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Abstract

An efficient and effective decoding mechanism is crucial
in medical image segmentation, especially in scenarios with
limited computational resources. However, these decoding
mechanisms usually come with high computational costs.
To address this concern, we introduce EMCAD, a new effi-
cient multi-scale convolutional attention decoder, designed
to optimize both performance and computational efficiency.
EMCAD leverages a unique multi-scale depth-wise convo-
lution block, significantly enhancing feature maps through
multi-scale convolutions. EMCAD also employs channel,
spatial, and grouped (large-kernel) gated attention mech-
anisms, which are highly effective at capturing intricate
spatial relationships while focusing on salient regions. By
employing group and depth-wise convolution, EMCAD is
very efficient and scales well (e.g., only 1.91M parame-
ters and 0.381G FLOPs are needed when using a stan-
dard encoder). Our rigorous evaluations across 12 datasets
that belong to six medical image segmentation tasks re-
veal that EMCAD achieves state-of-the-art (SOTA) perfor-
mance with 79.4% and 80.3% reduction in #Params and
#FLOPs, respectively. Moreover, EMCAD’s adaptability
to different encoders and versatility across segmentation
tasks further establish EMCAD as a promising tool, ad-
vancing the field towards more efficient and accurate med-
ical image analysis. Our implementation is available at
https://github.com/SLDGroup/EMCAD.

1. Introduction

In the realm of medical diagnostics and therapeutic strate-
gies, automated segmentation of medical images is vital, as
it classifies pixels to identify critical regions such as lesions,
tumors, or entire organs. A variety of U-shaped convolu-
tional neural network (CNN) architectures [20, 24, 37, 41,
44, 62], notably UNet [44], UNet++ [62], UNet3+ [24], and
nnU-Net [19], have become standard techniques for this
purpose, achieving high-quality, high-resolution segmen-

tation output. Attention mechanisms [12, 17, 20, 41, 57]
have also been integrated into these models to enhance fea-
ture maps and improve pixel-level classification. Although
attention-based models have shown improved performance,
they still face significant challenges due to the computation-
ally expensive convolutional blocks that are typically used
in conjunction with attention mechanisms.

Recently, vision transformers [18] have shown promise
in medical image segmentation tasks [5, 8, 17, 42, 43, 52,
54, 61] by capturing long-range dependencies among pix-
els through Self-attention (SA) mechanisms. Hierarchical
vision transformers like Swin [34], PVT [55, 56], MaxViT
[49], MERIT [43], ConvFormer [33], and MetaFormer [59]
have been introduced to further improve the performance in
this field. While the SA excels at capturing global informa-
tion, it is less adept at understanding the local spatial context
[13, 28]. To address this limitation, some approaches have
integrated local convolutional attention within the decoders
to better grasp spatial details. Nevertheless, these meth-
ods can still be computationally demanding because they
frequently employ costly convolutional blocks. This limits
their applicability to real-world scenarios where computa-
tional resources are restricted.

To address the aforementioned limitations, we introduce
EMCAD, an efficient multi-scale convolutional attention
decoding using a new multi-scale depth-wise convolution
block. More precisely, EMCAD enhances the feature maps
via efficient multi-scale convolutions, while incorporating
complex spatial relationships and local attention through the
use of channel, spatial, and grouped (large-kernel) gated at-
tention mechanisms. Our contributions are as follows:

* New Efficient Multi-scale Convolutional Decoder:
We introduce an efficient multi-scale cascaded fully-
convolutional attention decoder (EMCAD) for 2D med-
ical image segmentation; this takes the multi-stage fea-
tures of vision encoders and progressively enhances the
multi-scale and multi-resolution spatial representations.
EMCAD has only 0.506M parameters and 0.11G FLOPs
for a tiny encoder with #channels = [32, 64, 160, 256],
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Figure 1. Average DICE scores vs. #FLOPs for different methods
over 10 binary medical image segmentation datasets. As shown,
our approaches (PVT-EMCAD-B0O and PVI-EMCAD-B2) have
the lowest #FLOPs, yet the highest DICE scores.

while it has 1.91M parameters and 0.381G FLOPs for a

standard encoder with #channels = [64, 128, 320, 512].

« Efficient Multi-scale Convolutional Attention Mod-
ule: We introduce MSCAM, a new efficient multi-scale
convolutional attention module that performs depth-wise
convolutions at multiple scales; this refines the feature
maps produced by vision encoders and enables captur-
ing multi-scale salient features by suppressing irrele-
vant regions. The use of depth-wise convolutions makes
MSCAM very efficient.

* Large-kernel Grouped Attention Gate: We introduce
a new grouped attention gate to fuse refined features with
the features from skip connections. By using larger kernel
(3 x 3) group convolutions instead of point-wise convolu-
tions in the design, we capture salient features in a larger
local context with less computation.

e Improved Performance: We empirically show that EM-
CAD can be used with any hierarchical vision encoder
(e.g., PVTv2-B0, PVTv2-B2 [56]), while significantly
improving the performance of 2D medical image seg-
mentation. EMCAD produces better results than SOTA
methods with a significantly lower computational cost (as
shown in Figure 1) on 12 medical image segmentation
benchmarks that belong to six different tasks.

