Manufacturing and Science Engineering Conference
MSEC2024
June 17-June 21, 2024, Knoxville, TN

MSEC2024-XXXX

A DEEP REINFORCEMENT LEARNING APPROACH FOR PRODUCTION SCHEDULING IN COMPUTER SERVER
INDUSTRY

Azzam Radman
University of Louisville
Louisville, KY

Faisal Aglan*
University of Louisville
Louisville, KY

Pratik Parikh
University of Louisville
Louisville, KY

Md. Noor-E-Alam
Northeastern University
Boston, MA

ABSTRACT

Computer Server Industry is characterized by extensive test
processes to ensure high quality and reliability of the servers.
Computer Server Industry production systems utilize Configure-
To-Order (CTO), also known as fabrication/fulfillment, strategy
which provides an effective balance between demand and sup-
ply by synchronizing the flow of materials, equipment, and labor
throughout the production process. In the fabrication stage, com-
ponents or sub-assemblies are produced, tested, and assembled
based on a projected production plan. They are then kept in stock
until an actual order is received from a customer. In the fulfillment
stage, final products are assembled according to actual customer
orders. Assignment of products to test cells during the fulfillment
stage can be a challenging task due to high quality requirement
and limited resources. Current practices tend to assign products
to test cells based on a specific criterion such as on-time shipment
or maximum test cell occupancy, which can result in higher levels
of energy consumption or delayed orders. This paper introduces
a Deep Reinforcement Learning (DRL) approach to effectively
assign servers to test cells considering a multi-objective reward
function that combines multiple criteria. A proposed simulation
model serves as the environment with which the DRL agent in-
teracts, learning a policy that develops a test schedule for the
products. The proposed approach is tested with a case study
from a high-end server manufacturing environment. Sensitivity
analysis is conducted to analyze the impact of the different values
of the system’s variables on its performance.

Keywords: Deep Reinforcement Learning, Reward Function,
Production Scheduling, Computer Server Industry.

*Corresponding author: faisal.aglan@louisville.edu
Documentation for asmeconf.cls: Version 1.34, March 11, 2024.

1. INTRODUCTION

Production scheduling in manufacturing systems focuses on
determining the sequence of operations, allocating resources,
and setting timelines to ensure optimal utilization of available
resources while minimizing costs and maximizing productiv-
ity. In Configure-To-Order (CTO) manufacturing environments,
a production schedule should achieve an effective balance be-
tween demand and supply by synchronizing the flow of mate-
rials, equipment, and labor throughout the production process.
A CTO production environment consists of hybrid build-to-plan
and assemble-to-order operations [1]. This configuration is also
known as the fabrication/fulfillment strategy, in which products
are customized and configured based on customer specifications
within a predefined set of options and variations. Unlike make-
to-stock or make-to-order strategies, where products are either
produced in advance or manufactured completely from scratch,
the fabrication/fulfillment strategy allows for a higher degree of
customization while maintaining some level of standardization.
In the fabrication stage, components or sub-assemblies are pro-
duced, tested, and assembled based on a projected production
plan. They are then kept in stock until an actual order is received
from a customer. In the fulfillment stage, final products are only
assembled according to actual customer orders. There are two
key production planning and scheduling decisions in a CTO sys-
tem: (1) optimizing the build-to-plan subsystem (for components
and sub-assemblies) by determining the production and inven-
tory levels for a given forecast (exogenously provided), and (2)
assembly and test planning and scheduling in the assemble-to-
order subsystem in which orders are allocated to assembly and
test processes.

In CTO manufacturing systems, developing solutions to op-
timize the production schedule has been an active area of research
due to the high impact of these solutions on real-world applica-
tions [2]. Previous studies employed both heuristics and numeri-

Copyright © 2024 by ASME

cal optimization methods to approach the production scheduling
task. However, these methodologies exhibit inherent limitations
that restrict their applicability to specific domains or contexts.
Heuristics such as Early Due Date First often yield solutions that
are intuitive and easily comprehensible; however, their feasibil-
ity is constrained by their limited applicability across diverse
domains or contexts [3]. Conversely, numerical solutions neces-
sitate a more complex implementation process, involving a com-
prehensive mathematical description of the environment and ob-
jectives alongside the high computational intensiveness. Lenstra
et al. [4] demonstrated that a significant portion of schedul-
ing problems similar to those encountered in industrial fields
are characterized as NP-complete. Nonetheless, they have the
advantage of yielding optimal solutions despite their increased
complexity [5]. Furthermore, the existing complexities posed
by factors such as increased product diversity and environmen-
tal uncertainties emphasize the need for novel methodologies in
production scheduling [6]. These approaches should be capable
of effectively adapting to abrupt variations in such dynamic en-
vironments, thereby generating timely and viable solutions that
meet the required criteria [7].

Another class of approaches commonly referred to as data-
driven production scheduling has recently emerged as an alterna-
tive to traditional methods [8, 9]. The emergence of big data, ma-
chine learning (ML), and information technologies has prompted
a growing interest among researchers in employing the potential
of manufacturing data. These methods involve a three-step pro-
cess. Initially, the state features are filtered, and only the relevant
ones are selected. Second, optimal samples are selected accord-
ing to predefined criteria. These selected samples encompass
both the input features and the scheduling decisions. Finally, an
ML model is trained to establish a mapping between the input
features and the optimal decisions.

Although data-driven approaches offer the advantage of sim-
plifying the system formulation compared to optimization tech-
niques, they exhibit several drawbacks, including the highly iter-
ative nature of feature and optimal sample selection [10]. DRL
presents itself as a means to address these challenges, enabling
both automatic feature selection and engineering. Moreover,
DRL emerges as a promising solution to these limitations, as
it facilitates both automatic feature selection and engineering.
Furthermore, DRL eliminates the requirement for labeled data,
which might be infeasible in specific contexts either due to the
high complexity of the system where the outcomes are hard to
predict or the lack of field experts who are capable of building
such datasets. Rather, DRL directly interacts with production
environments, and this interaction, in turn, streamlines the col-
lection of the data required by the DRL agent to learn the policy
[10].

