IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Zero-Shot Neural Architecture Search:
Challenges, Solutions, and Opportunities

Guihong Li, Student Member, IEEE, Duc Hoang, Student Member, IEEE,
Kartikeya Bhardwaj, Member, IEEE, Ming Lin, Member, IEEE,
Zhangyang Wang, Senior Member, IEEE, Radu Marculescu, Fellow, IEEE

Abstract—Recently, zero-shot (or training-free) Neural Architecture Search (NAS) approaches have been proposed to liberate NAS from
the expensive training process. The key idea behind zero-shot NAS approaches is to design proxies that can predict the accuracy of
some given networks without training the network parameters. The proxies proposed so far are usually inspired by recent progress in
theoretical understanding of deep learning and have shown great potential on several datasets and NAS benchmarks. This paper aims to
comprehensively review and compare the state-of-the-art (SOTA) zero-shot NAS approaches, with an emphasis on their hardware
awareness. To this end, we first review the mainstream zero-shot proxies and discuss their theoretical underpinnings. We then compare
these zero-shot proxies through large-scale experiments and demonstrate their effectiveness in both hardware-aware and
hardware-oblivious NAS scenarios. Finally, we point out several promising ideas to design better proxies. Our source code and the list of
related papers are available on https://github.com/SLDGroup/survey-zero-shot-nas.

Index Terms—Neural Architecture Search, Zero-shot proxy, Hardware-aware neural network design

<+

1 INTRODUCTION

In recent years, deep neural networks have made signifi-
cant breakthroughs in many applications, such as recommen-
dation systems, image classification, and natural language
modeling [1], [2], [3], [4], [5], [6], [7]. To automatically design
high performance deep networks, Neural Architecture Search
(NAS) has been proposed during the past decade [8], [9],
[10], [11], [12]. Specifically, NAS boils down to solving
an optimization problem with specific targets (e.g., high
classification accuracy) over a set of possible candidate
architectures (search space) within a group of computational
budgets. Recent breakthroughs in NAS simplify the trial-
and-error manual architecture design process and discover
new deep network architectures with better performance and
efficiency over hand-crafted ones [10], [11], [13], [14], [15],
(16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28]. Therefore, NAS has attracted significant attention from
both academia and industry.

One important application of NAS is to design hard-
ware efficient deep models under various constraints, such
as memory footprint, inference latency, and power con-
sumption [29]. Roughly, existing NAS approaches can be
categorized into three groups as shown in Figure 1: multi-
shot NAS, one-shot NAS and zero-shot NAS. Multi-shot
NAS methods involve training multiple candidate networks
and are therefore time-consuming. It can take from a few
hundred GPU hours [30] to thousands of GPU hours [31] in
multi-shot NAS methods. One-shot NAS methods alleviate

o Guihong Li, Duc Hoang, Zhangyang Wang, and Radu Marculescu are with
the Department of Electrical and Computer Engineering, The University
of Texas at Austin, TX, 78712. E-mail: {Igh, hoangduc, atlaswang,
radum }@utexas.edu

o Kartikeya Bhardwaj is with Qualcomm Al Research, an initiative of Qual-
comm Technologies, Inc., CA, 92121. E-mail: kbhardwa@qti.qualcomm.com

e Ming Lin is with Amazon, WA, 98004. E-mail: minglamz@amazon.com.

o Correspondence to Radu Marculescu (radum@utexas.edu).

the computational burden by sharing candidate operations
via a hyper-network [11], [32], [33], [34], [35], [36], [37]. As
shown in Figure 2, one-shot NAS only needs to train a single
hyper-network instead of multiple candidate architectures
whose number is usually exponentially large. The orders of
magnitude reduction in training time enables differentiable
search to achieve competitive accuracy against multi-shot
NAS, but with much lower search costs [11].

Nevertheless, naively merging all candidate operations
into a hyper-network is not efficient because the parameters
of all operations need to be stored and updated during the
search process. Consequently, the weight-sharing methods
improve the search efficiency of NAS even further [13], [39],
[40], [41], [42]. As shown in Figure 3, the key idea of weight-
sharing NAS is to share the parameters across different
operations. Next, at each training step, a sub-network is
sampled from the hyper-network and then the updated
parameters are copied back to the hyper-network. By sharing
the parameters of various sub-networks, this differentiable
search approach significantly reduces the search costs to a
few or tens of GPU hours [39].

Though the differentiable search and weight-sharing have
significantly improved the time efficiency of NAS, training is
still required in one-shot NAS methods. In the last few years,
the zero-shot NAS has been proposed to liberate NAS from
parameter training entirely [43], [44], [45], [46], [47], [48], [49],
[50], [51], [52].

Compared to multi-shot and one-shot methods, zero-shot
NAS has the following major advantages: (i) Time efficiency:
zero-shot NAS utilizes some proxy as the model’s test
accuracy to eliminate the model training altogether during
the search stage. Compared to model training, the compu-
tation costs of these proxies are much more lightweight.
Therefore, zero-shot NAS can significantly reduce the costs
of NAS while achieving comparable test accuracy as one-

https://github.com/SLDGroup/survey-zero-shot-nas

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

5 Image Natural Language | [Speech]
B Classification Processing Recognition
(3]
2 [Graph] [Semantic] [Object]
< Classification Segmentation Detection
85.0
- //N%Cs
-
9 82.5
= 0.2G
§ 3 w0,
© © 80.0 2.0T.
& E
o | =
:é ? 77.5
Q ©
£ 3750
< Q
S <
< H$ 725
s &
5| ~70.0 Multi-shot NAS
(3} L] "
4 E One-shot NAS
67.5 Zero-shot NAS
102 10-' 10° 10' 102 10%® 10°

Seach Cost (Kg of CO, Emissions)

{=oll

Fig. 1: Overview of existing NAS approaches. NAS is
designed to search for optimal architectures with both
good accuracy and high efficiency on real hardware. (Data
collected from [38])

LA L]
ulm
b I TT TR

Hardware
Platform
Ouumm T

Candidate
Operations

(o] o] o]

(1]

(2]

(=]

1. Create hyper-network

(=]

2. Train hyper-network

I

3. Generate final architecture

Fig. 2: llustration of differentiable neural architecture search.
(1). Merge all candidate operations into a hyper-network
with learnable weights for each operation. (2). Train the
hyper-network and update the learnable weights for each
operation. (3) Generate the final results by selecting the
operations with the highest weight values (boldest edges).
(Adapted from [11])

shot and multi-shot NAS approaches (see Figure 1). (i)
Interpretability: Clearly, the quality of the accuracy proxy
ultimately determines the performance of zero-shot NAS.
The design of an accuracy proxy for zero-shot NAS is usually
inspired by some theoretical analysis of deep neural networks
thus deepening the theoretical understanding of why certain
networks may work better. For example, Bhardwaj et al.
developed the first zero-shot NAS approach by analyzing
the topological properties of deep networks [53]; some recent
approaches use the number of linear regions to approximate
the complexity of a deep neural network [54]. Moreover, the

-
i

ilnput =+ —» Conv-kxk-c }—-

Conv-kxk-c J—» Conv-kxk-c }—» = Output!

L=
-

| 2 L S
|
i
|
i
|

N,

\superkeme/ Wirx7-64 Wi7x7-32
Fig. 3: Illustration of weight-sharing mechanism. The pa-
rameters of relatively simple operations are obtained from
complex operations, i.e., super kernel. As shown, different
operations share the parameters from the super kernel.
(Adapted from [39])

connection between the gradient of a network at random
initialization and the accuracy of that network after training
are widely explored as proxies of the model’s test accuracy
in zero-shot NAS [55].

Based on these overarching observations, this paper aims
to comprehensively analyze existing hardware-aware zero-
shot NAS methods. Starting from the theoretical foundations
of deep learning, we first investigate various proxies of
test accuracy and their theoretical underpinnings. Then,
we introduce several popular benchmarks for evaluating
zero-shot NAS methods. Moreover, we demonstrate their
effectiveness when applied to hardware-aware NAS; notably,
we reveal fundamental limitations of existing proxies. Fi-
nally, we discuss several potential research directions for
hardware-aware zero-shot NAS. Overall, this paper makes
the following contributions:

o We review existing proxies for zero-shot NAS and
provide theoretical insights behind these proxies.
We categorize the existing accuracy proxies into (i)
gradient-based proxies and (ii) gradient-free proxies.

e We conduct direct comparisons of various zero-shot
proxies against two naive proxies, i.e., #Params and
#FLOPs, and reveal a fundamental limitation of many
existing proxies: they correlate much worse with
the test accuracy in constrained search settings (i.e.,
when considering only networks of high accuracies)
compared to unconstrained settings (i.e., considering
all architectures in the given search space).

o We further conduct a thorough study including proxy
design, benchmarks, and real hardware profiling for
zero-shot NAS. We show that a few proxies have a
better correlation with the test accuracy than these
two naive proxies (#Params and #FLOPs) on the
top-performing architectures such as ResNets and
MobileNets.

o We discuss the limitations of existing zero-shot prox-
ies and NAS benchmarks; we then outline a few
possible directions for future research.

In comparison to other existing zero-shot NAS sur-
veys [56], [57], [58], [59], [60], [61], [62], [63], [64], we not only
cover all existing proxies, but also provide a deep analysis of

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

the theoretical underpinning behind them. We believe that
understanding the theoretical design considerations behind
these proxies is very important for future improvements. Ad-
ditionally, this is the first work to comprehensively compare
these zero-shot proxies on large scale tasks like ImageNet-1K
classification, COCO object detection, and ADE20K semantic
segmentation. Furthermore, we are the first to explore the
potential applicability of these zero-shot proxies to Vision
Transformers. Last but not least, we have conducted detailed
comparisons for the first time when applying zero-shot NAS
in hardware-aware scenarios. This is crucial for deploying
the zero-shot approaches in practice, especially for edge-Al
applications.

The remaining paper is organized as follows. We intro-
duce zero-shot proxies in Section 2. Section 3 surveys existing
NAS benchmarks. Hardware performance predictor is pre-
sented in Section 3.2. We evaluate various zero-shot proxies
under diverse settings in Section 4 and point out future
research directions. We conclude the paper in Section 5.

2 ZERO-SHOT PROXIES

The goal of zero-shot NAS is to design proxies that can
rank the accuracy of candidate network architectures at the
initialization stage, i.e., without training, such that we can
replace the expensive training process in NAS with some
computation-efficient alternatives. Hence, the proxy for the
accuracy ranking is the key factor of zero-shot NAS.

2.1

Before we dive deep into the details of existing zero-shot
proxies, let us first establish the foundational principles for
designing a good zero-shot proxy. Indeed, an ideal accuracy
proxy should address three primary aspects [65], [66]:

Theoretical Underpinning of Proxies

o Expressive Capacity: The proxy should reflect how
well the deep network can capture and model com-
plex patterns and relationships within the data, which
can be crucial for complex tasks like large-scale
datasets (e.g., ImageNet-1K and COCO) [67], [68].

e Generalization Capacity: The proxy should also
reflect the network ability to generalize from the
training data to unseen or out-of-distribution data.
A network with a high generalization capacity should
not only perform well on the training data but also
on new examples, indicating that it has learned
meaningful, transferable representations [69], [70],
[71].

o Trainability and Convergence: The proxy should
also indicate how quickly the network converges to
a desirable performance level. Faster convergence
indicates that the network is efficiently adapting to
the training data and task at hand, which is essential
for practical applications since training is typically
expensive [72], [73], [74].

