿𝐵) during overload. Figure 3

shows the main components and their interactions—the Load

Shedder, the application query, and the Control Loop. Each

component (including Load Shedder) reads from an ingress

queue and pushes the output data to the egress queue.

The load shedding system must perform two primary

tasks—(1) decide when and how much to shed, and (2) de-

cide which frames to shed. We describe the latter task first,

for which the Load Shedder computes a utility/ importance

value for each video frame that denotes the probability of

the frame being useful for the application query. The utility

is calculated using the color content of the frame and the

given application query. The intuition behind the design of

the Load Shedder is to discard video frames that have a low

probability of being useful for the given application query

(see Section 4.2). The Load Shedder can be dynamically con-

figured with a utility threshold, such that it drops frames

with utility less than the threshold.

The Control Loop component dynamically computes the

utility threshold and updates the Load Shedder. The utility

threshold is set such that the current load on the application

query is maintained and the end-to-end latency constraint

126



Color-based Lightweight Utility-aware Load Shedding for Real-Time Video Analytics at the Edge DEBS ’24, June 24–28, 2024, Villeurbanne, France

is met (see Section 4.4). More specifically, the Control Loop

component monitors the queue lengths of each operator in

the query, and estimates the current observed end-to-end

latency. Based on the observed end-to-end latency and the

query’s latency requirement, the Control Loop computes

the fraction of frames that should be dropped by the Load

Shedder, which is then transformed into a utility threshold

(see Section 4.3). Transforming the desired frame drop rate

to a utility threshold is done on the basis of the utility distri-

bution of frames observed in the past. All of these concepts

are described in the subsequent sections.

4.2 Building the utility function

The Load Shedder decides whether to discard a frame based

on it’s utility value - which is calculated by the utility func-

tion using the frame’s color-based features. We design the

utility function specifically for the target application sce-

narios. Firstly, since the application queries considered per-

form detection of objects of one or more target colors (Sec-

tion 2.1.1), we use the frame’s color features to calculate

utility and thereby avoid missing a potential target object.

Secondly, the target queries’ end-to-end latency constraints

necessitates the design of a light-weight load-shedder (Sec-

tion 2.2). Thus the proposed utility function does not apply

for queries that do not belong to the set of representative

applications described in Section 2.1.1.

4.2.1 Hue-Saturation-Value Color Model. We use the Hue-

Saturation-Value (HSV) model for representing the color

of pixels. Hue represents the color itself (or the dominant

wavelength), Saturation represents the brilliance and inten-

sity, while Value defines the lightness or darkness. The HSV

model is widely used in computer vision applications over

the Red-Green-Blue (RGB) model because HSV separates the

color information from intensity information (which helps

deal with situations like lighting changes or shadows). The

HSV triplets of all pixels represent the distribution of colors

in a frame, which forms the input feature set for the utility

function (described in detail in subsequent sections). The

ranges of H, S and V we use are [0, 180), [0, 256), and [0, 256)
respectively. The Application Query developer specifies the

color of the target objects in terms of a hue range 𝐶 as input

to the Load Shedder. For instance, the color red is represented

using the hue ranges [0, 10) ∪ [170, 180).

4.2.2 Training data. To train the utility function, we use a

labeled stream of videos from multiple cameras as training

data set. Each element of the training data set D is of the

form (𝑓 , 𝑙), where 𝑓 represents the frame and 𝑙 represents
the label. Each frame 𝑓 is described by a list of pixels, with

each pixel being represented by a triplet (ℎ, 𝑠, 𝑣) denoting it’s
Hue, Saturation and Value fields. The label 𝑙 tells whether the

frame contains an object of interest, i.e., whether the frame

was a match for the given query. Henceforth, we use the

term positive to denote frames which contain one or more

target objects, and negative to denote frames that don’t.

The goal of the utility function is to separate the computed

utilities of positive and negative frames, such that using a

utility threshold results in effective load shedding. In the rest

of this section, we outline our observations from the training

data on how to separate positive and negative frames using

the HSV model and the construction of the utility function.

4.2.3 Hue as feature for separating positive and negative

frames. We first explore the use of the Hue field of pixels to

calculate whether the given frame contains a target object of

the given color. We do so by computing a metric Hue Fraction

for the color 𝐶 , denoted by 𝐻𝐹𝐶 .

𝐻𝐹𝐶 (𝑓 ) =
|pixel 𝑝 ∈ 𝑓 : ℎ𝑢𝑒 (𝑝) ∈ 𝐶 |

|pixel 𝑝 ∈ 𝑓 |
(6)

A higher Hue Fraction would imply higher likelihood for

the frame to contain a target object of a given color. Hence,

a threshold-based approach on 𝐻𝐹𝐶 is a candidate for the

Load Shedder. However, an analysis of our dataset showed

that the distribution of 𝐻𝐹𝐶 for negative frames overlaps

significantly with positive frames across all videos - as seen

in Fig. 4a, which shows 𝐻𝐹𝑅𝐸𝐷 for the entire dataset. This

overlap would prevent a threshold-based approach on the

hue fraction from effectively differentiating between positive

and negative frames - shown in Fig. 4b, where the per-object

QoR metric drops steeply with hue fraction thresholds with-

out achieving a significant frame drop rate. We posit that this

overlap in distribution is because both positive and negative

frames contain red-colored pixels; however, the saturation

and value fields of those pixels in the positive and negative

frames would have distinctly discernible distributions.