In this study, we explore the potential of DRL for conducting
scheduling tasks within a high-end server manufacturing setting.
We start by establishing the Markov Decision Process (MDP)
in which both the agent and the environment are explicitly de-
fined. The latter is represented via a discrete event simulation
(DES) model that resembles the current state of the system and
yields a change when an action is taken by the agent. The DES
model facilitates the representation of uncertainties and serves

as a training platform for the DRL agent. This process, in turn,
aids in the development of an agent capable of functioning effec-
tively in a dynamic environment that encompasses both failures
and uncertainties. The DRL agent, on the other hand, is a Deep
Neural Network (DNN) that receives its inputs from the simula-
tion model and generates action outputs, which are then applied
within the same environment. As a result of these actions, the en-
vironment’s state undergoes updates, resulting in the acquisition
of a reward for achieving that particular state.

2. LITERATURE REVIEW

Reinforcement Learning (RL) has emerged as a highly
promising and viable alternative approach for addressing pro-
duction scheduling challenges, particularly in light of its impres-
sive performance showcased in video game domains [11, 12]. An
early work investigated the potential of employing RL to automat-
ically infer domain-specific heuristics to find short, conflict-free
schedules [13]. The Temporal Difference (TD) algorithm was
employed to train a neural network to learn a heuristic evaluation
function over states. This proposed approach outperformed the
best existing scheduling algorithm at the time, namely Zweben’s
iterative repair method based on simulated annealing. The work
presented RL as a high-performance method to solve scheduling
tasks [14].

Another early study employed neural networks to learn near-
optimal policies to solve job shop scheduling problems [15]. The
primary focus of the study was directed towards the minimization
of the cumulative tardiness observed in two distinct task scenar-
ios, namely the single resource case and the multi-resource case.
The proposed methodology has demonstrated a notable enhance-
ment when compared to all existing heuristic approaches in both
experimental settings. Furthermore, it has exhibited superior gen-
eralization abilities when tested on previously unseen scenarios,
surpassing the performance of these heuristics.

[16] have conceptualized the production scheduling prob-
lem within the framework of multi-agent reinforcement learning.
Each resource in the system is associated with an adaptive agent,
entrusted with acquiring knowledge to formulate its own dispatch-
ing policies in an autonomous manner, disregarding the actions of
other agents. The introduced methodology has exhibited compet-
itive performance compared to alternative heuristic techniques,
indicating its potential for further advancement to enhance its
performance.

Lin et al. [17] have devised a multi-class Deep Q-Network
(DQN) approach to address the job shop scheduling problem,
specifically in the context of a semiconductor manufacturing sys-
tem. The study assumes the presence of M machines, each as-
signed J jobs. A deep neural network (DNN) was trained to
incorporate order inputs in addition to system inputs, enabling
the prediction of the optimal dispatching rule from a set of seven
predefined rules, namely FIFO, SPT, LPT, MOPNR, LOPT, SQN,
and LQN. Once the selected dispatching rule was determined, it
was transmitted to the corresponding edge devices responsible
for implementing the rule on the associated machine. In cases
where the generated schedule proved to be infeasible, the au-
thors adopted a two-step approach for schedule repair, utilizing
the MOPNR and SPT rules. The selection of actions following

Copyright © 2024 by ASME

the calculation of values for each of the predefined rules was
executed through the employment of an epsilon-greedy policy.
The primary objective of the study was to optimize the makespan
of the manufacturing system. The experimental outcomes of
the proposed methodology exhibited superior performance when
compared to the individual utilization of all other dispatching
rules.

Liu et al. [18] used multi-agent actor-critic deep reinforce-
ment learning (DRL) to address job shop scheduling. They em-
ployed two CNN-based models: one to evaluate states (critic
network) and the other to select actions (actor network). The
approach outperformed simple dispatching rules; meanwhile, op-
timization methods performed better. Nonetheless, the authors
emphasized that the optimization techniques used in their study
were constrained to deterministic environments where the entire
scenario was predefined. In contrast, DRL demonstrated robust-
ness in dynamic settings, rendering it a more viable choice for
real-world applications.

In their work, Baer et al. [19] introduced a conceptual multi-
agent DRL model as a method for online scheduling in flexible
manufacturing systems (FMS). The study started by formulating
the scheduling problem as a Markov Decision Process (MDP)
[20]. To model the FMS, a Petri net was employed [21]. In the
proposed multi-agent approach, each agent is assigned to control
an individual product at a given time. This approach offers several
advantages over a single global agent, including reductions in
both the state and action spaces. The benefits of this method
alleviate the complexities associated with using a single large
DNN to handle such dimensions, as it would require extensive
computational resources and exponentially extend the training
time. Following that, all agents underwent individual training
and subsequently were optimized together towards a shared global
goal.

After that, Baer et al. [22] implemented their conceptual
model outlined in their earlier work [19]. The authors developed
amulti-agent DRL model to tackle the online scheduling problem
in flexible manufacturing systems (FMS). In this study, rather
than assigning machines to agents, the products themselves were
allocated to agents. Each agent pursued its own optimization
goals, which might differ from those of other agents. The agents
shared their parameters during training, enabling the training of a
single Q-value function. The evaluation of the model in this work
encompassed its comprehension of tasks, robustness to variations,
scalability, and generalization capabilities. The proposed method
demonstrated its proficiency in all four aspects, achieving near-
optimal solutions even in the presence of failures and variations
in the system.

Hubbs et al. [23] utilized DRL in the context of chemical pro-
duction scheduling. The study assessed the performance of the
DRL model in the presence of uncertainties, where the agent was
tasked with conducting online, dynamic scheduling for chemical
processes. The DRL model exhibited superior performance com-
pared to the mixed-integer linear programming (MILP) model
and produced competitive results when compared to a shrinking
horizon MILP approach in terms of the percentage mean optimal
gap. The findings of this work highlighted the real-time opti-
mized schedules generated by the DRL method, underscoring its

advantages over traditional techniques in the chemical production
scheduling domain.

In their work, Zhu et al. [24] tackled the resource schedul-
ing problem (RSP) in the context of cloud manufacturing (CMfg)
through the utilization of DRL. The proposed framework (Sharer)
displayed notable advantages over leading heuristics, including
the MSQL algorithm [25], NSGA-II [26], and the ICPSO al-
gorithm [27]. The performance evaluation was based on three
key metrics: storage utilization, average completion time, and
the average cost-satisfaction ratio. These results underscored the
efficacy of the DRL approach in addressing the resource schedul-
ing challenges in the field of cloud manufacturing. Moreover,
the study highlights DRL’s adaptability to scheduling tasks in
dynamically changing conditions, where the agent’s training en-
vironment was a simulation model designed to emulate the uncer-
tainties encountered in real-world cloud manufacturing scenarios.