The remaining of this paper is organized as follows:
Section 2 summarizes related work. Section 3 describes
the proposed method. Section 4 explains our experimental
setup and results on 12 medical image segmentation bench-
marks. Section 5 covers different ablation experiments.
Lastly, Section 6 concludes the paper.

2. Related Work
2.1. Vision encoders

Convolutional Neural Networks (CNNs) [21-23, 32, 35,
45-48] have been foundational as encoders due to their pro-

ficiency in handling spatial relationships in images. More
precisely, AlexNet [32] and VGG [46] pave the way, lever-
aging deep layers of convolutions to extract features pro-
gressively. GoogleNet [47] introduces the inception mod-
ule, allowing more efficient computation of representations
across various scales. ResNet [21] introduces residual con-
nections, enabling the training of networks with substan-
tially more layers by addressing the vanishing gradients
problem. MobileNets [22, 45] bring CNNs to mobile de-
vices through lightweight, depth-wise separable convolu-
tions. EfficientNet [48] introduces a scalable architectural
design to CNNs with compound scaling. Although CNNs
are pivotal for many vision applications, they generally lack
the ability to capture long-range dependencies within im-
ages due to their inherent local receptive fields.

Recently, Vision Transformers (ViTs), pioneered by
Dosovitskiy et al. [18], enabled the learning of long-range
relationships among pixels using Self-attention (SA). Since
then, ViTs have been enhanced by integrating CNN fea-
tures [49, 56], developing novel self-attention (SA) blocks
[34, 49], and introducing new architectural designs [55, 58].
The Swin Transformer [34] incorporates a sliding window
attention mechanism, while SegFormer [58] leverages Mix-
FFN blocks for hierarchical structures. PVT [55] uses spa-
tial reduction attention, refined in PVTv2 [56] with over-
lapping patch embedding and a linear complexity attention
layer. MaxViT [49] introduces a multi-axis self-attention
to form a hierarchical CNN-transformer encoder. Although
ViTs address the CNNs limitation in capturing long-range
pixel dependencies [21-23, 32, 35, 45-48], they face chal-
lenges in capturing the local spatial relationships among
pixels. In this paper, we aim to overcome these limita-
tions by introducing a new multi-scale cascaded attention
decoder that refines feature maps and incorporates local at-
tention using a multi-scale convolutional attention module.

2.2. Medical image segmentation

Medical image segmentation involves pixel-wise classifica-
tion to identify various anatomical structures like lesions,
tumors, or organs within different imaging modalities such
as endoscopy, MRI, or CT scans [8]. U-shaped networks
[7, 19, 24, 26, 37, 41, 44, 62] are particularly favored due
to their simple but effective encoder-decoder design. The
UNet [44] pioneered this approach with its use of skip
connections to fuse features at different resolution stages.
UNet++ [62] evolves this design by incorporating nested
encoder-decoder pathways with dense skip connections.
Expanding on these ideas, UNet 3+ [24] introduces compre-
hensive skip pathways that facilitate full-scale feature inte-
gration. Further advancement comes with DC-UNet [37],
which integrates a multi-resolution convolution scheme and
residual paths into its skip connections. The DeepLab se-
ries, including DeepLabv3 [10] and DeepLabv3+ [11], in-



troduce atrous convolutions and spatial pyramid pooling to
handle multi-scale information. SegNet [2] uses pooling in-
dices to upsample feature maps, preserving the boundary
details. nnU-Net [19] automatically configures hyperpa-
rameters based on the specific dataset characteristics, using
standard 2D and 3D UNets. Collectively, these U-shaped
models have become a benchmark for success in the domain
of medical image segmentation.

Recently, vision transformers have emerged as a
formidable force in medical image segmentation, harness-
ing the ability to capture pixel relationships at global scales
[5,8,17,42,43,52,58, 61]. TransUNet [8] presents a novel
blend of CNNs for local feature extraction and transform-
ers for global context, enhancing both local and global fea-
ture capture. Swin-Unet [5] extends this by incorporating
Swin Transformer blocks [34] into a U-shaped model for
both encoding and decoding processes. Building on these
concepts, MERIT [43] introduces a multi-scale hierarchi-
cal transformer, which employs SA across different window
sizes, thus enhancing the model capacity to capture multi-
scale features critical for medical image segmentation.

The integration of attention mechanisms has been in-
vestigated within CNNs [20, 41] and transformer-based
systems [17] for enhancing medical image segmentation.
PraNet [20] employs a reverse attention strategy for fea-
ture refinement. PolypPVT [17] leverages PVTv2 [56] as
its backbone encoder and incorporates CBAM [57] within
its decoding stages. The CASCADE [42] presents a novel
cascaded decoder, combining channel [23] and spatial [9]
attention to refine features at multiple stages, extracted from
a transformer encoder, culminating in high-resolution seg-
mentation outputs. While CASCADE achieves notable per-
formance in segmenting medical images by integrating lo-
cal and global insights from transformers, it is computation-
ally inefficient due to the use of triple 3 x 3 convolution lay-
ers at each decoder stage. In addition to this, it uses single-
scale convolutions during decoding. Our new proposal in-
volves the adoption of multi-scale depth-wise convolutions
to mitigate these constraints.

