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Abstract

In this paper, we are the first to propose a new graph
convolution-based decoder namely, Cascaded Graph Con-
volutional Attention Decoder (G-CASCADE), for 2D med-
ical image segmentation. G-CASCADE progressively re-
fines multi-stage feature maps generated by hierarchical
transformer encoders with an efficient graph convolution
block. The encoder utilizes the self-attention mechanism
to capture long-range dependencies, while the decoder
refines the feature maps preserving long-range informa-
tion due to the global receptive fields of the graph con-
volution block. Rigorous evaluations of our decoder with
multiple transformer encoders on five medical image seg-
mentation tasks (i.e., Abdomen organs, Cardiac organs,
Polyp lesions, Skin lesions, and Retinal vessels) show that
our model outperforms other state-of-the-art (SOTA) meth-
ods. We also demonstrate that our decoder achieves bet-
ter DICE scores than the SOTA CASCADE decoder with
80.8% fewer parameters and 82.3% fewer FLOPs. Our
decoder can easily be used with other hierarchical en-
coders for general-purpose semantic and medical image
segmentation tasks. The implementation can be found at:
https://github.com/SLDGroup/G-CASCADE.

1. Introduction

Automatic medical image segmentation plays a crucial
role in the diagnosis, treatment planning, and post-treatment
evaluation of various diseases; this involves classifying pix-
els and generating segmentation maps to identify lesions,
tumours, or organs. Convolutional neural networks (CNN5s)
have been extensively utilized for medical image segmen-
tation tasks [25, 22, 40, 13, 10, 21]. Among them, the U-
shaped networks such as UNet [25], UNet++ [40], UNet
3+ [13], and DC-UNet [21] exhibit reasonable performance
and produce high-resolution segmentation maps. Addi-
tionally, researchers have incorporated attention modules
into their architectures [22, 5, 10] to enhance feature maps

and improve pixel-level classification of medical images
by capturing salient features. Although these attention-
based methods have shown improved performance, they
still struggle to capture long-range dependencies [23].

Recently, vision transformers [9] have shown great
promise for capturing long-range dependencies among pix-
els and demonstrated improved performance, particularly
for medical image segmentation [3, 2, 8, 31, 23, 24, 39, 29].
The self-attention (SA) mechanism used in transformers
learns correlations among input patches; this enables cap-
turing the long-range dependencies among pixels. Re-
cently, hierarchical vision transformers such as the Swin
transformer [19], the pyramid vision transformer (PVT)
[32], MaxViT [27], MERIT [24], have been introduced
to enhance performance. These hierarchical vision trans-
formers are effective in medical image segmentation tasks
[3, 2, 8, 31, 23, 24]. As self-attention modules em-
ployed in transformers have limited capacity to learn (local)
spatial relationships among pixels [6, 15], some methods
[36, 34, 33, 8, 31, 23, 24] incorporate local convolutional at-
tention modules in the decoder. However, due to the locality
of convolution operations, these methods have difficulties at
capturing long-range correlations among pixels.

To overcome the aforementioned limitations, we intro-
duce a new Graph based CAScaded Convolutional Atten-
tion DEcoder (G-CASCADE) using graph convolutions.
More precisely, G-=CASCADE enhances the feature maps
by preserving long-range attention due to the global recep-
tive field of the graph convolution operation, while incor-
porating local attention through the spatial attention mech-
anism. Our contributions are as follows:

* New Graph Convolutional Decoder: We introduce
a new graph-based cascaded convolutional attention
decoder (G-CASCADE) for 2D medical image seg-
mentation; this takes the multi-stage features of vision
transformers and learns multiscale and multiresolution
spatial representations. To the best of our knowledge,
we are the first to propose this graph convolutional
network-based decoder for semantic segmentation.
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« Efficient Graph Convolutional Attention Block: We
introduce a new graph convolutional attention module
to build our decoder; this preserves the long-range at-
tention of the vision transformer and highlights salient
features by suppressing irrelevant regions. The use of
graph convolution makes our decoder efficient.

« Efficient Design of Up-Convolution Block: We de-
sign an efficient up-convolution block that enables
computational gains without degrading performance.

