L))

Check for
updates

Color-based Lightweight Utility-aware Load Shedding
for Real-Time Video Analytics at the Edge

Harshit Gupta® Henriette Roger Sukanya Bhowmik
Enrjque Saurez* henriette.roger@ipvs.uni- sukanya.bhowmik@uni-
guptaharshit@microsoft.com . stgttgart.de . po.tsdam.de
esaurez@microsoft.com University of Stuttgart University of Potsdam
Georgia Institute of Technology Germany Germany
USA
Umakishore Kurt Rothermel
Ramachandran kurt.rothermel@ipvs.uni-
rama@gatech.edu stuttgart.de
University of Stuttgart

Georgia Institute of Technology
USA

ABSTRACT

Real-time video analytics typically require video frames to
be processed by a query to identify objects or activities of
interest while adhering to an end-to-end frame processing la-
tency constraint. This imposes a continuous and heavy load
on backend compute and network infrastructure . Video data
has inherent redundancy and does not always contain an ob-
ject of interest for a given query. We leverage this property of
video streams to propose a lightweight Load Shedder that can
be deployed on edge servers or on inexpensive edge devices
co-located with cameras. The proposed Load Shedder uses
pixel-level color-based features to calculate a utility score for
each ingress video frame and a minimum utility threshold to
select interesting frames to send for query processing. Drop-
ping unnecessary frames enables the video analytics query
in the backend to meet the end-to-end latency constraint
with fewer compute and network resources. To guarantee
a bounded end-to-end latency at runtime, we introduce a
control loop that monitors the backend load and dynami-
cally adjusts the utility threshold. Performance evaluations
show that the proposed Load Shedder selects a large portion
of frames containing each object of interest while meeting

“Author currently works at Microsoft Corporation.

This work is licensed under a Creative Commons Attribution-NoDerivs
International 4.0 License.

DEBS 24, June 24-28, 2024, Villeurbanne, France

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0443-7/24/06
https://doi.org/10.1145/3629104.3666037

123

Germany

the end-to-end frame processing latency constraint. Further-
more, it does not impose a significant latency overhead when
running on edge devices with modest compute resources.

CCS CONCEPTS

« Information systems — Data streams; Stream manage-
ment; « Computing methodologies — Computer vision.

KEYWORDS
Video Analytics, Load Shedding, latency bound, QoS.

ACM Reference Format:

Harshit Gupta, Enrique Saurez, Henriette Roger, Sukanya Bhowmik,
Umakishore Ramachandran, and Kurt Rothermel. 2024. Color-based
Lightweight Utility-aware Load Shedding for Real-Time Video
Analytics at the Edge. In The 18th ACM International Conference
on Distributed and Event-based Systems (DEBS ’24), June 24-28,
2024, Villeurbanne, France. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3629104.3666037

1 INTRODUCTION

Real-time video analytics has been gaining rapid popular-
ity due to its utility in applications such as surveillance[1],
driving assistance and safety[2], and factory automation[3].
Such applications are typically structured as a pipeline of op-
erators, where each operator executes a piece of the overall
application logic, e.g., object detection, classification, activity
recognition, etc., and extracts relevant insights from camera
frames. We specifically focus on video analytics pipelines
with stringent end-to-end latency constraints, such that the
extracted insight from video processing could be used to trig-
ger a real-time response, e.g., alert to car driver. The increas-
ing availability of high quality and high frame rate cameras

https://creativecommons.org/licenses/by-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3629104.3666037&domain=pdf&date_stamp=2024-07-22

DEBS ’24, June 24-28, 2024, Villeurbanne, France

put significant pressure on the backend compute and net-
working resources. Although the use of edge resources for
running geo-distributed video analytics has been proposed
to minimize backhaul bandwidth usage [4], the resource
capacity of edge sites is typically limited due to space and
power constraints [5]. Oftentimes complex operators like
object detection pose heavy compute requirements, such as
access to a GPU, which imposes limitations on the number
of cameras that can be served at a given edge site.

Video streams possess two key characteristics that en-
able serving more number of cameras with limited resources.
Firstly, the appearance of the object-of-interest for a given
analytics query is not frequent[6], implying that a large frac-
tion of camera frames do not contain useful information.
Secondly, when an object-of-interest exists in a video stream,
due to the high frame rate of cameras it usually is present in
multiple frames. Dropping a small portion of the frames that
an object-of-interest appear in does not affect the overall
fidelity of the results. These characteristics motivate the use
of load shedding techniques to shed irrelevant frames, to
reduce the workload on the application pipeline. Previous
work in load shedding has focused on using linear selectiv-
ities [7] and work with structured queries and data [8, 9].
Such techniques haven’t been explored for content-based
shedding of unstructured data such as video. Previous work
in early-discard of video frames either require expensive
hardware for feature extraction [10, 11] or do not tune the
filtering parameters according to the processing load on the
backend video analytics pipeline [12].

In this work, we present a lightweight load shedding tech-
nique that uses a per-query content-based utility function to
determine if a frame should be shed. The utility of a frame is
calculated as a function of its color distribution. Each query
undergoes a learning phase during which the utility function
is built. The Load Shedder receives all ingress frames and it
drops those whose utility is below the baseline utility thresh-
old. Due to inherent variations in video streams’ contents,
the utility threshold needs to be dynamically tuned so that
the load on backend analytics pipeline is within manageable
levels, and the end-to-end processing latency constraint of
the query is continuously met. The Load Shedder includes a
feedback control-loop that dynamically updates the utility
threshold based on the current load on the later stages of
the video processing pipeline. This feedback from the later
stages ensures that the overall query processing pipeline
functions correctly despite differences in the content of the
video stream compared to the training set. We incorporate
the proposed load shedding technique on a video analytics
platform and perform extensive evaluations with real-world
analytics queries and video datasets. Our contributions can
be summarized as follows:

124

Gupta et al.

o A workflow for building the per-frame utility function,
given a query and a labeled training data set. The light-
weight utility function processes a high rate of ingress
frames without imposing significant latency overhead.

e A control loop that dynamically tunes the utility threshold
based on the current query operator load, thus keeping
the end-to-end latency under a query-specific bound.

e Performance evaluation of the proposed load shedding
approach to demonstrate its efficacy.

2 BACKGROUND AND PROBLEM
STATEMENT

We, first, describe the context of our proposed approach,
followed by a formal definition of the problem statement.

2.1 Context

This section sets the context for the proposed contributions,
in terms of the target application scenarios and representa-
tive deployment scenarios for the proposed system.