3. Methodology

In this section, we first introduce our new EMCAD de-
coder and then explain two transformer-based architectures
(i.e., PVT-EMCAD-B0 and PVT-EMCAD-B2) incorporat-
ing our proposed decoder.

3.1. Efficient multi-scale convolutional attention de-
coding (EMCAD)

In this section, we introduce our efficient multi-scale con-
volutional decoding (EMCAD) to process the multi-stage
features extracted from pretrained hierarchical vision en-
coders for high-resolution semantic segmentation. As
shown in Figure 2(b), EMCAD consits of efficient multi-

scale convolutional attention modules (MSCAMs) to ro-
bustly enhance the feature maps, large-kernel grouped at-
tention gates (LGAGs) to refine feature maps fusing with
the skip connection via gated attention mechanism, efficient
up-convolution blocks (EUCBs) for up-sampling followed
by enhancement of feature maps, and segmentation heads
(SHs) to produce the segmentation outputs.

More specifically, we use four MSCAMs to refine pyra-
mid features (i.e., X1, X2, X3, X4 in Figure 2) extracted
from the four stages of the encoder. After each MSCAM,
we use an SH to produce a segmentation map of that stage.
Subsequently, we upscale the refined feature maps using
EUCBs and add them to the outputs from the corresponding
LGAGs. Finally, we add four different segmentation maps
to produce the final segmentation output. Different modules
of our decoder are described next.

3.1.1 Large-Kkernel grouped attention gate (LGAG)

We introduce a new large-kernel grouped attention gate
(LGAG) to progressively combine feature maps with atten-
tion coefficients, which are learned by the network to allow
higher activation of relevant features and suppression of ir-
relevant ones. This process employs a gating signal derived
from higher-level features to control the flow of informa-
tion across different stages of the network, thus enhancing
its precision for medical image segmentation. Unlike At-
tention UNet [41] which uses 1 x 1 convolution to process
gating signal g (features from skip connections) and input
feature map = (upsampled features), in our g, (.) func-
tion, we process g and x by applying separate 3 X 3 group
convolutions GCy(.) and GC,(.), respectively. These con-
volved features are then normalized using batch normaliza-
tion (BN(.)) [27] and merged through element-wise addi-
tion. The resultant feature map is activated through a ReLU
(R(.)) layer [39]. Afterward, we apply a 1 x 1 convolu-
tion (C(.)) followed by BN (.) layer to get a single channel
feature map. We then pass the resultant single-channel fea-
ture map through a Sigmoid (o(.)) activation function to
yield the attention coefficients. The output of this transfor-
mation is used to scale the input feature  through element-
wise multiplication, producing the attention-gated feature
LGAG(g,x). The LGAG(-) (Figure 2(g)) can be formu-
lated as in Equations 1 and 2:

qatt(9, ) = R(BN(GCy(g) + BN(GCy())))) (1)

LGAG(97 l‘) =r® U(BN(O(Qatt(g7 l‘)))) (2)

Due to using 3 x 3 kernel group convolutions in g4 (.), our
LGAG captures comparatively larger spatial contexts with
less computational cost.
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Figure 2. Hierarchical encoder with newly proposed EMCAD decoder architecture. (a) CNN or transformer encoder with four hierarchical
stages, (b) EMCAD decoder, (c) Efficient up-convolution block (EUCB), (d) Multi-scale convolutional attention module (MSCAM), (e)
Multi-scale convolution block (MSCB), (f) Multi-scale (parallel) depth-wise convolution (MSDC), (g) Large-kernel grouped attention gate
(LGAG), (h) Channel attention block (CAB), and (i) Spatial attention block (SAB). X1, X2, X3, and X4 are the features from the four
stages of the hierarchical encoder. p1, p2, p3, and p4 are output segmentation maps from four stages of our decoder.

3.1.2 Multi-scale
(MSCAM)

convolutional attention module

We introduce an efficient multi-scale convolutional atten-
tion module to refine the feature maps. MSCAM consists
of a channel attention block (C'AB(-)) to put emphasis on
pertinent channels, a spatial attention block [9] (SAB(-))
to capture the local contextual information, and an effi-
cient multi-scale convolution block (M SC B(.)) to enhance
the feature maps preserving contextual relationships. The
MSCAM(.) (Figure 2(d)) is given in Equation 3:

