
GreedyViG: Dynamic Axial Graph Construction for Efficient Vision GNNs

Mustafa Munir
The University of Texas at Austin

mmunir@utexas.edu

William Avery
The University of Texas at Austin

williamaavery@utexas.edu

Md Mostafijur Rahman
The University of Texas at Austin
mostafijur.rahman@utexas.edu

Radu Marculescu
The University of Texas at Austin

radum@utexas.edu

Abstract

Vision graph neural networks (ViG) offer a new avenue
for exploration in computer vision. A major bottleneck in
ViGs is the inefficient k-nearest neighbor (KNN) operation
used for graph construction. To solve this issue, we propose
a new method for designing ViGs, Dynamic Axial Graph
Construction (DAGC), which is more efficient than KNN
as it limits the number of considered graph connections
made within an image. Additionally, we propose a novel
CNN-GNN architecture, GreedyViG, which uses DAGC.
Extensive experiments show that GreedyViG beats exist-
ing ViG, CNN, and ViT architectures in terms of accuracy,
GMACs, and parameters on image classification, object de-
tection, instance segmentation, and semantic segmentation
tasks. Our smallest model, GreedyViG-S, achieves 81.1%
top-1 accuracy on ImageNet-1K, 2.9% higher than Vision
GNN and 2.2% higher than Vision HyperGraph Neural Net-
work (ViHGNN), with less GMACs and a similar number
of parameters. Our largest model, GreedyViG-B obtains
83.9% top-1 accuracy, 0.2% higher than Vision GNN, with
a 66.6% decrease in parameters and a 69% decrease in
GMACs. GreedyViG-B also obtains the same accuracy as
ViHGNN with a 67.3% decrease in parameters and a 71.3%
decrease in GMACs. Our work shows that hybrid CNN-
GNN architectures not only provide a new avenue for de-
signing efficient models, but that they can also exceed the
performance of current state-of-the-art models1.

1. Introduction

Rapid growth in deep learning has lead to numerous suc-
cesses across a diverse set of computer vision tasks includ-
ing image classification [3], object detection [24], instance
segmentation [24], and semantic segmentation [51]. Key

1
Code: https://github.com/SLDGroup/GreedyViG.
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Figure 1. Comparison of model size and performance (top-1
accuracy on ImageNet-1K). GreedyViG achieves the highest per-
formance compared to other state-of-the-art models.

drivers behind this growth include convolutional neural net-
works (CNNs) [9, 17, 19, 26], vision transformers (ViTs)
[1, 4], and multi-layer perceptron (MLP)-based vision mod-
els [38, 40]. In CNNs and MLPs input images are repre-
sented as a grid of pixels, however in ViTs images are repre-
sented as a sequence of patches. By splitting an input image
into a sequence of patch embeddings, the image is trans-
formed into an input usable by the transformer modules of-
ten used in natural language processing [25, 42]. Unlike
CNNs and MLPs, which have a local receptive field, ViTs
have global receptive fields allowing them to learn from dis-
tant interactions within images [4].

The recently proposed Vision GNN (ViG) [7] represents
images in a more versatile manner through a graph structure
rather than as a sequence of patches as in ViTs [4]. ViG
constructs the graph through dividing an image into patches
and then connecting the patches (i.e., nodes) through the
K-nearest neighbors (KNN) algorithm [7]. Vision Hyper-
Graph Neural Network (ViHGNN) [8] improves upon the
original ViG by using the hypergraph structure to remove
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the constraint of exclusively connecting pairs of nodes. Like
ViTs, ViG-based models can process global object interac-
tions, but are also computationally expensive. To deal with
the computationally expensive nature of ViG-based mod-
els, MobileViG [30] used a structured graph that does not
change across input images and removes the need for KNN-
based graph construction.

While the success of ViG [7], ViHGNN [8], and Mo-
bileViG [30] show the potential of treating an image as a
graph for computer vision tasks, they also show some lim-
itations. In general ViG-based models are computationally
expensive, due to the expensive nature of graph construc-
tion. MobileViG alleviates this issue through static graph
construction, but at the cost of a graph that does not change
across input images, thus limiting the benefit of using a
graph-based model. The limitations of current ViG-based
models are as follows:
1. Computational Cost of Graph Construction: A fun-

damental issue facing ViG-based models is the cost of
KNN-based graph construction. KNN-based graph con-
struction requires comparing every single node within
the ViG-based model to determine the K nearest nodes.
This cost makes KNN-based ViG models inefficient.

2. Inability of a Static Graph to Change Across Inputs:
The computational cost of KNN-based ViG models lead
to static graph construction. The fundamental issue with
static graph construction is it removes the benefit of
using a ViG-based model as the graph constructed no
longer changes across input images.
In this work, we propose Dynamic Axial Graph Con-

struction (DAGC) to address the current limitations of ViG-
based models. We also introduce GreedyViG, an effi-
cient ViG-based architecture using a hybrid CNN-GNN ap-
proach. DAGC is more computationally efficient compared
to KNN-based graph construction while maintaining a dy-
namic set of connections that changes across input images.
In Figure 1, we show that our proposed GreedyViG ar-
chitecture outperforms competing state-of-the-art (SOTA)
models across all model sizes in terms of parameters. We
summarize our contributions as follows:
1. We propose a new method for designing efficient vision

GNNs, Dynamic Axial Graph Construction (DAGC).
DAGC is more efficient compared to KNN-based ViGs
as DAGC limits the graph connections made within
an image to only the most significant ones. Our
method is lightweight compared to KNN-based ViGs
and more representative than SOTA static graph con-
struction based ViGs.