2.1.1 Target Application Scenarios. We target real-time video
analytics queries for which the target objects can be de-
scribed using a specific set of colors. Such queries are com-
mon in the domains of surveillance (e.g, tracking red cars in
response to an AMBER alert [13]), traffic control (e.g., detect-
ing if an emergency vehicle is stuck in traffic [14]), search
and rescue (e.g., locating humans in open water using drones
[15]), etc. Such queries typically process multiple frames
containing a given target object (e.g., a suspicious red car in
first example) to extract insights about the object (such as
its direction of motion, or which street it went to from an
intersection). The query could be designed to process frames
containing target objects of a single color (e.g., red suspicious
vehicle), frames containing at least one object from the target
colors (e.g., containing either a white ambulance or a red fire
truck) or frames containing objects of all target colors (e.g.,
frames containing both a red car and another white car).

—

ol
? }»{ Filter }

—
?l
Figure 1: High-level query model: proposed filter mod-

ule filters the camera streams processed by the query’s
operators.

Application Query

{ Ope1rator } { Opegator] Sink

End-to-end latency

A high-level query model is composed of three compo-
nents: a filter, a sequence of one or more video processing
operators (e.g., Deep Neural Network based object detec-
tion), and a sink (Fig. 1). The filter discards frames with no
useful information - for instance, dropping frames without
contiguous groups of pixels (blobs) of a certain color larger

Color-based Lightweight Utility-aware Load Shedding for Real-Time Video Analytics at the Edge

than a certain size. The video processing operators form the
core of the query logic. Finally, the sink analyzes the output
labels of the video processing operators and sends informa-
tion downstream, either to perform an action or to execute
further downstream video processing queries. Depending on
the dynamic content of video streams, the fraction of frames
processed by the video processing operators (e.g., heavy-
weight DNNs) and the sink varies with time. This variation
in processing load causes significant variation in end-to-end
latency of the system as well. To ensure real-time response,
the queries have a constraint on end-to-end latency of pro-
cessing a frame containing a target object. The end-to-end
processing latency of a frame is the total time taken between
the generation of the frame by the camera to the time when
it is executed completely by the application query (including
communication delay).

2.1.2 Representative Deployment Scenarios. We consider a
connected camera deployment which could (but not nec-
essarily) be assisted by an edge compute node available in
proximity. We assume cameras to contain limited compute
capability for running background subtraction and feature
extraction (to be discussed in Section 4.2). Cameras send
the foreground of frames along with the associated features
downstream. The possible scenarios of the deployment of
downstream components, i.e., the Load Shedder and Applica-
tion Query, are shown in Fig. 2. In each such scenario, either
the compute resource on the edge or the network bandwidth
between edge and cloud or between camera and cloud is
the bottleneck resource, whose over-utilization results in
excessive queuing of video frames, eventually resulting in
violation of the end-to-end processing latency constraint.
Hence, the Load Shedder’s effective operation is crucial to
make sure that the bottleneck resource is not overloaded.
The objective of the Load Shedder is to maximize the fraction
of frames containing each target object that are sent down-
stream to the application query after shedding. It optimizes
this objective while maintaining the end-to-end processing
latency below the query-specific bound.

2.2 Problem Statement

We now formally define the problem statement to be solved
by the Load Shedder by mathematically expressing the ob-
jective function and latency constraint. A video stream V
is a continuous sequence of frames V = [fi, fo,- - - , f]. We
define an application query as Q = [q1,- -, qn], Where g;
denotes a video processing operator (including filtering),
which reads the output of g;_; and outputs to g;41. The first
operator in a query always reads the combined video stream
coming from the multiple cameras it is serving. We denote
the output stream of operator g; with input stream v as g; (v).
We define the set of target objects detected by a query Q

125

DEBS ’24, June 24-28, 2024, Villeurbanne, France

in video V as Tp (V) as in Eq. (1). We represent frame f
containing target object o by the relation o € f.

(1)

Now, introducing the Load Shedder component into the

Tp (V) = {target objects in V detected by Q}

video query Q, we construct a query Q’ of the form [qo, q1,- - - , qn],

where ¢ is the Load Shedder component, also denoted by
LS. The Quality of Result (QoR) metric we use in this work is
designed to measure the number of frames for each target
object that are sent downstream by the Load Shedder LS in
query Q’, i.e., belonging to the output stream LS (V). We
define the per-target-object QoR for target object o in Eq. (2).
QoR metric has a value between 0 and 1.

|f€eLS(V):0e€f]
|feV:oef]

The overall QoR metric for query Q with the Load Shedder LS
against source video V is calculated as the average per-object
QoR metric over all target objects in V (Eq. (3)). Thus, this
metric quantitatively measures the aggregate performance
of the Load Shedder for a given source video.

Yoety(v) QoRg (0,LS, V)
ITo (V)|

For a given video stream V = [fi, f2,- - - , f], we define
the end-to-end (E2E) delay experienced by frame f of video
V when processed by query Q" as E2Ey ¢ (f) which is ex-
pressed as shown in Eq. (4), where gy is the last operator in
Q’ that processes frame f.

QoRg (0,LS, V) = @)

QoRp (LS, V) =

®)

k

E2Ev o (f) = Z queue (q;,) + exec (q;,)

i=0

4

The objective is to maximize the Quality of Result (QoR),
while dropping frames such that the end-to-end latency
bound LB is met, described as follows.

QoRg (LS, V)
E2Ey o (fy<LB VfeV

Maximize

®)

s.t.

3 RELATED WORK

Resource Management in Online Video Analytics: Live
video analytics is an extremely compute and network re-
source intensive application. Prior art has adopted two main
approaches for managing the high resource requirements
of this application - tuning the configuration of the input
stream and video processing operators (e.g., frame rate, reso-
lution, etc.) and early discard of uninteresting frames. Online
adaptation of camera streams and video processing operators
has been explored in several prior works [16-18]. However,
these works target scenarios where end-to-end latency of
the order of a few seconds can be tolerated as their primary

DEBS ’24, June 24-28, 2024, Villeurbanne, France

_—
_— .
e
Load Application

-
5 (sosioe |- 00

¢—=) Limited Compute

&—=3 Resources on Edge

p—
Source video stream Edge Server

(a) Edge server hosting the Load Shed-

on the edge is the bottleneck resource.

band

connection

(b) Load Shedder on the Edge and applica-
der and application query. Compute tion query on the cloud. Edge-Cloud net-
work bandwidth is the bottleneck.

Gupta et al.

gy Load
27" | shedder
| Load
Shedder J Filtered video stream

(c) Load Shedder on the camera and appli-

cation query on the cloud. Camera-cloud
network bandwidth is the bottleneck.