MSCAM (z) = MSCB(SAB(CAB(z)))  (3)

where x is the input tensor. Due to using depth-wise con-
volution in multiple scales, our MSCAM is more effective
with significantly lower computational cost than the convo-
lutional attention module (CAM) proposed in [42].
Multi-scale Convolution Block (MSCB): We introduce
an efficient multi-scale convolution block to enhance the
features generated by our cascaded expanding path. In our
MSCB, we follow the design of the inverted residual block
(IRB) of MobileNetV2 [45]. However, unlike IRB, our
MSCB performs depth-wise convolution at multiple scales
and uses channel_shuffle [60] to shuffle channels across
groups. More specifically, in our MSCB, we first expand
the number of channels (i.e., expansion_factor = 2) using a
point-wise (1 x 1) convolution layers PW C' () followed by
a batch normalization layer BN () and a ReL U6 [31] activa-
tion layer R6(.). We then use a multi-scale depth-wise con-
volution M SDC(.) to capture both multi-scale and multi-
resolution contexts. As depth-wise convolution overlooks

the relationships among channels, we use a channel_shuffle
operation to incorporate relationships among channels. Af-
terward, we use another point-wise convolution PW Cs(.)
followed by a BN(.) to transform back the original #chan-
nels, which also encodes dependency among channels. The
MSC B(-) (Figure 2(e)) is formulated as in Equation 4:

MSCB(z) = BN(PWCy(CS(MSDC(R6(BN(PWCi(x))))))) (4)

where parallel M SDC(.) (Figure 2(f)) for different kernel
sizes (K .S) can be formulated using Equation 5:

MSDC(x) =Y e xs PWCBygs(x) (5)

where DWCBys(xz) = R6(BN(DWCks(z))). Here,
DWCis(.) is a depth-wise convolution with the kernel
size ks. BN() and R6(.) are batch normalization
and ReLU6 activation, respectively. Additionally, our se-
quential MSDC(.) uses the recursively updated input z,
where the input z is residually connected to the previous
DW C By(.) for better regularization as in Equation 6:

x =x + DWCBys(x) (6)

Channel Attention Block (CAB): We use channel at-
tention block to assign different levels of importance to each
channel, thus emphasizing more relevant features while
suppressing less useful ones. Basically, the CAB identi-
fies which feature maps to focus on (and then refine them).
Following [57], in CAB, we first apply the adaptive maxi-
mum pooling (P,,(-)) and adaptive average pooling (P,(-))
to the spatial dimensions (i.e., height and width) to extract
the most significant feature of the entire feature map per



channel. Then, for each pooled feature map, we reduce
the number of channels » = 1/16 times separately using
a point-wise convolution (C1(-)) followed by a ReLU ac-
tivation (R). Afterward, we recover the original channels
using another point-wise convolution (Ca(-)). We then add
both recovered feature maps and apply Sigmoid (o) activa-
tion to estimate attention weights. Finally, we incorporate
these weights to input x using the Hadamard product (®).
The C' AB(-) (Figure 2(h)) is defined using Equation 7:

CAB(z) = 0(Co(R(C1(Pm(2)))) + Co(R(C1(Pa(2))) @z (7)

Spatial Attention Block (SAB): We use spatial atten-
tion to mimic the attentional processes of the human brain
by focusing on specific parts of an input image. Basically,
the SAB determines where to focus in a feature map; then it
enhances those features. This process enhances the model’s
ability to recognize and respond to relevant spatial features,
which is crucial for image segmentation where the context
and location of objects significantly influence the output.
In SAB, we first pool maximum (Ch,,,4.(-)) and average
(Chgyg(+)) values along the channel dimension to pay atten-
tion to local features. Then, we use a large kernel (i.e., 7 x 7
as in [17]) convolution layer to enhance local contextual re-
lationships among features. Afterward, we apply the Sig-
moid activation (o) to calculate attention weights. Finally,
we feed these weights to the input  (using Hadamard prod-
uct (®) to attend information in a more targeted way. The
SAB(.) (Figure 2(i)) is defined using Equation 8:

SAB(z) = 0(LKC([Chmaz(x), Chavg(x)])) ®x  (8)

3.1.3 Efficient up-convolution block (EUCB)

We use an efficient up-convolution block to progressively
upsample the feature maps of the current stage to match the
dimension and resolution of the feature maps from the next
skip connection. The EUCB first uses an UpSampling Up(+)
with scale-factor 2 to upscale the feature maps. Then, it
enhances the upscaled feature maps by applying a 3 x 3
depth-wise convolution DW C(-) followed by a BN(-) and
a ReLU(.) activation. Finally, a 1 x 1 convolution C «1(.)
is used to reduce the #channels to match with the next stage.
The EUC B(-) (Figure 2(c)) is formulated as in Equation 9:

BUCB(x) = i1 (ReLU (BN (DWC(Up(x))))) (9)

Due to using depth-wise convolution instead of 3 x 3 con-
volution, our EUCB is very efficient.

3.1.4 Segmentation head (SH)

We use segmentation heads to produce the segmentation
outputs from the refined feature maps of four stages of
the decoder. The SH layer applies a 1 X 1 convolution
Convyx1() to the refined feature maps having ch; chan-
nels (ch; is the #channels in the feature map of stage ¢) and

produces output with #channels equal to #classes in target
dataset for multi-class but 1 channel for binary segmenta-
tion. The SH(-) is formulated as in Equation 10:

SH(xz) = Convixi(x) (10)

3.2. Overall architecture

To show the generalization, effectiveness, and ability to pro-
cess multi-scale features for medical image segmentation,
we integrate our EMCAD decoder alongside tiny (PVTv2-
BO0) and standard (PVTv2-B2) networks of PVTv2 [56].
However, our decoder is adaptable and seamlessly compat-
ible with other hierarchical backbone networks.