* Improved Performance: We empirically show that
G-CASCADE can be used with any hierarchical vi-
sion encoder (e.g., PVT [33], MERIT [3]), while sig-
nificantly improving the performance of 2D medical
image segmentation. When compared against mul-
tiple baselines, G-CASCADE produces better results
than SOTA methods on ACDC, Synapse Multi-organ,
ISIC2018 skin lesion, Polyp, and Retinal vessels seg-
mentation benchmarks with a significantly lower com-
putational cost.

The remaining of this paper is organized as follows: Sec-
tion 2 summarizes the related work in vision transformers,
graph convolutional networks, and medical image segmen-
tation. Section 3 describes the proposed method. Section 4
explains experimental setup and results on multiple medical
image segmentation benchmarks. Section 5 covers different
ablation experiments. Lastly, Section 6 concludes the paper.

2. Related Work

We divide the related work into three parts, i.e., vi-
sion transformers, vision graph convolutional networks, and
medical image segmentation; these are described next.

2.1. Vision transformers

Dosovitskiy et al. [9] pioneered the development of
the vision transformer (ViT), which enables the learning
of long-range relationships between pixels through self-
attention. Subsequent works have focused on enhancing
ViT in various ways, such as integration of convolutional
neural networks (CNNs) [33, 27], introducing new SA
blocks [19, 27], and novel architectural designs [32, 36].
Liu et al. [19] introduce a sliding window attention mech-
anism within the hierarchical Swin transformer. Xie et al.
[36] present SegFormer, a hierarchical transformer utiliz-
ing Mix-FFN blocks. Wang et al. [32] develop the pyra-
mid vision transformer (PVT) with a spatial reduction at-
tention mechanism, and subsequently extend it to PVTv2
[33] by incorporating overlapping patch embedding, a lin-
ear complexity attention layer, and a convolutional feed-
forward network. Most recently, Tu et al. [27] introduce
MaxViT, which employs a multi-axis self-attention mecha-
nism to construct a hierarchical CNN-transformer encoder.

Although vision transformers exhibit remarkable perfor-
mance, they have certain limitations in their (local) spatial
information processing capabilities. In this paper, we aim
to overcome these limitations by introducing a new graph-
based cascaded attention decoder that preserves the long-
range attention through graph convolution and incorporates
local attention by a spatial attention mechanism.

2.2. Vision graph convolutional networks

Graph convolutional networks (GCNs) are developed
primarily focusing on point clouds classification [17, 18],
scene graph generation [37], and action recognition [38] in
computer vision. Vision GNN (ViG) [11] introduces the
first graph convolutional backbone network to directly pro-
cess the image data. ViG devides the image into patches and
then uses K-nearest neighbors (KNN) algorithm to connect
various patches; this enables the processing of long-range
dependencies similar to vision transformers. Besides, due
to using 1 x 1 convolutions before and after the graph con-
volution operation, the graph convolution block used in ViG
is significantly faster than the vision transformer and 3 x 3
convolution-based CNN blocks. Therefore, we propose to
use the graph convolution block to decode feature maps for
dense prediction. This will make our decoder computation-
ally efficient, while preserving long-range information.

2.3. Medical image segmentation

Medical image segmentation is the task of classifying
pixels into lesions, tumours, or organs in a medical image
(e.g., endoscopy, MRI, and CT) [3]. To address this task,
U-shaped architectures [25, 22, 40, 13, 21] have been com-
monly utilized due to their sophisticated encoder-decoder
structure. Ronneberger et al. [13] introduce UNet, an
encoder-decoder architecture that utilizes skip connections
to aggregate features from multiple stages. In UNet++
[40], nested encoder-decoder sub-networks are connected
through dense skip connections. UNet 3+ [13] further ex-
tends this concept by exploring full-scale skip connections
with intra-connections among the decoder blocks. DC-
UNet [21] incorporates the multi-resolution convolution
block and residual path within skip connections. These ar-
chitectures have proven to be effective in medical image
segmentation tasks.

Recently, transformers have gained popularity in the
field of medical image segmentation [2, 3, 8, 23, 24, 29, 39].
In TransUNet [3], a hybrid architecture combining CNNs
and transformers is proposed to capture both local and
global pixel relationships. Swin-Unet [2] adopts a pure U-
shaped transformer structure by utilizing Swin transformer
blocks [19] in both the encoder and decoder. More recently,
Rahman et al. [24] propose a multi-scale hierarchical trans-
former network with cascaded attention decoding (MERIT)
that calculates self attention in varying window sizes to cap-
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ture effective multi-scale features.