In short, a good zero-shot proxy for deep network accuracy
should provide insights into the network capacity to learn
complex representations, generalize to unseen samples, and
train to converge to minimal loss values. However, as shown
in Table 2, most existing proxies tend to target only one of
these aspects. This narrow focus results in outcomes that

3

often fail to outperform some naive proxies, like #Params or
#FLOPs; we empirically verify this observation in Section 4.
In this paper, we categorize the existing zero-shot proxies
as follows: depending on whether or not the gradients are
involved in the proxy calculation, the existing accuracy
proxies fall into two major classes: (i) gradient-based accuracy
proxy and (ii) gradient-free accuracy proxy (summarized
in Table 2). The symbols used in this section and their
corresponding meaning are summarized in Table 1.

2.2 Gradient-based accuracy proxies

We first introduce several similar proxies derived from the
gradient over parameters of deep networks.

2.2.1 GQGradient norm

The gradient norm is the sum of norms for each layer’s
gradient vector [55]. To calculate the gradient norm, we
first input a mini-batch of data into the network and then
propagate the loss values backward. Next, we calculate the
¢3-norm of each layer’s gradient and then add them up for
all the convolution and linear layers of the given network.
Formally, the definition of gradient norm G is as follows:

D
G2 |IVe.Ll,

i=1

)

where D, 0; and L are, the number of layers, the parameter
vector of the i-th layer of a given network and L is the loss
values, respectively.

222 SNIP
The gradient norm only measures the property of the gradi-
ent’s propagation for a given network. To jointly measure the
parameter importance both in forward inference and gradient
propagation, SNIP consists of multiplying the value of each
parameter and its corresponding gradient [75]. Formally,
SNIP is defined as below:
D

SNIP £ 3 7|(6:, Ve, L)| v

where (-, -) represents the inner product; D, 8; and L are, the

number of layers, the parameter vector of the i-th layer of a
given network and L is the loss values, respectively.

2.2.3 Synflow
Similar to SNIP, Synflow consists of maintaining the sign of
the SNIP proxy [76]:

D
Synflow £ *(6;, Vg, L)

(2

®)

224 G@GraSP

The three proxies mentioned above only take the first-order
derivatives of neural networks into account. The GraSP proxy
considers both the first-order and second-order derivatives
of neural networks [77]. Specifically, GraSP is defined by
the inner product of the parameters and the product of the
Hessian matrix and the gradients:

D
> —(HiVe,L,6;)

)

)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

TABLE 1: The symbols used in this paper and their corresponding meaning.

Symbol Meaning | Symbol Meaning
Input samples | g Ground truth (labels)
f A given deep network | D The number of layers of a given network
fe A network w/o final pooling and FC layers | y The output of a given model
L Loss function | L Loss values
© All parameters of a given network | 0, Parameters vector of the i-th layer
H; Hessian matrix of the i-th layer | z; The output vector of layer ¢

TABLE 2: Categorization of zero-shot proxies. Based on whether or not the proxy relies on gradients, there are gradient-based
and gradient-free approaches. We also categorize existing proxies by their theoretical underpinning (cf. Section 2.1). An

empty cell indicates the proxy is not in that category.

Proxy

| Grad_norm | SNIP | Synflow | GraSP | GradSign | Fisher | Jacob_cov | NTK_Cond | Zen-score | #LR | Logdet | NN-Mass

Gradient-free ‘ ‘ ‘ ‘ ‘ ‘

vy v | v

Gradient-based ‘

Trainability
&Convergence

Capacity

Generalization

Expressive ‘ ‘
Capacity ‘

where H; is Hessian matrix of the ¢-th layer.

There are multiple theoretical analyses for the above three
proxies. Specifically, Synflow and SNIP have been proven to
be layer-wise constants in linear networks during the back-
propagation process [75], [76]. Moreover, several works show
that Synflow and GraSP are different approximations of the
first-order Taylor expansions of deep neural networks [77],
[78]. We remark that Taylor expansions of a deep network can
identify the parameters that contribute the most to the loss
values; thus, it can measure the importance of parameters.

2.2.5 GradSign

Given an input batch with B input samples {x1, 2, ..., x5},
GradSign is defined as follows [79]:
B
GradSign = > |} sign[Vo, L (f(@i),3)]])

0,e® " i=1

Essentially, GradSign assesses the uniformity across multiple
training samples for each parameter, and then adds them up
as the final proxy value. It has been proven that GradSign
serves as an approximation of the training loss following the
training phase [79]. More specifically, a higher value of Grad-
Sign is indicative of a diminished training loss. Consequently,
GradSign measures the convergence properties inherent in
deep neural networks.

Besides the gradient over parameters, the gradient over
each layer’s activation is also explored to build the accuracy
proxy as shown below.

2.2.6 Fisher information

Fisher information of a neural network can be approximated
by the square of the activation value and their gradients [80],

(6)

where z; is the feature map vector of the i-th layer of a given
network.

Previous works show that a second-order approximation
of Taylor expansion in a neural network is equivalent to
an empirical estimate of the Fisher information [81]. Hence,
measuring the Fisher information of each neuron/channel
of a given network can reflect the importance of these
neurons/channels.

2.2.7 Jacobian covariant

Besides the gradient over parameters and activations, the
Jacobian covariant (Jacob_cov) leverages the gradient over
the input data x [82], [83]. To calculate the Jacob_cov proxy,
given an input batch with B input samples {x1, Z2, ..., 5},
the gradients matrix J of the output results {y1,y2, ..., Y5}
w.r.t. these inputs are first computed:

J = (vmlylavm2y27"'avayB)T (7)
Next, the raw covariance matrix is generated as:
G=(J-M)J-M)" ®)

_ 1 B . . .
where M; ; = 5 >_,_; Ji.n- Then the raw covariance matrix
is normalized to get the real covariance matrix I":

Gij

r ——)
VGiiGjj

(A

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

where I'; ; denotes the entries of I'. Let Ay < A\p < ... < Ap
be the B eigenvalues of I'; then the Jacobian covariant is
generated as follows:

Jacob_cov £ — i {(/\z +e)+ (N + e)_l}

i=1

(10)

where € is a small value used for numerical stability. As
discussed in [82], [83], Jacob_cov can reflect the expressivity
of deep networks thus higher Jacob_cov values indicate
better accuracy.

2.2.8 Zen-score

Zen-score is a new proxy for a given model [84], [85]. The
Zen-score is defined as:

IOng,e(er(n) _fe(n—’—ae)HF) +Zlog ZJ O"Lj
ki

Ch; |’

x ~N(0,I)

)
where, 1 is a sampled Gaussian random vector, € is a small
input perturbation, ||-|| » indicates the Frobenius norm, « is
a tunable hyper-parameter, C'h; is the number of channels
of the the i-th convolution layer, and Ufj is the variance of
the i-th layer’s j-th channels for the k-th samples in an input
batch data. As shown in Eq.11, Zen-score measures model
expressivity by averaging the Gaussian complexity under
randomly sampled z and €. We note that this is equivalent
to computing the expected gradient norm of f with respect
to input x instead of network parameters. Hence, Zen-score
measures the expressivity of neural networks instead of their
trainability: networks with a higher Zen-score have a better
expressivity and thus tend to have a better accuracy.

2.2.9 NTK Condition Number

Neural Tangent Kernel is proposed to study the training
dynamics of neural networks [86]. More precisely, given two
input samples x; and 2, NTK is defined as:

K (1, x2) = J(x1)J (2) (12)

where J () is the Jacobian matrix evaluated at the sample
x [87]. Lee et al. prove that the training dynamics of wide
neural networks can be solved as follows [88]:

u(X) = (T = e mXX0) (13)

where t denotes the training step; ji; represents the output
expectations at training step t; X € R™*?¢ and y € R™ are
the training input having m samples with d dimensions per
sample, and their corresponding labels, respectively; 7 is the
learning rate. £ (X, X) € R™*™ is the NTK for these input
data. By conducting the eigendecomposition of Eq. 13, the
i-th dimension in the eigenspace of output expectation can
be written as follows:

p(X) = (1= ™™ i = {1,2,...,m}

where A\ < XAy < ... <)\, are the eigenvalues of the NTK
K(X,X).

Therefore, a smaller difference between A; and \,,
indicates (on average) a more “balanced” convergence among
different dimensions in the eigenspace. To quantify the above

(14)

5

observation, the NTK Condition Number (NTK_Cond) is
defined as follows [54]:

Am

NTK_COIld e]EX’(.) b\
1

(15)
where O is the randomly initialized network parameters.
Chen et al. demonstrate that the NTK_Cond is negatively
correlated with the architecture’s test accuracy [54]. Hence,
the networks with lower NTK_Cond values tend to have
a higher test accuracy. Similar insights are reported and
leveraged in [89] for NAS of vision transformers (ViTs).

2.3 Gradient-free accuracy proxy

Though the gradient-based proxies do not require the train-
ing process on the entire dataset, backward propagation is
still necessary to compute the gradient. To entirely remove
the gradient computation from the neural architecture search,
several gradient-free proxies have been proposed lately.

2.3.1 Number of linear regions

The number of linear regions in a neural network indicates
the distinct sections into which the network can partition
its input space; thus, it describes the expressivity of a given
network [90], [91], [92], [93]. For instance, a single-neuron
perceptron with a ReLU activation function can divide its
input space into two regions. Previous work shows that one
can estimate the number of linear regions with the help of
the activation patterns in the output activation matrix R [92]:

R=1-17 —sign[z;(1 — z;))" + (1 — 2;)2]]

i

(16)

where 1 is an all-one vector. Next, by removing the repeating
patterns and assigning the weights to each pattern, the
number of linear regions p is as follows:

1
2N 17
p ;ZkRJ_,k (17)

where IR; 1. is the entry of R. Therefore, the number of linear
regions measures how many unique regions the network can
divide the entire activation space into (see Figure 4).

1 0

X Ay B,

1 1 o
= = 001 = =
*1 0 100

Input space 2 B2
[1

Az B3

Fig. 4: The illustration of Logdet proxy; A4;, B;,1 = {1,2, 3}
are the neurons of a multi-layer perceptron. First, the input
space is divided into several linear regions. Next, each region
is encoded by a binary code; then Eq. 18 is applied to
compute the Logdet proxy. (Adapted from [83])

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

2.3.2 Logdet

Logdet is another proxy proposed based on the number of
linear regions [83]:

Nrr —du(ci,cr) Nrr —du(ci,cen)

H = . .
Nrr —du(en,cr) Nrr —du(en,en)
Logdet = log |H|

(18)
where Ny is the total number of linear regions, dy is the
Hamming distance, and ¢; is the binary coding vector of the
i-th linear region as shown in Figure 4. Previous work shows
that networks with a higher Logdet at initialization tend to
have higher test accuracy after training [83].

2.3.3 Topology inspired proxies

The very first pioneering work behind theoretically-
grounded, training-free architecture design was done by
Bhardwaj et al. [53]. While the above proxies are proposed
for a general search space, i.e., without any constraints on
the candidate architectures, as discussed later, these general-
purpose proxies are not better than some naive proxies,
e.g., the number of parameters (#Params) of a model. To
design better accuracy proxies than #Params, Bhardwaj et
al. [53] constrained the search space to specific topologies,
e.g., DenseNets, ResNets, MobileNets, etc., and theoretically
studied how network topology influences gradient propaga-
tion. Inspired by the network science, NN-Mass is defined as
follows [53]:

» #FActual skip connections of cell c

pe #Total possible skip connections of cell ¢

NN-Mass £ Z PcWed.

each cell ¢

(19)

where w. and d, are the width and depth values of a cell?,
respectively. Bhardwaj et al. prove that higher NN-Mass
values indicate better trainability of networks and faster con-
vergence rate during training [90]. Moreover, they also show
that networks with higher NN-Mass values tend to achieve
a higher accuracy. NN-Mass has also been used to perform
training-free model scaling to significantly improve accuracy-
MAC:s tradeoffs compared to highly accurate models like
ConvNexts [94]. In [94], Bhardwaj et al. show the connection
between NN-Mass and expressive power of deep networks
for ResNet-type networks.