2. We propose a novel efficient CNN-GNN architecture,
GreedyViG, which uses DAGC, conditional positional
encoding (CPE) [2], and max-relative graph convolution
[20]. We use convolutional layers and grapher layers in
all four stages of the proposed architecture to perform

local and global processing for each resolution.
3. We conduct comprehensive experiments to underscore

the efficacy of the GreedyViG architecture, which beats
existing ViG architectures, efficient CNN architectures,
and efficient ViT architectures in terms of accuracy
and/or parameters and GMACs (number of MACs in
billions) on four representative vision tasks: ImageNet
image classification [3], COCO object detection [24],
COCO instance segmentation [24], and ADE20K se-
mantic segmentation [51]. Specifically our GreedyViG-
B model achieves a top-1 accuracy of 83.9% on the Ima-
geNet classification task, 46.3% Average Precision (AP )
on the COCO object detection task, and 47.4% mean In-
tersection over Union (mIoU ) on the ADE20K semantic
segmentation task.
The paper is organized as follows. Section 2 covers re-

lated work in the ViG and efficient computer vision archi-
tecture space. Section 3 describes the design methodology
behind DAGC and the GreedyViG architecture. Section
4 describes experimental setup and results for ImageNet-
1k image classification, COCO object detection, COCO
instance segmentation, and ADE20K semantic segmenta-
tion. Section 5 covers ablation studies on how different de-
sign decisions impact performance on ImageNet-1k. Lastly,
Section 6 summarizes our main contributions.

2. Related Work
The mainstream network architecture for computer vision
has historically been convolutional neural networks (CNN)
[9, 12, 17, 19, 35]. In the efficient computer vision space,
CNN-based architectures [11, 34, 36, 37] have been even
more dominant due to the computationally expensive na-
ture of ViTs [4]. Many works have attempted to address
the computational costs associated with self-attention lay-
ers [31, 43] and recently hybrid architectures that combine
CNNs and ViTs to effectively capture local and global in-
formation have been proposed [22, 23, 28, 29, 41].

Traditionally graph neural networks (GNNs) have oper-
ated on biological, social, or citation networks [6, 15, 48,
52]. GNNs have also been used for tasks in computer vi-
sion such as, point cloud classification and segmentation
[18, 45], as well as human action recognition [49]. But,
with the introduction of Vision GNN [7], the adoption of
GNNs as a general purpose vision backbone has grown with
works like [8, 30, 47]. MobileViG [30] introduces a hybrid
CNN-GNN architecture to design an efficient computer vi-
sion backbone to compete with CNN, ViT, and hybrid archi-
tectures. MobileViG accomplishes this through introduc-
ing a static graph construction method called Sparse Vision
Graph Attention (SVGA) to avoid the computationally ex-
pensive nature of ViGs. Despite the efficiencies of Mobile-
ViG [30], it does not take full advantage of the global pro-
cessing possible with GNNs since it only uses graph con-

Mustafa Munir
Highlight

Mustafa Munir
Highlight

Mustafa Munir
Highlight

Mustafa Munir
Highlight



volution at the lowest resolution stage of its design. Mo-
bileViG [30] also loses representation ability because all
images construct the same graph in their proposed static
method, decreasing the benefits of using a GNN-based ar-
chitecture. Thus, to address these limitations, we introduce
a new CNN-GNN architecture, GreedyViG, that takes ad-
vantage of graph convolution at higher resolution stages and
constructs a graph that changes across input images.

a) SVGA b) DAGC

Figure 2. DAGC and SVGA graph construction. a) SVGA
graph construction for the green patch of an 8×8 image. All red
patches will be connected to the green patch regardless of simi-
larity. b) DAGC for the green patch of an 8×8 image. DAGC
dynamically constructs a graph along the axes, through applying
a mask (the blue patches) to only connect similar patches in terms
of Euclidean distance. The red patches will not be connected to
the green patch as they are not a part of the mask.

3. Methodology

In this section, we describe the DAGC algorithm and pro-
vide details on the GreedyViG architecture design. More
precisely, Section 3.1 describes the DAGC algorithm. Sec-
tion 3.2 explains how we adapt the Grapher module from
ViG [7] to create the DAGC block. Section 3.3 describes
how we combine the DAGC blocks along with inverted
residual blocks [34] to create the GreedyViG architecture.

3.1. Dynamic Axial Graph Construction

We propose Dynamic Axial Graph Construction (DAGC) as
an efficient alternative dynamic graph construction method
to the computationally expensive KNN graph construction
method from Vision GNN [7]. DAGC builds upon SVGA
[30], but instead of statically constructing a graph, DAGC
constructs a graph that changes across input images. DAGC
retains the efficiencies of SVGA through the removal of the
KNN computation and input reshaping. It also introduces
an efficient graph construction method based on the mean
(µ) and standard deviation (σ) of the Euclidean distance be-
tween patches in the input image.