Attention mechanisms have also been explored in com-
bination with both CNNs [22, 10] and transformer-based ar-
chitectures [8] in medical image segmentation. PraNet [10]
utilizes the reverse attention mechanism [5]. In PolypPVT
[8], authors employ PVTv2 [33] as the encoder and inte-
grates CBAM [35] attention blocks in the decoder, along
with other modules. CASCADE [23] proposes a cascaded
decoder that utilizes both channel attention [12] and spa-
tial attention [4] modules for feature refinement. CAS-
CADE extracts features from four stages of the transformer
encoder and uses cascaded refinement to generate high-
resolution segmentation maps. Due to incorporating local
information with global information of transformers, CAS-
CADE exhibits remarkable performance in medical image
segmentation. However, CASCADE decoder has two main
limitations: i) long-range attention deficit due to using only
convolution operations during decoding and ii) high compu-
tational inefficiency due to using three 3 x 3 convolutions
in each stage of the decoder. We propose to use graph con-
volution to overcome these limitations.

3. Method

In this section, we first introduce a new G-CASCADE
decoder, then explain two different transformer-based
architectures (i.e., PVT-GCASCADE and MERIT-
GCASCADE) incorporating our proposed decoder.

3.1. Cascaded Graph Convolutional Decoder (G-
CASCADE)

Existing transformer-based models have limited (local)
contextual information processing ability among pixels. As
a result, the transformer-based model faces difficulties in
locating the more discriminating local features. To address
this issue, some works [8, 23, 24] utilize computationally
expensive 2D convolution blocks in the decoder. Although
the convolution block helps to incorporate the local infor-
mation, it results in long-range attention deficits. To over-
come this problem, we propose a new cascaded graph con-
volutional decoder, G-CASCADE, for pyramid encoders.

As shown in Figure 1(b), G-CASCADE consists of ef-
ficient up-convolution blocks (UCBs) to upsample the fea-
tures, graph convolutional attention modules (GCAMs) to
robustly enhance the feature maps, and segmentation heads
(SegHeads) to get the segmentation output. We have four
GCAMs for the four stages of pyramid features from the en-
coder. To aggregate the multi-scale features, we first aggre-
gate (via addition or concatenation) the upsampled features
from the previous decoder block with the features from the
skip connections. Afterward, we process the concatenated
features using our GCAM for enhancing semantic informa-
tion. We then send the output from each GCAM to a pre-
diction head. Finally, we aggregate four different prediction
maps to produce the final segmentation output.



3.1.1 Graph convolutional attention module (GCAM)

We use the graph convolutional attention modules to refine
the feature maps. GCAM consists of a graph convolution
block (GC B(.)) to refine the features preserving long-range
attention and a spatial attention [4] (S PA(:)) block to cap-
ture the local contextual information as in Equation 1:

GCAM (z) = SPA(GCB(x)) (1)

where z is the input tensor and GC AM(-) represents the
convolutional attention module. Due to using graph convo-
lution, our GCAM is significantly more efficient than the
convolutional attention module (CAM) proposed in [23].
Graph Convolution Block (GCB): The GCB is used
to enhance the features generated using our cascaded ex-
panding path. In our GCB, we follow the Grapher design
of Vision GNN [11]. GCB consists of a graph convolution
layer GConuv(.) and two 1 x 1 convolution layers C(-) each
followed by a batch normalization layer BN (-) and a ReLLU
activation layer R(.). GC'B(:) is formulated as Equation 2:

GCB(z) = R(BN(C(GConv(R(BN(C(x))))))) (2
where GConv can be formulated using Equation 3:
GConv(z) = GELU(BN(DynConv(x)))  (3)

where DynConuv(.) is a graph convolution (e.g., max-
relative, edge, GraphSAGE, and GIN) in dense dilated K-
nearest neighbour (KNN) graph. BN(.) and GELU(.) are
batch normalization and GELU activation, respectively.

SPatial Attention (SPA): The SPA determines where to
focus in a feature map; then it enhances those features. The
spatial attention is formulated as Equation 4:

SPA(z) = Sigmoid(Conv([Cmaz (), Cavg(x)])) ®x  (4)

where Sigmoid(-) is a Sigmoid activation function.
Caz(-) and Cgyg(-) represent the maximum and average
values obtained along the channel dimension, respectively.
Conw(-) is a 7 x 7 convolution layer with padding 3 to
enhance local contextual information (as in [8]). ® is the
Hadamard product.