4.2.4 Using Saturation and Value fields for differentiating

frames. In order to separate positive frames from negative

ones, we analyze the distribution of Saturation and Value

fields for Red pixels across videos. We discretize the range

of saturation and value into bins of size 𝑠 and 𝑣 respectively
using functions 𝑠𝑎𝑡_𝑏𝑖𝑛 and 𝑣𝑎𝑙_𝑏𝑖𝑛 that map a pixel’s satu-

ration 𝑠𝑎𝑡 (𝑝) and value 𝑣𝑎𝑙 (𝑝) to their corresponding bins.

𝑠𝑎𝑡_𝑏𝑖𝑛 (𝑝) = 𝑖 ⇐⇒ 𝑖 · 𝑠 ≤ 𝑠𝑎𝑡 (𝑝) < (𝑖 + 1) · 𝑠 (7)

𝑣𝑎𝑙_𝑏𝑖𝑛 (𝑝) = 𝑗 ⇐⇒ 𝑗 · 𝑣 ≤ 𝑣𝑎𝑙 (𝑝) < ( 𝑗 + 1) · 𝑣 (8)

We now transform a frame 𝑓 into a 2D matrix for a given

color𝐶 , i.e., 𝑃𝐹 (𝑖, 𝑗 )
𝐶 , so that thematrix element 𝑃𝐹 (𝑖, 𝑗 )

𝐶 denotes

the fraction of pixels whose hue falls in the range𝐶 and their

saturation and value fall into the 𝑖𝑡ℎ and 𝑗𝑡ℎ bin respectively.

𝑃𝐹 (𝑖, 𝑗 )
𝐶 (𝑓 ) =

|pixel 𝑝 ∈ 𝑓 : ℎ𝑢𝑒 (𝑝) ∈ 𝐶 ∧ 𝑖𝑛_𝑏𝑖𝑛(𝑝, 𝑖, 𝑗) |

|pixel 𝑝 ∈ 𝑓 : ℎ𝑢𝑒 (𝑝) ∈ 𝐶 |
(9)

127



DEBS ’24, June 24–28, 2024, Villeurbanne, France Gupta et al.

(a) Hue Fraction of color RED across training videos. (b) QoR and Drop Rate vs. HF threshold for RED color.

Figure 4: Using Hue Fraction for selecting positive vs. negative frames. Fig. 4a shows that Hue Fraction of negative

and positive frames has significant overlap. Fig. 4b shows that high frame drop rate results in a steep drop in QoR.

𝑖𝑛_𝑏𝑖𝑛(𝑝, 𝑖, 𝑗) = (𝑏𝑖𝑛𝑠𝑎𝑡 (𝑝) = 𝑖 ∧ 𝑏𝑖𝑛𝑣𝑎𝑙 (𝑝) = 𝑗) (10)

Figure 5: Distribution of Saturation and Value fields for

positive (𝑀𝐶,𝑡𝑟𝑢𝑒 ) and negative frames (𝑀𝐶,𝑓 𝑎𝑙𝑠𝑒 ) across

all videos in the dataset. Bins with high saturation are

better differentiators of positive frames.

Using the per-frame distribution of pixels in saturation-

value bins, we quantify how useful each bin is in classifying a

frame as positive or negative. We compute a metric for each

saturation-value bin using the pixel distribution of positive

and negative frames that denotes the correlation of the bin

with the particular label (+ve or -ve) for a given frame.

𝑀 (𝑖, 𝑗 )
𝐶,+𝑣𝑒 = AVG 𝑃𝐹 (𝑖, 𝑗 )

𝐶 (𝑓 ) ∀ (𝑓 , 1) ∈ D (11)

𝑀 (𝑖, 𝑗 )
𝐶,−𝑣𝑒 = AVG 𝑃𝐹 (𝑖, 𝑗 )

𝐶 (𝑓 ) ∀ (𝑓 , 0) ∈ D (12)

The distribution of above utility for the color Red, i.e.,

𝑀𝐶,+𝑣𝑒 and𝑀𝐶,−𝑣𝑒 is shown in Fig. 5. Bins with higher satu-

ration are stronger indicators of whether a frame is positive.

4.2.5 Computing per-frame utility. We use the utility of each

saturation-value bin (from Eq. (11) and Eq. (12)) to compute

the utility value for a frame. The utility is a weighted sum of

the𝑀 (𝑖, 𝑗 )
𝐶,+𝑣𝑒 value for each saturation-value bin, weighted by

the pixel fraction of the frame in that bin.