In ViG, the KNN computation is required for every input
image, since the nearest neighbors of each patch cannot be

known ahead of time. This results in a graph with connec-
tions throughout the image. Due to the unstructured nature
of KNN, ViG [7] needs to reshape the input image from a
4D to a 3D tensor in order to properly align the features of
connected patches for graph convolution. Afterwards, the
input must be reshaped from 3D back to 4D for subsequent
convolutional layers. SVGA [30] eliminates these two re-
shaping operations and KNN computation through using a
static graph where each patch is connected to every Kth

patch in its row and column as seen in Figure 2a.
DAGC leverages the axial construction of SVGA to re-

tain its efficiencies, while dynamically constructing a more
representative graph. To do this, DAGC first obtains an es-
timate of the µ and σ of the Euclidean distance between
nodes through using a subset of nodes. The subset of nodes
is obtained by splitting the image into quadrants and com-
paring the quadrants diagonal to one another as shown in
Figure 3 below. Then, the µ and σ can be calculated with
those Euclidean distance values. This allows the estimated
µ and σ to be computed between two images (the original
and the one with its quadrants flipped across the diagonal).
This is to decrease the number of comparisons for getting
the µ and σ values. The reason we avoid calculating the
true µ and σ is that computing them directly would require
calculating the Euclidean distance between each individual
node and all other nodes in the image. We then consider
connections across the row and column as in SVGA to de-
crease computation, as MobileViG [30] demonstrated that
not every patch needs to be considered. If the Euclidean
distance between two nodes is less than the difference of
the estimated µ and σ, then we connect the two nodes.

,

Euclidean
Distance

Q1 Q2

Q3 Q4

Q4 Q3

Q2 Q1

Original Image Quadrants Flipped

Figure 3. Euclidean distance calculation between the original
image and the image with its quadrants flipped along the diagonal.

DAGC also enables a variable amount of connections
across different images, unlike KNN’s fixed K number of
connections for all images. This is because in different
images, different nodes will have a Euclidean distance be-
tween them be less than the difference of the estimated µ
and σ. The intuition behind the use of µ and σ is that node
pairs that are within one σ of µ are close to one another
and should share information. These values are then used
to make the connections generated by DAGC as shown in
Figure 2b. In Figure 2 we can see that SVGA connects the
fish to parts of the image that are not fish, while DAGC only
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Figure 4. GreedyViG architecture. (a) Network architecture showing the stages and blocks. (b) The Conv Stem. (c) MBConv Block. (d)
Downsample. (e) DAGC Block. (f) Dynamic Grapher. (g) FFN.

connects the fish to other parts of the image that are fish.
Now that we have the estimated µ and σ within the im-

age, we roll the input image X , mK to the right or down
while mK is less than H (height) and W (width) of the im-
age as seen in Algorithm 1. The roll operation is used to
compare the patches that are N hops away. In Figure 2b,
node (5,1) in x, y coordinates is compared to nodes (1,1),
(3,1), (7,1), (5,3), (5,5), and (5,7) through ”rolling” to the
next node. After rolling, we compute the Euclidean dis-
tance between the input X and the rolled version (Xrolled)
to determine whether to connect the two points. If the dis-
tance is less than µ − σ, then the mask is assigned a value
of 1, else it is assigned a value of 0. This mask is then mul-
tiplied with Xrolled − X , to mask out max-relative scores
between patches not considered connections. This value is
denoted as Xdown and Xright in Algorithm 1. Next, the
max operation is taken and the result is stored in Xfinal.
Lastly, after the rolling, masking, and max-relative opera-
tions a final Conv2d is performed.

Through this methodology, DAGC provides a more rep-
resentative graph construction compared to SVGA [30], as
dissimilar patches (i.e., nodes) are not connected. DAGC

is also less computationally expensive compared to KNN
due to less comparisons being needed for constructing the
graph (KNN must compute the nearest neighbors for every
patch). DAGC also does not require the reshaping needed
for performing graph convolution in KNN-based methods
[7]. Thus, DAGC provides representation flexibility like
KNN and decreased computational complexity like SVGA.

3.2. DAGC Block

The DAGC block consists of a Dynamic Grapher module
followed by a feed-forward network (FFN). The Dynamic
Grapher module differs from the Grapher module used in
[30] through the use of an updated max-relative graph con-
volution step called DynConv using Algorithm 1 and con-
ditional positional encoding (CPE) [2]. DynConv dynami-
cally creates a graph that changes across input images, un-
like the graph construction used in the graph convolution
of SVGA [30]. Given an input feature X ∈ RN×N , the
updated Dynamic Grapher is expressed as:

Y = σ(DynConv((X +CPE(X))Win))Wout +X (1)



Algorithm 1 DAGC

Given: K, the distance between connections; H,W , the
image resolution; X , the input image; Xquadrants, the
quadrants of the input flipped across the diagonals; m,
the distance of each roll.
m← 0
norm← norm(X,Xquadrants) ▷ matrix norm of
tensors
µ← mean(norm)
σ ← std(norm)
while mK < H do

Xrolled ← rolldown(X,mK))
dist← norm(X,Xrolled) ▷ get distance value
if dist < µ− σ then ▷ generate mask

mask ← 1
else

mask ← 0
end if
Xdown ← mask ∗ (Xrolled −X) ▷ get features
Xfinal ← max(Xdown, Xfinal) ▷ keep max
m← m+ 1

end while
m← 0
while mK < W do

Xrolled ← rollright(X,mK)
dist← norm(X,Xrolled)
if dist < µ− σ then

mask ← 1
else

mask ← 0
end if
Xright ← mask ∗ (Xrolled −X)
Xfinal ← max(Xright, Xfinal)
m← m+ 1

end while
return Conv2d(Concat(X,Xfinal))

where Y ∈ RN×N , Win and Wout are fully connected
layer weights, CPE is a depthwise convolution, and σ is a
GeLU activation. The updated Dynamic Grapher module is
visually depicted in Figure 4f.