In this work, we leverage DRL to tackle a highly complex
task in server assembly systems, i.e., server-to-test cell assign-
ment. The approach starts with the development of a simulation
model that closely mimics the environmental factors essential for
the DRL model. This simulation model aims to encapsulate the
complex dynamics of the problem, ensuring that the DRL model
is trained on a highly realistic environment. Furthermore, since
the DRL agent is trained using the simulation model, it exhibits
the ability to generate schedules that are resilient to uncertainties,
such as variations in arrival and processing times. This adapt-
ability makes our model robust and more suitable for real-world
deployment compared to static scenario-based scheduling tech-
niques. In this work, we aim at exploring the ability of DRL
to produce efficient server schedules in the complex server en-
vironment. The ability of DRL in this work will be focused
on monitoring compatibility in assignment along with utilization
rate.

3. PROBLEM DESCRIPTION

In the computer server industry, the fulfillment test assign-
ment policies usually rely on simple dispatching rules (e.g., as-
signing products to test cells based on the plant scheduled ship
date (PSSD)) [28] or heuristics [29]. These policies assume the
knowledge of all the assigned orders in advance, and based on
that, the orders are allocated to test cells. Prior to the assignment,
forecasting for server arrival is carried out, and the assignment
takes place based on the forecasted scenarios. Despite the ability
of these simple dispatching rules to assign servers, these rules
usually focus on single objectives such as increasing utilization
rate or minimizing makespan. Handling more complex multiple
objectives cannot be performed by such dispatching rules and that
calls for more intelligent solutions.

In this study, we approach this task in a more realistic man-
ner, mirroring real-world conditions. First, we assume orders
arrive sequentially, and prior forecasting for the arrivals is not
employed. Then, upon server arrival, the requirements of the
servers alongside the test environment features are fed to the
model to determine the best cell for the incoming server.

This approach offers several advantages. First, it better repre-
sents real-world test environments where servers arrive sequen-
tially, making the solution more practical. Second, the DRL

Copyright © 2024 by ASME

method is based on a DNN that acts as the decision-maker agent.
The inference time for such a DNN is considerably low, al- low-
ing for attaining near-real-time scheduling solutions. Finally,
the training environment is a simulation model that encompasses
stochasticity in both arrival and processing times, enabling the
agent to learn to solve stochastic environments rather than solving
a predefined deterministic scenario.

4. METHODOLOGY

Figure 1 shows the proposed research framework, which
comprises two primary components: the environment and the
agent. The agent is essentially a DNN model responsible for
making decisions based on the inputs it receives. These inputs
come from two distinct sources: one set originates from the
incoming server, while the other set is extracted from the envi-
ronment. The agent’s actions cause a change in the environment
and subsequently update its state, which results in generating a
reward value for the agent for taking that action. The following
two subsections provide a comprehensive description of the agent
and environment.

To test the integrated DRL-DES approach, a case study from
a CTO manufacturing system is considered. The system typ-
ically follows a periodic review inventory policy, considering
inventory holding, order fulfillment, and stockout costs (versus
service level). A safety stock is used to cover uncertainty in de-
mand and processing capacity while also considering transit time
variability. Work-in-process (WIP) inventory also exists due to
production lead times and testing requirements. A high level of
fill rate is of utmost importance because revenue loss from missing
a customer order exceeds inventory holding costs. The case study
represents computer server manufacturing processes, which in-
clude fabrication assembly, fabrication test, dekitting and storage,
followed by fulfillment assembly and test, and finally packaging
and shipping.

4.1 Environment Description

The environment in this study represents the fulfilment test
process of a manufacturing system that produces high-end com-
puter servers. The manufacturing system under study comprises
56 test cells distributed across four test banks, each containing
14 cells. These test cells have different cooling (water-based, air-
based, or both) and voltage (high or low) specifications that must
align with the requirements of the tested servers. Despite their
varying specifications, test cells exhibit roughly similar power
consumption, measured as the energy required per unit time.
Moreover, each test bank has a dual cooling system: primary -
computer room air conditioner (CRAC) and secondary - cool-
ing distribution unit (CDU). Notably, the CRAC has a power
consumption of 176 kW, while the CDU operates at 150 kW.
Activation of these cooling units is contingent upon the number
of concurrently active cells within the test bank. The CRAC can
handle up to seven active cells before the CDU is activated should
one more cell be added to the test bank.

4.2 Simulation Model
The overall simulation process is shown in Figure 2. The
simulation involves monitoring three primary events generated

by three distinct sources. These events consist of server arrivals,
test initiations, and test completions, which are triggered by the
server generator, the queue, and the test bank, respectively. The
server generator creates servers at intervals following an exponen-
tial distribution characterized by the parameter 4. Upon server
generation, their cooling and voltage specifications, as well as
their service times, are drawn from both uniform distributions.

The subsequent event detector identifies the next event as the
one with the soonest upcoming time. Depending on the type of
the next event, the corresponding process is activated, leading to
a system update. Regardless of the nature of the next event, and
before activating the process corresponding to the next system,
the monitored system metrics get updated, including simulation
time, power consumption, total response time for the servers in
the system, and cell utilization. Subsequently, the corresponding
event is processed, leading to system updates.

In the case of the arrival event, both counters for the number
of servers in the system and the number of arrivals increment by
one. Then, the server features are transmitted to the DRL agent
along with the current environment features. The agent assigns
a cell for the server to be tested on, which then joins the waiting
queue until the designated cell becomes available. Following
this, the next server is generated after a time interval sampled
from an exponential distribution.

For the service initiation event, the server leaves the queue,
is directed to the assigned testing cell, and triggers an update in
the state of the bank that manages operating cells. For the service
completion, on the other hand, the server vacates the testing cell,
resulting in an update of the cell operation states, along with an
adjustment to the counters tracking the number of departures and
the number of servers in the system.