PVTv2 differs from conventional transformer patch em-
bedding modules by applying convolutional operations for
consistent spatial information capture. Using PVTv2-b0
(Tiny) and PVTv2-b2 (Standard) encoders [56], we develop
the PVI-EMCAD-B0 and PVT-EMCAD-B2 architectures.
To adopt PVTV2, we first extract the features (X1, X2, X3,
and X4) from four layers and feed them (i.e., X4 in the up-
sample path and X3, X2, X1 in the skip connections) into
our EMCAD decoder as shown in Figure 2(a-b). EMCAD
then processes them and produces four segmentation maps
that correspond to the four stages of the encoder network.

3.3. Multi-stage loss and outputs aggregation

Our EMCAD decoder’s four segmentation heads produce
four prediction maps p1, p2, p3, and p4 across its stages.

Loss aggregation: We adopt a combinatorial approach
to loss combination called MUTATION, inspired by the
work of MERIT [43] for multi-class segmentation. This
involves calculating the loss for all possible combinations
of predictions derived from 4 heads, totaling 2* — 1 = 15
unique predictions, and then summing these losses. We fo-
cus on minimizing this cumulative combinatorial loss dur-
ing the training process. For binary segmentation, we op-
timize the additive loss like [42] with an additional term
Ly +ps+ps+pa as in Equation 11:

Liotar = aﬁ!’l + /B‘CPQ + ’Y['Ps + C[:m + 61:]11+]?2+]73+Z74 (1 1)
where L, L,,, Lp,, and L, are the losses of each indi-
vidual prediction maps. « = 8 =y = = J = 1.0 are the
weights assigned to each loss.

Output segmentation maps aggregation: We consider
the prediction map, p4, from the last stage of our decoder as
the final segmentation map. Then, we obtain the final seg-
mentation output by employing a Sigmoid function for bi-
nary or a Softmax function for multi-class segmentation.

4. Experiments

In this section, we present the details of our implementation
followed by a comparative analysis of our PVT-EMCAD-
B0 and PVT-EMCAD-B2 against SOTA methods. Datasets
and evaluation metrics are in Supplementary Section 7.



Polyp Skin Lesion Cell
Methods #Params | #FLOPS e — o ETIS  Kvasir  BKAI | ISICI7 ISICIS | DSBIS  EM | DUSL | Ave
UNet [44] 34.53M | 65.53G | 92.11 83.95 76.85 8287 8505 | 83.07 86.67 | 9223 9546 | 74.04 | 85.23
UNet++ [62] 9.16M | 34.65G | 92.17 87.88 7740 8336 8407 | 8298 8746 | 91.97 9548 | 74.76 | 85.75
AttnUNet [41] 34.88M | 66.64G | 9220 8646 76.84 8349 8407 | 83.66 87.05 | 9222 9555 | 74.48 | 85.60
DeepLabv3+ [10] 39.76M | 14.92G | 9324 9192 90.73 89.06 89.74 | 83.84  88.64 | 92.14 9496 | 76.81 | 89.11
PraNet [20] 3255M | 693G | 91.71 89.16 83.84 8482 8556 | 83.03 8856 | 89.89 9237 | 75.14 | 86.41
CaraNet [38] 46.64M | 11.48G | 9408 91.19 9025 89.74 89.71 | 8502  90.18 | 89.15 92.78 | 77.34 | 88.94
UACANet-L [30] 69.16M | 31.51G | 94.16 91.02 89.77 90.17 9035 | 8372 8976 | 88.86 89.28 | 76.96 | 88.41
SSFormer-L [54] 66.22M | 17.28G | 94.18 92.11 90.16 91.47 91.14 | 8528 9025 | 92.03 94.95 | 78.76 | 90.03
PolypPVT [17] 25.11IM | 530G | 9413 91.53 89.93 9156 O91.17 | 8556 90.36 | 90.69 94.40 | 79.35 | 89.87
TransUNet [8] 10532M | 38.52G | 9390 91.63 8779 91.08 89.17 | 8500 89.16 | 92.04 9527 | 78.30 | 89.33
SwinUNet [5] 27.17M 62G | 9242 8927 8510 89.59 87.61 | 8397 8926 | 91.03 94.47 | 77.38 | 88.01
TransFuse [61] 143.74M | 8271G | 93.62 9035 8691 9024 8747 | 84.89  89.62 | 90.85 94.35 | 79.36 | 88.77
UNeXt [50] 147M | 057G | 9020 83.84 74.03 7788 7793 | 8274 8778 | 86.01 93.81 | 74.71 | 82.89
PVT-CASCADE [42] 34.12M | 7.62G | 94.53  91.60 91.03 92.05 92.14 | 8550 9041 | 9235 9542 | 79.21 | 90.42
PVL.EMCAD-BO (Ours) | 3.92M | 084G | 9460 91.71 91.65 9195 9130 | 8567 90.70 | 9246 9535 | 79.80 | 90.52
PVT-EMCAD-B2 (Ours) | 26.76M 56G | 9521 9231 9229 9275 9296 | 8595 9096 | 9274 95.53 | 80.25 | 91.10

Table 1. Results of binary medical image segmentation (i.e., polyp, skin lesion, cell, and breast cancer). We reproduce the results of SOTA
methods using their publicly available implementation with our train-val-test splits of 80:10:10. #FLOPs of all the methods are reported
for 256 x 256 inputs, except Swin-UNet (224 x 224). All results are averaged over five runs. Best results are shown in bold.