Following the updated Dynamic Grapher, we use the
feed-forward network (FFN) module as used in Vision GNN
[7] and MobileViG [30], which can be seen in Figure 4g.
The FFN module is a two layer MLP expressed as:

Z = σ(XW1)W2 + Y (2)

where Z ∈ RN×N , W1 and W2 are fully connected layer
weights, and σ is once again GeLU. We call this combina-
tion of the Dynamic Grapher module and FFN the DAGC
block, as shown in Figure 4e.

CPE is introduced into the DAGC block to provide the

position of the node within the image as this is important
to performance [2, 13]. The CPE used in DAGC follows
the method of [2], i.e., a depthwise convolution computes
the encodings, and then the encodings are added to the in-
put. The addition of CPE adds spatial information into the
message passing step of DynConv improving performance.

3.3. GreedyViG Architecture

The GreedyViG architecture shown in Figure 4a is com-
posed of a convolutional stem, and four stages of inverted
residual blocks (MBConv) and DAGC blocks each followed
by a downsample reducing the resolution to get to the next
stage. The stem consists of 3×3 convolutions with the stride
equal to 2, each followed by batch normalization (BN) and
the GeLU activation function as seen in Figure 4b. The
MBConv block is used for local processing at each stage,
before the DAGC block performs global processing at each
stage. Each MBConv block consists of pointwise convo-
lutions, BN, GeLU, a depth-wise 3×3 convolution, and a
residual connection as seen in Figure 4c. The DAGC block
is used at each resolution to better learn global object inter-
actions. Between each stage there is a downsample, which
consists of a 3×3 convolution with a stride equal to 2 fol-
lowed by BN as shown in Figure 4d to half the input reso-
lution and expand the channel dimension. Each stage in the
GreedyViG architecture is composed of multiple MBConv
and DAGC blocks, where the number of repetitions and
channel width is changed depending on model size. Within
the DAGC blocks used in all GreedyViG model sizes, the
distance between connections of nodes before masking is
set to K = 8, 4, 2, 1 for stages 1 to 4, respectively. This
allows the graph constructed to still be dense in lower reso-
lution stages, as too sparse of a graph can negatively impact
accuracy as seen Table 3 in our ablation studies. After the
final DAGC block there is a classification head consisting
of Average Pooling and an FFN.

4. Experimental Results
We compare GreedyViG to ViG [7], ViHGNN [8], Mobile-
ViG [30], and other efficient vision architectures to show
that for each model size, GreedyViG has a superior perfor-
mance on the tasks of image classification, object detection,
instance segmentation, and semantic segmentation for sim-
ilar or less parameters and GMACs.

4.1. Image Classification

We implement the model using PyTorch 1.12.1 [32] and
Timm library [46]. We use 16 NVIDIA A100 GPUs to train
our models, with an effective batch size of 2048. The mod-
els are trained from scratch for 300 epochs on ImageNet-
1K [3] with AdamW optimizer [27]. Learning rate is set
to 2e−3 with cosine annealing schedule. We use a standard
image resolution, 224 × 224, for both training and testing.



Table 1. Classification results on ImageNet-1k for GreedyViG, other ViG-based models, and other efficient models. The top-1 accuracy
results for GreedyViG are averaged over three experiments. Bold entries indicate results obtained for GreedyViG proposed in this paper.

Model Type Parameters (M) GMACs Epochs Top-1 Accuracy (%)
ResNet18 [9] CNN 11.7 1.82 300 69.7
ResNet50 [9] CNN 25.6 4.1 300 80.4

ConvNext-T [26] CNN 28.6 7.4 300 82.7

EfficientFormer-L1 [23] CNN-ViT 12.3 1.3 300 79.2
EfficientFormer-L3 [23] CNN-ViT 31.3 3.9 300 82.4
EfficientFormer-L7 [23] CNN-ViT 82.1 10.2 300 83.3

LeViT-192 [5] CNN-ViT 10.9 0.7 1000 80.0
LeViT-384 [5] CNN-ViT 39.1 2.4 1000 82.6

EfficientFormerV2-S2 [22] CNN-ViT 12.6 1.3 300 81.6
EfficientFormerV2-L [22] CNN-ViT 26.1 2.6 300 83.3

PVT-Small [44] ViT 24.5 3.8 300 79.8
PVT-Large [44] ViT 61.4 9.8 300 81.7

DeiT-S [39] ViT 22.5 4.5 300 81.2
Swin-T [25] ViT 29.0 4.5 300 81.4

PoolFormer-s12 [50] Pool 12.0 2.0 300 77.2
PoolFormer-s24 [50] Pool 21.0 3.6 300 80.3
PoolFormer-s36 [50] Pool 31.0 5.2 300 81.4