The simulation model keeps track of critical metrics, in-
cluding response time, queue duration, power consumption, and
resource utilization. Starting at the initiation of the simulation,
the simulation clock updates whenever a new event takes place.
The arrival time of each server is recorded alongside the time in
the queue, enabling the computing of the response time for each
individual server. Moreover, test cell utilization is calculated as
test cell occupancy over total simulation time, which can then be
used to compute the overall utilization of the system. Addition-
ally, the durations for which the cooling units are in operation are
monitored. The power consumption of the cooling units is com-
puted by multiplying these durations by their respective power
consumption rates.

4.3 DRL Agent

The architecture of the DRL agent is designed to handle all
types of input originating from both the test environment and
the incoming server. In terms of dimensionality, there are two
types of inputs: 1D and 2D inputs. The 2D inputs serve to depict
the state of the test cells, encompassing factors like occupancy
status, cooling and voltage specifications, compatibility, and the
time of availability. On the other hand, the 1D vector inputs are
employed to represent other features, including the count of active
cells and cooling units within each bank, the voltage and cooling
requirements of the incoming server, and the time needed for test
completion. The state inputs to the model are explained in detail

Copyright © 2024 by ASME

« Voltage Specs {"HV": 0.5, "LV": 0.5}
» Cooling Specs {"AC": 0.5, "WC": 0.5}
« Service time ~ N(p, o)
Fulfillment Test Cells

Server ID: s On-Off
32 @ ¢ Availability time
5 @ « Number of cells on per row
~ « Number of cooling units on per row

» Voltage Specs
« Cooling specs

<&
<

Interarrival time ~ exp(A)

CRAC Cooling Units CDU Cooling Units
@) 4 Reward 176 150
Agent ——m— - kW Lw [Luw [Hw [HA Tw | LA T HA [Ho/A | HW | Lw [Ho/w] LA THW [Lw | kW
¢ (:) 176 150
kW | WA | UA | LW | HA [HW [Ho/W HB/W| LW [H/W | /A [HW [LW | HW | LA | kW
Assign a cell
176 150
HW [HW [HW] LA THw [UA JHow] LA T HA Tuw Hew] iiw [LA Tuw

150

[WW] A UA [HW [Hb/W] LW [HW | LW | L/A [Hb/A Ww [HW [Lw | LA | kW

3 [z

L/W: Low Voltage/Water Cooled

L/A: Low Voltage/Air Cooled

H/W: High Voltage/Water Cooled

HI/A: High Voltage/Air Cooled

Hb/W: Hybrid Voltage/Water Cooled
@ Hb/A: Hybrid Voltage/Air Cooled

4 R

— [:| U U D D D
@ = ')Servers assigned to cells

& J

FIGURE 1: DRL-DES INTEGRATED FRAMEWORK.

] Activated [] Deactivated

A4

Server Generator

{Check next evenp

Advance
—) Time —— Handle Test Start
(T=tj41)

L

Update:
Simulation clock
Advance : P:)nv::ra ion clock
Time « Total res) i
ponse time
fest Bank (T=ti+1) LG « Utilization Handle Test End
A

FIGURE 2: FLOWCHART OF THE OVERALL SIMULATION PROCESS.

5 Copyright © 2024 by ASME

in Table 1.

The four 2D input arrays are stacked to form a 4 x 4 x 14
input tensor, then undergo processing through a convolutional
neural network (CNN). The CNN is composed of two sequential
2D convolutional layers, each followed by 2D maximum pooling
layers. The output of the latter is projected to 1D via the 2D global
average pooling layer. On the other hand, the 1D input side of the
network is processed through fully connected (FC) layers. The
outputs of both sides of the network are then concatenated and
passed to an output layer containing the same number of test cells
(56). In this work, the deep Q-network (DQN) algorithm [30]
is adopted to learn the agent. In DQN, there are two identical
networks in terms of architecture: the Q-network and the target Q-
network, both trained simultaneously during the learning process.
The Q-network is used to generate values for the state action
pairs at the given state and based on that, an action is taken.
The target Q-network, on the other hand, computes the values
of the next state-action pairs which are used as targets to update
the weights of the value network. The learning process starts by
enabling the agent to interact with the environment and collect
data in the form of tuples containing states, actions, rewards,
next states, and termination states. The accumulated data points
are stored in a replay memory that handles the most recent M
number of samples, where M is a parameter defined by the user.
Each time an N number of new samples are collected, where
N represents the number of iterations for each update and is a
predefined hyperparameter, the Q-network undergoes a gradient
descent step according to the Bellman equation 1.

Q’(Sb al) — Q(St> al) +

a X [rt+l + Y X mgx(QT(sl+l’ (,l)) - Q(st’ al‘)] (1)

where Q’ is the updated Q-network, Q is the current Q-network,
QOr is the target Q-network, ¢ it the current time-step, s is the
state, a is the action, r is the reward value, « is the learning
rate for the gradient descent, and vy is the discount factor. The
e-greedy method is employed during the learning process which
enables the agent to explore the environment. € represents the
probability of selecting an action at random, meanwhile 1-€ is
the probability of selecting the action with the highest value, i.e.
the greedy action. The value of € is chosen to be high, close to
1, at the beginning of the training, then it decreases during the
course of training allowing the model to exploit its knowledge
effectively.

5. EXPERIMENTAL ANALYSIS

In this study, we explored the use of two reward functions.
The first function provides rewards or penalties to the agent de-
pending on its proficiency in assigning compatible cells to incom-
ing servers. The second function incorporates a time penalty into
the reward mechanism, wherein the server receives diminishing
rewards as it spends more time in the queue. For this second
configuration, we experimented with three different weighting
settings. The upcoming section describes the evaluation metrics
used to evaluate the performance of the baseline method and the

0.48 A —_—

0.46 -

0.44

0.42 A

0.40

0.38

Upper'Bound DC')N

FIGURE 3: MEAN UTILIZATION RATES FOR BOTH UPPER BOUND
RULE-BASED ASSIGNMENT AND DQN.

two reward functions which are discussed in more detail after-
wards.

Given that, the simulation model has been run for 100
episodes, and the mean utilization rate of these runs is shown
in Figure 3. The upper bound rule-based assignment algorithm
scored a mean utilization rate of 0.419 across all the episodes
compared to 0.414 for DQN which proves the efficiency of the
learned policy with standard deviations of 0.0235 and 0.0182,
respectively.