𝑈𝐶 (𝑓 ) = 𝑀 (𝑖, 𝑗 )
𝐶,+𝑣𝑒 · 𝑃𝐹

(𝑖, 𝑗 )
𝐶 (𝑓 ) (13)

Fig. 6 schematically describes the approach of building the

utility function using training data and using the function

to calculate utility value for frames at runtime.

Fi
lte

r p
ix

el
s 

in
 

H
ue

 R
an

ge
 C

C
om

pu
te

 S
at

ur
at

io
n-

Va
lu

e 
di

st
rib

ut
io

n 
(E

qn
. 9

)

Per-frame 
Sat-Val bins

Av
er

ag
e 

(E
qn

. 1
2)

Po
si

tiv
e 

fra
m

es
 in

 
tra

in
in

g 
da

ta

Utility 
of 

frame 

Test frame 

Training stage

Test/runtime stage 

D
ot

 p
ro

du
ct

 
(E

qn
. 1

4)

Figure 6: The proposed utility-based load shedding ap-

proach - with both training and testing/runtime stages.

4.2.6 Computing per-frame utility for composite color queries.

Computing the utility of a frame for composite queries re-

quires using the utility function for the component colors.

𝑈𝐶1∨𝐶2 (𝑓 ) =𝑚𝑎𝑥
(
𝑈𝐶1 (𝑓 ) ,𝑈𝐶2 (𝑓 )

)
(14)

𝑈𝐶1 represents the utility function for color 𝐶1 normalized

over the training data, such that the maximum utility is

1.0. Normalization of per-color utility functions allows their

effective composition. Similarly for computing the utility of

a query looking for both colors 𝐶1 AND 𝐶2 in a frame, we

use the minimum of𝑈𝐶1 and𝑈𝐶2 as the composite utility.

4.3 Computing Utility Threshold

The Load Shedder’s utility threshold at any point of time is

computed using the current target frame drop rate - based

on the distribution of utility values for a set of recent frames.

Using the utility function𝑈𝐶 , we build a cumulative distri-

bution function (CDF) of utility values over frames in the

history H , as shown in Eq. (15).

𝐶𝐷𝐹 (𝑢) =
|{𝑓 : 𝑈𝐶 (𝑓 ) ≤ 𝑢 ∀ (𝑓 , 𝑙) ∈ H}|

|H |
(15)

A CDF-based approach allows incorporating utility values of

more recent frames intoH to update the CDF with changing

video content. Initially, the training set D itself can be used

as the setH . To determine the utility threshold for a given

target drop rate 𝑟 , we use the inverse of the 𝐶𝐷𝐹 function

iteratively to compute the minimum utility value 𝑢𝑡ℎ such

128



Color-based Lightweight Utility-aware Load Shedding for Real-Time Video Analytics at the Edge DEBS ’24, June 24–28, 2024, Villeurbanne, France

that 𝐶𝐷𝐹 (𝑢𝑡ℎ) ≥ 𝑟 . The intuition behind this approach is

that for the utility threshold 𝑢𝑡ℎ , the Load Shedder will drop

a fraction 𝑟 fromH . Since the utility distribution of recent

historical frames is expected to be similar to new frames in

the near future, the Load Shedder is expected to drop 𝑟 frac-
tion of new incoming frames. However, the observed frame

drop rate of new incoming frames might not equal the target

drop rate 𝑟 because it’s transformation to utility threshold

depends entirely on the distribution of frame utilities in H .

4.4 Design of Control Loop

The utility and threshold calculation in Section 4.1 are used

by a Load Shedder to control the end-to-end (E2E) latency

of execution of a video processing query. The Load Shedder

requires a control loop (Fig. 3) to define the target drop rate

to keep the E2E latency within the specified bound.

4.4.1 Control Loop mechanisms. The developer of the video

query defines the required E2E latency, which guides the

execution of the Load Shedder. Besides this requirement,

the Load Shedder uses as inputs both the frames per second

(FPS), the (current) processing latency of backend query exe-

cution, and the (current) network latency between camera

and Load Shedder, and between Load Shedder and the back-

end running the query. The Load Shedder uses two main

mechanisms to control the end-to-end latency: admission

control and dynamic queue sizing. These mechanisms differ

primarily in how quickly they adapt the target drop rate

based on changes in backend execution load.

Admission Control. It decides which frames are consid-

ered for further processing. It monitors the per-frame ex-

ecution and queuing delays of a frame for all operators of

the Application Query and computes the average perceived

query processing latency (𝑝𝑟𝑜𝑐𝑄 ). The currently supported

throughput (ST) by the backend query is then calculated as:

𝑆𝑇 =
1

𝑝𝑟𝑜𝑐𝑄
. The ST is then compared against the FPS (frame

per second) coming into the Load Shedder to calculate the

required target drop rate as follows:

𝑇𝑎𝑟𝑔𝑒𝑡 𝐷𝑟𝑜𝑝 𝑅𝑎𝑡𝑒 =𝑚𝑎𝑥 (0, 1 −
𝑆𝑇

𝐹𝑃𝑆
), (16)

which prescribes the frame drop rate to match the frame rate

ingress into the backend query with the available processing

throughput, such that the system is stable. As described

in Section 4.3, we transform the target drop rate to a utility

threshold by using the utility distribution of historical frames,

to filter new ingress frames based on their utility value.