PViHGNN-Ti [8] GNN 12.3 2.3 300 78.9
PViHGNN-S [8] GNN 28.5 6.3 300 82.5
PViHGNN-B [8] GNN 94.4 18.1 300 83.9

PViG-Ti [7] GNN 10.7 1.7 300 78.2
PViG-S [7] GNN 27.3 4.6 300 82.1
PViG-B [7] GNN 92.6 16.8 300 83.7

MobileViG-S [30] CNN-GNN 7.2 1.0 300 78.2
MobileViG-M [30] CNN-GNN 14.0 1.5 300 80.6
MobileViG-B [30] CNN-GNN 26.7 2.8 300 82.6

GreedyViG-S (Ours) CNN-GNN 12.0 1.6 300 81.1
GreedyViG-M (Ours) CNN-GNN 21.9 3.2 300 82.9
GreedyViG-B (Ours) CNN-GNN 30.9 5.2 300 83.9

Similar to DeiT [39], we perform knowledge distillation us-
ing RegNetY-16GF [33] with 82.9% top-1 accuracy.

As seen in Table 1, for a similar number of parame-
ters and GMACs, GreedyViG outperforms Pyramid ViG
(PViG) [7], Pyramid ViHGNN (PViHGNN) [8], and Mo-
bileViG [30] significantly. For example, our smallest
model, GreedyViG-S, achieves 81.1% top-1 accuracy on
ImageNet-1K with 12.0 M parameters and 1.6 GMACs,
which is 2.9% higher top-1 accuracy compared to PViG-
Ti [7] and 2.2% higher than PViHGNN-Ti [8] with less
GMACs and a similar number of parameters. Our largest

model, GreedyViG-B obtains 83.9% top-1 accuracy with
only 30.9 M parameters and 5.2 GMACs, which is a 0.2%
higher top-1 accuracy compared to PViG-B [7] with a
66.6% decrease in parameters (61.7 M fewer parameters)
and a 69% decrease in GMACs (11.6 fewer GMACs) and
the same top-1 accuracy as PViHGNN-B [8] with a 67.3%
decrease in parameters (63.5 M fewer parameters) and a
71.3% decrease in GMACs (12.9 fewer GMACs).

When compared to other efficient architectures in Ta-
ble 1, GreedyViG beats SOTA models in accuracy for a
similar number of parameters and GMACs. GreedyViG-
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Table 2. Object detection, instance segmentation, and semantic segmentation results of GreedyViG and other backbones on MS COCO
2017 and ADE20K. (-) denotes unrevealed or unsupported models. Bold entries indicate results obtained using GreedyViG and DAGC
proposed in this paper.

Backbone Parameters (M) AP box AP box
50 AP box

75 APmask APmask
50 APmask

75 mIoU

ResNet18 [9] 11.7 34.0 54.0 36.7 31.2 51.0 32.7 32.9

EfficientFormer-L1 [23] 12.3 37.9 60.3 41.0 35.4 57.3 37.3 38.9

EfficientFormerV2-S2 [22] 12.6 43.4 65.4 47.5 39.5 62.4 42.2 42.4

PoolFormer-S12 [50] 12.0 37.3 59.0 40.1 34.6 55.8 36.9 37.2

FastViT-SA12 [41] 10.9 38.9 60.5 42.2 35.9 57.6 38.1 38.0

MobileViG-M [30] 14.0 41.3 62.8 45.1 38.1 60.1 40.8 -

GreedyViG-S (Ours) 12.0 43.2 65.2 47.3 39.8 62.2 43.2 43.2

ResNet50 [9] 25.5 38.0 58.6 41.4 34.4 55.1 36.7 36.7

EfficientFormer-L3 [23] 31.3 41.4 63.9 44.7 38.1 61.0 40.4 43.5

EfficientFormer-L7 [23] 82.1 42.6 65.1 46.1 39.0 62.2 41.7 45.1

EfficientFormerV2-L [22] 26.1 44.7 66.3 48.8 40.4 63.5 43.2 45.2

PoolFormer-S24 [50] 21.0 40.1 62.2 43.4 37.0 59.1 39.6 40.3

FastViT-SA36 [41] 30.4 43.8 65.1 47.9 39.4 62.0 42.3 42.9

Pyramid ViG-S [7] 27.3 42.6 65.2 46.0 39.4 62.4 41.6 -

Pyramid ViHGNN-S [8] 28.5 43.1 66.0 46.5 39.6 63.0 42.3 -

PVT-Small [44] 24.5 40.4 62.9 43.8 37.8 60.1 40.3 39.8

MobileViG-B [30] 26.7 42.0 64.3 46.0 38.9 61.4 41.6 -

GreedyViG-B (Ours) 30.9 46.3 68.4 51.3 42.1 65.5 45.4 47.4

S beats PoolFormer-s12 [50] with 3.9% higher top-1 accu-
racy while having the same number of parameters and 0.4
fewer GMACs. GreedyViG-M achieves 82.9% top-1 accu-
racy beating ConvNext-T [26] with 0.2% higher top-1 ac-
curacy while having 6.7 M fewer parameters and 4.2 fewer
GMACs. Additionally, GreedyViG-B achieves 83.9% top-
1 accuracy beating the EfficientFormer [22, 23] family of
models for a similar number of parameters.