As an extension of NN-Mass, NN-Degree is proposed by
relaxing the constraints on the width of networks. Formally,
NN-Degree is defined as follows [95]:

> (we+

each cell ¢

NN-Degree — # Actual skip connections

#Total input channels
(20)
where w, is the average width value of a cell c. Similarly to
NN-Mass, NN-Degree has shown a high positive correlation
with the test accuracy.
Lately, Chen et al. developed another principled approach
for understanding of a neural network connectivity patterns

1. A cell represents a group of layers with the same width values or
commonly used blocks in CNN, e.g., Basic/Bottleneck blocks in ResNet,
and Inverted bottleneck blocks in MobileNet-v2.

6

based on its capacity or trainability [96]. Specifically, they the-
oretically characterized the impact of connectivity patterns
on the convergence of deep networks under gradient descent
training with fine granularity, by assuming a wide network
and analyzing its Neural Network Gaussian Process (NNGP)
[97]. Chen et al. also prove that how the spectrum of an
NNGP kernel propagates through a particular connectivity
pattern would affect the bounds of the convergence rates. On
the practical side, they show that such NNGP-based charac-
terization could act as a simple filtration of “unpromising”
connectivity patterns, to significantly accelerate the large-
scale neural architecture search without any overhead.

2.4 Summary

As shown in Table 2, most of the existing zero-shot proxies
are gradient-based. We note that to calculate the gradient typ-
ically involves the backward propagation. Hence, gradient-
based proxies are less efficient than gradient-free proxies.
Besides, most of the gradient-based proxies (except for Fisher
and Logdet), are designed to measure the trainability of
deep networks. In contrast, most of the gradient-free proxies
(except for NN-Mass) are indicatives of the expressive ca-
pacity of neural networks. Moreover, apart from NTK_Cond,
current proxies fail to quantify the generalization capacity
of deep networks. Future proxy designs should address and
rectify this limitation.

More importantly, as highlighted earlier, the majority of
existing zero-shot proxies (with the exceptions of NTK_Cond
and NN-Mass) concentrate solely on one of three dimensions:
{expressive capacity, generalization capacity, trainability}.
This is a fundamental shortcoming, as a good neural network
seamlessly integrates all three facets. We provide empirical
evidence of this concern in Section 4.

3 BENCHMARKS AND PROFILING MODELS

NAS benchmarks have been proposed to provide a standard
test kit for fair evaluation and comparisons of various NAS
approaches [98], [99], [100], [101]. A NAS benchmark defines
a set of candidate architectures and their test accuracy or
hardware costs. We classify the existing NAS benchmarks as
standard NAS (i.e., without hardware costs) and hardware-
aware NAS benchmarks. Next, we introduce these two types
of NAS benchmarks.

3.1 NAS Benchmarks

We evaluate the zero-shot proxies on the following standard
NAS benchmarks: NASBench-101 provides 423k neural
architectures and their test accuracy on the CIFAR10 dataset,
where each architecture is built by stacking a cell for multiple
times [102]. NATS-Bench contains two sub-search spaces: (i)
NATS-Bench-TSS, also known as NASBench-201; each net-
work in NASBench-201 is also built by repeating a cell mul-
tiple times on three datasets, namely, CIFAR10, CIFAR100,
and ImageNet16-120 [103] (see Figure 5 for more details); (ii)
NATS-Bench-SSS contains 32768 architectures with different
width values for each layer [104]?. TransNAS-Bench-101 is

2. In the rest of the paper, we use the NATS-Bench to represents
NATS-Bench-SSS for short.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Residual

Block

p
‘ Input H Conv }—‘LCeII xN
\ | o -

7
Residual b
esidua
Block xN AS'°';Z'0| FC
(stride=2) 9-)

.-
.-
—

Lo
. (stride=2)

4 N
cell Cell (" Candidate operations }
d ° o | d ° ° l Zeroize 3x3 avg pool 1x1 convolution l

E Skip-connection 3x3 convolution :

L e e _3)

Fig. 5: Search space of NASBench-201. Each architecture in the search space is built by stacking a cell multiple times; each
cell can have six operations (edges in the figure) and each operation has 5 potential different options (drawn with different
colors). NASBench-101 has a very similar search space with more candidate operations. (Adapted from [11])

a benchmark dataset containing network performance on
seven diverse vision tasks, including image classification,
image reconstruction, and pixel-level prediction [105] with
two different sub-search spaces: (i) A cell-level search space
consisting of 4,096 unique networks with different cells; (i)
A macro-level search space containing 3256 unique networks
with different depth values.

Hardware-aware NAS benchmarks. Recent hardware-aware
NAS approaches aim to jointly optimize the test performance
and hardware efficiency of neural architectures. Hence,
hardware-aware NAS benchmarks have been proposed by
incorporating the hardware costs of networks into the search
process. HW-NAS-Bench covers the search space from both
the NASBench-201 and FBNet [106]. It provides all the
architectures in these two search spaces measured/estimated
hardware cost (i.e., latency and energy consumption) on
multiple types of devices. Similarly, Eagle, also known as
BRP-NAS, provides a benchmark that contains latency and
energy for NAS-Bench-201 networks running on up to 13
devices spanning a wide spectrum from the cloud server to
the edge devices; this ameliorates the need for researchers
to have access to these devices [107]. Moreover, Eagle also
proposes an efficient performance estimator for measuring
and predicting the performance of neural networks (cf.
Section 3.2).

3.2 Hardware Performance Models

To incorporate the hardware-awareness into NAS, we also
need to construct models to efficiently and accurately es-
timate the hardware performance (e.g., latency) of given
networks. In this section, we consider latency to characterize
the hardware performance and use NASBench-201 as an
example to compare several representative approaches for
hardware performance models.

BRP-NAS is a pioneering approach that uses deep learn-
ing to build hardware performance models [107]. Specifically,
BRP-NAS first converts a neural network into a directed
acyclic graph by modeling each layer as an edge in a graph
and modeling the input/output as nodes in the graph. Next,
by using different values to present different types of layers,
BRP-NAS uses a Graph Convolution Network (GCN) to
build the hardware performance models. Then the model
is trained with multiple networks and their real hardware

TABLE 3: Comparison of representative hardware perfor-
mance models. Granularity refers to the level of input
features for the hardware performance models, and transfer-
ability denotes the efficiency with which the model for one
hardware platform can be transferred to another. The latency
is measured on Snapdragon-888’s GPU with NASBench-201
on CIFAR100 dataset.

Approach | Method | Granularity | Transferability | RMSE(ms)
BRP-NAS [107] | GCN or MLP | Layer | Low | 4.6

HELP[108] | GCNorMLP | Layer | High | 0.2
NN-Meter [109] | GCN | Kernel | Low | 12

performance data on the target hardware. In particular, for
the networks with fixed depth, BRP-NAS can also use MLP to
build the performance model. Though BRP-NAS can achieve
good prediction results with enough training samples, there
is a limitation for BRP-NAS: the performance model is
trained for a specific hardware platform; if new hardware
comes, one needs to repeat the entire process.

To address the above problem, HELP builds the hardware
performance models by taking the hardware information as
extra input features (e.g., type of the hardware, number of
computing elements, and the size of on-chip memory) [108].
Next, HELP is trained with the latency data collected from
multiple platforms, such as desktop CPU/GPU and mobile
CPU/GPU. This way, if new hardware comes in, HELP only
needs a few samples to conduct the fine-tuning process
(typically around 10). Hence, HELP is very efficient in terms
of the transferability to new hardware. Nevertheless, both
BRP-NAS and HELP are built on the layer-level analysis,
which is relatively coarse for an accurate prediction.

To further improve the accuracy of performance models,
NN-Meter is proposed by analyzing the neural network at
a finer granularity during run-time. Specifically, NN-Meter
computes the kernels of each neural network, which are
originally generated during the compilation process [109]. To
remove the necessity of the compilation process, NN-Meter
utilizes the algorithm to automatically predict the generated
kernels. Hence, as shown in Table 3, NN-Meter has a much
higher prediction quality than both HELP and BRP-NAS.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Correlation between Proxies and Test Accuracy

0.81 SPR@AII
—k— KT@AIl
0.61 —A— SPR@Top 5%
c —8— KT@Top 5%
o
S 0.4
©
[7]
=
o 0.21
@)
0.0
-0.2 " "
< N K & & S N e & o
S e ,066& & o & £ OIS
(3@6/ 3 4/@0 X
Proxy

Fig. 6: The correlation between various proxies and the
test accuracy on NASBench-201 search space for CIFAR-
100 dataset (averaged over 5 seeds). All: all the networks in
the benchmark; Top 5%: the architectures with test accuracy
ranking top 5% in the entire search space. KT and SPR are
short for Kendall’s 7 and Spearman’s p, respectively (same
for other figures).

4 EXPERIMENTAL RESULTS

In this section, we compare the existing proxies on multiple
NAS benchmarks under various scenarios. Besides the
proxies mentioned above, we also evaluate two naive proxies,
i.e., #Params and #FLOPs.

Evaluation Metrics. We use two commonly used criteria to
evaluate the correlations between different zero-shot proxies
and their test accuracies across different benchmarks:

e Spearman’s p. Spearman’s p quantifies the monotonic
relationships between two variables within the range
of [-1, 1], where p = 1 indicates a perfect positive
correlation between these two variables, while p = —1
indicates a perfect negative correlation. We use “SPR”
for short to represent Spearman’s p in the tables and
figures of this paper.

e Kendall’s 7. Similar to Spearman’s p, Kendall’s 7
value is also within [-1, 1]. Typically, Kendall’s 7 is
more robust to error and discrepancies than Spear-
man’s p. We use “KT” for short to represent Kendall’s
7 in the tables and figures of this paper.

In NAS, the architectures with good performance are more
important than those with poor performance. Hence, we also
calculate Spearman’s p and Kendall’s 7 for the architectures
with test accuracy ranking top 5% in the entire search space,
which are denoted as “SPR@Top 5%” and “KT@Top 5%”,
respectively. Similarly, if we calculate Spearman’s p and
Kendall’s 7 for all architectures in the search space, they are
denoted as “SPR@AII” and “KT@AIl”, respectively.

4.1 NAS without hardware-awareness

To compare the performance of these proposed accuracy
proxies, we calculate the correlation of these proxy values
and the real test accuracy. We next discuss the results on two
NAS benchmarks: NASBench-201 and NATS-Bench.

Correlation between Proxies and Test Accuracy

0.8
0.6 1
C
O 0.4
-
©
[}
S 021
o
v SPR@AIl
0.0 —+— KT@AIl
—A— SPR@Top 5%
-0.2 —8— KT@Top 5%
L & & . & N @ & e g
¢°< O éﬁ\g Q\‘}\ 03 M ,(,)0 < (’b& <<\/0
D7 o(o o & <
K g vV
Proxy

Fig. 7: The correlation between various proxies and the test
accuracy on NASBench-201 search space for ImageNet16-120
dataset (averaged over 5 seeds).

Correlation between Proxies and Test Accuracy

0.81 SPR@AII
—#— KT@AIl
—— SPR@Top 5%
067 o KT@Top 5%

0.4+

Correlation

0.2

0.0

S & & & &
& > o(g’ ’bg,\q .
O@b’ & & 48

Fig. 8: The correlation between various proxies and the test
accuracy on NATS-Bench search space for CIFAR100 dataset
(averaged over 5 seeds).