Dynamic Queue Sizing. Internally, the Load Shedder (as

shown in Fig. 3) also manages a queue that it uses to ensure

that the the end-to-end latency of any frame accepted by

admission control is met. The expected E2E latency for the

𝑁 𝑡ℎ frame in the Load Shedder queue is shown in Eq. (17).

𝑛𝑒𝑡𝑐𝑎𝑚,𝐿𝑆 and 𝑛𝑒𝑡𝐿𝑆,𝑄 represent the average of continuously

monitored network latencies between cameras and Load

Shedder and between Load Shedder and query backend re-

spectively. 𝑝𝑟𝑜𝑐𝐶𝐴𝑀 denotes the average latency incurred

in processing frames on the camera (including background

subtraction, feature extraction, etc.) (analyzed in Section 5.6).

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐸2𝐸 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = (𝑁 + 1) · 𝑝𝑟𝑜𝑐𝑄+

𝑛𝑒𝑡𝑐𝑎𝑚,𝐿𝑆 + 𝑛𝑒𝑡𝐿𝑆,𝑄 + 𝑝𝑟𝑜𝑐𝐶𝐴𝑀
(17)

If one of the component latencies increases, later frames

in the Load Shedder’s internal queue could violate the E2E

latency requirement. Dynamic queue sizing helps reduce the

likelihood of latency violation for a frame with high utility.

Dynamic queue sizing updates the size of the Load Shed-

der’s queue and drops the lowest utility frames if needed,

allowing frames with the highest utilities to be processed.

Dynamic queue sizing reacts faster than updates to the utility

threshold (that guides admission control) and reduces the

likelihood of an E2E latency violation. The queue is always at

least of size one to avoid starving the downstream operators.

Dynamic queue sizing can also be seen as a second layer

of admission control. Even if a new frame has a utility higher

than the current threshold, it will be dropped if the queue

is full and it has the lowest utility of all frames currently in

the queue. Similarly, if an incoming new frame has a greater

utility than the lowest utility frame that is already in the

queue, then the latter will be dropped and the new frame

added to the queue. This queue shedding keeps the latency

requirement valid even for new incoming frames.

Both mechanisms allow the Load Shedder to fine-tune the

admission of new frames to extract the most utility out of the

video stream while maintaining the required E2E latency.

5 EVALUATIONS

In this section, we present the results of experimental evalu-

ations carried out to test the efficacy of the proposed utility-

based load shedding approach. Our experiments are tailored

to validate the following hypotheses.

(1) The proposed utility function can compute utility value

for unseen video frames (not in training set) and effec-

tively differentiate between positive and negative frames.

(2) The proposed control loop adapts to changing workload

pattern and is able to meet application performance re-

quirements without sacrificing QoR metric.

(3) The utility value calculation is light-weight and imposes

low overhead on edge devices.

5.1 Data Set

We generated a benchmark of synthetic videos with Visual-

Road [22], which is a benchmark to evaluate video database

management systems. VisualRoad uses the autonomous driv-

ing CARLA simulator [23] to generate videos from CCTV

129



DEBS ’24, June 24–28, 2024, Villeurbanne, France Gupta et al.

cameras located in a realistic city-like environment, includ-

ing pedestrians, bicycles, different types of vehicles, and all

the surroundings (roads and buildings). Additionally, it al-

lows perturbing the locations of cameras (by specifying a

seed parameter) and weather conditions, thereby generating

a number of different scenarios.

We evaluate our proposed color-based Load Shedder and

associated control loop with 25 videos from 7 seeds value

(3 or 4 videos from each seed value) using sunny weather.

Each video represents 15 minutes of a camera video stream

facing a road or highway in a city, with a frame rate of 10

fps. Different cameras have different distributions of cars,

varying from cars always presents to rarely appearing. In

our results, we report metrics for videos that contained a

decent number of target objects for the given query.

5.2 Implementation

LoadLoad
ShedderShedder

Video StrVideo Streamereamer

Color
Features

BackBackend Querend Query Exy Executecutoror

Application Query

DNN
Blob
Size
Filter

Blob
Color
Filter

Detection
Filter Sink

Filter operator

Figure 7: The components used in the evaluation setup.

To evaluate the aforementioned hypotheses, we imple-

ment the video processing system along with the Load Shed-

der. It has three main components: the Video Streamer, the

Load Shedder, and the Backend Query executor, as shown

in Fig. 7. All the components exchange messages using the

communication library ZeroMQ [24], with the messages se-

rialized using Cap’n Proto [25]. The Load Shedder is imple-

mented in Python 3 and all the other components in C++.