Application
Quei
D

Low bandwidth E CEI cE
connection Cloud

width

=)
Cloud

Figure 2: Three candidate deployment scenarios for the proposed load shedding approach.

objective is to optimize cost of resources needed for support-
ing all video streams while also maintaining high accuracy.
Therefore, these approaches cannot be easily applied to our
target application scenarios that have stringent constraints
on end-to-end latency. However, their technique can be
adopted to work complementary to our proposed approach.
Early-Discard Filtering of Video: Multiple works have
explored early discard of unnecessary video frames to avoid
the cost of streaming and processing them. Glimpse [19] pro-
posed a hardware-software add-on that uses low-powered
coarse-grained vision modalities to filter out frames irrel-
evant to the target query. It uses specialized hardware for
motion detection, temperature measurement, etc., which are
not available on cameras in our scenarios. Zhang, et al., [20]
use a multi-stage pipeline of operators to determine if a
frame is relevant to a query, wherein the operators are imple-
mented using GPUs and impose significant latency overhead
to the video processing pipeline. FilterForward [10] consists
of a base DNN whose intermediate layers’ outputs are used
by a per-application binary classifier to decide whether to
filter out a frame. However, in that system, the execution
latency of the base model itself is very high (>200ms). These
approaches do not meet our objective of imposing small
overhead on the end-to-end video processing delay. The Ear-
lyDiscard strategy proposed in Wang, et al.,, [21] uses an
inexpensive DNN to perform filtering of frames. However,
the filter cannot be tuned to ensure end-to-end video process-
ing latency. Reducto [12] makes use of difference in low-level
visual features (pixels, edges, etc.) across consecutive frames
to determine if processing the new frame would result in a
difference in the query’s result. However, it operates at 1-
second granularity and cannot guarantee end-to-end latency
less than that. It also does not support tuning of the filtering
based on load experienced by backend application query.
EarlyDiscard and Reducto do not possess the ability to tune
the frame filter based on dynamically changing workload
characteristics over time, which is a key requirement in our
target application scenarios to meet the end-to-end latency
bound.

4 UTILITY-AWARE LOAD-SHEDDING

In this section, we present a high-level architecture of the
proposed load shedding system, highlighting the interactions

126

between different components. Then we describe the design
and functionality of each individual component in isolation.

4.1 System Architecture

Current

“Frame Rate
Processing

Frame ..+
Features’

Application Query
Camera L

End-To-End Latency

‘ —> DataPath [EM@Queue - » Control Path‘

Figure 3: Proposed load-shedding architecture.

We extend real-time video analytics systems equipped
with edge-computing capability (either as edge sites or co-
located compute with cameras) with our proposed load shed-
ding system that sheds a portion of the input frames to main-
tain the given latency bound (LB) during overload. Figure 3
shows the main components and their interactions—the Load
Shedder, the application query, and the Control Loop. Each
component (including Load Shedder) reads from an ingress
queue and pushes the output data to the egress queue.

The load shedding system must perform two primary
tasks—(1) decide when and how much to shed, and (2) de-
cide which frames to shed. We describe the latter task first,
for which the Load Shedder computes a utility/ importance
value for each video frame that denotes the probability of
the frame being useful for the application query. The utility
is calculated using the color content of the frame and the
given application query. The intuition behind the design of
the Load Shedder is to discard video frames that have a low
probability of being useful for the given application query
(see Section 4.2). The Load Shedder can be dynamically con-
figured with a utility threshold, such that it drops frames
with utility less than the threshold.

The Control Loop component dynamically computes the
utility threshold and updates the Load Shedder. The utility
threshold is set such that the current load on the application
query is maintained and the end-to-end latency constraint

Color-based Lightweight Utility-aware Load Shedding for Real-Time Video Analytics at the Edge

is met (see Section 4.4). More specifically, the Control Loop
component monitors the queue lengths of each operator in
the query, and estimates the current observed end-to-end
latency. Based on the observed end-to-end latency and the
query’s latency requirement, the Control Loop computes
the fraction of frames that should be dropped by the Load
Shedder, which is then transformed into a utility threshold
(see Section 4.3). Transforming the desired frame drop rate
to a utility threshold is done on the basis of the utility distri-
bution of frames observed in the past. All of these concepts
are described in the subsequent sections.

4.2 Building the utility function

The Load Shedder decides whether to discard a frame based
on it’s utility value - which is calculated by the utility func-
tion using the frame’s color-based features. We design the
utility function specifically for the target application sce-
narios. Firstly, since the application queries considered per-
form detection of objects of one or more target colors (Sec-
tion 2.1.1), we use the frame’s color features to calculate
utility and thereby avoid missing a potential target object.
Secondly, the target queries’ end-to-end latency constraints
necessitates the design of a light-weight load-shedder (Sec-
tion 2.2). Thus the proposed utility function does not apply
for queries that do not belong to the set of representative
applications described in Section 2.1.1.

4.2.1 Hue-Saturation-Value Color Model. We use the Hue-
Saturation-Value (HSV) model for representing the color
of pixels. Hue represents the color itself (or the dominant
wavelength), Saturation represents the brilliance and inten-
sity, while Value defines the lightness or darkness. The HSV
model is widely used in computer vision applications over
the Red-Green-Blue (RGB) model because HSV separates the
color information from intensity information (which helps
deal with situations like lighting changes or shadows). The
HSV triplets of all pixels represent the distribution of colors
in a frame, which forms the input feature set for the utility
function (described in detail in subsequent sections). The
ranges of H, S and V we use are [0, 180), [0, 256), and [0, 256)
respectively. The Application Query developer specifies the
color of the target objects in terms of a hue range C as input
to the Load Shedder. For instance, the color red is represented
using the hue ranges [0, 10) U [170, 180).

4.2.2 Training data. To train the utility function, we use a
labeled stream of videos from multiple cameras as training
data set. Each element of the training data set D is of the
form (f,1), where f represents the frame and [represents
the label. Each frame f is described by a list of pixels, with
each pixel being represented by a triplet (h, s, v) denoting it’s
Hue, Saturation and Value fields. The label [tells whether the

DEBS ’24, June 24-28, 2024, Villeurbanne, France

frame contains an object of interest, i.e., whether the frame
was a match for the given query. Henceforth, we use the
term positive to denote frames which contain one or more
target objects, and negative to denote frames that don’t.
The goal of the utility function is to separate the computed
utilities of positive and negative frames, such that using a
utility threshold results in effective load shedding. In the rest
of this section, we outline our observations from the training
data on how to separate positive and negative frames using
the HSV model and the construction of the utility function.

4.2.3 Hue as feature for separating positive and negative
frames. We first explore the use of the Hue field of pixels to
calculate whether the given frame contains a target object of
the given color. We do so by computing a metric Hue Fraction
for the color C, denoted by HF¢.

|pixel p € f : hue (p) € C|

[pixel p € f]

A higher Hue Fraction would imply higher likelihood for
the frame to contain a target object of a given color. Hence,
a threshold-based approach on HF¢ is a candidate for the
Load Shedder. However, an analysis of our dataset showed
that the distribution of HF¢ for negative frames overlaps
significantly with positive frames across all videos - as seen
in Fig. 4a, which shows HFggp for the entire dataset. This
overlap would prevent a threshold-based approach on the
hue fraction from effectively differentiating between positive
and negative frames - shown in Fig. 4b, where the per-object
QoR metric drops steeply with hue fraction thresholds with-
out achieving a significant frame drop rate. We posit that this
overlap in distribution is because both positive and negative
frames contain red-colored pixels; however, the saturation
and value fields of those pixels in the positive and negative
frames would have distinctly discernible distributions.