Correlation between Proxies and Test Accuracy

SPR@AII
1 —— kT@AIl
—&— SPR@Top 5%
4 —@— KT@Top 5%

e

o
)

Correlation
o
sy

e
IN)

> & O @
R

» @
QO o
NP & %‘(\/

&
7 o

'\‘}\

€ @
Proxy

Fig. 9: The correlation between various proxies and the test

accuracy on NATS-Bench search space for ImageNet16-120
dataset (averaged over 5 seeds).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

9

TABLE 4: The test accuracy (%) of optimal architectures obtained by various zero-shot proxies (averaged over 5 runs) on
NASBench-201 (NB201) and NATS-Bench (NB201) for CIFAR100 (C100) and ImageNet16-120 (Img16) datasets. The best

results are shown with bold fonts.

Proxies Ground Truth | Grad_norm | SNIP | GraSP | GradSign | Fisher | Jacob_cov | Synflow | Zen-score | #Params | #FLOPs
NBao1 €100 7351 | 60.02 | 60.02 | 6002 | 6002 | 6002 | 6889 | 6222 | 6810 | 7111 | 7111
Img16 4731 | 2927 | 2927 | 546 | 546 | 2927 | 2507 | 2608 | 4077 | 4144 | 4144
NaTs €100 7092 | 4844 | 6836 | 5740 | 5740 | 5314 | 5504 | 6684 | 6992 | 7028 | 7028
Img16 4673 | 4097 | 4563 | 3397 | 3397 | 3580 | 3503 | 3537 | 4627 | 4473 | 4473

4.1.1 Unconstrained search space #FLOPs consistently have the highest or second-highest test

We first investigate the performance of zero-shot proxies for
the unconstrained search spaces, i.e., considering all networks
in the benchmarks.

NASBench-201: We calculate the correlation coefficients be-
tween multiple proxies and the test accuracy on CIFAR-100
and ImageNet16-120 datasets. As shown in Figure 6 and 7,
the #Params generally works best for these two datasets.
Except for the #Params, several gradient-based proxies, such
as Grad_norm, SNIP, GraSP, and Fisher, also work well.

As shown in Table 4, we compare the neural architectures
with the highest test accuracy found via various proxies. The
neural architectures obtained via #Params and #FLOPs have
the highest test accuracy on NASBench-201, which is natural
and expected results given the correlation scores above.
NATS-Bench: Similar to NASBench-201, we calculate the
correlation coefficients between these proxies and the test
accuracy on CIFAR-100 and ImageNet16-120 datasets for
NATS-Bench. As shown in Figure 8 and 9, the #Params and
Zen-score generally work best for these two datasets.
TransNAS-Bench-101: So far, we primarily compare these
zero-shot proxies on the classification tasks. To verify the
effectiveness of these proxies for more diverse applications,
we make comparisons for non-classification tasks selected
from the TransNAS-Bench-101. We pick the largest search
space TransNAS-Bench-101-Micro which contains 4096 total
architectures with different cell structures. We compare these
proxies under the following three non-classification tasks:

e Semantic segmentation. Semantic segmentation in-
volves classifying each pixel in an image into a
predefined category or class. Unlike object detection,
which identifies the bounding boxes around objects,
or image classification, which assigns a single label to
the entire image, semantic segmentation provides a
detailed, pixel-level classification.

o Surface Normal. Similar to semantic segmentation,
surface normal is a pixel-level prediction task that
predicts surface normal statistics.

e Autoencoding. Autoencoding is an end-to-end image
reconstruction task that encodes an input image
into a low-dimension representation vector and then
reconstructs this vector into the input image.

As shown in Figure 10, Jacob_cov typically achieves the
highest correlation for these two tasks and consistently
outperforms #Params. Besides Jacob_cov, the Zen-score also
works well and it consistently surpasses #Params.

We also compare the neural architectures with the highest
test accuracy found via various proxies. As shown in
Table 5, the neural architectures obtained via #Params and

performance on TransNAS-Bench-101.

Overall, it appears that none of these proposed accuracy
proxies consistently have a higher correlation with the test
accuracy compared to #Params and #FLOPs for these two
NAS benchmarks.

4.1.2 Constrained search space

We note that the architectures with high accuracy are much
more important than those networks with low test accuracy.
Hence, we calculate the correlation coefficient for the architec-
tures with test accuracy ranking top 5% in the entire search
space. Figure 6 and 7 show that, compared to ranking without
constraints (i.e., considering all architectures), the correlation
score has a significant drop except for the Zen-score on
NASBench-201. Similarly, on NATS-Bench, Figure 8 and 9
show that most of the proxies have a significant correlation
score drop when constrained to the top 5% networks in the
search space, including #Params and #FLOPs. By switching
to non-classification tasks, we observe a similar trend in
Figure 10, i.e., there’s a significant correlation score drop
under these constrained scenarios.

This drop in correlation score for the top 5% of networks
means the zero-shot NAS is more likely to miss the optimal
or near-optimal networks. Table 4 shows that there is a big
accuracy gap between the ground truth and the networks
obtained by each proxy. results become even worse with
a search that has more relaxed hardware constraints (see
Sec 4.4).

As shown in previous literature, #Params and #FLOPs
outperform other proxies in multiple benchmarks [63]. Hence,
we dig deep into the effectiveness of #Params and #FLOPs
by gradually making the search space more constrained.
As shown in Figure 13 and Figure 14, if we compute the
correlation for networks with higher accuracy, both #Params
and #FLOPs have a significant drop in correlation score.

Given the above results, we conclude that all of the
existing proxies (including #Params and #FLOPs) do not
correlate well for the network with high accuracy. This is a
fundamental drawback because what matters most for NAS
are precisely these networks with high accuracy. Hence, there
is great potential for designing better proxies that could yield
high correlation scores for these top networks.

4.1.3 Specific Network Families

We remark that many popular neural architectures are not
included in most NAS benchmarks. Hence, in this section,
we consider several commonly used network families as
the search space since they are widely used in various
applications. As shown in Figure 11, if we search within

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

10

TABLE 5: The test performance of optimal architectures obtained by various zero-shot proxies (averaged over 5 runs) on
TransNAS-Bench-101 benchmarks. The best results are shown with bold fonts. Here, the evaluation metric for semantic

segmentation is mIoU, while the rest two use SSIM [110].

Task GroundTruth | Gradnorm | SNIP | GraSP | GradSign | Fisher | Jacob_cov | Synflow | Zen-score | #Params | #FLOPs
Gooemantic 94.61 ‘ 91.66 ‘ 94.43 ‘ 94.53 ‘ 90.19 ‘ 91.89 ‘ 94.34 ‘ 94.46 ‘ 94.50 ‘ 94.50 ‘ 94.50
egmentation

Surface Normal 05 | 055 | 053 | 038 | 057 | 057 | 055 | 055 | 055 | 055 | 055
Autoencoding 0.58 ‘ 0.36 | 033 | 033 | 035 | 049 | 042 | 046 | 046 | 046 | 046

TABLE 6: Comparison of zero-shot proxies based NAS vs. one-shot NAS on ProxylessNAS search space. The results are

averaged over three runs.

Method | One-shot NAS | Grad_norm | Synflow | GradSign | Jacob_cov | NTK_Cond | Zen-score | Params | FLOPs
Top-1on ImageNet-1K | 7439 | 7146 | 7002 | 7317 | 7031 | 7363 | 7178 | 7287 | 73.08
mAP on COCO | 0.28 | 02 | o021 | 02 | 024 | 027 | 025 | 026 | 028
Search cost (GPU Hours) | 200 | 89 | 88 | 97 | 92 | & | 16 | 003 | 15

networks from ResNet and Wide-ResNet families, then
SNIP, Zen-score, #Params, #FLOPs, and NN-Mass have a
significantly high correlation with the test accuracy (i.e.,
Spearman’s p > 0.9).

As shown in Figure 12, Grad_norm, SNIP, Fisher, Synflow,
Zen-score, and NN-Mass work best for the MobileNet-v2
network family, which is slightly better than the two naive
proxies #Params and #FLOPs. These results show that there
is great potential in designing good proxies for a constrained
yet widely used search space.

4.2 Large-scale Dataset

To further compare these proxies in more complicated
scenarios, we illustrate the performance for ImageNet-1K
classification, COCO object detection, and ADE20K semantic
segmentation tasks.

ImageNet-1K classification. We first compute the zero-shot
proxies for the CNN architectures in the model space of
TIMM [111]. Notably, we only consider networks that are
trained standalone on ImageNet-1K without pre-training or
distillation. In total, we evaluate 200 CNNs and report the
correlation between Top-1 accuracy and multiple proxies in
Figure 15. As shown, #Params and #FLOPs still have a higher
correlation than these zero-shot proxies. This is consistent
with our observations on NAS benchmarks.

We also compare the performance of these proxy-based
NAS with one-shot NAS within the same search space. We
conduct the comparison on the MobileNet-V2 based search
space under the same #FLOPs budget of 600M. Specifically,
for proxy-based NAS, we use the evolutionary algorithm
to search for the architecture with the highest proxy values;
we conduct the search for at most 10K steps. For the one-
shot NAS, we use the same algorithm from [36]. We train
the obtained architecture for 150 epochs under the standard
data augmentation configurations. We use the SGD optimizer
with an initial learning rate of 0.1 and a cosine annealing
learning rate schedule.

As shown in Table 6, compared to one-shot NAS, zero-
shot proxy-based NAS has a slight accuracy degradation
(less than 1%), but requires orders of magnitude less search
costs. Moreover, when comparing these zero-shot proxies,

NTK_Cond based search performs closest to one-shot NAS,
but at a higher search cost than other proxies. These results
highlight an intrinsic trade-off between search cost and the
accuracy of the obtained architectures.
COCO object detection. Following the standard practice in
NAS, we employ the architectures obtained on ImageNet-1K
(shown in Table 6) as the backbone for detection models.
By using the detection head from NanoDet [112], we then
train these networks for 50 epochs on COCO following the
same training setup as NanoDet. As shown in Table 6, the
results follow a trend similar to that of ImageNet-1K. More
precisely, #fLOPs and NTK_Cond based zero-shot NAS yield
performance that is the same or very close to the one-shot
NAS.
ADE20K semantic segmentation. We compute these zero-
shot proxies for the CNN architecture in the model space
of PyTorch Segmentation [111]. We vary both the backbone
and segmentation heads to obtain multiple segmentation
networks; we then train these models from scratch and get
their test performance. In total, we evaluate 200 CNNs and
report the correlation between pixel accuracy (or mloU) and
various proxies in Figure 16. As shown, #Params and #FLOPs
have a higher correlation than the other zero-shot proxies.
To conclude, these comprehensive evaluations on these
large-scale datasets reaffirm the dominance of #Params and
#FLOPs over other proxies in multiple scenarios. Therefore,
future works should make comprehensive comparisons
under various tasks and datasets to show a consistent
advantage over #Params and #FLOPs. Besides, while zero-
shot proxy-based NAS exhibits certain efficiencies, there
remains a trade-off between search cost and test performance
accuracy.