The Video Streamer reads the video files generated with

VisualRoad, performs background subtraction, extracts the

color features for each frame (as described in Fig. 6) and

streams them to the Load Shedder. The Video Streamer com-

ponent is capable of emulating multiple cameras sending

their frames’ features to the Load Shedder by interleaving

their frames. Next, the Load Shedder implements the util-

ity calculation and load shedding described in Section 4.1.

The utility function we use in our evaluations uses 8 bins

for both saturation and value, meaning that the bin sizes 𝑠
and 𝑣 are equal to 32. Through preliminary experiments (not

shown in this paper) we found that these bin sizes offer the

best separation of positive from negative frames. In the real-

world the Load Shedder would be fed raw video frames from

multiple cameras, instead of from the Video Streamer. Since

the Load Shedder consumes raw frames, a real-world deploy-

ment would need video streams to be pre-processed by a

video decoder and decompressor before being consumed by

the Load Shedder. The proposed Load Shedder’s implemen-

tation does not impose any constraint on the input camera

streams’ characteristics such as frame rate, encoding or com-

pression techniques. Finally, the Backend Query Executor

runs the video analytics query to be executed on the video

stream. The Load Shedder and Backend Query Executor run

on a NC6 Virtual Machine on Microsoft Azure with 6 Intel

Xeon E5-2690 v3 vCPUs, 56 GiB of RAM and an NVIDIA

Tesla K80 GPU.

There are two additional components to implement the

control loop: the Metrics Collector and a Transmission Con-

trol Mechanism. The Metrics Collector measures the total

incoming frame rate and the end-to-end latency in the Back-

end Query Executor, and forwards these metrics to the Load

Shedder. The Load Shedder uses this information to define

the target drop rate. The Transmission Control Mechanism

implements a token-based backpressure algorithm between

the Load Shedder and the Backend Query Executor - wherein

in the event of low backend query load, the Load Shedder

sends more frames to the backend query, while under high

backend query load, the Load Shedder follows the utility

threshold and drops low-utility frames.

5.3 Video queries

We consider object detection and tracking queries that need

to look at multiple frames of target objects. The model query

we use consists of (1) a filter component that groups together

spatially adjacent pixels into blobs and drops frames that

do not have at least one blob of a certain minimum size,

(2) a second filter that ignores frames that do not have a

blob(s) of the target object’s color, (3) a DNN that performs

object detection, (4) a filter that looks for the detected objects’

color and label before sending the information to the sink.

We use the efficientdet-d4 [26] object detection DNN. We

evaluate simple queries for target objects of a single color

and composite queries for objects of multiple colors.

5.4 Performance on Unseen Videos

We evaluate the performance of the Load Shedder on unseen

videos using an iterative cross-validation study. We split the

video dataset into training and testing set, build the Load

Shedder’s utility function using the training set and compute

the utility and correctness metrics for the test videos.

5.4.1 Single-color query: Red. We first evaluate a query for

detecting target objects of a single color, i.e., red. Fig. 8a

shows that the utility of positive frames is significantly

higher than the negative ones in our dataset, thereby demon-

strating the efficacy of the utility function on unseen videos.

We demonstrate that such a higher utility for positive

frames helps in detecting target objects and maintaining a

high QoR value while also shedding a significant fraction

of (useless) frames. In Fig. 8b, we show how an increasing

utility threshold causes higher frame drop rate, which also

130



Color-based Lightweight Utility-aware Load Shedding for Real-Time Video Analytics at the Edge DEBS ’24, June 24–28, 2024, Villeurbanne, France

(a) Utility values for positive and negative frames of unseen video frames. For

a given video in the figure, the utility function used to compute its frames’

utility values is trained using data that does not contain the given video.

(b) Target object based QoRmetric and frame

drop rate vs. utility threshold for a Load

Shedder tuned to detect red vehicles.

Figure 8: Performance of the utility-based Load Shedder on a query looking for Red cars as target objects.

includes a small portion of useful frames containing target

objects, and hence results in a drop in the QoR metric.

Comparison against Content-agnostic load shedding.

We compare the performance of the proposed utility-based

load shedding approach against a content-agnostic approach

that sheds a fixed rate of incoming frames using a uniform

probability. Firstly, Fig. 9a shows the variation of frame drop

rate and the per-object QoR against the target drop rate of

the Load Shedder. Even at a high frame drop rate, the QoR re-

mains at 1.0 due to frequent low-utility negative frames. The

QoR drops only when the target drop rate becomes so high

that higher-utility frames (containing target objects) need to

be dropped. Similarly, Fig. 9b shows the frame drop rate and

QoR against target drop rate for the Content-agnostic shed-

ding approach (with each setting repeated 20 times). With

increasing target drop rate, the QoR falls sharply because

content-agnostic shedding often sheds frames containing

target objects. Fig. 9c compares the QoR that the proposed

load shedding approach can achieve for a given observed

frame drop rate with the content-agnostic approach. Unlike

continuous decline of QoR for the content-agnostic approach,

the QoR for utility-based approach has a visible drop only

when the observed frame drop rate gets close to 1.0. The

result shows that the utility-based approach is selective in

picking frames to send to Backend Query Executor, and can

achieve a much higher QoR for a given observed frame drop

rate compared to a content-agnostic shedding approach.