3.1.2 Up-convolution block (UCB)

UCB progressively upsamples the features of the current
layer to match the dimension to the next skip connection.
Each UCB layer consists of an UpSampling Up(:) with
scale-factor 2, a 3 x 3 depth-wise convolution DW C(-) with
groups equal input channels, a batch normalization BN(-),
a ReLU(.) activation, and a 1 x 1 convolution Conuv(.). The
UC B(:) can be formulated as Equation 5:

UCB(z) = Conv(ReLU(BN(DWC(Up(x))))) (5)

Our UCB is light-weight as we replace the 3 x 3 convolution
with a depth-wise convolution after upsampling.

3.1.3 Segmentation head (SegHead)

SegHead takes refined feature maps from the four stages of
the decoder as input and predicts four output segmentation
maps. Each SegHead layer consists of a 1 x 1 convolution
Convy x1(-) which takes feature maps having N; channels
(NV; is the number of channels in the feature map of stage 7)
as input and gives output with channels equal to number of
target classes for multi-class but 1 channel for binary pre-
diction. The SegHead(-) is formulated as in Equation 6:

SegHead(x) = Convix1(x) (6)

3.2. Overall architecture

To ensure effective generalization and the ability to pro-
cess multi-scale features in medical image segmentation,
we integrate our proposed G-CASCADE decoder with two
different hierarchical backbone encoder networks such as
PVTv2 [33] and MERIT [24]. PVTv2 utilizes convolution
operations instead of traditional transformer patch embed-
ding modules to consistently capture the spatial informa-
tion. MERIT utilizes two MaxViT [27] encoders with vary-
ing window sizes for self-attention, thus enabling it to cap-
ture multi-scale features.

By utilizing the PVTv2-b2 (Standard) encoder [33],
we create the PVI-GCASCADE architecture. To adopt
PVTv2-b2, we first extract the features (X1, X2, X3, and
X4) from four layers and feed them (i.e., X4 in the upsam-
ple path and X3, X2, X1 in the skip connections) into our
G-CASCADE decoder as shown in Figure 1(a-b). Then, the
G-CASCADE processes them and produces four prediction
maps that correspond to the four stages of the encoder net-
work.

Moreover, we introduce the new MERIT-GCASCADE
architecture by adopting the architectural design of the
MERIT network [24]. In the case of MERIT, we only re-
place their decoder with our proposed decoder and keep
their hybrid CNN-transformer MaxViT [27] encoder net-
works. In our MERIT-GCASCADE architecture, we ex-
tract hierarchical feature maps from four stages of first en-
coder and then feed them to the corresponding decoder. Af-
terward, we aggregate the feedback from final stage of the
decoder to the input image and feed them to the second en-
coder which has different window sizes for self-attention.
We extract feature maps from four stages of the second de-
coder and feed them to the second decoder. We send cas-
caded skip connections like MERIT [24] to the second de-
coder. We get four output segmentation maps from the four
stages of our second decoder. Finally, we aggregate the seg-
mentation maps from the two decoders for four stages sep-
arately to produce four output segmentation maps. Our pro-
posed decoder is designed to be adaptable and seamlessly
integrates with other hierarchical backbone networks.



3.3. Multi-stage outputs and loss aggregation

We get four output segmentation maps pi1, pa2, p3, and
p4 from the four prediction heads for the four stages of our
G-CASCADE decoder.

Output segmentation maps aggregation: We compute
the final segmentation output using additive aggregation:

seg-output = apy + Bpa + Yp3 + (pa (7

where «, 8, v, and ( are the weights of each prediction
head. We set «, 3, v, and ¢ to 1.0 in all our experiments.
We get the final prediction output by applying the Sigmoid
activation for binary segmentation and Softmax activation
for multi-class segmentation.

Loss aggregation: Following MERIT [24], we use the
combinatorial loss aggregation strategy, MUTATION in all
our experiments. Therefore, we compute the loss for 2" — 1
combinatrorial predictions synthesized from n heads sepa-
rately and then do a summation of them. We optimize this
additive combinatorial loss during training.

4. Experimental Evaluation

In this section, we first describe the datasets and evalua-
tion metrics, followed by implementation details. Then, we
conduct a comparative analysis between our proposed G-
CASCADE decoder-based architectures and SOTA meth-
ods to highlight the superior performance of our approach.