Architectures DICE? ﬁ/];r;sgf mloUt Aorta GB KL KR Liver PC SP SM

UNet [44] 70.11 44.69 59.39 | 84.00 56.70 7241 62.64 8698 48.73 81.48 67.96
AttnUNet [41] 71.70 34.47 61.38 | 82.61 6194 76.07 7042 87.54 46.70 80.67 67.66
R50+UNet [8] 74.68 36.87 — | 84.18 62.84 79.19 71.29 9335 4823 8441 7392
R50+AttnUNet [8] 75.57 36.97 — | 5592 6391 7920 7271 93,56 4937 87.19 7495
SSFormer [54] 78.01 25.72 67.23 | 82.78 63.74 80.72 78.11 9353 61.53 87.07 76.61
PolypPVT [17] 78.08 25.61 67.43 | 8234 66.14 8121 73.78 9437 59.34 88.05 794
TransUNet [8] 77.61 26.9 67.32 | 86.56 60.43 80.54 7853 9433 5847 87.06 75.00
SwinUNet [5] 77.58 27.32 66.88 | 81.76 6595 8232 79.22 93773 53.81 88.04 75.79
MT-UNet [53] 78.59 26.59 — | 8792 6499 8147 7729 93.06 59.46 87.75 76.81
MISSFormer [25] 81.96 18.20 — | 86.99 6865 8521 82.00 9441 6567 9192 80.81
PVT-CASCADE [42] 81.06 20.23 70.88 | 83.01 70.59 8223 80.37 94.08 64.43 90.1 83.69
TransCASCADE [42] 82.68 17.34 7348 | 86.63 68.48 87.66 84.56 9443 6533 90.79 83.52
PVT-EMCAD-BO (Ours) 81.97 17.39 72.64 | 8721 66.62 8748 83.96 9457 62.00 92.66 8122
PVT-EMCAD-B2 (Ours) 83.63 15.68 74.65 | 88.14 68.87 88.08 84.10 9526 68.51 92.17 83.92

Table 2. Results of abdomen organ segmentation on Synapse Multi-organ dataset. DICE scores are reported for individual organs. Results
of UNet, AttnUNet, PolypPVT, SSFormerPVT, TransUNet, and SwinUNet are taken from [42]. 1" ({) denotes the higher (lower) the better.
‘—’ means missing data from the source. EMCAD results are averaged over five runs. Best results are shown in bold.

4.1. Implementation details

We implement our network and conduct experiments us-
ing Pytorch 1.11.0 on a single NVIDIA RTX A6000 GPU
with 48GB of memory. We utilize ImageNet [16] pre-
trained PVTv2-b0 and PVTv2-b2 [56] as encoders. In
the MSDC of our decoder, we set the multi-scale kernels
[1, 3, 5] through an ablation study. We use the parallel ar-
rangement of depth-wise convolutions in all experiments.
Our models are trained using the AdamW optimizer [36]
with a learning rate and weight decay of 1e — 4. We gener-
ally train for 200 epochs with a batch size of 16, except
for Synapse multi-organ (300 epochs, batch size 6) and
ACDC cardiac organ (400 epochs, batch size 12), saving
the best model based on the DICE score. We resize images

to 352 x 352 and use a multi-scale {0.75, 1.0, 1.25} training
strategy with a gradient clip limit of 0.5 for ClinicDB [3],
Kvasir [29], ColonDB [51], ETIS [51], BKAI [40], ISIC17
[15], and ISIC18 [15], while we resize images to 256 x 256
for BUSI [1], EM [6], and DSB18 [4]. For Synapse and
ACDC datasets, images are resized to 224 x 224, with
random rotation and flipping augmentations, optimizing a
combined Cross-entropy (0.3) and DICE (0.7) loss. For bi-
nary segmentation, we utilize the combined weighted Bina-
ryCrossEntropy (BCE) and weighted IoU loss function.

4.2. Results

We compare our architectures (i.e., PVT-EMCAD-BO and
PVT-EMCAD-B2) with SOTA CNN and transformer-based
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Figure 3. Average DICE scores vs. #Params for different methods
over 10 binary medical image segmentation datasets. As shown,
our proposed approaches (PVT-EMCAD-B0O and PVT-EMCAD-
B2) have the fewest parameters, yet the highest DICE scores.