5.1 Reward Function 1

For the first reward function design, formulated in Equation
2, the function mainly aims at enabling the agent to learn a policy
that makes correct assignments regardless of other factors, such
as makespan or utilization. We assume this task is the most
crucial, and mistakes by the agent cannot be tolerated. Assigning
cells with specifications that do not match the requirements of
the incoming server might lead to permanent damage to crucial
and expensive components of the server. Figure 4 shows the
reward function value, accuracy, and utilization progress during
the training phase. As only one component is considered in this
setting (compatibility), the behavior of the reward function and
accuracy during the course of training is identical, starting at a
low value at the beginning of training and then reaching near
the maximum value after 800 episodes. However, we notice a
drop in the utilization factor at later stages of training. This
can be attributed to the nature of the reward function that does
not account for factors such as load distribution that impact the
utilization metric.

Ri = (bvi X RU,’) + (bci X Rci) (2)

Copyright © 2024 by ASME

TABLE 1: DESCRIPTION OF STATE INPUTS TO THE AGENT. Z REPRESENTS INTEGERS, Z,;, REPRESENTS m CATEGORIES, AND R REP-

RESENTS REAL NUMBERS.

State type State Definition

Unit and Distribution

Voltage requirement
Cooling requirement
Service time

Server attributes

Voltage level required by the server
Air or water cooling
Testing time required by the server

€ Zp (Unitless) ~ U{"HV": 0.5, "LV": 0.5}
€ Zp (Unitless) ~ U{"Air": 0.5, "Water": 0.5}
€ R* (Hours) ~ clip(N(30,5), 10, 90)

On-off (occupancy | Test cell states
status)
Availability time

Test cell attributes .
available

cells (in each row) cells
row)

Voltage specs
Cooling specs

{0: "HV", 1: "LV", 2: "Both"}
{0: "Air", 1: "Water/Air"}

€ Zy (Unitless)

Time at which the cell will become | € R* (Hours)
Number of activated | Count for the number of activated | € Z* (Unitless)

Number of activated | Count for the number of activated | € Z* (Unitless)
cooling units (in each | cooling units at arrival

€ Z3 (Unitless)
€ Zy (Unitless)

where R; is the total reward at time step i, b,, can be -1 when
requirements are matched or 1 otherwise at time time step i,
R, is the constant value for the reward received upon correct
assignment. We set its value to +100. Similarly, we have b,
and R, for cooling matching. During the experiments, we assign
400 orders in each episode. Hence, the maximum reward value
is 80,000.

During the evaluation phase, where we assessed the agent
over 10 episodes with resets between each episode, it demon-
strated 100% accuracy but only 0.121 utilization. This highlights
the agent’s success in learning the assigned task (compatibility
matching) by selectively focusing on a few cells that meet all the
necessary criteria. The utilization of cells is depicted in Figure 5,
revealing that only a small subset of cells is actively used, while
the rest remain untouched by the agent. Notably, the agent incurs
no penalty as long as these used cells meet the requirements,
even if servers are queued up awaiting testing on the same cell.
This observation prompted us to experiment with waiting time
penalization in the design of the second reward function.

5.2 Reward Function 2

The improved reward function, as illustrated in Equation 3,
imposes a penalty on the agent proportional to the time a server
spends in the queue before undergoing testing. Our experimen-
tation involved testing three distinct weighting factors, denoted
as {: 1, 5, and 10. The weighting factor represents the constant
by which the number of hours a server spends in the queue is
multiplied. Figure 6 shows the reward, accuracy (i.e., the count
of compatible assignments over the total number of assignments),
and utilization progress during the training course.

Ri = (bu,' XRU,‘)+(bC,' XRC{)_(,(XILI) (3)

where is a weighting factor and ¢; is time spent by server i in
the queue before the test initiation.

In contrast to the previous scenario where only one compo-
nent was considered, the inclusion of two components introduces
a notable distinction between the behavior of the reward function

value and accuracy. The accuracy metric in this context is defined
to quantify the rate of compatibility as explained in Section 5.3.
With the agent striving to strike a balance between these com-
ponents during training, it tends to prioritize factors with higher
weights. Notably, as in Figure 6 for = 1, the agent exhibits
a behavior where it places greater emphasis on compatibility
matching while also allocating some attention to the time factor.
In the initial stages of the training phase, the hindrance imposed
by the reward function prevents the agent from fully focusing on
compatibility, which is reflected in the decrease of the reward
value when the utilization decreases. This impediment compels
the agent to more effectively distribute weights across test cells,
ultimately reducing time spent in the queue and enhancing overall
utilization.

Conversely, the experiments reveal that employing ¢ = 10
does not enhance the agent’s performance when compared to
{ = 5 in terms of utilization. The former achieves a utilization
value of 0.411, while the latter achieves a value of 0.425 during
evaluation. Both values significantly surpass the scenario with
no time penalty, which yields a utilization of 0.121. Opting
for ¢ = 1 results in a slightly lower utilization of 0.392. This
prompts consideration that there may exist an optimal value for
that maximizes utilization. However, we intend to further explore
this topic in future work. Notably, the overall utilization rate of
0.425 achieved when setting ¢ to 5 matches the upper-bound
achieved by the FCFS baseline which has been recorded at 0.424.
This, in turn, reveals the efficiency of the learned policy by the
RL agent.

In the beginning, we hypothesized that a greater time penalty
would result in improved load distribution, consequently leading
to higher average utilization. Figure 7 illustrates the utilization
rates for the three ¢ values, which reinforce this hypothesis but
up to a specific point, beyond which the performance of the
agent starts to degrade in terms of both utilization and accuracy.
Notably, for the third scenario, where { = 10, we notice that the
agent might require more training than 2000 episodes to achieve
perfect matching between servers and assigned cells. The large
time penalty associated with the reward function prevents the

Copyright © 2024 by ASME

Mean Reward, Accuracy, and Utilization over Episodes

80000 -

70000 -

600001 &

Accuracy

50000 A

Mean Reward

40000 A

Utilization

30000 +—

Episode

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Episode Episode

FIGURE 4: REWARD-ACCURACY-UTILIZATION PROGRESS DURING TRAINING WITHOUT TIME PENALTY (REWARD FUNCTION 1).