4.1. Datasets

We present the description of Synapse Multi-organ and
ACDC datasets below. The description of ISIC2018, polyp,
and retinal vessel segmentation datasets are available in
supplementary materials (Section A).

Synapse Multi-organ dataset. The Synapse Multi-
organ dataset' contains 30 abdominal CT scans which have
3779 axial contrast-enhanced slices. Each CT scan has 85-
198 slices of 512 x 512 pixels. Similar to TransUNet [3], we
divide the dataset randomly into 18 scans for training (2212
axial slices) and 12 scans for validation. We segment only 8
abdominal organs, i.e., aorta, gallbladder (GB), left kidney
(KL), right kidney (KR), liver, pancreas (PC), spleen (SP),
and stomach (SM).

ACDC dataset. The ACDC dataset® contains 100 car-
diac MRI scans each of which consists of three sub-organs,
right ventricle (RV), myocardium (Myo), and left ventricle
(LV). Following TransUNet [3], we use 70 cases (1930 axial
slices) for training, 10 for validation, and 20 for testing.

4.2. Evaluation metrics

We use DICE, mloU, and 95% Hausdorff Distance
(HD95) to evaluate performance on the Synapse Multi-

Thttps://www.synapse.org/#!Synapse:syn3193805/wiki/217789
Zhttps://www.creatis.insa-lyon.fr/Challenge/acdc/

organ dataset. However, for the ACDC dataset, we use
only DICE score as an evaluation metrics. We use DICE
and mloU as the evaluation metrics in polyp segmenta-
tion and ISIC2018 datasets. The DICE score DSC(Y,Y),
IoU(Y,Y), and HDY5 distance Dy (Y,Y) are calculated
using Equations 8, 9, and 10, respectively:

2x|yny
pscw.v) = 22XV OY 0 )
Y]+ Y|
. Yyny
ToU(v.v) = 20V 00 )
YUY

Dy (Y,Y) = max{max min d(y, ), {maxmin d(y, §)} (10)

YyeY gey JeY YeEY

where Y and Y are the ground truth and predicted segmen-
tation map, respectively.

4.3. Implementation details

We use Pytorch 1.11.0 to implement our network and
conduct experiments. We train all models on a single
NVIDIA RTX A6000 GPU with 48GB of memory. We use
the PVTv2-b2 and Small CascadedMERIT as representa-
tive networks. We use the pre-trained weights on ImageNet
for both PVT and MERIT backbone networks. We train our
model using AdamW optimizer [20] with both learning rate
and weight decay of 0.0001.

GCB: We construct dense dilated graph using K = 11
neighbors for KNN and use the Max-Relative (MR) graph
convolution in all our experiments. The batch normaliza-
tion is used after MR graph convolution. Following ViG
[11], we also use the relative position vector for graph con-
struction and reduction ratios of [1, 1, 4, 2] for graph con-
volution block in different stages.

Synapse Multi-organ dataset. We use a batch size of 6
and train each model for maximum of 300 epochs. We use
the input resolution of 224 x 224 for PVT-GCASCADE and
(256 x 256, 224 x 224) for MERIT-GCASCADE. We apply
random rotation and flipping for data augmentation. The
combined weighted Cross-entropy (0.3) and DICE (0.7)
loss are utilized as the loss function.

ACDC dataset. For the ACDC dataset, we train each
model for a maximum of 150 epochs with a batch size of
12. We set the input resolution as 224 x 224 for PVT-
GCASCADE and (256 x 256, 224 x 224) for MERIT-
GCASCADE. We apply random flipping and rotation for
data augmentation. We optimize the combined weighted
Cross-entropy (0.3) and DICE (0.7) loss function.