4.3 Vision Transformers

Until now, our evaluations have primarily focused on CNNs;
however, with the recent surge in their performance and pop-
ularity, vision transformers (ViTs) are becoming increasingly
important in the realm of computer vision [5]. Therefore, in
this section, we evaluate these proxies using the ViT model
space for ImageNet-1K.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Correlation between Proxies and mloU

0.8

0.6

A

—#— SPR@AII
—— KT@AIl

—A— SPR@Top 5%
—@— KT@Top 5%

Correlation
o
»

0.2
0.0
S & 8 . & & & o <
N S 9 3 &
o S EAR Y cﬁé\\ & %“\9
& ¢ N G
Proxy

(a) Semantic Segmentation

Correlation between Proxies and SSIM

c
o
2
©
(0]
=
o
o 04 7 sPRaAN
: —k— KT@AIl
—A— SPR@Top 5%
—8— KT@Top 5%
_061 @Top 5%
<
R S
® S O &S P S & &);f(\/
& & & P 4E
Proxy
(b) Autoencoding
Correlation between Proxies and SSIM
—- SPR@AII
—k— KT@AIl
0.6 { —&— SPR@Top 5%
c —@— KT@Top 5%
e
E 0.4
(9]
=
o
O 0.2
0.0
N & o8 & & S @ © °
o S & & K & & q@@@ &
’ X 5 N
S ¢ Nl CA
Proxy

(c) Surface Normal

Fig. 10: The correlation between various proxies and test
performance on TransNAS-Bench-101 for Semantic Segmen-
tation, Autoencoding, and Surface Normal tasks (averaged
over 5 seeds).

11

Correlation between Proxies and Test Accuracy

1.001
0.75
_5 0.501
=
©
E oo ik
E
o
O 0.001
~0.25/ _—
mm SPR
,&,Q PP P
& 2 (5\"") q\é& »05'0 Aé\o <€ 3(9‘ ,b(?'é\ Q\/OQ eﬁ‘p
(7@6/ g /155\ ,}3 * S

Proxy

Fig. 11: The correlation between various proxies and the
test accuracy on a set of ResNets and Wide-ResNets for
ImageNet-1K classification (averaged over 5 seeds).

Correlation between Proxies and Test Accuracy

1.0+
=}
=
o
g 0.0 L
5]
O
—0.51 . KT
s SPR
X & & 5 R @ & £ P
S @ S o &L & & @
2 G PGS & 8 &
<
Proxy

Fig. 12: The correlation between various proxies and the
test accuracy on a set of MobileNet-v2-based networks for
ImageNet-1K classification (averaged over 5 seeds).

Specifically, we compare these zero-shot proxies for the
ViTs in the model space of TIMM [111]. Notably, we only
include networks that are trained standalone on ImageNet-
1K without pre-training or distillation. In total, we evaluate
100 ViTs and report the correlation between Top-1 accuracy
and various proxies in Figure 17. The results show that
#Params and #FLOPs has higher correlation score with the
test accuracy than the zero-shot proxies. This is consistent
with our observations on CNNs. In conclusion, whether
analyzing CNNs or ViTs, the superior correlation of #Params
and #FLOPs over zero-shot proxies is consistent.

In practical applications, test performance is not the
only design consideration. Indeed, the models obtained by
NAS should meet some hardware constraints, especially for
deployment on edge devices. Hence, we next explore the
performance of these proxies for the hardware-aware search
scenarios.

4.4 Hardware-aware NAS

In this part, we conduct the hardware-aware NAS using the
zero-shot proxies introduced above. Specifically, we use these

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Correlation between Proxies and Test Accuracy

o
~

o
o

o
e

I
IS

Correlation

—&— #Params - SPR
—e— #Params - KT
—=— #FLOPs - SPR
—*— #FLOPs - KT

o
w

0.2

100 90 80 70 60 50 40 30 20 10 0
Percentage of Networks with Accuracy Ranking (%)

Fig. 13: The correlation between #Params & #FLOPs and the
test accuracy under various ratios of networks on NASBench-
201 for CIFAR100 dataset (averaged over 5 seeds). 20% means
computing the correlation scores only for the networks whose
test accuracy ranks top 20% in the benchmark; 100% means
considering all the networks in the benchmark (same for
Figure 14). From left to right, the search space is more and
more constrained to neural architectures with high accuracy.

Correlation between Proxies and Test Accuracy

+ #Params - SPR
+ #Params - KT
—=&— #FLOPs - SPR
—#+— #FLOPs - KT

Correlation
o o o o o o
w B v (=)} ~]

o
N

100 9 80 70 60 50 40 30 20 10 O
Percentage of Networks with Accuracy Ranking (%)

Fig. 14: The correlation between #Params & #FLOPs and the
test accuracy under various ratios of networks on NATS-
Bench for ImageNet16-120 dataset (averaged over 5 seeds).

zero-shot proxies instead of the real test accuracy to search
for the Pareto-optimal networks under various constraints.
We next introduce the results on NASBench-201 (with HW-
NAS-Bench) and NATS-Bench.

4.4.1 NASBench-201 / HW-NAS-Bench

We use EdgeGPU (NVIDIA Jetson TX2) as the target hard-
ware and use the energy consumption data from HW-NAS-
Bench; then we set various energy consumption values as
the hardware constraints. Next, we use different accuracy
proxies to traverse all candidate architectures in the search
space and obtain the Pareto-optimal networks under various
energy constraints.

To illustrate the quality of these networks, we plot these
networks and the ground truth results obtained via actual
accuracy in Figure 18. As shown, when the energy constraint

12

Correlation between Proxies and Test Accuracy

0.61
B SPR
. KT
0.41
c
S 0.2
=
E .
o
S F
_0.2<
~0.41
3 3
& oﬁ\Q & &S &S & éd_ & K
o5 A P @
o ¢ T ¥

Proxy
Fig. 15: The correlation between various proxies and the

test accuracy on the CNNs model space for ImageNet-1K
classification.

Correlation between Proxies and Pixel Accuracy

067 wmm spr
0.5 mmm KT
0.44
C
o
= 0.3
©
2 0.2
o
U 0.1< .
0.0‘ ' L
—0.1
& @8 @éz o& ~é°é N & 3
» (A A M A S I
& © ¢ G
Proxy
(a) Pixel Accuracy
Correlation between Proxies and mloU
0.6
c 0.4
ie]
i
f
9]
£ 0.2
o
(@]
0.01
0@6

Fig. 16: The correlation between various proxies and pixel
accuracy (or mloU) on ADE20K semantic segmentation.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Correlation between Proxies and Test Accuracy

SPR
KT
0.6 1
c
o
i~
£ 0.4
(0]
=
o
O
0.2 I l
0.01
\\ {— fo
g 9 L 4
b‘\ 5 0@ 89\ Q‘(}\ &7 *&\0 «"& v Q”‘bé\ &5‘\9
0@ \'b(’ 2 Py X

Fig. 17: The correlation between various proxies and the
test accuracy on the ViT model space for ImageNet-1K
classification.

is tight (e.g., less than 10m]), most of the proxies could find
networks very close to the real Pareto-optimal, except the
Jacob_cov. However, when the energy constraint is more
relaxed (e.g., more than 20m]J), only #Params, #FLOPs, and
Jacob_cov can find several networks close to the ground
truth.

4.4.2 NATS-Bench

We measure the latency data on NVIDIA GTX-1080 for
NATS-Bench. We then use different accuracy proxies to
traverse all candidate architectures to obtain the Pareto-
optimal networks under various latency constraints. As
shown in Figure 19, we plot these networks and the ground
truth results. When we set the latency constraint to around
50ms, only #Params, SNIP, and Zen-score can still find the
networks that nearly match the real Pareto-optimal networks.

The results on these two benchmarks further verify that
current proxies don’t correlate well for networks with high
accuracy because the real Pareto-optimal networks have
higher accuracy when the hardware constraints are more
relaxed. This observation suggests a great potential to design
better proxies in this scenario.

4.5 Discussion and future work
4.5.1 NAS Benchmarks

Diversity of search space: We remark that the search space of
most existing NAS benchmarks only contains cell-based neu-
ral architectures. To further improve the generality of NAS
benchmarks, the community may need to incorporate new
architectures from more diverse search spaces. For instance,
the NATS-Bench has added architectures with different cells
for different stages of the search space. Moreover, the cells
in these existing benchmarks are similar to the DARTS
cell structure. However, in practice, the inverted bottleneck
blocks from MobileNet-v2 are more widely used for higher
hardware efficiency. Therefore, the next direction of NAS
benchmarks may need to cover a more practical and widely
used search space, such as FBNet-v3.

Awareness of hardware efficiency: So far, only HW-NAS-Bench
provides multiple hardware constraints on several types

13

of hardware platforms, but it does not have the accuracy
data for most of the networks in the benchmark. Thus,
we recommend future NAS benchmarks to incorporate
both accuracy and hardware metrics for typical hardware
platforms.

4.5.2 Zero-shot proxies

Why #Params works: As shown in Section 4.1.1, #Params
achieves a higher correlation than other proxies with multiple
datasets and multiple benchmarks for unconstrained search
space. One may wonder why such a trivial proxy works so
well. In general, a good neural architecture should satisfy
the following properties: good convergence/trainability
and high expressive capacity. We provide the following
observations:

o Expressive Capacity It is well known that a net-
work with infinite width or depth, can express any
type of complex functions with an arbitrarily small
errors [113], [114], [115]. Moreover, previous works
show that, with the depth or width values increasing,
the error w.r.t. ground truth functions will gradually
decrease. In other words, more parameters capture
the higher expressive capacity of a given neural
network [68].

o Generalization Capacity Previous work reveals that
a network with more parameters tends to have
higher test accuracy under an appropriate training
setup [116].

o Trainability On the one hand, given similar depth,
the wider networks have better trainability and higher
convergence rates, and clearly more parameters [53].
On the other hand, most of the networks evaluated
on popular benchmarks share a similar depth value.
Hence, within these benchmarks, more parameters
will also indicate a better trainability.

Hence, #Params captures both the expressivity and train-
ability of the networks in these benchmarks. In contrast,
most of the proposed proxies usually emphasize either the
expressivity or the trainability of networks (but not both).
That may be why #Params outperforms these proposed
proxies. Hence, future work should aim to design a proxy
that could indicate both the convergence/trainability and
expressive and generalization capacity of a given network.
For instance, recently proposed proxy ZiCo indicates both
trainability and generalization capacity of neural networks
thus consistently outperforming #Params in multiple NAS
benchmarks [117].

When #Params fails: (i) As shown in this section, when ac-
counting for the architectures with test accuracy ranking top
5%, several proxies outperform both #Params and #FLOPs
for some benchmarks. Furthermore, these top-performing
network architectures are most important since NAS focuses
on obtaining the networks with high accuracy. (ii) Many
proxies work well in the constrained search space, such as the
MobileNet and ResNet families. These networks are widely
used in many applications (e.g., MobileNet-v2 for EdgeAl).
Clearly, the above two failing cases are very important to
push zero-shot NAS to more practical scenarios. Hence, there
is a great potential to explore better zero-shot proxies in the
above cases.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Pareto-optimal via #FLOPs

Pareto-optimal via #Params

14

Pareto-optimal via GraSP

PGP e B O T O e i
&ie '-"'T,:":,“E'.:,'Z?%' o

S S S
=50 =50 =50
> > >
9 9 9
C a0 C a0 C a0 - .
5 5 5
9] 9] 9]
® 30 ® 30 ® 30
o o o
]]]
© 20 © 20 2 20
10 —e— Ground truth 10 —e— Ground truth 10 —e— Ground truth
o —#— #FLOPs o —#— #Params o —#— GraSP
5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35
Energy on EdgeGPU (m)) Energy on EdgeGPU (m)) Energy on EdgeGPU (m))
(a) #FLOPs (b) #Params (c) GraSP
Pareto-optimal via SNIP Pareto-optimal via Grad_norm Pareto-optimal via Fisher
70 - 70 - 70 S aY el B o o2
PR L
CRr 3 @ el
60 60 60 + R
S I = .
=50 =50 =50
> > > N
9 9 9 g
C a0 C a0 C a0 B gt
5 5 5
9] 9] 9]
® 30 ® 30 8 30
o o o
B] @
2 20 2 20 2 20
10 —e— Ground truth 10 —e— Ground truth 10 —e— Ground truth
o —#— SNIP o —w#— Grad_norm o —#— Fisher
5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35
Energy on EdgeGPU (m)) Energy on EdgeGPU (m)) Energy on EdgeGPU (m))
(d) SNIP (e) Grad_norm (f) Fisher information
Pareto-optimal via Synflow Pareto-optimal via Jacob_cov Pareto-optimal via Zen-score
70 R e 70 - 70 -
R
wee gl MY
60 .-) 60 60
S : I)
S50 S50 S50
> - > >
9 g 9 9
a0 S S a0 a0
5 5 5
9] 9] 9]
@ 30 30 30
o o o
B B]
2 20 2 20 2 20
10 —e— Ground truth 10 —e— Ground truth 10 —e— Ground truth
o —#— Synflow o —a— Jacob_cov o —#— Zen-score
5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35

Energy on EdgeGPU (m))

(g) Synflow

Energy on EdgeGPU (m))

(h) Jacob_cov

Energy on EdgeGPU (m))

(i) Zen-score

Fig. 18: Pareto-optimal networks obtained via various proxies for CIFAR100 dataset on NASBench-201, and for various
energy consumption constraints on an EdgeGPU (NVIDIA Jetson TX2). The gray points in these figures are candidate

networks in the search space.