HFc (f) = (6)

4.2.4 Using Saturation and Value fields for differentiating
frames. In order to separate positive frames from negative
ones, we analyze the distribution of Saturation and Value
fields for Red pixels across videos. We discretize the range
of saturation and value into bins of size s and v respectively
using functions sat_bin and val_bin that map a pixel’s satu-
ration sat (p) and value val (p) to their corresponding bins.

sat_bin(p) =i & i-s<sat(p) <(i+1)-s (7)
val_bin(p)=j & j-v<val(p)<(+1)-0 (8)

We now transform a frame f into a 2D matrix for a given
color C, i.e., PFél’J) so that the matrix element PFél’]) denotes

the fraction of pixels whose hue falls in the range C and their
saturation and value fall into the i*# and j bin respectively.

|pixel p € f : hue (p) € C A in_bin(p, i, j)|
|pixel p € f : hue (p) € C|

PFED () = 9)

127

DEBS ’24, June 24-28, 2024, Villeurbanne, France

1.00 =
Frame label N
5 0.75 Il -ve I +ve
-Ja . " .
£ 050 ;
g : N EL o
2025 é #T
0.00
1 2 3 4 5 6 7
Video File

(a) Hue Fraction of color RED across training videos.

Gupta et al.

1.00+
0.75+

—— Per-Object QoR
0.50+

—— Frame Drop Rate
0.25+
0.00+

0.0 0.2 0.4 0.6 0.8 1.0
Hue Fraction threshold

(b) QoR and Drop Rate vs. HF threshold for RED color.

Figure 4: Using Hue Fraction for selecting positive vs. negative frames. Fig. 4a shows that Hue Fraction of negative
and positive frames has significant overlap. Fig. 4b shows that high frame drop rate results in a steep drop in QoR.

in_bin(p, i, j) = (binsar (p) = i A binga (p) = j) (10)

Red ; +ve frames Red ; -ve frames

| 1

-0.00

005

- 0.04

- 003

Value bins

7 65 43 210
Value bins

7 6543210

01 234567
Saturation bins

b Sturationbins
Figure 5: Distribution of Saturation and Value fields for
positive (Mc ..) and negative frames (Mc qi5.) across
all videos in the dataset. Bins with high saturation are
better differentiators of positive frames.

Using the per-frame distribution of pixels in saturation-
value bins, we quantify how useful each bin is in classifying a
frame as positive or negative. We compute a metric for each
saturation-value bin using the pixel distribution of positive
and negative frames that denotes the correlation of the bin
with the particular label (+ve or -ve) for a given frame.

M) = AVG PFY) ()Y (f.1) € D (11)
M) = AVG PES ()Y (£.0) € D (12)

The distribution of above utility for the color Red, i.e.,
Mc +ve and Mc _y is shown in Fig. 5. Bins with higher satu-
ration are stronger indicators of whether a frame is positive.

4.2.5 Computing per-frame utility. We use the utility of each
saturation-value bin (from Eq. (11) and Eq. (12)) to compute
the utility value for a frame. The utility is a weighted sum of
the M) value for each saturation-value bin, weighted by

C,+ve
the pixel fraction of the frame in that bin.
Uc (f) = M) - PEED (f) (13)

Fig. 6 schematically describes the approach of building the
utility function using training data and using the function
to calculate utility value for frames at runtime.

Training stage

c o)
¢ s A EE3 =)
55 | 3o 5
= o £ c c w i
o S [2 n o -E S o ° ﬁ
> 7T s 9 T Y g B
=5 ¢ [g¢8 Bl g S3| Utility
25 g {ad 35 g 9L of
o 209 n 2| Perframe ... Y¥ g frame f
T £ 2| sat-Val bing o o
Q .2
A £ ;
Test frame f 3 i
est frame O JTest/runtime stage

Figure 6: The proposed utility-based load shedding ap-
proach - with both training and testing/runtime stages.

4.2.6 Computing per-frame utility for composite color queries.
Computing the utility of a frame for composite queries re-
quires using the utility function for the component colors.

Uewe, () =max (Ue, (N.0e () (9)

Ue, represents the utility function for color C; normalized
over the training data, such that the maximum utility is
1.0. Normalization of per-color utility functions allows their
effective composition. Similarly for computing the utility of
a query looking for both colors C; AND C; in a frame, we
use the minimum of U_c1 and Ug, as the composite utility.

4.3 Computing Utility Threshold

The Load Shedder’s utility threshold at any point of time is
computed using the current target frame drop rate - based
on the distribution of utility values for a set of recent frames.
Using the utility function Uc, we build a cumulative distri-
bution function (CDF) of utility values over frames in the
history H, as shown in Eq. (15).

I{f : Uc (f) suV(f.D) € H}
|H]

A CDF-based approach allows incorporating utility values of
more recent frames into H to update the CDF with changing
video content. Initially, the training set O itself can be used
as the set H. To determine the utility threshold for a given
target drop rate r, we use the inverse of the CDF function
iteratively to compute the minimum utility value u,; such

CDF (u) = (15)

128

Color-based Lightweight Utility-aware Load Shedding for Real-Time Video Analytics at the Edge

that CDF (u;p) > r. The intuition behind this approach is
that for the utility threshold u;s, the Load Shedder will drop
a fraction r from H. Since the utility distribution of recent
historical frames is expected to be similar to new frames in
the near future, the Load Shedder is expected to drop r frac-
tion of new incoming frames. However, the observed frame
drop rate of new incoming frames might not equal the target
drop rate r because it’s transformation to utility threshold

depends entirely on the distribution of frame utilities in H.

4.4 Design of Control Loop

The utility and threshold calculation in Section 4.1 are used
by a Load Shedder to control the end-to-end (E2E) latency
of execution of a video processing query. The Load Shedder
requires a control loop (Fig. 3) to define the target drop rate
to keep the E2E latency within the specified bound.

4.4.1 Control Loop mechanisms. The developer of the video
query defines the required E2E latency, which guides the
execution of the Load Shedder. Besides this requirement,
the Load Shedder uses as inputs both the frames per second
(FPS), the (current) processing latency of backend query exe-
cution, and the (current) network latency between camera
and Load Shedder, and between Load Shedder and the back-
end running the query. The Load Shedder uses two main
mechanisms to control the end-to-end latency: admission
control and dynamic queue sizing. These mechanisms differ
primarily in how quickly they adapt the target drop rate
based on changes in backend execution load.