Utilization
—
v
C
@
0.8
o
V4
5 - 0.6
o
m
~ -0.4
c
©
o
- 0.2
Y2
C
©
[an]
0.0

01 2 3 4 5 6 7 8 9 10 11 12 13

FIGURE 5: UTILIZATION OF TEST CELLS DURING EVALUATION.
NO TIME PENALTY IS IMPOSED DURING TRAINING (REWARD
FUNCTION 1).

agent from achieving positive reward values. The incoming server
needs to wait in a queue for only 20 hours to make the agent get
a negative reward even in the case of a compatible assignment.

Figure 7 depicts the utilization rates for the three { values,
supporting this hypothesis up to a certain threshold. Beyond
this point, the agent’s performance diminishes in terms of both
utilization and accuracy. Notably, in the third scenario where
{ =10, it becomes apparent that the agent may require more than
2000 episodes of training to achieve perfect matching between
servers and assigned cells. This is in contrast to the first and
second cases, where less than 1500 episodes proved sufficient to
attain 100% accuracy. The substantial time penalty within the
reward function hinders the agent from attaining positive reward
values, and even a 20-hour wait in a queue can lead to a negative
reward, even in cases of compatible assignments.

Conversely, a significant enhancement in load distribution
is observed when incorporating a time penalty into the reward
function. In Figure 7, the utilized cells are depicted in a more
reddish hue compared to the bluish cells. This stark contrast
highlights the notable difference in load distribution compared to
Figure 5, where only 9 cells out of 56 are utilized.

To better understand the spikes in Figure 6, we start by depict-
ing the exploration decay performed during the training process.
Figure 8 presents the € decay during the course of training. This
decay takes place according to Equation 4. From Figure 8, we
notice that under the chosen conditions, the decay stops at episode
919 and the exploration factor stabilizes at 0.01. Hence, we study
the phase of training that takes place after the episode 919.

€new = Max(€yin, € X decay factor))

where €., is the exploration rate for the subsequent episode, € is
the current exploration rate, and €,,;,, is the predefined minimum
exploration rate. In our experiments, we set the decay factor to
0.995 and €, to 0.01.

We have retrieved one of the training episodes where the
compatibility rate (accuracy) fell below 0.5 to study the order
assignments. Figure 9 shows these assignments. We notice that
the assignment spanned only nine testing cells. The remaining
testing cells where not utilized at all. Moreover, three out of these
nine cells to almost 300 out of the 400 orders, meanwhile, the
remaining six cells handle merely about 25% of the orders. This,

Copyright © 2024 by ASME

70000

60000

Mean Reward
B w
o [=3
o =3
o o
3 3

30000

20000

60000 -

Mean Reward

—20000

40000 A

20000

Mean Reward, Accuracy, and Utilization over Episodes

Accuracy

0 250

500

750 1000 1250 1500 1750 2000

Episode

Episode

0 250 500 750 1000 1250 1500 1750 2000

Utilization

0.44 1

0.42

I
'S
o

0.38 1

0.36 1

0.34 1

Mean Reward, Accuracy, and Utilization over Episodes

1.0 1

0 250

500

750 1000 1250 1500 1750 2000

Episode

0.0 4

-0.21

—0.4 1

¢=10

—0.6 1

Mean Reward

-0.8 1

~1.0

0 250 500 750 1000 1250 1500 1750 2000

Episode

Accuracy

750 1000 1250 1500 1750 2000

Episode

Utilization

0 250 500 750 1000 1250 1500 1750 2000
Episode

0.45 1

0.44 4

0.43 1

0.42 1

0.41

0.40

and Utilization over Episodes

0 250 500 750 1000 1250 1500 1750 2000
Episode

1.0 0451
0.40
091
0.35 1
0.8 1 < 0.30
S
] |
071 gozs
5 0.201
0.6
0.15
0.5 1 0.101
0.05 -

0 250 500 750 1000 1250 1500 1750 2000

Episode

0 250 500 750 1000 1250 1500 1750 2000
Episode

FIGURE 6: REWARD-ACCURACY-UTILIZATION PROGRESS DURING TRAINING WITH TIME PENALTY (REWARD FUNCTION 2).

Bank 3 Bank 2 Bank 1

Bank 4

Utilization

0.8

- 0.6

-0.4

0.0

Bank 3 Bank 2 Bank 1

Bank 4

Utilization

0.8

- 06

-0.4

0.0

Bank 3 Bank 2 Bank 1

Bank 4

Utilization

0.8

- 0.6

-0.4

0.0

FIGURE 7: CELL UTILIZATION DURING EVALUATION WITH TIME PENALTY (REWARD FUNCTION 2). ¢ = 1 (LEFT), { = 5 (MIDDLE), AND

¢ =10 (RIGHT).

Copyright © 2024 by ASME

Exploration Rate Decay Over 1000 Episodes

1.01 —— Exploration Rate
—=—- First Occurrence at Min Exploration Rate

05] —=- Minimum Exploration Rate

0.6

0.4 1

Exploration Rate (g)

0.2 1 Episode 919

I\

0.0 pofm==========——-—-—S==

1000 1250 1500 1750 2000

Episodes

FIGURE 8: EXPLORATION RATE (¢) DECAY DURING TRAINING.

100 A

80 1

60

40 A

Number of Assignments

20 1

0 T T T T T T T T T
6 8 10 18 24 28 34 42 50

Cell Index

FIGURE 9: CELL ASSIGNMENTS DURING AN EPISODE WHERE
ACCURACY FELL BELOW 50%.

in turn, explains the low utilization rate spikes in Figure 7. Table
2 shows the specifications of the assigned cells.

5.3 Evaluation Metrics

In this work, we monitored two evaluation metrics in ad-
dition to the reward function: accuracy and the utilization rate.
Accuracy in this context refers to the rate of compatible assign-
ments, where the model successfully assigns incoming servers to
testing cells that meet specific compatibility requirements. These
requirements are based on two features: voltage and cooling
needs. An incorrect assignment in either feature results in a zero
accuracy score for that action. Conversely, fulfilling both require-
ments yields a 100% accuracy score for the action. The overall
accuracy is computed throughout the training/evaluation episode.
The utilization rate, on the other hand, indicates the proportion
of time during the total episode that a cell is actively testing a
server. This rate is averaged across all testing cells to produce the
second metric in our evaluation.