Search method: Though #Params outperforms most proxies in
several scenarios in terms of correlation coefficients, there are
alternative search methods to use these zero-shot proxies. For
example, as demonstrated in [54], to better leverage these
proxies, one potential search method can merge all candidate
networks into a supernet and then apply these proxies to
prune the network at the initialization stage until hardware
constraints are met. This way, the time efficiency of zero-shot
NAS approaches can be further improved since the search
space is gradually compressed with pruning going on.

Theoretical support: We remark that most gradient-based
proxies are first proposed to estimate the importance of
each parameter or neuron/channel of a given network, thus
originally applied to the model pruning problem space
instead of ranking networks. Hence, the effectiveness of
these gradient-based proxies for zero-shot NAS needs a
more profound understanding from a theoretical perspective.
Moreover, though most gradient-free proxies are usually
presented with some theoretical analysis for NAS, as shown
in Section 4.1 and Section 4.4, they generally have a lower

correlation with the gradient-based ones. The theoretical
understanding of why these zero-shot proxies can or cannot
estimate the test accuracy of different networks is still an
open question.

Customized proxy for different types of networks: As mentioned
in Section 4.1.3, several zero-shot proxies do not work well
for a general search space, but do show a great correlation
with the test accuracy and beat the #Params on constrained
search spaces. In fact, Section 4.1 and Section 4.4 show that
designing a zero-shot proxy that generally works well is
extremely difficult. One potential direction for the design of
zero-shot proxies may lie in partitioning the entire search
space into several sub-spaces and then proposing customized
proxies specifically designed for different sub-spaces.

5 CONCLUSION

In this paper, we have presented a comprehensive review
of existing zero-shot NAS approaches. To this end, we
have first introduced accuracy proxies for zero-shot NAS
by providing theoretical inspirations behind these proxies,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Pareto-optimal via #FLOPs

IS
@

IS
1=}

Pareto-optimal via #Params

IS
o

IS
1=}

Pareto-optimal via GraSP

40

15

335 335 335
© © ©
e I e
5 5 5
Y Y S 30
® ® . ®
o o o
3 25 3 25 ; 3 25
= = =
o .
20 —e— Ground truth 20 —e— Ground truth 20 —e— Ground truth
—#— #FLOPs —#— #Params —#— GraSP
425 450 475 50.0 525 550 57.5 60.0 625 425 450 475 500 525 550 57.5 60.0 625 425 450 475 50.0 525 550 57.5 60.0 625
Latency on GTX1080 (ms) Latency on GTX1080 (ms) Latency on GTX1080 (ms)
(a) #FLOPs (b) #Params (c) GraSP
Pareto-optimal via SNIP Pareto-optimal via Grad_norm Pareto-optimal via Fisher
45 45 45
— 40 — 40 — 40
335 335 335
© © ©
e e e
3 3 3
S 30 S 30 S 30
® . ® . @ .
o o o
3 25 . 3 25 . 3 25 .
= . = =
o o o
20 —e— Ground truth 20 —e— Ground truth 20 —e— Ground truth
—#— SNIP —w#— Grad_norm —#— Fisher
425 450 475 50.0 525 550 57.5 60.0 625 425 450 475 50.0 525 550 57.5 60.0 625 425 450 475 50.0 525 550 57.5 60.0 625
Latency on GTX1080 (ms) Latency on GTX1080 (ms) Latency on GTX1080 (ms)
(d) SNIP (e) Grad_norm (f) Fisher information
Pareto-optimal via Synflow Pareto-optimal via Jacob_cov Pareto-optimal via Zen-score
45 45 45
— 40 — 40 — 40
R R R
335 335 335
© © ©
e e e
3 3 3
S 30 S 30 S 30
© © ©
o o o
3 25 3 25 3 25
= = =
20 —e— Ground truth 20 —e— Ground truth 20 —e— Ground truth
—#— Synflow —a— Jacob_cov —#— Zen-score
425 450 475 500 525 550 57.5 60.0 625 425 450 475 50.0 525 550 57.5 60.0 625 425 450 475 50.0 525 550 57.5 60.0 625

Latency on GTX1080 (ms)

(g) Synflow

Latency on GTX1080 (ms)

(h) Jacob_cov

Latency on GTX1080 (ms)

(i) Zen-score

Fig. 19: Pareto-optimal networks obtained via various proxies for ImageNet16-120 dataset on NATS-Bench, and for various
latency constraints on NVIDIA GTX1080. The gray points in these figures are candidate networks in the search space.

and several commonly used NAS benchmarks. We then
have introduced several popular approaches for hardware
performance predictions. We have also compared the existing
proxies against two naive proxies, namely, #Params and
#FLOPs. By calculating the correlation between these proxies
and the real test accuracy, we have shown that the proposed
proxies to date are not necessarily better than #Params and
#FLOPs for these tasks for unconstrained search spaces (i.e.,
considering all architectures in benchmarks). However, for
constrained search spaces (i.e., when considering only net-
works with high accuracy), we have revealed that the existing
proxies, including #Params and #FLOPs, has much worse
correlation scores with the real accuracy than unconstrained
scenarios. Based on these analyses, we have explained why
#Params work and when #Params fail. Finally, we have
pointed out several potential research directions to design
better benchmarks for better zero-shot NAS and multiple
ideas that may enable the design of better zero-shot NAS
approaches.

ACKNOWLEDGMENTS

Radu Marculescu and Guihong Li are supported in part by
the NSF grant CNS 2007284, and in part by the iIMAGINE
Consortium [Link]. Z. Wang is in part supported by NSF
Scale-MoDL (#2133861).

REFERENCES

[1] A. Krizhevsky, L. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems, 2012.

[2] S.Liu and W. Deng, “Very deep convolutional neural network
based image classification using small training sample size,” in
2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR),
2015.

[3] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely Connected Convolutional Networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition,
2017.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770-778.

[5] A.Dosovitskiy et al., “An image is worth 16x16 words: Transform-
ers for image recognition at scale,” in International Conference
on Learning Representations, 2021.

https://imagine.utexas.edu/

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

6]
(7]

(8]

(9]

(10]

(1]
[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

T. B. Brown et al., “Language Models are Few-Shot Learners,”
arXiv preprint arXiv:2005.14165, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.
B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing Neural
Network Architectures using Reinforcement Learning,” arXiv
preprint arXiv:1611.02167, 2016.

B. Zoph and Q. V. Le, “Neural Architecture Search with Reinforce-
ment Learning,” arXiv preprint arXiv:1611.01578, 2016.

C. Liu et al., “Progressive Neural Architecture Search,” in
Proceedings of the European Conference on Computer Vision
(ECCV), 2018.

H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architec-
ture search,” arXiv preprint arXiv:1806.09055, 2018.

T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search:
A survey,” The Journal of Machine Learning Research, 2019.

H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient Neural
Architecture Search via Parameters Sharing,” in International
Conference on Machine Learning. PMLR, 2018, pp. 4095-4104.
E. Real et al., “Large-scale Evolution of Image Classifiers,” in
International Conference on Machine Learning. PMLR, 2017.

X. Gong, S. Chang, Y. Jiang, and Z. Wang, “Autogan: Neu-
ral architecture search for generative adversarial networks,”
in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 3224-3234.

S. Xie, H. Zheng, C. Liu, and L. Lin, “SNAS: stochastic neural
architecture search,” in International Conference on Learning
Representations, 2019.

B. Wu et al., “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019.

A. Wan, X. Dai, P. Zhang, Z. He, Y. Tian, S. Xie, B. Wu, M. Yu,
T. Xu, K. Chen et al., “Fbnetv2: Differentiable neural architecture
search for spatial and channel dimensions,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 12965-12974.

L. Li and A. Talwalkar, “Random search and reproducibility for
neural architecture search,” in Uncertainty in artificial intelligence.
PMLR, 2020, pp. 367-377.

K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. P.
Xing, “Neural architecture search with bayesian optimisation and
optimal transport,” Advances in neural information processing
systems, vol. 31, 2018.

K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M. Salzmann, “Evaluating
the search phase of neural architecture search,” arXiv preprint
arXiv:1902.08142, 2019.

H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and
K. Kavukcuoglu, “Hierarchical representations for efficient ar-
chitecture search,” arXiv preprint arXiv:1711.00436, 2017.

H. Cai, T. Chen, W. Zhang, Y. Yu, and]. Wang, “Efficient
architecture search by network transformation,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1,
2018.

R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architec-
ture optimization,” Advances in neural information processing
systems, vol. 31, 2018.

C. Zhang, M. Ren, and R. Urtasun, “Graph hypernetworks for
neural architecture search,” arXiv preprint arXiv:1810.05749, 2018.
H. Zhou, M. Yang,]. Wang, and W. Pan, “Bayesnas: A bayesian ap-
proach for neural architecture search,” in International conference
on machine learning. PMLR, 2019, pp. 7603-7613.

A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan,
W. Wang, Y. Zhu, R. Pang, V. Vasudevan et al,, “Searching
for mobilenetv3,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2019, pp. 1314-1324.