5.4.2 Composite-color query: Red OR Yellow. We perform a

similar analysis for two composite queries - (1) detect target

objects that are either Red OR Yellow in color, and (2) detect

all frames containing both Red AND Yellow target objects.

As before, we iteratively select a set of videos as the training

set and the complementary set as the test set. The utility

value of frames for the OR query is shown in Fig. 10a. As

for the single-color query, positive frames have significantly

higher utility than negative frames. Note that for the com-

posite OR query, a positive frame is one that contains either

a Red or a Yellow target car. Fig. 10b shows the frame drop

rate and QoR against the utility threshold. The QoR remains

stagnant at 1.0 (selecting all frames containing target objects)

with a high frame drop rate, until the utility threshold be-

comes high enough to start dropping positive frames. Fig. 11

shows the utility value of frames for the AND query, and

the differentiation between positive and negative frames is

visible here as well. Note that for the composite AND query,

a positive frame should contain both a Red and a Yellow car.

5.5 Application Evaluations

In this subsection, we detail an E2E evaluation of running

both the utility calculation and the Load Shedder control loop

using a real-time video stream and show how it controls the

frame processing latency and avoids backend overload.

5.5.1 Synthetic scenario. First, we evaluate a synthetic worst-

case scenario in which a sudden burst of high-processing ac-

tivity occurs in the ingress video. The video comprises three

segments: low-utility frames with no target object, high-

utility frames containing target object(s), and high-utility

frames with no target object. To create such a tailored video,

we obtain segments from the videos generated with Visual

Road that are known a-priori to have those properties, and

stitch them together to form a 15 minutes long video with

each of the above three segments being 5 minutes long.

We expect that during the video’s first low-utility no-

object segment, the Load Shedder will allow frames to be

processed by the filter-stage in the backend query, despite

low frame utility. This is because the filter operator would

drop these frames as they don’t contain target objects any-

way. Hence, the processing latency 𝑝𝑟𝑜𝑐𝑄 is low, and a low

target drop rate is set (Eq. (16)). In the second segment of

the video, the Load Shedder starts shedding frames because

all frames are be processed by the expensive DNN as they

contain target objects. Thus, the Load Shedder increases the

utility threshold so that the backend query executor can keep

the end-to-end latency bounded. Finally, in the third segment

131



DEBS ’24, June 24–28, 2024, Villeurbanne, France Gupta et al.

(a) Impact of target drop rate on QoR

rate and frame drop rate for utility-

based approach.

(b) Impact of target drop rate on

QoR and frame drop rate for content-

agnostic approach.

(c) QoR vs. frame drop rate trade-

off for utility-based and content-

agnostic load shedding approaches.

Figure 9: Fig. 9a and Fig. 9b show the impact of target drop rate on the QoR metric and observed frame drop rate

for the proposed utility-based and the content-agnostic probabilistic approach respectively. Tradeoffs between the

two aforementioned metrics are shown for both approaches in Fig. 9c.

(a) Utility values for positive and negative frames of unseen video frames. For

a given video in the figure, the utility function used to compute its frames’

utility values is trained using data that does not contain the given video.

(b) Target object detection rate and frame

drop rate vs. utility threshold for a Load

Shedder tuned to detect red or yellow cars.

Figure 10: Performance of utility-based Load Shedder on query looking for Red OR Yellow cars as target objects.

Figure 11: Utility of unseen video frames for a compos-

ite query that detects Red and Yellow cars.

with no target objects, the Load Shedder stops shedding again

and its execution profile resembles the first segment.

Fig. 12a shows the time-varying behavior of the query

execution. The upper graph of Fig. 12a shows the max E2E

latency for each 5 minute time window, along with the E2E

requirement. The lower graph in Fig. 12a shows the number

of frames processed at each stage group every 5 seconds.

The upper graph in Fig. 12a shows that the latency is always

less than the E2E latency bound. Similarly, the lower graph

in Fig. 12a shows that the Load Shedder decides the frame

drop rate at each segment, with no shedding in the 1st and

3rd segments and plenty of shedding in the 2nd segment.

Both these results show that the proposed Load Shedder

can quickly react to changes and few violations even with

extreme changes, that too for real-time video processing with

24 FPS input frame rate. There was only 1 latency violation

during the peak in the 2nd segment while the Load Shedder

was recalculating the queue size and the utility threshold.

5.5.2 Realistic smart-city scenario. We analyze the Load

Shedder running directly on videos generated using Visual

Road. The Video Streamer emulates workload from multiple

cameras by generating a stream of frame features interleaved

frommultiple videos. We show the E2E latency and the distri-

bution of frames processed at each stage, and the variation of

the QoRmetric with the number of concurrent video streams.

