Aerosol and Air Quality Research, 19: 1126–1138, 2019 Copyright © Taiwan Association for Aerosol Research

ISSN: 1680-8584 print / 2071-1409 online

doi: 10.4209/aagr.2018.10.0384

Responses of Secondary Inorganic PM_{2.5} to Precursor Gases in an Ammonia Abundant Area in North Carolina

Bin Cheng, Lingjuan Wang-Li*

Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA

ABSTRACT

Secondary inorganic fine particulate matter (iPM_{2.5}) constitutes a significant amount of the atmospheric PM_{2.5}. The formation of secondary iPM2.5 is characterized by thermodynamic equilibrium gas-particle partitioning of gaseous ammonia (NH₃) and aerosol ammonium (NH₄⁺). To develop effective strategies for controlling atmospheric PM_{2.5}, it is essential to understand the responses of secondary iPM_{2.5} to different precursor gases. In southeastern North Carolina, the amount of NH₃ is in excess to fully neutralize acidic gases (i.e., NH₃-rich conditions). NH₃-rich conditions are mainly attributed to the significant NH₃ emissions in the region, especially from the large amounts of animal feeding operation (AFO). To gain a better understanding of the impact of NH₃ on the formation of secondary iPM_{2.5} in this area, the responses of iPM_{2.5} to precursor gases under different ambient conditions were investigated based upon three-year monitoring data of the chemical components in iPM2.5, gaseous pollutants, and meteorological conditions. The gas ratio (GR) was used to assess the degree of neutralization via NH3, and ISORROPIA II model simulation was used to examine the responses of iPM_{2.5} to changes in the total NH₃, the total sulfuric acid (H₂SO₄), and the total nitric acid (HNO₃). It was discovered that under different ambient temperature and humidity conditions, the responses of iPM2.5 to precursor gases vary. In general, iPM_{2.5} responds nonlinearly to the total NH₃ but linearly to the total H₂SO₄ and the total HNO₃. In NH₃rich regions, iPM_{2.5} is not sensitive to changes in the total NH₃, but it is very sensitive to changes in the total H₂SO₄ and/or the total HNO₃. Reducing the total H₂SO₄, as opposed to the total HNO₃ or the total NH₃, leads to a significant reduction in iPM_{2.5} and is thus a more effective strategy for decreasing the concentration of iPM_{2.5}. This research provides insight into controlling and regulating PM_{2.5} in NH₃-rich regions.

Keywords: Ammonia; Inorganic PM_{2.5}; Thermodynamic equilibrium modeling; ISORROPIA II; Animal feeding operations.

INTRODUCTION

Particulate matter (PM) with an aerodynamic equivalent diameter less than or equal to 2.5 μm (i.e., PM_{2.5}) is one of the six criteria air pollutants regulated under National Ambient Air Quality Standards (NAAQS) (U.S. EPA, 2015a). Due to its adverse impacts on environment and human health, PM_{2.5} has been an intensive research topic since 1987 (Donham *et al.*, 1995; Heederik *et al.*, 2007; Pope *et al.*, 2009; Pui *et al.*, 2014). Various chemical components contribute to PM_{2.5} in different proportions, and the major chemical components of PM_{2.5} include ammonium (NH₄⁺), sulfate (SO₄²⁻), nitrate (NO₃⁻), organic carbon (OC), elemental carbon (EC), elements and other unknown components (Bell *et al.*, 2007). The secondary inorganic PM_{2.5} (iPM_{2.5}) is formed through chemical reactions

between basic and acidic gases (e.g., ammonia [NH₃], nitric acid [HNO₃] and sulfuric acid [H₂SO₄]) (Hinds, 1998; Seinfeld and Pandis, 2006). The iPM_{2.5} mainly consists of NH₄⁺ salts including ammonium nitrate (NH₄NO₃), ammonium sulfate ((NH₄)₂SO₄), ammonium bisulfate (NH₄HSO₄) and ammonium chloride (NH₄Cl) (Tanner *et al.*, 1979; Tolocka *et al.*, 2001; Walker *et al.*, 2004; Li *et al.*, 2012, 2014a).

Ammonia is the major alkaline gas that may react with acidic gases to form iPM_{2.5} in ambient air, and this process is also called gas-particle partitioning of NH₃-NH₄⁺. The neutralization degree of NH₃ can be characterized by gas ratio (GR), which is in Eq. (1) (Ansari and Pandis, 1998):

$$GR = \frac{[TA] - 2[TS]}{[TN]}$$
 (1)

where TA is total available ammonia, including NH_3 and NH_4^+ (in the unit of μ mole m^{-3}). TS is total sulfate including SO_4^{2-} , bisulfate (HSO_4^-) and H_2SO_4 (in the unit of μ mole m^{-3}). TN is total available nitrate, including NO_3^-