Admission Control. It decides which frames are consid-
ered for further processing. It monitors the per-frame ex-
ecution and queuing delays of a frame for all operators of
the Application Query and computes the average perceived
query processing latency (procg). The currently supported
throughput (ST) by the backend query is then calculated as:

ST =

. The ST is then compared against the FPS (frame
proco

per second) coming into the Load Shedder to calculate the
required target drop rate as follows:

T tD Rate = 0,1 - —), 16
arget Drop Rate = max(FPS) (16)

which prescribes the frame drop rate to match the frame rate
ingress into the backend query with the available processing
throughput, such that the system is stable. As described
in Section 4.3, we transform the target drop rate to a utility
threshold by using the utility distribution of historical frames,
to filter new ingress frames based on their utility value.

Dynamic Queue Sizing. Internally, the Load Shedder (as
shown in Fig. 3) also manages a queue that it uses to ensure
that the the end-to-end latency of any frame accepted by
admission control is met. The expected E2E latency for the
N frame in the Load Shedder queue is shown in Eq. (17).

129

DEBS ’24, June 24-28, 2024, Villeurbanne, France

net.qmrs and netys o represent the average of continuously
monitored network latencies between cameras and Load
Shedder and between Load Shedder and query backend re-
spectively. proccay denotes the average latency incurred
in processing frames on the camera (including background
subtraction, feature extraction, etc.) (analyzed in Section 5.6).
Expected E2E Latency = (N + 1) - proco+
neteam,s + neth,Q + proccam (17)
If one of the component latencies increases, later frames
in the Load Shedder’s internal queue could violate the E2E
latency requirement. Dynamic queue sizing helps reduce the
likelihood of latency violation for a frame with high utility.
Dynamic queue sizing updates the size of the Load Shed-
der’s queue and drops the lowest utility frames if needed,
allowing frames with the highest utilities to be processed.
Dynamic queue sizing reacts faster than updates to the utility
threshold (that guides admission control) and reduces the
likelihood of an E2E latency violation. The queue is always at
least of size one to avoid starving the downstream operators.
Dynamic queue sizing can also be seen as a second layer
of admission control. Even if a new frame has a utility higher
than the current threshold, it will be dropped if the queue
is full and it has the lowest utility of all frames currently in
the queue. Similarly, if an incoming new frame has a greater
utility than the lowest utility frame that is already in the
queue, then the latter will be dropped and the new frame
added to the queue. This queue shedding keeps the latency
requirement valid even for new incoming frames.
Both mechanisms allow the Load Shedder to fine-tune the
admission of new frames to extract the most utility out of the
video stream while maintaining the required E2E latency.

5 EVALUATIONS

In this section, we present the results of experimental evalu-
ations carried out to test the efficacy of the proposed utility-
based load shedding approach. Our experiments are tailored
to validate the following hypotheses.

(1) The proposed utility function can compute utility value
for unseen video frames (not in training set) and effec-
tively differentiate between positive and negative frames.

(2) The proposed control loop adapts to changing workload
pattern and is able to meet application performance re-
quirements without sacrificing QoR metric.

(3) The utility value calculation is light-weight and imposes
low overhead on edge devices.

5.1 Data Set

We generated a benchmark of synthetic videos with Visual-
Road [22], which is a benchmark to evaluate video database
management systems. VisualRoad uses the autonomous driv-
ing CARLA simulator [23] to generate videos from CCTV

DEBS ’24, June 24-28, 2024, Villeurbanne, France

cameras located in a realistic city-like environment, includ-
ing pedestrians, bicycles, different types of vehicles, and all
the surroundings (roads and buildings). Additionally, it al-
lows perturbing the locations of cameras (by specifying a
seed parameter) and weather conditions, thereby generating
a number of different scenarios.

We evaluate our proposed color-based Load Shedder and
associated control loop with 25 videos from 7 seeds value
(3 or 4 videos from each seed value) using sunny weather.
Each video represents 15 minutes of a camera video stream
facing a road or highway in a city, with a frame rate of 10
fps. Different cameras have different distributions of cars,
varying from cars always presents to rarely appearing. In
our results, we report metrics for videos that contained a
decent number of target objects for the given query.

5.2 Implementation

Backend Query Executor

(0]
Blob
Color |-
Filter

Video Streamer

N,
~

Figure 7: The components used in the evaluation setup.

Blob
Size
Filter

Load pyrp
Color” |Shedder
Features

4

To evaluate the aforementioned hypotheses, we imple-
ment the video processing system along with the Load Shed-
der. It has three main components: the Video Streamer, the
Load Shedder, and the Backend Query executor, as shown
in Fig. 7. All the components exchange messages using the
communication library ZeroMQ [24], with the messages se-
rialized using Cap’n Proto [25]. The Load Shedder is imple-
mented in Python 3 and all the other components in C++.
The Video Streamer reads the video files generated with
VisualRoad, performs background subtraction, extracts the
color features for each frame (as described in Fig. 6) and
streams them to the Load Shedder. The Video Streamer com-
ponent is capable of emulating multiple cameras sending
their frames’ features to the Load Shedder by interleaving
their frames. Next, the Load Shedder implements the util-
ity calculation and load shedding described in Section 4.1.
The utility function we use in our evaluations uses 8 bins
for both saturation and value, meaning that the bin sizes s
and o are equal to 32. Through preliminary experiments (not
shown in this paper) we found that these bin sizes offer the
best separation of positive from negative frames. In the real-
world the Load Shedder would be fed raw video frames from
multiple cameras, instead of from the Video Streamer. Since
the Load Shedder consumes raw frames, a real-world deploy-
ment would need video streams to be pre-processed by a
video decoder and decompressor before being consumed by
the Load Shedder. The proposed Load Shedder’s implemen-
tation does not impose any constraint on the input camera

130

Gupta et al.

streams’ characteristics such as frame rate, encoding or com-
pression techniques. Finally, the Backend Query Executor
runs the video analytics query to be executed on the video
stream. The Load Shedder and Backend Query Executor run
on a NC6 Virtual Machine on Microsoft Azure with 6 Intel
Xeon E5-2690 v3 vCPUs, 56 GiB of RAM and an NVIDIA
Tesla K80 GPU.

There are two additional components to implement the
control loop: the Metrics Collector and a Transmission Con-
trol Mechanism. The Metrics Collector measures the total
incoming frame rate and the end-to-end latency in the Back-
end Query Executor, and forwards these metrics to the Load
Shedder. The Load Shedder uses this information to define
the target drop rate. The Transmission Control Mechanism
implements a token-based backpressure algorithm between
the Load Shedder and the Backend Query Executor - wherein
in the event of low backend query load, the Load Shedder
sends more frames to the backend query, while under high
backend query load, the Load Shedder follows the utility
threshold and drops low-utility frames.