Polyp datasets. We resize the image to 352 x 352 and
use a multi-scale {0.75, 1.0, 1.25} training strategy with
a gradient clip limit of 0.5 like CASCADE [23]. We use
a batch size of 4 and train each model a maximum of
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Average

Architectures DICEt HD95, mloUt Aorta GB KL KR Liver PC SP SM

UNet [25] 70.11 44.69 59.39 84.00 5670 7241 62.64 8698 48.73 8148 67.96
AttnUNet [22] 71.70 34.47 61.38 82.61 6194 76.07 7042 87.54 46.70 80.67 67.66
R50+UNet [3] 74.68 36.87 — 8418 62.84 79.19 71.29 9335 4823 8441 7392
R50+AttnUNet [3] 75.57 36.97 — 5592 6391 7920 7271 93,56 4937 87.19 7495
SSFormerPVT [31] 78.01 25.72 67.23 8278 63.74 80.72 78.11 93,53 61.53 87.07 76.61
PolypPVT [8] 78.08 25.61 6743 8234 66.14 8121 7378 9437 59.34 88.05 79.4
TransUNet [3] 77.61 26.9 67.32 86.56 60.43 80.54 7853 9433 5847 87.06 75.00
SwinUNet [2] 77.58 27.32 66.88 81.76 6595 8232 7922 9373 53.81 88.04 75.79
MT-UNet [30] 78.59 26.59 — 8792 6499 8147 7729 93.06 5946 8775 76.81
MISSFormer [14] 81.96 18.20 — 8699 6865 8521 82.00 9441 6567 9192 80.81
PVT-CASCADE [23] 81.06 20.23 70.88 83.01 70.59 8223 80.37 94.08 64.43 90.1 83.69
TransCASCADE [23] 82.68 17.34 7348 86.63 68.48 87.66 8456 9443 6533 90.79 83.52
Cascaded MERIT [24] 84.32 14.27 7544 86.67 7263 8771 84.62 95.02 70.74 9198 85.17
PVT-GCASCADE (Ours) 83.28 15.83 7391 86.50 71.71 87.07 83.77 9531 66.72 90.84 83.58
MERIT-GCASCADE (Ours) 84.54 10.38 75.83 88.05 74.81 88.01 84.83 9538 69.73 91.92 83.63

Table 1. Results of Synapse Multi-organ segmentation. We report only DICE scores for individual organs. We get the results of UNet,
AttnUNet, PolypPVT, SSFormerPVT, TransUNet, and SwinUNet from [23]. We reproduce the results of Cascaded MERIT with a batch
size of 6. T () denotes the higher (lower) the better. G-CASCADE results are averaged over five runs. The best results are shown in bold.

. Avg

Methods Dice RV  Myo LV

R50+UNet [3] 8755 87.10 80.63 94.92
R50+AttnUNet [3] 86.75 87.58 7920 93.47
ViT+CUP [3] 8145 8146 7071 92.18
RS0+ViT+CUP [3] 8757 86.07 81.88 94.75
TransUNet [3] 89.71 8667 8727 95.18
SwinUNet [2] 88.07 8577 8442 94.03
MT-UNet [30] 90.43 86.64 89.04 95.62
MISSFormer [14] 90.86 89.55 88.04 94.99
PVT-CASCADE [23] 91.46 89.97 889 95.50
TransCASCADE [23] 91.63 9025 89.14 9550
Cascaded MERIT [24] 91.85 9023 89.53 95.80
PVT-GCASCADE (Ours) 9195 9031 89.63 9591
MERIT-GCASCADE (Ours) 9223 90.64 89.96 96.08

Table 2. Results on ACDC dataset. DICE scores are reported for
individual organs. We get the results of SwinUNet from [23]. G-
CASCADE results are averaged over five runs. The best results
are shown in bold.

200 epochs. We optimize the combined weighted Bina-
ryCrossEntropy (BCE) and weighted IoU loss function.
ISIC2018 dataset: We resize the images into 384 x 384
resolution. Then, we train our model for 200 epochs with a
batch size of 4 and a gradient clip of 0.5. We optimize the
combined weighted BCE and weighted IoU loss function.

4.4. Results

We compare our architectures (i.e., PVI-GCASCADE
and MERIT-GCASCADE) with SOTA CNN and
transformer-based segmentation methods on Synapse

Multi-organ, ACDC, ISIC2018 [7], and Polyp (i.e., En-
doscene [28], CVC-ClinicDB [1], Kvasir [16], ColonDB
[26]) datasets. The results of ISIC2018, polyp, and
retinal vessel segmentation datasets are reported in the
supplementary materials (Section B).