4.2. Object Detection and Instance Segmentation

We show that GreedyViG generalizes well to downstream
tasks by using it as a backbone in the Mask-RCNN frame-
work [10] for object detection and instance segmentation
tasks on the MS COCO 2017 dataset [24]. The dataset con-
tains training and validations sets of 118K and 5K images,
respectively. We implement the backbone using PyTorch
1.12.1 [32] and Timm library [46]. The model is initial-
ized with ImageNet-1k pretrained weights from 300 epochs
of training. We use the AdamW [14, 27] optimizer with
an initial learning rate of 2e−4 and train the model for 12
epochs with a standard resolution (1333 × 800) following
the process of prior work [21–23, 30].

As seen in Table 2, with similar model size GreedyViG
outperforms PoolFormer [50], EfficientFormer [23], Effi-
cientFormerV2 [22], MobileViG [30], and PVT [44] in
terms of either parameters or improved average precision

(AP) on object detection and instance segmentation. The
GreedyViG-S model gets 43.2 AP box and 39.8 APmask on
the object detection and instance segmentation tasks out-
performing PoolFormer-s12 [50] by 5.9 AP box and 5.2
APmask. Our GreedyViG-B model achieves 46.3 AP box

and 42.1 APmask outperforming MobileViG-B [30] by
4.3 AP box and 3.2 APmask and FastViT-SA36 [41] by
2.5 AP box and 2.7 APmask. The strong performance of
GreedyViG on object detection and instance segmentation
shows the capability of DAGC and GreedyViG to general-
ize well to different tasks in computer vision.

4.3. Semantic Segmentation

We further validate the performance of GreedyViG on
semantic segmentation using the scene parsing dataset,
ADE20k [51]. The dataset contains 20K training im-
ages and 2K validation images with 150 semantic cate-
gories. Following the methodologies of [22, 23, 41, 50], we
build GreedyViG with Semantic FPN [16] as the segmen-
tation decoder. The backbone is initialized with pretrained
weights on ImageNet-1K and the model is trained for 40K
iterations on 8 NVIDIA RTX 6000 Ada generation GPUs.
We follow the process of existing works in segmentation,
using the AdamW optimizer, set the learning rate as 2 ×
10−4 with a poly decay by the power of 0.9, and set the
training resolution to 512 × 512 [22, 23].



a)

b)

Figure 5. Comparison of model size and performance (mIoU
on ADE20K). GreedyViG achieves the highest performance on all
model sizes compared to other state-of-the-art models. a) shows
performance compared to parameters and b) shows performance
compared to GMACs.

As shown in Table 2, GreedyViG-S outper-
forms PoolFormer-S12 [50], FastViT-SA12 [41], and
EfficientFormer-L1 [23] by 6.0, 5.2, and 4.3 mIoU ,
respectively. Additionally, GreedyViG-B outper-
forms PoolFormer-S24 [50], FastViT-SA36 [41], and
EfficientFormer-L3 [23] by 7.1, 4.5, and 3.9 mIoU ,
respectively. Figure 5 shows GreedyViG significantly
outperforms FastViT [41], PVT [44], Poolformer [50],
EfficientFormer [23], and ResNet [9] models with a similar
number of parameters and GMACs.

5. Ablation Studies

The ablation studies are conducted on ImageNet-1K [3].
Table 3 reports the ablation study of GreedyViG-B on vary-
ing distances of considered graph connections (K) in the
DAGC algorithm and how conditional positional encoding
affects performance.

Distance between considered nodes for graph con-
struction (K). The distance considered between possible
node connections for graph construction can create a sparser
graph, but can lead to decreased accuracy as the graph be-
comes too sparse and does not contain enough connections.
We can see this in Table 3, which shows that for K = 16, 8,

Table 3. Ablation study for GreedyViG-B on ImageNet-1K
benchmark for varying distances between considered node con-
nections (K) and the addition of conditional positional encoding.

K Params (M) CPE Top-1 (%)
K = 16, 8, 4, 2 30.9 Yes 83.5
K = 9, 6, 3, 1 30.9 Yes 83.7
K = 8, 4, 2, 1 30.7 No 83.7
K = 8, 4, 2, 1 30.9 Yes 83.9

4, 2 in stages 1, 2, 3, and 4 that the top-1 accuracy is 0.4%
lower than for when K = 8, 4, 2, 1. We also find that using
K = 9, 6, 3, 1 leads to a 0.2% decrease in top-1 accuracy
compared to K = 8, 4, 2, 1 used in GreedyViG.

Conditional Positional Encoding (CPE). The encod-
ing of positions within GreedyViG also boosts performance
for relatively few parameters. When removing CPE from
GreedyViG-B, we see a drop in accuracy of 0.2% with only
a 0.2 M decrease in parameters, showing that CPE is bene-
ficial in the GreedyViG architecture.

Further ablation studies on the effects of removing graph
convolutions at higher resolution stages, static versus dy-
namic graph construction, and how graph construction im-
pacts latency are included in the supplementary material.