5.3 Video queries

We consider object detection and tracking queries that need
to look at multiple frames of target objects. The model query
we use consists of (1) a filter component that groups together
spatially adjacent pixels into blobs and drops frames that
do not have at least one blob of a certain minimum size,
(2) a second filter that ignores frames that do not have a
blob(s) of the target object’s color, (3) a DNN that performs
object detection, (4) a filter that looks for the detected objects’
color and label before sending the information to the sink.
We use the efficientdet-d4 [26] object detection DNN. We
evaluate simple queries for target objects of a single color
and composite queries for objects of multiple colors.

5.4 Performance on Unseen Videos

We evaluate the performance of the Load Shedder on unseen
videos using an iterative cross-validation study. We split the
video dataset into training and testing set, build the Load
Shedder’s utility function using the training set and compute
the utility and correctness metrics for the test videos.

5.4.1 Single-color query: Red. We first evaluate a query for
detecting target objects of a single color, i.e., red. Fig. 8a
shows that the utility of positive frames is significantly
higher than the negative ones in our dataset, thereby demon-
strating the efficacy of the utility function on unseen videos.
We demonstrate that such a higher utility for positive
frames helps in detecting target objects and maintaining a
high QoR value while also shedding a significant fraction
of (useless) frames. In Fig. 8b, we show how an increasing
utility threshold causes higher frame drop rate, which also

Color-based Lightweight Utility-aware Load Shedding for Real-Time Video Analytics at the Edge

Frame label
ve [+ve

Je 14

o
o
kS

h

Video file

(a) Utility values for positive and negative frames of unseen video frames. For
a given video in the figure, the utility function used to compute its frames’
utility values is trained using data that does not contain the given video.

DEBS ’24, June 24-28, 2024, Villeurbanne, France

1.0
0.8
06 \\ —— Frame Drop Rate
\ —— Object-based QoR
0.4 \
\
02 AN
N

0.0 S

0.00 0.02 0.04 0.06 0.08

Utility threshold

(b) Target object based QoR metric and frame
drop rate vs. utility threshold for a Load
Shedder tuned to detect red vehicles.

Figure 8: Performance of the utility-based Load Shedder on a query looking for Red cars as target objects.

includes a small portion of useful frames containing target
objects, and hence results in a drop in the QoR metric.
Comparison against Content-agnostic load shedding.
We compare the performance of the proposed utility-based
load shedding approach against a content-agnostic approach
that sheds a fixed rate of incoming frames using a uniform
probability. Firstly, Fig. 9a shows the variation of frame drop
rate and the per-object QoR against the target drop rate of
the Load Shedder. Even at a high frame drop rate, the QoR re-
mains at 1.0 due to frequent low-utility negative frames. The
QoR drops only when the target drop rate becomes so high
that higher-utility frames (containing target objects) need to
be dropped. Similarly, Fig. 9b shows the frame drop rate and
QoR against target drop rate for the Content-agnostic shed-
ding approach (with each setting repeated 20 times). With
increasing target drop rate, the QoR falls sharply because
content-agnostic shedding often sheds frames containing
target objects. Fig. 9c compares the QoR that the proposed
load shedding approach can achieve for a given observed
frame drop rate with the content-agnostic approach. Unlike
continuous decline of QoR for the content-agnostic approach,
the QoR for utility-based approach has a visible drop only
when the observed frame drop rate gets close to 1.0. The
result shows that the utility-based approach is selective in
picking frames to send to Backend Query Executor, and can
achieve a much higher QoR for a given observed frame drop
rate compared to a content-agnostic shedding approach.

5.4.2 Composite-color query: Red OR Yellow. We perform a
similar analysis for two composite queries - (1) detect target
objects that are either Red OR Yellow in color, and (2) detect
all frames containing both Red AND Yellow target objects.
As before, we iteratively select a set of videos as the training
set and the complementary set as the test set. The utility
value of frames for the OR query is shown in Fig. 10a. As
for the single-color query, positive frames have significantly
higher utility than negative frames. Note that for the com-
posite OR query, a positive frame is one that contains either

131

a Red or a Yellow target car. Fig. 10b shows the frame drop
rate and QoR against the utility threshold. The QoR remains
stagnant at 1.0 (selecting all frames containing target objects)
with a high frame drop rate, until the utility threshold be-
comes high enough to start dropping positive frames. Fig. 11
shows the utility value of frames for the AND query, and
the differentiation between positive and negative frames is
visible here as well. Note that for the composite AND query,
a positive frame should contain both a Red and a Yellow car.

5.5 Application Evaluations

In this subsection, we detail an E2E evaluation of running
both the utility calculation and the Load Shedder control loop
using a real-time video stream and show how it controls the
frame processing latency and avoids backend overload.

5.5.1 Synthetic scenario. First, we evaluate a synthetic worst-
case scenario in which a sudden burst of high-processing ac-
tivity occurs in the ingress video. The video comprises three
segments: low-utility frames with no target object, high-
utility frames containing target object(s), and high-utility
frames with no target object. To create such a tailored video,
we obtain segments from the videos generated with Visual
Road that are known a-priori to have those properties, and
stitch them together to form a 15 minutes long video with
each of the above three segments being 5 minutes long.

We expect that during the video’s first low-utility no-
object segment, the Load Shedder will allow frames to be
processed by the filter-stage in the backend query, despite
low frame utility. This is because the filter operator would
drop these frames as they don’t contain target objects any-
way. Hence, the processing latency procg is low, and a low
target drop rate is set (Eq. (16)). In the second segment of
the video, the Load Shedder starts shedding frames because
all frames are be processed by the expensive DNN as they
contain target objects. Thus, the Load Shedder increases the
utility threshold so that the backend query executor can keep
the end-to-end latency bounded. Finally, in the third segment

DEBS ’24, June 24-28, 2024, Villeurbanne, France Gupta et al.
1.0] ¢4 smanmme o conmecssoommocmenms o0,
1.0 . 1.0 107+, Lo 110 ‘h.
. et o o oy,
. ‘e . " o & 08 e,
< 0.8 oot 08y 5 0.8 v, . 08g 8 .',‘\
= R e = Yooy o’ c B o6 %
o }
206 . 068 20.6 TR 068 a "'-,.
8 . . S 3 TN S S g
o o o o . 9] £ 0.4
204 ot © l04E Boa o ":,' 04E po} Y,
a . i 2 o H b= 8 S
o . © o o 0.2 . t,
0.2 o’ 0.2 0.2 o° '... 0.2 : Content-agnostic a8 N
oo o Soy Utility-based s,
0.0 0.0 0.0blae* e loo 0.0 :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Target drop rate Target drop rate Observed drop rate of frames

(a) Impact of target drop rate on QoR
rate and frame drop rate for utility-
based approach.

(b) Impact of target drop rate on
QoR and frame drop rate for content-
agnostic approach.

(c) QoR vs. frame drop rate trade-
off for utility-based and content-
agnostic load shedding approaches.