44.1 Quantitative results on Synapse Multi-organ
dataset

Table 1 presents the performance of different CNN-
and transformer-based methods on Synapse Multi-organ
segmentation dataset. We can see from Table 1 that
our MERIT-GCASCADE significantly outperforms all the
SOTA CNN- and transformer-based 2D medical image
segmentation methods thus achieving the best average
DICE score of 84.54%. Our PVIT-GCASCADE and
MERIT-GCASCADE outperform their counterparts PVT-
CASCADE and Cascaded MERIT by 2.22% and 0.22%
DICE scores, respectively, with significantly lower com-
putational costs. Similarly, our PVT-GCASCADE and
MERIT-GCASCADE outperform their counterparts by 4.4
and 3.89 in HD95 distance. Our MERIT-GCASCADE has
the lowest HD95 distance (10.38) which is 3.89 lower than
the best SOTA method Cascaded MERIT (HD95 of 14.27).
The lower HD95 scores indicate that our G-CASCADE de-
coder can better locate the boundary of organs.

Our proposed decoder also shows a boost in the DICE
scores of individual organ segmentation. We can see from
Table 1 that our proposed MERIT-GCASCADE signifi-
cantly outperforms SOTA methods on five out of eight or-
gans. We believe that G-=CASCADE decoder demonstrates
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Figure 2. Qualitative results on Synapse multi-organ dataset. (a) Ground Truth (GT), (b) PVT-CASCADE, (c) TransCASCADE, (d)
Cascaded MERIT, (e¢) PVT-GCASCADE, and (f) MERIT-GCASCADE. We overlay the segmentation maps on top of original image/slice.
We use the white bounding box to highlight regions where most of the methods have incorrect predictions.

better performance due to using graph convolution together
with the transformer encoder.

4.4.2 Quantitative results on ACDC dataset

We have conducted another set of experiments on the
MRI images of the ACDC dataset using our architectures.
Table 2 presents the average DICE scores of our PVT-
GCASCADE and MERIT-GCASCADE along with other
SOTA methods. Our MERIT-GCASCADE achieves the
highest average DICE score of 92.23% thus improving
about 0.38% over Cascaded MERIT though our decoder
has significantly lower computational cost (see Table 5).
Our PVT-GCASCADE gains 91.95% DICE score which is
also better than all other methods. Besides, both our PVT-
GCASCADE and MERIT-GCASCADE have better DICE
scores in all three organs segmentation.

4.4.3 Qualitative results on Synapse Multi-organ
dataset

We present the segmentation outputs of our proposed
method and three other SOTA methods on two sample im-
ages in Figure 2. If we look into the highlighted regions
in both samples, we can see that MERIT-GCASCADE con-
sistently segments the organs with minimal false negative
and false positive results. PVT-GCASCADE and Cascaded
MERIT show comparable results. PVI-GCASCADE has
false positives in first sample (i.e., first row) and has better
segmentation in second sample (i.e., second row), whereas
Cascaded MERIT provides better segmentation in first sam-
ple but it has larger false positives in second sample. Tran-

Components #FLOPs  #Params Avg
Cascaded GCB SPA (G) M) DICE
No No No 0 0 80.1£0.2
Yes No No 0.102 0.225 81.1+0.2
Yes No  Yes 0.102 0.225 82.1£0.3
Yes Yes No 0.341 1.78  83.0+0.2
Yes Yes  Yes 0.342 1.78 83.3+0.2

Table 3. Quantitative results of different components of G-
CASCADE with PVTv2-b2 encoder on Synapse multi-organ
dataset. We use additive aggregation for adding skip connections
and an input resolution of 224 x 224. All results are averaged over
five runs. The best results are shown in bold.

Arrangements DICE (%)
SPA — GCB 82.9340.2
GCB — SPA (Ours) 83.28+0.2

Table 4. Comparison of different arrangements of GCB and SPA
in GCAM on Synapse Multi-organ dataset. We use PVTv2-b2 as
the encoder to produce these results. All the results are averaged
over five runs. The best results are in bold.

SCASCADE and PVT-CASCADE provide larger incorrect
segmentation outputs in both samples.

5. Ablation Study

In this section, we perform a set of ablation experiments
that address various questions concerning our proposed ar-
chitectures and experimental setup. More ablation studies
are available in supplementary materials (Section C).



Decoders UCB #FLOPs(G) #Params(M) DICE (%)
CASCADE Original 1.93 9.27 82.78
CASCADE Modified 1.22 7.58 82.79
G-CASCADE (Ours)  Original 1.06 3.47 83.15
G-CASCADE (Ours) Modified 0.342 1.78 83.28

Table 5. Comparison with the baseline decoder on Synapse Multi-
organ dataset. We only report the #FLOPs and the #parameters
of the respective decoder. We produce these results using PVTv2-
b2 encoder. All the results are averaged over five runs. The best
results are shown in bold.