5.4 Upper Bound Solution

To evaluate the proposed RL, we compare its performance
against an upper bound rule-based scheduling approach for the
current formulation. The current formulation of the problem

10

TABLE 2: REWARD FUNCTION 1 ASSIGNED CELL SPECIFICA-
TIONS.

Cell Index | Voltage/Cooling Specs

6 High/Air
8 High/Water

10 Hybrid/Water

18 Hybrid/Water

24 High/Water

28 High/Water

34 Hybrid/Water

42 High/Water

50 Low/Air

treats the inputs as unchangeable conditions. In other words, upon
the arrival of a server, it gets assigned based on its characteristics
and the environment state considering previously assigned servers
as fixed inputs that cannot be preceded. Hence, the minimum
time that can be spent in the system given this formulation can
be secured by assigning the server to the compatible cell that will
become soonest available. This is the basis of our upper bound
solution to which we compare the performance of the proposed
RL method.

6. CONCLUSION

In this study, a DRL approach was used to assign test cells to
incoming servers within a simulated model of a computer-server
fulfillment environment. The DQN algorithm was employed to
train the DRL agent, and two reward functions were examined
during experimentation. The first reward was solely based on
compatibility, while the second introduced a waiting time penalty.
The latter exhibited superior performance, achieving perfect as-
signment (100% compatibility) and an increased utilization of
0.425 compared to 0.121 in the former case. Notably, the weight-
ing factor applied to the waiting time demonstrated a significant
impact on the agent’s performance. A weighting factor of 5 out-
performed both 1 and 10, prompting further exploration of the
optimal point in future investigations. Additionally, our future
work aims to enhance the realism of the server environment sim-
ulation to maximize the impact of the findings for real-world
applications.

7. LIMITATIONS

Although this work has employed an advanced DRL approach
that offers several benefits over traditional techniques, there are
still some limitations. These limitations stem from inherent chal-
lenges in RL training, including the agent’s specialization in solv-
ing the task that it was trained on. RL agents, in general, are
trained on specific environments and hence any changes to the
environment configuration, such as the number of testing cells or
rows, would require building a new simulation model for the en-
vironment and training the agent on that environment. Moreover,
the second reward function with a high weighting factor of 10 for
the time delay yields compatibility mismatching. This, in turn,
needs to be handled either by finding a more optimized weighting
factor, allowing for longer training, or applying masking to filter
out invalid cells. The latter has higher potential for resolving the

Copyright © 2024 by ASME

problem and creates more space for the model to focus on other
objectives.

On the other hand, to simplify the task, certain simplifica-
tions were made while building the simulation model. These
include assuming a single server type and, consequently, a single
processing time distribution. In the real-worl scenario, however,
there are various types of servers, each with its own process-
ing time distribution. Enhancements to the simulation model to
address these variations are planned for future work.

8. FUTURE WORK

The proposed DRL framework has the potential to enhance
test efficiency in server manufacturing systems. By performing
dynamic scheduling of servers to testing cells, the framework en-
sures increased utilization of these cells. This study represents
the initial phase of our research that focuses on enabling pro-
duction scheduling that minimizes energy consumption within
the server manufacturing system while improving the test cell
occupance. Future work will incorporate these objectives in a
manner that ensures a reduction in energy consumption without
violating any constraints, such as compatibility and deadlines.
Consequently, the proposed framework will offer a solution appli-
cable to real-world scenarios in server manufacturing and similar
industries while enabling dynamic, near-optimal, and near-real-
time scheduling under uncertainty. This current work forms the
first step toward achieving that goal.

ACKNOWLEDGEMENT

We gratefully acknowledge the financial support of the Na-
tional Science Foundation (NSF) under grant CMMI #2038325.
Any opinions, findings, or conclusions found in this paper are
those of the authors and do not necessarily reflect the views of
the sponsor.

REFERENCES

[1] Aglan, Faisal, Lam, Sarah S and Ramakrishnan, Sreekanth.
“An integrated simulation—optimization study for consoli-
dating production lines in a configure-to-order production
environment.” International Journal of Production Eco-
nomics Vol. 148 (2014): pp. 51-61.

Waubert de Puiseau, Constantin, Meyes, Richard and
Meisen, Tobias. “On reliability of reinforcement learning
based production scheduling systems: a comparative sur-
vey.” Journal of Intelligent Manufacturing Vol. 33 No. 4
(2022): pp. 911-927.
Marte, Rafael et al.
(2018).

Lenstra, Jan Karel, Kan, AHG Rinnooy and Brucker, Peter.
“Complexity of machine scheduling problems.” Annals of
discrete mathematics. Vol. 1. Elsevier (1977): pp. 343-362.
Pinedo, Michael and Hadavi, Khosrow. “Scheduling: the-
ory, algorithms and systems development.” Operations
Research Proceedings 1991: Papers of the 20th Annual
Meeting/Vortrége der 20. Jahrestagung: pp. 35—42. 1992.
Springer.

(2]

[3] Handbook of heuristics. Springer,

(4]

(5]

11

[6] Gershwin, Stanley B. “The future of manufacturing systems
engineering.” International Journal of Production Research
Vol. 56 No. 1-2 (2018): pp. 224-237.

Lang, Sebastian, Schenk, Michael and Reggelin, Tobias.
“Towards Learning-and Knowledge-Based Methods of Ar-
tificial Intelligence for Short-Term Operative Planning Tasks
in Production and Logistics: Research Idea and Frame-
work.” IFAC-PapersOnLine Vol. 52 No. 13 (2019): pp.
2716-2721.

Rossit, Daniel Alejandro, Tohmé, Fernando and Frutos,
Mariano. “A data-driven scheduling approach to smart man-
ufacturing.” Journal of Industrial Information Integration

Vol. 15 (2019): pp. 69-79.

Priore, Paolo, Gomez, Alberto, Pino, Raul and Rosillo,
Rafael. “Dynamic scheduling of manufacturing systems
using machine learning: An updated review.” Ai Edam
Vol. 28 No. 1 (2014): pp. 83-97.