Figure 9: Fig. 9a and Fig. 9b show the impact of target drop rate on the QoR metric and observed frame drop rate
for the proposed utility-based and the content-agnostic probabilistic approach respectively. Tradeoffs between the

two aforementioned metrics are shown for both approaches in Fig. 9c.

1.0 ~
1.0 Frame label T 0.8
 ve I tve ¢
0.8 !

l . 0.6 —— Frame Drop Rate
éo.e ‘ ' { —— Object-based QoR
= . .] 0.4
204 ¢

0.2
0.2 ~
0.0 - 0.0 i

2 3

Video file

(a) Utility values for positive and negative frames of unseen video frames. For
a given video in the figure, the utility function used to compute its frames’
utility values is trained using data that does not contain the given video.

0.0 0.2 0.4 0.6

Utility threshold

08 10

(b) Target object detection rate and frame
drop rate vs. utility threshold for a Load
Shedder tuned to detect red or yellow cars.

Figure 10: Performance of utility-based Load Shedder on query looking for Red OR Yellow cars as target objects.

0.7 Frame label

[]"®

Figure 11: Utility of unseen video frames for a compos-
ite query that detects Red and Yellow cars.

Vldeo file

with no target objects, the Load Shedder stops shedding again
and its execution profile resembles the first segment.

Fig. 12a shows the time-varying behavior of the query
execution. The upper graph of Fig. 12a shows the max E2E
latency for each 5 minute time window, along with the E2E
requirement. The lower graph in Fig. 12a shows the number
of frames processed at each stage group every 5 seconds.
The upper graph in Fig. 12a shows that the latency is always
less than the E2E latency bound. Similarly, the lower graph
in Fig. 12a shows that the Load Shedder decides the frame
drop rate at each segment, with no shedding in the 1st and

132

3rd segments and plenty of shedding in the 2nd segment.
Both these results show that the proposed Load Shedder
can quickly react to changes and few violations even with
extreme changes, that too for real-time video processing with
24 FPS input frame rate. There was only 1 latency violation
during the peak in the 2nd segment while the Load Shedder
was recalculating the queue size and the utility threshold.

5.5.2 Realistic smart-city scenario. We analyze the Load
Shedder running directly on videos generated using Visual
Road. The Video Streamer emulates workload from multiple
cameras by generating a stream of frame features interleaved
from multiple videos. We show the E2E latency and the distri-
bution of frames processed at each stage, and the variation of
the QoR metric with the number of concurrent video streams.

As in Fig. 12a, Fig. 12b shows that the Load Shedder can
bound the processing latency by dropping frames. The syn-
thetic scenario reports more spikes because the DNN is in-
voked unpredictably by frames from different videos at dif-
ferent times. The Load Shedder minimizes latency violations
caused due to these sudden load surges. Fig. 12b shows the
latency and elements being processed for five concurrent

Color-based Lightweight Utility-aware Load Shedding for Real-Time Video Analytics at the Edge

— 2500 .
g = Latency Requirement
52000
o3
c o
S » 1500
® g
2 21000
ol
§ & °00 1stSegment. | 3rd Segment _
>
< 0 i
150 ey b
- : . £
% End Node TR
210 T Shedder
o)
c n Filter
5 0
S 2 —— Detection
i 50 e Detection Filter
- .
8_ ***** Sink
;«Wﬁ.
0
0 200 400 600 800
Seconds

(a) Synthetic Scenario each segments highlighted

DEBS ’24, June 24-28, 2024, Villeurbanne, France

w2750
EY
> o 2500
52250 Requirement)
=0
T o
3 »n 2000
n
8151750
L
3: 1500
250 N)
- A TETTTN A
g 200 End Node
= A I - Shedder
= 2150 ’
[Filter
S50
8 2100 —— Detection
0 Detection Filter
— .
g > LA
0 AL
0 200 400 600 800
Seconds

(b) Realistic Scenario

Figure 12: Analysis of both a synthetic and a realistic scenario. The upper graph of both figures shows the avg.
processing latency on the y-axis and video time on the x-axis, along with the end-to-end latency requirement. The
lower graph shows the number of frames that reached each query component (from Fig. 7) over video time.

.2 1.00+

2 = T

£ 0.75 " !

o

8 0.50 B Utility-based

= @ Content-agnostic

Q L] v

50.25] + :§ Vo)

1 ¢ .

£0.00{ ~ oé ~; & ; i
1 2 3 4 5 6 7

Number of concurrent video streams

Figure 13: QoR of the proposed utility-based vs.
content-agnostic approach with varying number of
concurrent video streams.

videos. Fig. 13 shows that the proposed utility-based ap-
proach can exploit the statistical multiplexing between mul-
tiple cameras’ video streams and achieve a high QoR. On
the other hand, a content-agnostic approach has poor QoR.
We compute the target drop ratio for the latter approach
assuming that procg is 500 ms, which is a rather lenient
assumption for the baseline.

5.6 Runtime Overhead Analysis

We evaluate the additional latency incurred by a video ana-
lytics system using the proposed Load Shedder vs. executing
the backend query without load shedding. We assume that
cameras have colocated compute capability, which is used for:
(1) converting color space from RGB to HSV, (2) background
subtraction, and (3) color feature extraction. We evaluate
the time taken to perform these tasks on an Nvidia Jetson
TX1 with a quad-core ARM Cortex-A57 processor and 4 GB

133

H Component ‘ Median Latency Overhead H
Color Space Transformation 3.5 ms
Background Subtraction 26.4 ms
Feature Extraction 3.8 ms

Table 1: Breakdown of Load Shedder latency overhead.
The utility calculation component is not shown be-
cause of its negligible latency.

of RAM (representative of compute power co-located with
cameras). We use a video stream with continuously high
activity to stress the system and obtain worst-case latency
numbers. Table 1 shows the median latency incurred by each
component task. The overall latency overhead remains below
35 ms which can support video streams of multiple cameras
operating at 10 FPS or higher. For composite queries the fea-
ture extraction latency is multiplied by the number of colors
involved, while the other components’ latencies would not
change (as they are computed once per frame).

6 DISCUSSION

Automatic selection of Hue ranges for a query. The pro-
posed load shedding approach requires minimal intervention
of the application query developer, except having to provide
the Hue range for the target objects. This task can be auto-
mated by analyzing bounding boxes of target objects in the
training data. Techniques such as dominant color detection
[27] can be used to automatically extract the Hue ranges in
target objects and fed into the utility calculation function.
Feature calculation vs utility calculation on camera.

DEBS ’24, June 24-28, 2024, Villeurbanne, France

Network efficiency can further be improved by pushing the
utility calculation itself to the camera. This involves a trade-
off between the overhead of maintaining a distributed utility
model versus a higher communication cost of sending addi-
tional low-utility frames. When cameras can calculate utility,
the load shedder can tune their utility threshold to reduce
unnecessary frames sent. However, the utility model needs
to be updated at each camera, incurring additional band-
width. Therefore, this decision should be taken considering
the connectivity scenario of the camera network.