6. Conclusion
In this work, we have proposed a new method for designing
efficient vision GNNs, Dynamic Axial Graph Construction
(DAGC). DAGC is more efficient compared to KNN-based
ViGs and more representative compared to SVGA. This is
because DAGC uses an axial graph construction method to
limit graph connections, and it does not have a fixed number
of graph connections allowing for a variable number of con-
nections based on the input image. Compared to past axial
graph construction methods, DAGC limits the graph con-
nections made within an image to only the significant con-
nections thereby constructing a more representative graph.
Additionally, we have proposed a novel CNN-GNN archi-
tecture, GreedyViG, which uses DAGC. GreedyViG outper-
forms existing ViG, CNN, and ViT models on multiple rep-
resentative vision tasks, namely image classification, object
detection, instance segmentation, and semantic segmenta-
tion. GreedyViG shows that ViG-based models can be le-
gitimate competitors to ViT-based models through DAGC
and by performing local and global processing at each res-
olution through a hybrid CNN-GNN architecture.
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data-efficient image transformers & distillation through at-
tention. In International conference on machine learning,
pages 10347–10357. PMLR, 2021. 6

[40] Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu
Cord, Alaaeldin El-Nouby, Edouard Grave, Gautier Izac-
ard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, et al.
Resmlp: Feedforward networks for image classification with
data-efficient training. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 2022. 1

[41] Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, On-
cel Tuzel, and Anurag Ranjan. Fastvit: A fast hybrid vision
transformer using structural reparameterization. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, 2023. 2, 7, 8

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1

[43] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity,
2020. 2

[44] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 568–578, 2021. 6, 7, 8

[45] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (tog), 38(5):1–12, 2019. 2

[46] Ross Wightman. PyTorch Image Models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 5, 7

[47] JiaFu Wu, Jian Li, Jiangning Zhang, Boshen Zhang, Ming-
min Chi, Yabiao Wang, and Chengjie Wang. Pvg: Progres-
sive vision graph for vision recognition. In Proceedings
of the 31st ACM International Conference on Multimedia,
page 2477–2486, New York, NY, USA, 2023. Association
for Computing Machinery. 2

[48] Yongji Wu, Defu Lian, Yiheng Xu, Le Wu, and Enhong
Chen. Graph convolutional networks with markov random
field reasoning for social spammer detection. In Proceed-
ings of the AAAI conference on artificial intelligence, pages
1054–1061, 2020. 2

[49] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-
ral graph convolutional networks for skeleton-based action
recognition. In Proceedings of the AAAI conference on arti-
ficial intelligence, 2018. 2

[50] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou,
Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer
is actually what you need for vision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10819–10829, 2022. 6, 7, 8

[51] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 633–641,
2017. 1, 2, 7

[52] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang,
Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,
and Maosong Sun. Graph neural networks: A review of
methods and applications. AI open, 1:57–81, 2020. 2

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


GreedyViG: Dynamic Axial Graph Construction for Efficient Vision GNNs

Supplementary Material

A. Further Ablation Studies
The ablation studies are conducted on ImageNet-1K [3].
Table 4 reports the ablation study of GreedyViG-B (GViG-
B) on the effects of graph convolutions at higher resolution
stages and Table 5 reports the effects of static versus dy-
namic graph construction.

Graph convolutions at higher resolution stages. In Ta-
ble 4 we can see that adding graph convolutions at higher
resolution stages improves top-1 accuracy with a relatively
small increase in parameters. By 1-stage, 2-stage, 3-stage,
and 4-stage we mean that the DAGC blocks (graph convolu-
tion block) will be used in stage 4, stages 3 and 4, stages 2,
3, and 4, or in all stages as shown in Figure 4. GreedyViG-
B increases in top-1 accuracy as we move from 1-stage to
4-stage increasing from 83.1% at the 1-stage configuration
to 83.5% at the 2-stage configuration. Moving from the
2-stage configuration to the 3-stage configuration we see a
0.2% increase in accuracy reaching 83.7%. Finally, moving
from 3-stage to 4-stage we see a 0.2% increase in accuracy
reaching 83.9% top-1 accuracy at the 4-stage configuration.
Comparing the 1-stage and 4-stage configurations we see a
0.8% gain in top-1 accuracy with only an increase of 4.4 M
parameters, showing the benefits of graph convolutions at
higher resolution stages.

Table 4. Ablation study for graph convolutions at higher reso-
lution stages on ImageNet-1K benchmark. 1-S, 2-S, 3-S, and 4-
S indicate that graph convolutions were used in 1-stage, 2-stages,
3-stages, or all 4-stages. A check mark indicates this component
was used in the experiment. A (-) indicates this component was
not used.

Model Params (M) 1-S 2-S 3-S 4-S Top-1 (%)
GViG-B 26.5 ✓ - - - 83.1
GViG-B 29.7 - ✓ - - 83.5
GViG-B 30.7 - - ✓ - 83.7
GViG-B 30.9 - - - ✓ 83.9

Static versus dynamic graph construction. Compared
to the static graph construction method (SVGA) proposed in
[30], DAGC connects only the similar connections based on
Euclidean distance resulting in improved performance. In
Table 5 we can see the direct benefit of using DAGC com-
pared to SVGA as it adds no parameters and increases the
top-1 accuracy of GreedyViG-B with 4-stages by 0.4% from
83.5% to 83.9%. We can also see the benefit of DAGC and
our overall GreedyViG architecture compared to the Mo-
bileViG architecture, which uses SVGA, through compar-
ing MobileViG-B (MViG-B) and a 1-stage configuration of

GreedyViG-B. The 1-stage configuration of GreedyViG-B
shows a 0.5% improvement in top-1 accuracy from 82.6%
to 83.1% while reducing parameters by 0.2 M, showing the
benefits of dynamic graph construction.