J. Yu, P. Jin, H. Liu, G. Bender, P-J. Kindermans, M. Tan,
T. Huang, X. Song, R. Pang, and Q. Le, “Bignas: Scaling up neural
architecture search with big single-stage models,” in European
Conference on Computer Vision. Springer, 2020, pp. 702-717.
M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search
for mobile,” in Proceedings of the IEEE/CVF Conference on

[31]

(32]

(33]

(34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

(44]

[45]

[46]

(47]

(48]

(49]

[50]

16
Processing Clusters,” in ACM Special Interest Group on Data
Communication, 2019, pp. 270-288.
W.-L. Chiang et al., “Cluster-gcn: An Efficient Algorithm for
Training Deep and Large Graph Convolutional Networks,” in
Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2019, pp. 257-266.
Y. Xu, L. Xie, X. Zhang, X. Chen, G.-]. Qi, Q. Tian, and H. Xiong,
“Pc-darts: Partial channel connections for memory-efficient archi-
tecture search,” arXiv preprint arXiv:1907.05737, 2019.
X. Dong and Y. Yang, “Searching for a robust neural architecture in
four gpu hours,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 1761-1770.
A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hut-
ter, “Understanding and robustifying differentiable architecture
search,” arXiv preprint arXiv:1909.09656, 2019.
X. Chen, L. Xie, J]. Wu, and Q. Tian, “Progressive differentiable
architecture search: Bridging the depth gap between search
and evaluation,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2019, pp. 1294-1303.
H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural
architecture search on target task and hardware,” in International
Conference on Learning Representations, 2019.
H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all:
Train one network and specialize it for efficient deployment,” in
International Conference on Learning Representations, 2020.
Paper with code, “Neural architecture search
on imagenet.” https:/ /paperswithcode.com/sota/
neural-architecture-search-on-imagenet, 2023.
D. Stamoulis et al., “Single-Path NAS: Designing Hardware-
Efficient ConvNets in less than 4 Hours,” arXiv preprint
arXiv:1904.02877, 2019.
X. Chu, B. Zhang, and R. Xu, “Fairnas: Rethinking evaluation fair-
ness of weight sharing neural architecture search,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision,
2021, pp. 12239-12248.
Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun,
“Single path one-shot neural architecture search with uniform
sampling,” in European conference on computer vision. Springer,
2020, pp. 544-560.
W. Chen, X. Gong, X. Liu, Q. Zhang, Y. Li, and Z. Wang,
“Fasterseg: Searching for faster real-time semantic segmentation,”
in International Conference on Learning Representations, 2020.
M. Wu, H. Lin, and C. Tsai, “A training-free genetic neu-
ral architecture search,” in ACM ICEA '21: 2021 ACM
International Conference on Intelligent Computing and its
Emerging Applications, Jinan, China, December 28 - 29, 2022.
ACM, 2021, pp. 65-70.
Y. Shu, Z. Dai, Z. Wu, and B. K. H. Low, “Unifying and boosting
gradient-based training-free neural architecture search,” CoRR,
vol. abs/2201.09785, 2022.
M. Javaheripi, S. Shah, S. Mukherjee, T. L. Religa, C. C. T.
Mendes, G. H. de Rosa, S. Bubeck, E. Koushanfar, and D. Dey,
“Litetransformersearch: Training-free on-device search for efficient
autoregressive language models,” CoRR, vol. abs/2203.02094,
2022.
Q. Zhou, K. Sheng, X. Zheng, K. Li, X. Sun, Y. Tian, J. Chen, and
R. Ji, “Training-free transformer architecture search,” CoRR, vol.
abs/2203.12217, 2022.
T. M. Ingolfsson, M. Vero, X. Wang, L. Lamberti, L. Benini, and
M. Spallanzani, “Reducing neural architecture search spaces with
training-free statistics and computational graph clustering,” in CF
'22: 19th ACM International Conference on Computing Frontiers,
Turin, Italy, May 17 - 22, 2022. ACM, 2022, pp. 213-214.
L. T. Tran and S.-H. Bae, “Training-free hardware-aware neural
architecture search with reinforcement learning,” Journal of
Broadcast Engineering, vol. 26, no. 7, pp. 855-861, 2021.
L.-T. Tran, M. S. Ali, and S.-H. Bae, “A feature fusion based
indicator for training-free neural architecture search,” IEEE Access,
vol. 9, pp. 133914-133 923, 2021.
T. Do and N. H. Luong, “Training-free multi-objective evolu-
tionary neural architecture search via neural tangent kernel and
number of linear regions,” in International Conference on Neural
Information Processing. Springer, 2021, pp. 335-347.

Computer Vision and Pattern Recognition, 2019, pp. 2820-2828.
H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng,
and M. Alizadeh, “Learning Scheduling Algorithms for Data

[51]

L. Xiang, L. Dudziak, M. S. Abdelfattah, T. Chau, N. D. Lane,
and H. Wen, “Zero-cost proxies meet differentiable architecture
search,” arXiv preprint arXiv:2106.06799, 2021.

https://paperswithcode.com/sota/neural-architecture-search-on-imagenet
https://paperswithcode.com/sota/neural-architecture-search-on-imagenet

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

[52]

(53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

D. Zhou, X. Zhou, W. Zhang, C. C. Loy, S. Yi, X. Zhang, and
W. Ouyang, “Econas: Finding proxies for economical neural
architecture search,” in Proceedings of the IEEE/CVF Conference
on computer vision and pattern recognition, 2020, pp. 11396—
11404.

K. Bhardwaj, G. Li, and R. Marculescu, “How does topol-
ogy influence gradient propagation and model performance of
deep networks with densenet-type skip connections?” in IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
2021, virtual, June 19-25, 2021. Computer Vision Foundation /
IEEE, 2021.

W. Chen, X. Gong, and Z. Wang, “Neural architecture search on
imagenet in four gpu hours: A theoretically inspired perspective,”
in International Conference on Learning Representations, 2021.
M. S. Abdelfattah, A. Mehrotra, £. Dudziak, and N. D. Lane, “Zero-
cost proxies for lightweight nas,” in International Conference on
Learning Representations, 2021.

X. He, K. Zhao, and X. Chu, “Automl: A survey of the state-of-
the-art,” Knowledge-Based Systems, vol. 212, p. 106622, 2021.

M. Wistuba, A. Rawat, and T. Pedapati, “A survey on neural
architecture search,” arXiv preprint arXiv:1905.01392, 2019.

P. Ren, Y. Xiao, X. Chang, P-Y. Huang, Z. Li, X. Chen, and X. Wang,
A comprehensive survey of neural architecture search: Challenges
and solutions,” ACM Computing Surveys (CSUR), 2021.

Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan,
“A survey on evolutionary neural architecture search,” IEEE
transactions on neural networks and learning systems, 2021.
L. Xie, X. Chen, K. Bi, L. Wei, Y. Xu, L. Wang, Z. Chen, A. Xiao,
J. Chang, X. Zhang, and Q. Tian, “Weight-sharing neural archi-
tecture search: A battle to shrink the optimization gap,” ACM
Comput. Surv., vol. 54, no. 9, oct 2021.

H. Benmeziane, K. El Maghraoui, H. Ouarnoughi, S. Niar,
M. Wistuba, and N. Wang, “Hardware-aware neural architecture
search: Survey and taxonomy,” in Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21.
International Joint Conferences on Artificial Intelligence Organi-
zation, 8 2021, pp. 4322-4329, survey Track.

C. White, M. Khodak, R. Tu, S. Shah, S. Bubeck, and D. Dey, “A
deeper look at zero-cost proxies for lightweight nas,” in ICLR Blo,
Track, 2022, https:/ /iclr-blog-track.github.io/2022/03/25/ zero-
cost-proxies/. [Online]. Available: https:/ /iclr-blog-track.github.
i0/2022/03/25/ zero-cost-proxies/

X. Ning, C. Tang, W. Li, Z. Zhou, S. Liang, H. Yang, and Y. Wang,
“Evaluating efficient performance estimators of neural architec-
tures,” in Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, 2021, pp. 12 265-
12277.

C. White, A. Zela, R. Ru, Y. Liu, and F. Hutter, “How powerful
are performance predictors in neural architecture search?” in
Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, 2021, pp. 28454—
28469.

W. Chen, X. Gong, Y. Wei, H. Shi, Z. Yan, Y. Yang, and
Z. Wang, “Understanding and accelerating neural architecture
search with training-free and theory-grounded metrics,” CoRR,
vol. abs/2108.11939, 2021.

W. Chen, W. Huang, and Z. Wang, ““no free lunch” in neural
architectures? a joint analysis of expressivity, convergence, and
generalization,” in AutoML Conference 2023, 2023.

O. Sharir and A. Shashua, “On the expressive power of over-
lapping architectures of deep learning,” in 6th International
Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018.

X. Hu, L. Chu, J. Pei, W. Liu, and J. Bian, “Model complexity of
deep learning: a survey,” Knowl. Inf. Syst., vol. 63, no. 10, pp.
2585-2619, 2021.

V. Nagarajan and]. Z. Kolter, “Generalization in deep net-
works: The role of distance from initialization,” CoRR, vol.
abs/1901.01672, 2019.

L. Wu, Z. Zhu, and W. E, “Towards understanding generalization
of deep learning: Perspective of loss landscapes,” CoRR, vol.
abs/1706.10239, 2017.

S. Lin, “Generalization and expressivity for deep nets,” IEEE

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

[84]

[85]

[86]

(871

(88]

17

Trans. Neural Networks Learn. Syst., vol. 30, no. 5, pp. 1392-1406,

2019.

L. Xiao, J. Pennington, and S. S. Schoenholz, “Disentangling

trainability and generalization in deep neural networks,” in

Proceedings of the 37th International Conference on Machine

Learning, ICML 2020, 13-18 July 2020, Virtual Event, ser. Pro-
ceedings of Machine Learning Research, vol. 119. PMLR, 2020,

pp- 10462-10472.

V. Nagarajan and J. Z. Kolter, “Uniform convergence may be

unable to explain generalization in deep learning,” in Advances

in Neural Information Processing Systems 32: Annual Conference

on Neural Information Processing Systems 2019, NeurIPS 2019,

December 8-14, 2019, Vancouver, BC, Canada, 2019, pp. 11611-
11622.

Y. Xu and H. Zhang, “Convergence of deep convolutional neural

networks,” Neural Networks, vol. 153, pp. 553-563, 2022.

N. Lee, T. Ajanthan, and P. Torr, “SNIP: SINGLE-SHOT NET-
WORK PRUNING BASED ON CONNECTION SENSITIVITY,” in

International Conference on Learning Representations, 2019.

H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli, “Pruning

neural networks without any data by iteratively conserving

synaptic flow,” in Advances in Neural Information Processing

Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and

H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 6377-6389.
C. Wang, G. Zhang, and R. B. Grosse, “Picking winning tickets

before training by preserving gradient flow,” in International

Conference on Learning Representations. OpenReview.net.

P. Molchanov, A. Mallya, S. Tyree, 1. Frosio, and]. Kautz,

“Importance estimation for neural network pruning,” in IEEE

Conference on Computer Vision and Pattern Recognition, CVPR

2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision

Foundation / IEEE, 2019, pp. 11264-11272.

Z.Zhang and Z. Jia, “Gradsign: Model performance inference with

theoretical insights,” in International Conference on Learning

Representations, 2022.

L. Theis, I. Korshunova, A. Tejani, and F. Huszar, “Faster gaze

prediction with dense networks and fisher pruning,” CoRR, vol.
abs/1801.05787, 2018.

L. Liu, S. Zhang, Z. Kuang, A. Zhou, J. Xue, X. Wang, Y. Chen,

W. Yang, Q. Liao, and W. Zhang, “Group fisher pruning for

practical network compression,” in Proceedings of the 38th

International Conference on Machine Learning, ICML 2021, 18-24

July 2021, Virtual Event, ser. Proceedings of Machine Learning

Research, vol. 139. PMLR, 2021, pp. 7021-7032.

V. Lopes, S. Alirezazadeh, and L. A. Alexandre, “Epe-nas: Efficient

performance estimation without training for neural architec-
ture search,” in International Conference on Artificial Neural

Networks. Springer, 2021, pp. 552-563.

J. Mellor,]J. Turner, A. Storkey, and E. J. Crowley, “Neural

architecture search without training,” in International Conference

on Machine Learning. PMLR, 2021, pp. 7588-7598.

M. Lin, P. Wang, Z. Sun, H. Chen, X. Sun, Q. Qian, H. Li, and R. Jin,

“Zen-nas: A zero-shot nas for high-performance image recognition,”
in Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2021, pp. 347-356.