Architectures Aggregation #FLOPs(G) #Params(M) DICE (%)

PVT-GCASCADE Addition 0.342 1.78 83.28
PVT-GCASCADE Concat 0.975 3.32 83.40
MERIT-GCASCADE Addition 1.523 3.55 84.54
MERIT-GCASCADE Concat 4.27 5.99 84.63

Table 6. Comparison of different skip-aggregations in G-
CASCADE decoder on Synapse Multi-organ dataset. We only
report the #FLOPs and #parameters of the respective decoder.
PVTV2-b2 encoder has 3.91G FLOPS and 24.86M parameters.
Small MERIT encoder has 24.62G FLOPs and 129.38M parame-
ters. All results are averaged over five runs. The best results are
shown in bold.

5.1. Effect of different components of G-CASCADE

We carry out ablation studies on the Synapse Multi-
organ dataset to evaluate the effectiveness of different com-
ponents of our proposed G-CASCADE decoder. We use the
same PVTv2-b2 backbone pre-trained on ImageNet and the
same experimental settings for Synapse Multi-organ dataset
in all experiments. We remove different modules such as
Cascaded structure, GCB, and SPA from the G-CASCADE
decoder and compare the results. It is evident from Table
3 that the cascaded structure of the decoder improves per-
formance over the non-cascaded decoder. GCB and SPA
modules also help improve performance. However, the use
of both SPA and GCB modules together produces the best
DICE score of 83.3%. We can also see from the table that
DICE score is improved by about 3.2% with 0.342G and
1.78M additional FLOPs and parameters, respectively.

5.2. Effect of arrangements of GCB and SPA in
GCAM

We have conducted an ablation study to see the effect of
the order of GCB and SPA in GCAM. Table 4 presents the
experimental results of two different arrangements. We can
conclude from Table 4 that GCB followed by SPA block
performs better than SPA followed by GCB. Therefore, in
our G-CASCADE decoder, we use a GCB followed by a
SPA block in each GCAM.

5.3. Comparison with the baseline decoder

Table 5 reports the experimental results with the compu-
tational complexity of our baseline CASCADE decoder and
our proposed G-CASCADE decoder. We also report the re-
sults of original UpConv used in the CASCADE decoder
and our modified efficient UCB. From Table 5, we can see
that our modified UCB performs equal or better with signif-
icantly lower #FLOPs and #parameters. Our G-CASCADE
decoder provides 0.5% better DICE score than the CAS-
CADE decoder with 80.8% fewer parameters and 82.3%
fewer FLOPs.

5.4. Effect of different skip-aggregations in G-
CASCADE decoder

We conduct some experiments to see the effect of Ad-
ditive or Concatenation in aggregating upsampled features
with the skip-connections. Table 6 presents the results of
PVT-GCASCADE and MERIT-GCASCADE with Additive
and concatenation aggregations. We can see from Table 6
that Concatenation-based aggregation achieves marginally
better DICE scores than Additive aggregation while having
significantly higher #FLOPs and #parameters. The reason
behind this increase in computational complexity is the use
of GCAM with the concatenated channels (i.e., 2x number
of original channels). Considering the lower computational
complexity of Additive aggregation, we have used Additive
aggregation in all of our experiments.

6. Conclusion

In this paper, we have introduced a new graph-
based cascaded convolutional attention decoder namely
G-CASCADE for multi-stage feature aggregation. G-
CASCADE enhances feature maps while preserving long-
range information captured by transformers which is cru-
cial for accurate medical image segmentation. Due to us-
ing graph convolution blocks instead of 3 x 3 convolu-
tion blocks, G-CASCADE is computationally very effi-
cient. Our experimental results show that G-CASCADE
outperforms a recent decoder, CASCADE, in DICE scores
with 80.8% fewer parameters and 82.3% fewer FLOPs. Our
experimental results also demonstrate the superiority of our
G-CASCADE decoder over SOTA methods on five public
medical image segmentation benchmarks. Finally, we be-
lieve that our proposed decoder will improve other down-
stream medical image segmentation and semantic segmen-
tation tasks.
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