Table 5. Ablation study for static versus dynamic graph con-
struction on ImageNet-1K benchmark. 1-S indicates that graph
convolutions were only used in Stage 4, while 4-S indicates that
graph convolutions were used in stages 1, 2, 3, and 4. A check
mark indicates this component was used in the experiment. A (-)
indicates this component was not used.

Model Params (M) SVGA DAGC 1-S 4-S Top-1 (%)
MViG-B 26.7 ✓ - ✓ - 82.6
GViG-B 26.5 - ✓ ✓ - 83.1
GViG-B 30.9 ✓ - - ✓ 83.5
GViG-B 30.9 - ✓ - ✓ 83.9

B. Network Configurations
The detailed network architectures for GreedyViG-S, M,
and B are provided in Table 6. We report the configuration
of the stem, stages, and classification head. In each stage
the number of MBConv and DAGC blocks repeated as well
as their channel dimensions is reported. For GreedyViG-B,
stage 4 has 3 repeated MBConv and DAGC blocks instead
of 4 in order to have comparable parameters to other com-
peting architectures.

Table 6. Architecture details of GreedyViG showing configura-
tion of the stem, stages, and classification head. C represents the
channel dimensions.

Stage GreedyViG-S GreedyViG-M GreedyViG-B

Stem Conv ×2 Conv ×2 Conv ×2

Stage 1
MBConv × 2
DAGC × 2

C = 48

MBConv × 3
DAGC × 3

C = 56

MBConv × 4
DAGC × 4

C = 64

Stage 2
MBConv × 2
DAGC × 2

C = 96

MBConv × 3
DAGC × 3
C = 112

MBConv × 4
DAGC × 4
C = 128

Stage 3
MBConv × 6
DAGC × 2
C = 192

MBConv × 9
DAGC × 3
C = 224

MBConv × 12
DAGC × 4
C = 256

Stage 4
MBConv × 2
DAGC × 2
C = 384

MBConv × 3
DAGC × 3
C = 448

MBConv × 3
DAGC × 3
C = 512

Head Pooling & MLP Pooling & MLP Pooling & MLP

C. Computational Complexity of Graph Con-
struction

The computational complexity for KNN, DAGC, and
SVGA for a single node in the image (in terms of com-
parisons from that node) is given below. W and H are the
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width and height of the image, K is the number of nearest
neighbors, and N is the number of hops selected in SVGA
and DAGC.
1. KNN: O(W ×H ×K). For each node, KNN finds the

K nearest by comparing every node to the current node.
2. DAGC: O(W+H

N ). For each node, DAGC only needs
to compare nodes that are every N hops away, thus de-
creasing the number of comparisons. Also, since DAGC
computes the µ and σ beforehand, it makes connections
in the first search through of the image rather than need-
ing to compare again for K connections.

3. SVGA: O(1). Connects each node along the axes.
DAGC is more computationally expensive than SVGA,

but more representative. KNN may be more representative
than DAGC, but can cause oversmoothing and is more com-
putationally expensive. The measured time taken for graph
construction is 0.06 ms in DAGC, 0.38 ms in KNN, and 0.04
ms in SVGA when measured on an Nvidia RTX A6000; this
shows DAGC is slower than SVGA and faster than KNN
in graph construction time. This can also be seen through
our latency results in Table 7. GreedyViG-S is faster and
more accurate than PViG-Ti, but is slower and more accu-
rate than a smaller MobileViG-S model. GreedyViG-S is
slower compared to MobileViG-S because DAGC is slower
than SVGA, GreedyViG has more parameters, and because
GreedyViG contains more global processing stages that per-
form graph convolution (DAGC blocks) as compared to
MobileViG which only does graph convolution at its low-
est resolution stage after multiple downsample layers.

Table 7. Graph construction impact on accuracy and latency.
We show GreedyViG-S with KNN and DAGC to compare with
PViG-Ti with KNN and DAGC. We also show MobileViG-S with
SVGA to show it is less accurate, but faster than GreedyViG-S.

Model Params Latency Acc (%)
MobileViG-S [30] w/ SVGA 7.2 M 27.1 ms 78.2

PViG-Ti [7] w/ KNN 10.7 M 79.4 ms 78.2
PViG-Ti [7] w/ DAGC 10.7 M 63.3 ms 79.1

GreedyViG-S (Ours) w/ KNN 12.0 M 73.6 ms 80.2
GreedyViG-S (Ours) w/ DAGC 12.0 M 53.4 ms 81.1

The graph construction and architecture of GreedyViG
both contribute to the performance of GreedyViG models.
When using DAGC with the original ViG architecture and
KNN with our GreedyViG architecture in Table 7, we can
see that DAGC is faster and provides higher accuracy com-
pared to KNN in these cases. GreedyViG-B with SVGA can
also be seen Table 5, showing with the same configuration
DAGC has 83.9% accuracy compared to SVGA’s 83.5%.
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