Z. Sun, M. Lin, X. Sun, Z. Tan, H. Li, and R. Jin, “MAE-DET:

revisiting maximum entropy principle in zero-shot NAS for ef-
ficient object detection,” in International Conference on Machine

Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,

ser. Proceedings of Machine Learning Research, vol. 162. PMLR,

2022, pp. 2081020 826.

L. Chizat, E. Oyallon, and E R. Bach, “On lazy train-
ing in differentiable programming,” in Advances in Neural

Information Processing Systems 32: Annual Conference on

Neural Information Processing Systems 2019, NeurIPS 2019,

December 8-14, 2019, Vancouver, BC, Canada, 2019, pp. 2933—
2943.

A. Jacot, C. Hongler, and F. Gabriel, “Neural tangent kernel:

Convergence and generalization in neural networks,” in Advances

in Neural Information Processing Systems 31: Annual Conference

on Neural Information Processing Systems 2018, NeurIPS 2018,

December 3-8, 2018, Montréal, Canada, 2018.

J. Lee, L. Xiao, S. S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-
Dickstein, and J. Pennington, “Wide neural networks of any depth

evolve as linear models under gradient descent,” in Advances in

Neural Information Processing Systems 32: Annual Conference

on Neural Information Processing Systems 2019, NeurIPS 2019,

https://iclr-blog-track.github.io/2022/03/25/zero-cost-proxies/
https://iclr-blog-track.github.io/2022/03/25/zero-cost-proxies/

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

(89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

December 8-14, 2019, Vancouver, BC, Canada, 2019, pp. 8570-
8581.

W. Chen, W. Huang, X. Du, X. Song, Z. Wang, and D. Zhou, “Auto-
scaling vision transformers without training,” in International
Conference on Learning Representations, 2022.

M. Raghu, B. Poole, J. M. Kleinberg, S. Ganguli, and]. Sohl-
Dickstein, “On the expressive power of deep neural networks,”
in Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
ser. Proceedings of Machine Learning Research, vol. 70. PMLR,
2017, pp. 2847-2854.

T. Serra, C. Tjandraatmadja, and S. Ramalingam, “Bounding and
counting linear regions of deep neural networks,” in Proceedings
of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmassan, Stockholm, Sweden, July 10-15, 2018,
ser. Proceedings of Machine Learning Research, vol. 80. PMLR,
2018, pp. 4565-4573.

H. Xiong, L. Huang, M. Yu, L. Liu, E. Zhu, and L. Shao, “On
the number of linear regions of convolutional neural networks,”
in Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, ser. Proceed-
ings of Machine Learning Research. PMLR, 2020.

B. Hanin and D. Rolnick, “Complexity of linear regions in deep
networks,” in Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, ser. Proceedings of Machine Learning Research.
PMLR, 2019.

K. Bhardwaj, J. Ward, C. Tung, D. Gope, L. Meng, 1. Fedorov,
A. Chalfin, P. Whatmough, and D. Loh, “Restructurable activation
networks,” arXiv preprint arXiv:2208.08562, 2022.

G.Li, S. K. Mandal, U. Y. Ogras, and R. Marculescu, “FLASH: fast
neural architecture search with hardware optimization,” ACM
Trans. Embed. Comput. Syst., vol. 20, no. 5s, pp. 63:1-63:26, 2021.
W. Chen, W. Huang, X. Gong, B. Hanin, and Z. Wang, “Deep
architecture connectivity matters for its convergence: A fine-
grained analysis,” in Advances in Neural Information Processing
Systems, 2022.

J. Lee, J. Sohl-dickstein, J. Pennington, R. Novak, S. Schoenholz,
and Y. Bahri, “Deep neural networks as gaussian processes,” in
International Conference on Learning Representations, 2018.

J. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, and F. Hutter,
“Nas-bench-301 and the case for surrogate benchmarks for neural
architecture search,” arXiv preprint arXiv:2008.09777, 2020.

Y. Mehta, C. White, A. Zela, A. Krishnakumar, G. Zabergja,
S. Moradian, M. Safari, K. Yu, and E Hutter, “Nas-bench-
suite: Nas evaluation is (now) surprisingly easy,” arXiv preprint
arXiv:2201.13396, 2022.

A. Mehrotra, A. G. C. Ramos, S. Bhattacharya, L. Dudziak,
R. Vipperla, T. Chau, M. S. Abdelfattah, S. Ishtiaq, and N. D.
Lane, “Nas-bench-asr: Reproducible neural architecture search
for speech recognition,” in International Conference on Learning
Representations, 2020.

N. Klyuchnikov, I. Trofimov, E. Artemova, M. Salnikov, M. Fedorov,
A. Filippov, and E. Burnaev, “Nas-bench-nlp: neural architecture
search benchmark for natural language processing,” IEEE Access,
vol. 10, pp. 4573645747, 2022.

C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and
F. Hutter, “Nas-bench-101: Towards reproducible neural architec-
ture search,” in International Conference on Machine Learning.
PMLR, 2019, pp. 7105-7114.

X. Dong and Y. Yang, “NAS-Bench-201: Extending the Scope
of Reproducible Neural Architecture Search,” arXiv preprint
arXiv:2001.00326, 2020.

X. Dong, L. Liu, K. Musial, and B. Gabrys, “Nats-bench: Bench-
marking nas algorithms for architecture topology and size,” IEEE
transactions on pattern analysis and machine intelligence, 2021.
Y. Duan, X. Chen, H. Xu, Z. Chen, X. Liang, T. Zhang, and Z. Li,
“Transnas-bench-101: Improving transferability and generalizabil-
ity of cross-task neural architecture search,” in IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2021, virtual,
June 19-25, 2021. Computer Vision Foundation / IEEE, 2021.

C. Li, Z. Yu, Y. Fu, Y. Zhang, Y. Zhao, H. You, Q. Yu, Y. Wang,
and Y. Lin, “Hw-nas-bench: Hardware-aware neural architecture
search benchmark,” arXiv preprint arXiv:2103.10584, 2021.

L. Dudziak, T. Chau, M. S. Abdelfattah, R. Lee, H. Kim, and N. D.
Lane, “BRP-NAS: prediction-based NAS using gcns,” in Advances
in Neural Information Processing Systems 33: Annual Conference

18

on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

[108] H. Lee, S. Lee, S. Chong, and S. . Hwang, “Hardware-adaptive ef-

ficient latency prediction for nas via meta-learning,” in Advances
in Neural Information Processing Systems, 2021.

[109] L. L. Zhang, S. Han, J. Wei, N. Zheng, T. Cao, Y. Yang, and

Y. Liu, “nn-meter: towards accurate latency prediction of deep-
learning model inference on diverse edge devices,” in MobiSys "21:
The 19th Annual International Conference on Mobile Systems,
Applications, and Services, Virtual Event, Wisconsin, USA, 24
June - 2 July, 2021. ACM, 2021, pp. 81-93.

[110] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image

quality assessment: from error visibility to structural similarity,”
IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, 2004.

[111] R. Wightman, “Pytorch image models,” https://github.com/

rwightman/pytorch-image-models, 2019.

[112] RangiLyu, “Nanodet-plus: Super fast and high accuracy

lightweight anchor-free object detection model.” https:/ /github.
com/Rangilyu/nanodet, 2021.

[113] Z.Lu, H. Pu, FE. Wang, Z. Hu, and L. Wang, “The expressive power

of neural networks: A view from the width,” in Advances in
Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, 2017, pp. 6231-6239.

[114] K. Hornik, M. B. Stinchcombe, and H. White, “Multilayer feedfor-

ward networks are universal approximators,” Neural Networks,
vol. 2, no. 5, pp. 359-366, 1989.

[115] N. Tripuraneni, B. Adlam, and J. Pennington, “Overparameteriza-

2

tion improves robustness to covariate shift in high dimensions,”
Advances in Neural Information Processing Systems, 2021.

[116] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and generalization in

overparameterized neural networks, going beyond two layers,” in
Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, 2019,
pp. 6155-6166.

[117] G. Li, Y. Yang, K. Bhardwaj, and R. Marculescu, “Zico: Zero-

shot nas via inverse coefficient of variation on gradients,” arXiv
preprint arXiv:2301.11300, 2023.

Guihong Li (Student Member, IEEE) received
the B.S degree from the Beijing University of
Posts and Telecommunications, Bejing, China, in
2018. He is currently pursuing his Ph.D. in Electri-
cal and Computer Engineering at The University
of Texas at Austin, USA. His research interest
includes Neural Architecture Search, hardware-
software co-design for EdgeAl system optimiza-
tion. He received many awards including a best
paper nomination from ISWC 2022.

Duc Hoang recevied a Bachelor’s degree in
ECE from the University of Washington. He is
currently pursuing a Ph.D. in the same field at the
University of Texas at Austin, focusing on Graph
Neural Networks, Neural Architectural Search,
and Network Pruning.

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/RangiLyu/nanodet
https://github.com/RangiLyu/nanodet

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 19

Kartikeya Bhardwaj is a Senior Machine Learn-
ing Researcher at Qualcomm Al Research. Pre-
viously, he was a Senior Machine Learning Engi-
neer at Arm, Inc. He completed his PhD in Elec-
trical and Computer Engineering from Carnegie
Mellon University in 2019. His research interests
are in the field of hardware-aware deep learning,
computer vision, and network science. His work
has been published in top conferences including
CVPR, ICLR, MLSys, ECML, DAC, DATE, etc.

Ming Lin is a Senior Applied Scientist at Ama-
zon.com LCC. His research interests include
Mathematical Foundation of Deep Learning and
Statistical Machine Learning, with their applica-
tions in deep learning acceleration, computer
vision and mobile Al. He worked as a postdoctoral
researcher in the School of Computer Science at
Carnegie Mellon University from July 2014 to Sep
2015. He received his Ph.D. degree in computer
science from Tsinghua University in 2014. During
his Ph.D. study, he had been a visiting scholar in
Michigan State University and in CMU from Dec 2013 to July 2014.

Zhangyang Wang is currently the Temple Foun-
dation Endowed Associate Professor #7 of ECE
at UT Austin. He received his Ph.D. in ECE
from UIUC in 2016, and his B.E. in EEIS from
USTC in 2012. Prof. Wang is broadly interested
in the fields of machine learning, computer vision,
optimization, and their interdisciplinary applica-
tions. His latest interests focus on the role of low
dimensionality in deep learning.

Radu Marculescu is the Laura Jennings Turner
Chair in Engineering and Professor in the Elec-
trical and Computer Engineering department at
The University of Texas at Austin. He received
his Ph.D. in Electrical Engineering from the Uni-
versity of Southern California in 1998. Radu’s
current research focuses on developing ML/AI
methods and tools for modeling and optimization
of embedded systems, cyber-physical systems,
and social networks.

	Introduction
	Zero-Shot Proxies
	Theoretical Underpinning of Proxies
	Gradient-based accuracy proxies
	Gradient norm
	SNIP
	Synflow
	GraSP
	GradSign
	Fisher information
	Jacobian covariant
	Zen-score
	NTK Condition Number

	Gradient-free accuracy proxy
	Number of linear regions
	Logdet
	Topology inspired proxies

	Summary

	Benchmarks and Profiling Models
	NAS Benchmarks
	Hardware Performance Models

	Experimental results
	NAS without hardware-awareness
	Unconstrained search space
	Constrained search space
	Specific Network Families

	Large-scale Dataset
	Vision Transformers
	Hardware-aware NAS
	NASBench-201 / HW-NAS-Bench
	NATS-Bench

	Discussion and future work
	NAS Benchmarks
	Zero-shot proxies

	Conclusion
	References
	Biographies
	Guihong Li
	Duc Hoang
	Kartikeya Bhardwaj
	Ming Lin
	Zhangyang Wang
	Radu Marculescu