7 CONCLUSION

In this paper, we present a low-cost Load Shedder for real-
time video processing on edge devices which sheds frames
such that the per-frame end-to-end processing latency is
within the bound for the query, while maximizing the quality
of result (QoR). The Load Shedder uses color features of
ingress video frames to compute a utility value that denotes
the probability of a given frame containing a target object
of the query. We propose a utility threshold based approach
for the Load Shedder to enforce a target frame drop rate.
The Load Shedder consists of a control-loop component that
continuously monitors execution and detects overload in the
backend query. Through evaluations we have shown that
the proposed Load Shedder is able to differentiate between
frames containing target objects from those that don’t. It is
able to attain a high frame drop rate while maintaining a high
QoR metric. Additionally, the Load Shedder is able to adjust
the utility threshold dynamically based on the observed load
on the backend query to meet the end-to-end latency bound.
Finally, we show that the overhead of the load shedding
approach is not significant on edge devices.

ACKNOWLEDGEMENT

This work was supported by the German Research Foun-
dation (DFG) under the research grant "PRECEPT II" (BH
154/1-2 and RO 1086/19-2).

REFERENCES

[1] Z.Xu,S. Sinha, S. Harshil S, and U. Ramachandran, “Space-time vehicle
tracking at the edge of the network,” in Proc. of the 2019 Workshop on
Hot Topics in Video Analytics and Intelligent Edges. ACM, 2019.

[2] T.T.Le, S.T. Tran, S. Mita, and T. D. Nguyen, “Real time traffic sign

detection using color and shape-based features,” in Asian Conference

on Intelligent Information and Database Systems. Springer, 2010.

Wobot.ai. (2021) Team Wobot how is video analytics driving industry

4.0. Wobot Intelligence. [Online]. Available: https://wobot.ai/video-

analytics/how-is-video-analytics-driving-industry-4-0/

G. Ananthanarayanan, P. Bahl, P. Bodik, K. Chintalapudi, M. Philipose,

L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer

app for edge computing,” computer, vol. 50, no. 10, pp. 58-67, 2017.

U. Ramachandran, H. Gupta, A. Hall, E. Saurez, and Z. Xu, “A case

for elevating the edge to be a peer of the cloud,” GetMobile: Mobile

Computing and Communications, vol. 24, no. 3, pp. 14-19, 2021.

[3

[t

134

Gupta et al.

[6] M. Zhang, F. Wang, Y. Zhu, J. Liu, and Z. Wang, “Towards cloud-
edge collaborative online video analytics with fine-grained serverless
pipelines,” in Proc. of the ACM Multimedia Systems Conference, 2021.
N. Tatbul and S. Zdonik, “Window-aware load shedding for aggrega-
tion queries over data streams,” in Proc. of VLDB, 2006.

A. Slo, S. Bhowmik, and K. Rothermel, “espice: Probabilistic load shed-

ding from input event streams in complex event processing,” in Proc.

of the 20th International Middleware Conference, 2019.

A. Slo, S. Bhowmik, A. Flaig, and K. Rothermel, “pspice: partial match

shedding for complex event processing,” in Proc. of the Int. Conf. on

Big Data (Big Data). IEEE, 2019.

C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kaminsky,

and S. R. Dulloor, “Scaling video analytics on constrained edge nodes,”

CoRR, vol. abs/1905.13536, 2019.

C. Zhang, Q. Cao, H. Jiang, W. Zhang, J. Li, and J. Yao, “A fast filtering

mechanism to improve efficiency of large-scale video analytics,” IEEE

Transactions on Computers, vol. 69, no. 6, pp. 914-928, 2020.

Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Netravali,

“Reducto: On-camera filtering for resource-efficient real-time video

analytics,” in Proc. of SIGCOMM, 2020.

U. K. Pillai and D. Valles, “Vehicle type and color classification and de-

tection for amber and silver alert emergencies using machine learning,”

in IEEE Int. IOT, Electronics and Mechatronics Conference, 2020.

S. Roy and M. S. Rahman, “Emergency vehicle detection on heavy

traffic road from cctv footage using deep convolutional neural network,”

in Proc. of IEEE ECCE, 2019.

L. A. Varga, B. Kiefer, M. Messmer, and A. Zell, “Seadronessee: A

maritime benchmark for detecting humans in open water,” in Proc. of

the IEEE/CVF Conference on Applications of Computer Vision, 2022.

H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and

M. J. Freedman, “Live video analytics at scale with approximation and

delay-tolerance,” in Proc. of 14th { USENIX} NSDI, 2017.

J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I Stoica,

“Chameleon: scalable adaptation of video analytics,” in Proc. of the

Conf. of the ACM Special Interest Group on Data Communication, 2018.

[18] K. Wu, Y. Jin, W. Miao, Z. Zeng, Z. Qian,]. Wang, M. Zhou, and T. Cao,

“Soudain: Online adaptive profile configuration for real-time video

analytics,” in IEEE/ACM 29th Int. Symp. on Quality of Service, 2021.

S.Naderiparizi, P. Zhang, M. Philipose, B. Priyantha, J. Liu, and D. Gane-

san, “Glimpse: A programmable early-discard camera architecture for

continuous mobile vision,” in Proc. of the 15th Annual Int. Conf. on

Mobile Systems, Applications, and Services. ACM, 2017.

C. Zhang, Q. Cao, H. Jiang, W. Zhang, J. Li, and J. Yao, “A fast filtering

mechanism to improve efficiency of large-scale video analytics,” IEEE

Transactions on Computers, vol. 69, no. 6, pp. 914-928, 2020.

J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S.-W. Yang,

and M. Satyanarayanan, “Bandwidth-efficient live video analytics for

drones via edge computing,” in 2018 IEEE/ACM Symposium on Edge

Computing (SEC), 2018.

B. Haynes, A. Mazumdar, M. Balazinska, L. Ceze, and A. Cheung,

“Visual road: A video data management benchmark,” in SIGMOD, 2019.

[23] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator,” in Conf. on robot learning, 2017.

[24] ZeroMQ, “Zeromg,” https://zeromgq.org/, 2022, [Online; accessed 2022-
01-14].

[25] Cap’n Proto, “Cap’n proto: Serialization protocol,” https://capnproto.
org/, 2022, [Online; accessed 2022-01-14].

[26] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object
detection,” in Proc. of the IEEE/CVF conference on computer vision and
pattern recognition, 2020.

[27] PyPi, “Dominant color detection,” https://pypi.org/project/dominant-
color-detection/, 2020, [Online; accessed 2022-01-31].

[7

—

8

[t

[

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[19]

[20]

[21]

[22]