Liu, Juan, Qiao, Fei and Ma, Yumin. “Real time production
scheduling based on Asynchronous Advanced Actor Critic
and composite dispatching rule.” 2020 Chinese Automation
Congress (CAC): pp. 7380-7383. 2020. IEEE.

Badia, Adria Puigdomenech, Piot, Bilal, Kapturowski,
Steven, Sprechmann, Pablo, Vitvitskyi, Alex, Guo, Zhao-
han Daniel and Blundell, Charles. “Agent57: Outperform-
ing the atari human benchmark.” International conference
on machine learning: pp. 507-517. 2020. PMLR.

Vinyals, Oriol, Babuschkin, Igor, Czarnecki, Wojciech M,
Mathieu, Micha€l, Dudzik, Andrew, Chung, Junyoung,
Choi, David H, Powell, Richard, Ewalds, Timo, Georgiev,
Petko et al. “Grandmaster level in StarCraft II using multi-
agent reinforcement learning.” Nature Vol. 575 No. 7782
(2019): pp. 350-354.

Zhang, Wei and Dietterich, Thomas G. “A reinforcement
learning approach to job-shop scheduling.” International
Joint Conference on Artificial Intelligence, Vol. 95: pp.
1114-1120. 1995.

Zweben, Monte, Davis, Eugene, Daun, Brian and Deale,
Michael J. “Scheduling and rescheduling with iterative re-
pair.” IEEE Transactions on Systems, Man, and Cybernetics
Vol. 23 No. 6 (1993): pp. 1588-1596.

Riedmiller, Simone and Riedmiller, Martin. “A neural re-
inforcement learning approach to learn local dispatching
policies in production scheduling.” International Joint Con-

ference on Artificial Intelligence, Vol. 2: pp.764-771.1999.

Gabel, Thomas and Riedmiller, Martin. “Adaptive reactive
job-shop scheduling with reinforcement learning agents.”
International Journal of Information Technology and Intel-
ligent Computing Vol. 24 No. 4 (2008): pp. 14-18.

Lin, Chun-Cheng, Deng, Der-Jiunn, Chih, Yen-Ling and
Chiu, Hsin-Ting. “Smart manufacturing scheduling with
edge computing using multiclass deep Q network.” IEEE
Transactions on Industrial Informatics Vol. 15 No. 7 (2019):
pp. 4276-4284.

Liu, Chien-Liang, Chang, Chuan-Chin and Tseng, Chun-
Jan. “Actor-critic deep reinforcement learning for solving
job shop scheduling problems.” leee Access Vol. 8 (2020):
pp- 71752-71762.

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Copyright © 2024 by ASME

[19]

[20]
[21]

[22]

[23]

[24]

[25]

Baer, Schirin, Bakakeu, Jupiter, Meyes, Richard and
Meisen, Tobias. “Multi-agent reinforcement learning for job
shop scheduling in flexible manufacturing systems.” 2079
Second International Conference on Artificial Intelligence
for Industries (AI41): pp. 22-25. 2019. IEEE.

Sutton, Richard S and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press (2018).

Zhou, MengChu. Petri nets in flexible and agile automation.
Vol. 310. Springer Science & Business Media (2012).
Baer, Schirin, Turner, Danielle, Mohanty, Punit, Samsonov,
Vladimir, Bakakeu, Romuald and Meisen, Tobias. “Multi
agent deep q-network approach for online job shop schedul-
ing in flexible manufacturing.” Proc. ICMSMM: pp. 78-86.
2020.

Hubbs, Christian D, Li, Can, Sahinidis, Nikolaos V, Gross-
mann, Ignacio E and Wassick, John M. “A deep reinforce-
ment learning approach for chemical production schedul-
ing.” Computers & Chemical Engineering Vol. 141 (2020):
p. 106982.

Zhu, Huayu, Li, Mengrong, Tang, Yong and Sun, Yanfei. “A
deep-reinforcement-learning-based optimization approach
for real-time scheduling in cloud manufacturing.” IEEE
Access Vol. 8 (2020): pp. 9987-9997.

Zhou, Longfei, Zhang, Lin, Ren, Lei and Wang, Jian. “Real-
time scheduling of cloud manufacturing services based on
dynamic data-driven simulation.” [EEE Transactions on

12

[26]

[27]

(28]

[29]

[30]

Industrial Informatics Vol. 15 No. 9 (2019): pp. 5042—
5051.

Deb, Kalyanmoy, Pratap, Amrit, Agarwal, Sameer and Me-
yarivan, TAMT. “A fast and elitist multiobjective genetic
algorithm: NSGA-IL.” IEEE transactions on evolutionary
computation Vol. 6 No. 2 (2002): pp. 182-197.

Jian, CF and Wang, Y. “Batch task scheduling-oriented op-
timization modelling and simulation in cloud manufactur-
ing.” International Journal of Simulation Modelling Vol. 13
No. 1 (2014): pp. 93-101.

Semchedine, Fouzi, Bouallouche-Medjkoune, Louiza and
Aissani, Djamil. “Task assignment policies in distributed
server systems: A survey.” Journal of network and Com-
puter Applications Vol. 34 No. 4 (2011): pp. 1123-1130.

Semchedine, Fouzi, Bouallouche-Medjkoune, Louiza and
Aissani, Djamil. “Improving the performance for task as-
signment in distributed server systems by partitioning the
large tasks.” International Journal of Computer Mathemat-
ics Vol. 92 No. 2 (2015): pp. 250-265.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Rusu, Andrei A, Veness, Joel, Bellemare, Marc G, Graves,
Alex, Riedmiller, Martin, Fidjeland, Andreas K, Ostrovski,
Georg et al. “Human-level control through deep reinforce-
ment learning.” nature Vol. 518 No. 7540 (2015): pp.
529-533.

Copyright © 2024 by ASME

	Abstract
	1 Introduction
	2 Literature Review
	3 Problem Description
	4 Methodology
	4.1 Environment Description
	4.2 Simulation Model
	4.3 DRL Agent

	5 Experimental Analysis
	5.1 Reward Function 1
	5.2 Reward Function 2
	5.3 Evaluation Metrics
	5.4 Upper Bound Solution

	6 Conclusion
	7 Limitations
	8 Future Work
	Acknowledgement
	References