As in Fig. 12a, Fig. 12b shows that the Load Shedder can

bound the processing latency by dropping frames. The syn-

thetic scenario reports more spikes because the DNN is in-

voked unpredictably by frames from different videos at dif-

ferent times. The Load Shedder minimizes latency violations

caused due to these sudden load surges. Fig. 12b shows the

latency and elements being processed for five concurrent

132



Color-based Lightweight Utility-aware Load Shedding for Real-Time Video Analytics at the Edge DEBS ’24, June 24–28, 2024, Villeurbanne, France

(a) Synthetic Scenario each segments highlighted (b) Realistic Scenario

Figure 12: Analysis of both a synthetic and a realistic scenario. The upper graph of both figures shows the avg.

processing latency on the y-axis and video time on the x-axis, along with the end-to-end latency requirement. The

lower graph shows the number of frames that reached each query component (from Fig. 7) over video time.

Figure 13: QoR of the proposed utility-based vs.

content-agnostic approach with varying number of

concurrent video streams.

videos. Fig. 13 shows that the proposed utility-based ap-

proach can exploit the statistical multiplexing between mul-

tiple cameras’ video streams and achieve a high QoR. On

the other hand, a content-agnostic approach has poor QoR.

We compute the target drop ratio for the latter approach

assuming that 𝑝𝑟𝑜𝑐𝑄 is 500 ms, which is a rather lenient

assumption for the baseline.

5.6 Runtime Overhead Analysis

We evaluate the additional latency incurred by a video ana-

lytics system using the proposed Load Shedder vs. executing

the backend query without load shedding. We assume that

cameras have colocated compute capability, which is used for:

(1) converting color space from RGB to HSV, (2) background

subtraction, and (3) color feature extraction. We evaluate

the time taken to perform these tasks on an Nvidia Jetson

TX1 with a quad-core ARM Cortex-A57 processor and 4 GB

Component Median Latency Overhead

Color Space Transformation 3.5 ms

Background Subtraction 26.4 ms

Feature Extraction 3.8 ms

Table 1: Breakdown of Load Shedder latency overhead.

The utility calculation component is not shown be-

cause of its negligible latency.

of RAM (representative of compute power co-located with

cameras). We use a video stream with continuously high

activity to stress the system and obtain worst-case latency

numbers. Table 1 shows the median latency incurred by each

component task. The overall latency overhead remains below

35 ms which can support video streams of multiple cameras

operating at 10 FPS or higher. For composite queries the fea-

ture extraction latency is multiplied by the number of colors

involved, while the other components’ latencies would not

change (as they are computed once per frame).

6 DISCUSSION

Automatic selection of Hue ranges for a query. The pro-

posed load shedding approach requires minimal intervention

of the application query developer, except having to provide

the Hue range for the target objects. This task can be auto-

mated by analyzing bounding boxes of target objects in the

training data. Techniques such as dominant color detection

[27] can be used to automatically extract the Hue ranges in

target objects and fed into the utility calculation function.

Feature calculation vs utility calculation on camera.

133



DEBS ’24, June 24–28, 2024, Villeurbanne, France Gupta et al.

Network efficiency can further be improved by pushing the

utility calculation itself to the camera. This involves a trade-

off between the overhead of maintaining a distributed utility

model versus a higher communication cost of sending addi-

tional low-utility frames. When cameras can calculate utility,

the load shedder can tune their utility threshold to reduce

unnecessary frames sent. However, the utility model needs

to be updated at each camera, incurring additional band-

width. Therefore, this decision should be taken considering

the connectivity scenario of the camera network.

7 CONCLUSION

In this paper, we present a low-cost Load Shedder for real-

time video processing on edge devices which sheds frames

such that the per-frame end-to-end processing latency is

within the bound for the query, while maximizing the quality

of result (QoR). The Load Shedder uses color features of

ingress video frames to compute a utility value that denotes

the probability of a given frame containing a target object

of the query. We propose a utility threshold based approach

for the Load Shedder to enforce a target frame drop rate.

The Load Shedder consists of a control-loop component that

continuously monitors execution and detects overload in the

backend query. Through evaluations we have shown that

the proposed Load Shedder is able to differentiate between

frames containing target objects from those that don’t. It is

able to attain a high frame drop rate while maintaining a high

QoR metric. Additionally, the Load Shedder is able to adjust

the utility threshold dynamically based on the observed load

on the backend query to meet the end-to-end latency bound.

Finally, we show that the overhead of the load shedding

approach is not significant on edge devices.

ACKNOWLEDGEMENT

This work was supported by the German Research Foun-

dation (DFG) under the research grant "PRECEPT II" (BH

154/1-2 and RO 1086/19-2).

REFERENCES
[1] Z. Xu, S. Sinha, S. Harshil S, and U. Ramachandran, “Space-time vehicle

tracking at the edge of the network,” in Proc. of the 2019 Workshop on

Hot Topics in Video Analytics and Intelligent Edges. ACM, 2019.

[2] T. T. Le, S. T. Tran, S. Mita, and T. D. Nguyen, “Real time traffic sign

detection using color and shape-based features,” in Asian Conference

on Intelligent Information and Database Systems. Springer, 2010.