Methods | Avg. DICE | RV Myo LV

R50+UNet [8] 87.55 | 87.10 80.63 94.92
R50+AttnUNet [8] 86.75 | 87.58 79.20 93.47
ViT+CUP [8] 81.45 | 8146 70.71 92.18
R50+ViT+CUP [8] 87.57 | 86.07 81.88 9475
TransUNet [8] 89.71 | 86.67 8727 95.18
SwinUNet [5] 88.07 | 85.77 84.42 94.03
MT-UNet [53] 90.43 | 86.64 89.04 95.62
MISSFormer [25] 90.86 | 89.55 88.04 94.99
PVT-CASCADE [42] 91.46 | 89.97 889 95.50
TransCASCADE [42] 91.63 | 9025 89.14 95.50
Cascaded MERIT [43] 91.85 | 9023 89.53 95.80
PVT-EMCAD-BO (Ours) | 91.34+0.2 | 89.37 88.99 95.65
PVT-EMCAD-B2 (Ours) | 92.12+0.2 | 90.65 89.68 96.02

Table 3. Results of cardiac organ segmentation on ACDC dataset.
DICE scores (%) are reported for individual organs. We get the
results of SwinUNet from [42]. Best results are shown in bold.

segmentation methods on 12 datasets that belong to six
medical image segmentation tasks. Qualitative results are
in the Supplementary Section 7.3.

4.2.1 Results of binary medical image segmentation

Results for different methods on 10 binary medical im-
age segmentation datasets are shown in Table 1 and Fig-
ure 1. Our PVT-EMCAD-B2 attains the highest average
DICE score (91.10%) with only 26.76M parameters and
5.6G FLOPs. The multi-scale depth-wise convolution in our
EMCAD decoder, combined with the transformer encoder,
contributes to these performance gains.

Polyp segmentation: Table 1 reveals that our PVT-
EMCAD-B2 surpasses all SOTA methods in five polyp
segmentation datasets. PVT-EMCAD-B2 achieves DICE
score improvements of 1.08%, 0.78%, 2.36%, 1.19%,
and 1.79% over PolypPVT in ClinicDB, ColonDB, ETIS,
Kvasir, and BKAI-IGI, despite having slightly more pa-
rameters and FLOPs. The smallest model UNeXt, ex-

Components #FLOPs(G)  #Params Avg
Cascaded LGAG MSCAM 224 256 ™M) DICE
No No No 0 0 0 80.10+0.2
Yes No No 0.100 0.131 0.224 81.08+0.2
Yes Yes No 0.108 0.141 0.235 81.924+0.2
Yes No Yes 0.373  0.487 1.898 82.86+0.3
Yes Yes Yes 0.381 0.498 191 83.63+0.3

Table 4. Effect of different components of EMCAD with PVTv2-
b2 encoder on Synapse multi-organ dataset. #FLOPs are reported
for input resolution of 224 x 224 and 256 x 256. All results are
averaged over five runs. Best results are shown in bold.

hibits the worst performance in all five polyp segmenta-
tion datasets. Our smaller model with only 3.92M param-
eters and 0.84G FLOPs also outperforms all the methods
except PVT-CASCADE (in Kvasir and BKAI-IGH) and
SSFormer-L (in ColonDB), which achieve the best perfor-
mance among SOTA methods. In conclusion, our PVT-
EMCAD-B2 achieves the new SOTA results in these five
polyp segmentation datasets.

Skin lesion segmentation: Table 1 shows PVT-
EMCAD-B2’s strong performance on ISIC17 and ISIC18
skin lesion segmentation datasets, achieving DICE scores
of 85.95% and 90.96%, surpassing DeepLabV3+ by 2.11%
and 2.32%. It also beats the nearest method PVT-
CASCADE by 0.45% and 0.55% in ISIC17 and ISIC18,
respectively, though our decoder is significantly more ef-
ficient than CASCADE. Our PVT-EMCAD-BO also shows
huge potential in point care applications like skin lesion seg-
mentation with only 3.92M parameters and 0.84G FLOPs.

Cell segmentation: To evaluate our method’s effective-
ness in biological imaging, we use DSB18 [4] for cell nu-
clei and EM [6] for cell structure segmentation. As Ta-
ble 1 indicates, our PVT-EMCAD-B2 sets a SOTA bench-
mark in cell nuclei segmentation on DSB18, outperforming
DeepLabv3+, TransFuse, and PVT-CASCADE. On the EM
dataset, PVT-EMCAD-B2 secures the second-best DICE
score (95.53%), offering significantly lower computational
costs than the top-performing AttnUNet (95.55%).

Breast cancer segmentation: We conduct experiments
on the BUSI dataset for breast cancer segmentation in ultra-
sound images. Our PVT-EMCAD-B2 achieves the SOTA
DICE score (80.25%) on this dataset. Furthermore, our
PVT-EMCAD-BO outperforms the computationally similar
method UNeXt by a notable margin of 5.54%.

4.2.2 Results of abdomen organ segmentation

Table 2 shows that our PVT-EMCAD-B2 excels in abdomen
organ segmentation on the Synapse multi-organ dataset,
achieving the highest average DICE score of 83.63% and
surpassing all SOTA CNN- and transformer-based meth-
ods. It outperforms PVT-CASCADE by 2.57% in DICE
score and 4.55 in HD95 distance, indicating superior organ
boundary location. Our EMCAD decoder boosts individ-



Conv. kernels  [1] 3] 5] [1,3] [3,3] [1,3,5] [3,3,3] [3,5,7 [1,3,5,7] [1,3,5,7,9]
Synapse 8243 8279 8274 8298 8281 83.63 8292  83.11 83.57 83.34
ClinicDB 9481 9490 9498 9513 9506 9521 9515  95.03 95.18 95.07

Table 5. Effect of multi-scale kernels in the depth-wise convolution of MSDC on ClinicDB and Synapse multi-organ datasets. We use the
PVTv2-b2 encoder for these experiments. All results are averaged over five runs. Best results are highlighted in bold.