[3] Wobot.ai. (2021) Team Wobot how is video analytics driving industry

4.0. Wobot Intelligence. [Online]. Available: https://wobot.ai/video-

analytics/how-is-video-analytics-driving-industry-4-0/

[4] G. Ananthanarayanan, P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose,

L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer

app for edge computing,” computer, vol. 50, no. 10, pp. 58–67, 2017.

[5] U. Ramachandran, H. Gupta, A. Hall, E. Saurez, and Z. Xu, “A case

for elevating the edge to be a peer of the cloud,” GetMobile: Mobile

Computing and Communications, vol. 24, no. 3, pp. 14–19, 2021.

[6] M. Zhang, F. Wang, Y. Zhu, J. Liu, and Z. Wang, “Towards cloud-

edge collaborative online video analytics with fine-grained serverless

pipelines,” in Proc. of the ACM Multimedia Systems Conference, 2021.

[7] N. Tatbul and S. Zdonik, “Window-aware load shedding for aggrega-

tion queries over data streams,” in Proc. of VLDB, 2006.

[8] A. Slo, S. Bhowmik, and K. Rothermel, “espice: Probabilistic load shed-

ding from input event streams in complex event processing,” in Proc.

of the 20th International Middleware Conference, 2019.

[9] A. Slo, S. Bhowmik, A. Flaig, and K. Rothermel, “pspice: partial match

shedding for complex event processing,” in Proc. of the Int. Conf. on

Big Data (Big Data). IEEE, 2019.

[10] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kaminsky,

and S. R. Dulloor, “Scaling video analytics on constrained edge nodes,”

CoRR, vol. abs/1905.13536, 2019.

[11] C. Zhang, Q. Cao, H. Jiang, W. Zhang, J. Li, and J. Yao, “A fast filtering

mechanism to improve efficiency of large-scale video analytics,” IEEE

Transactions on Computers, vol. 69, no. 6, pp. 914–928, 2020.

[12] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Netravali,

“Reducto: On-camera filtering for resource-efficient real-time video

analytics,” in Proc. of SIGCOMM, 2020.

[13] U. K. Pillai and D. Valles, “Vehicle type and color classification and de-

tection for amber and silver alert emergencies using machine learning,”

in IEEE Int. IOT, Electronics and Mechatronics Conference, 2020.

[14] S. Roy and M. S. Rahman, “Emergency vehicle detection on heavy

traffic road from cctv footage using deep convolutional neural network,”

in Proc. of IEEE ECCE, 2019.

[15] L. A. Varga, B. Kiefer, M. Messmer, and A. Zell, “Seadronessee: A

maritime benchmark for detecting humans in open water,” in Proc. of

the IEEE/CVF Conference on Applications of Computer Vision, 2022.

[16] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and

M. J. Freedman, “Live video analytics at scale with approximation and

delay-tolerance,” in Proc. of 14th {USENIX} 𝑁𝑆𝐷𝐼 , 2017.
[17] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,

“Chameleon: scalable adaptation of video analytics,” in Proc. of the

Conf. of the ACM Special Interest Group on Data Communication, 2018.

[18] K. Wu, Y. Jin, W. Miao, Z. Zeng, Z. Qian, J. Wang, M. Zhou, and T. Cao,

“Soudain: Online adaptive profile configuration for real-time video

analytics,” in IEEE/ACM 29th Int. Symp. on Quality of Service, 2021.

[19] S. Naderiparizi, P. Zhang,M. Philipose, B. Priyantha, J. Liu, andD. Gane-

san, “Glimpse: A programmable early-discard camera architecture for

continuous mobile vision,” in Proc. of the 15th Annual Int. Conf. on

Mobile Systems, Applications, and Services. ACM, 2017.

[20] C. Zhang, Q. Cao, H. Jiang, W. Zhang, J. Li, and J. Yao, “A fast filtering

mechanism to improve efficiency of large-scale video analytics,” IEEE

Transactions on Computers, vol. 69, no. 6, pp. 914–928, 2020.

[21] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S.-W. Yang,

and M. Satyanarayanan, “Bandwidth-efficient live video analytics for

drones via edge computing,” in 2018 IEEE/ACM Symposium on Edge

Computing (SEC), 2018.

[22] B. Haynes, A. Mazumdar, M. Balazinska, L. Ceze, and A. Cheung,

“Visual road: A video data management benchmark,” in SIGMOD, 2019.

[23] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:

An open urban driving simulator,” in Conf. on robot learning, 2017.

[24] ZeroMQ, “Zeromq,” https://zeromq.org/, 2022, [Online; accessed 2022-

01-14].

[25] Cap’n Proto, “Cap’n proto: Serialization protocol,” https://capnproto.

org/, 2022, [Online; accessed 2022-01-14].

[26] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object

detection,” in Proc. of the IEEE/CVF conference on computer vision and

pattern recognition, 2020.

[27] PyPi, “Dominant color detection,” https://pypi.org/project/dominant-

color-detection/, 2020, [Online; accessed 2022-01-31].

134