Encoders Decoders #FLOPs(G) #Params(M) DICE (%)
PVTv2-BO CASCADE 0.439 2.32 80.54
PVTv2-BO EMCAD (Ours) 0.110 0.507 81.97
PVTv2-B2 CASCADE 1.93 9.27 82.78
PVTv2-B2 EMCAD (Ours) 0.381 191 83.63

Table 6. Comparison with the baseline decoder on Synapse Multi-
organ dataset. We only report the #FLOPs (with input resolution
of 224 x 224) and the #parameters of the decoders. All the results
are averaged over five runs. Best results are shown in bold.

ual organ segmentation, significantly outperforming SOTA
methods on six of eight organs.

4.2.3 Results of cardiac organ segmentation

Table 3 shows the DICE scores of our PVT-EMCAD-B2
and PVT-EMCAD-BO along with other SOTA methods, on
the MRI images of the ACDC dataset for cardiac organ seg-
mentation. Our PVT-EMCAD-B?2 achieves the highest av-
erage DICE score of 92.12%, thus improving about 0.27%
over Cascaded MERIT though our network has significantly
lower computational cost. Besides, PVT-EMCAD-B2 has
better DICE scores in all three organ segmentations.

5. Ablation Studies

In this section, we conduct ablation studies to explore differ-
ent aspects of our architectures and the experimental frame-
work. More ablations are in Supplementary Section 8.

5.1. Effect of different components of EMCAD

We conduct a set of experiments on the Synapse multi-organ
dataset to understand the effect of different components of
our EMCAD decoder. We start with only the encoder and
add different modules such as Cascaded structure, LGAG,
and MSCAM to understand their effect. Table 4 exhibits
that the cascaded structure of the decoder helps to improve
performance over the non-cascaded one. The incorpora-
tion of LGAG and MSCAM improves performance, how-
ever, MSCAM proves to be more effective. When both the
LGAG and MSCAM modules are used together, it produces
the best DICE score of 83.63%. It is also evident that there
is about 3.53% improvement in the DICE score with an ad-
ditional 0.381G FLOPs and 1.91M parameters.

5.2. Effect of multi-scale kernels in MSCAM

We have conducted another set of experiments on Synapse
multi-organ and ClinicDB datasets to understand the effect
of different multi-scale kernels used for depth-wise convo-
lutions in MSDC. Table 5 reports these results which show

that performance improves from 1 x 1 to 3 x 3 kernel. When
1 x 1 kernel is used together with 3 x 3 it improves more
than when using them alone. However, when two 3 x 3
kernels are used together, performance drops. The incorpo-
ration of a 5 x 5 kernel with 1 x 1 and 3 x 3 kernels further
improves the performance and it achieves the best results in
both Synapse multi-organ and ClinicDB datasets. If we add
additional larger kernels (e.g., 7 x 7, 9 x 9), the performance
of both datasets drops. Based on these empirical observa-
tions, we choose [1, 3, 5] kernels in all our experiments.

5.3. Comparison with the baseline decoder

In Table 6, we report the experimental results with the com-
putational complexity of our EMCAD decoder and a base-
line decoder, namely CASCADE. From Table 6, we can see
that our EMCAD decoder with PVTv2-b2 requires 80.3%
fewer FLOPs and 79.4% fewer parameters to outperform
(by 0.85%) the respective CASCADE decoder. Similarly,
our EMCAD decoder with PVTv2-B0 achieves 1.43% bet-
ter DICE score than the CASCADE decoder with 78.1%
fewer parameters and 74.9% fewer FLOPs.

6. Conclusions

In this paper, we have presented EMCAD, a new and effi-
cient multi-scale convolutional attention decoder designed
for multi-stage feature aggregation and refinement in med-
ical image segmentation. EMCAD employs a multi-scale
depth-wise convolution block, which is key for capturing di-
verse scale information within feature maps, a critical factor
for precision in medical image segmentation. This design
choice, using depth-wise convolutions instead of standard
3 x 3 convolution blocks, makes EMCAD notably efficient.
Our experiments reveal that EMCAD surpasses the re-
cent CASCADE decoder in DICE scores with 79.4% fewer
parameters and 80.3% less FLOPs. Our extensive experi-
ments also confirm EMCAD’s superior performance com-
pared to SOTA methods across 12 public datasets covering
six different 2D medical image segmentation tasks. EM-
CAD’s compatibility with smaller encoders makes it an ex-
cellent fit for point-of-care applications while maintaining
high performance. We anticipate that our EMCAD decoder
will be a valuable asset in enhancing a variety of medical
image segmentation and semantic segmentation tasks.
Acknowledgements: This work is supported in part
by the NSF grant CNS 2007284, and in part by the
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