Tel.: 1-919-515-6762; Fax: 1-919-515-7760

E-mail address: lwang5@ncsu.edu

^{*}Corresponding author.

and HNO₃ (in the unit of μ mole m⁻³). When GR > 1, the total available ammonia exceeds the amount needed to fully neutralize both total sulfate and total available nitrate, and this is defined as NH₃-rich condition; under this condition, the changes of total available ammonia may not be a key factor to affect the concentration of iPM_{2.5}. When 0 < GR < 1, the amount of total available ammonia is adequate to fully neutralize total sulfate but not total available nitrate, and only NH₄NO₃ formation is limited by NH₃; under this condition, the decrease of NH₃ may lead to corresponding decrease of NH₄NO₃. When GR < 0, the amount of total available ammonia is not enough to fully neutralize either total sulfate or total available nitrate, and both (NH₄)₂SO₄ and NH₄HSO₄ are limited by NH₃ (Wang-Li, 2015).

Based on USEPA's National Emission Inventory (NEI), animal feeding operation (AFO) contributed to more than 70% of the total NH₃ emissions in the United States (U.S.) (U.S. EPA, 2015b). While the AFO NH₃ emissions present a great potential to the formation of secondary iPM_{2.5} in some regions where a significant amount of AFO facilities are located, the dynamic contribution of such emissions to the ambient iPM_{2.5} is not well understood spatially and temporally. To gain holistic understanding of atmospheric PM_{2.5}, it is essential to understand the dynamic responses of atmospheric iPM_{2.5} to the AFO NH₃ emissions under different atmospheric conditions and geographical locations (Wang-Li, 2015).

To study the thermodynamic equilibrium processes of iPM_{2.5} and its precursor gases, thermodynamic equilibrium model such as ISORROPIA was developed to simulate the gas-particle partitioning of NH₃-NH₄⁺ (Nenes et al., 1998, 1999). In ISORROPIA, the phase changes (e.g., gas, liquid, and solid) and interaction of different chemical species (NH₄⁺, NO₃⁻, SO₄²⁻, Cl⁻, and Na⁺) as well as the impacts of temperature (T) and relative humidity (RH) on partitioning of NH₃-NH₄⁺ are simulated (Fountoukis and Nenes, 2007; Fountoukis et al., 2009). In an application of ISORROPIA to assess the formation of iPM_{2.5} at an agricultural site located in eastern North Carolina (NC), Walker et al. (2006) examined the change of iPM_{2.5} concentration in response to the 50% reduction of total NH₃ (gas + aerosol), total HNO_3 (gas + aerosol) and total H_2SO_4 (aerosol) in winter and summer of 1999–2000. It was discovered that the 50% reduction of total NH₃ had the least impact on iPM_{2.5} concentration as compared to the 50% reductions in total HNO₃ and H₂SO₄. This research suggested that at the agricultural sites with elevated atmospheric concentration, the iPM_{2.5} is more sensitive to acidic gases rather than NH₃. In another iPM_{2.5} study, Goetz et al. (2012) investigated the effect of NH3 emissions from swine production facilities on iPM2.5 concentration at three locations in eastern NC. The iPM_{2.5} chemical composition data obtained from air quality monitoring stations of NC Division of Air Quality and gaseous pollutant concentrations measured or cited from literature were used to conduct iPM_{2.5} simulation using ISORROPIA under three T and RH conditions. The results indicated that the simulation results of iPM25 by ISORROPIA agreed well with the

observation. Furthermore, this research revealed that high precursor gas concentrations, low T, and high RH led to higher chance for secondary iPM_{2.5} formation.

In order to gain advanced understanding of the formation of iPM_{2.5} as impacted by AFO NH₃ emissions, Li *et al.* (2014b) investigated the formation of secondary iPM_{2.5} in response to total NH₃ inside a production house and in the vicinity of an egg farm in the southeastern U.S. Onsite measurements of NH₃ concentrations and PM_{2.5} chemical components at in-house and ambient locations were used to conduct ISORROPIA II simulation to predict gas-particle partitioning of NH₃-NH₄⁺. Li *et al.* (2014b) confirmed that the most significant reduction of iPM_{2.5} can be caused by the reduction of total H₂SO₄ instead of NH₃ and this is because the formation of iPM_{2.5} is limited by the availability of acidic gases when NH₃ exceeds the amount needed to fully neutralize acid gases.

In addition to the local-scale simulation, ISORROPIA II has been embedded into chemical transport model (CTM) to study more complicated atmospheric gas-particle partitioning on regional and/or global scales. Paulot and Jacob (2014) estimated the contribution of agricultural NH $_3$ emissions to the ambient PM $_{2.5}$ in the U.S. using GEOS-Chem global CTM coupled with ISORROPIA II. This modeling practice reported that there is a 0.36 $\mu g \ m^{-3}$ increase of ambient PM $_{2.5}$ concentration caused by NH $_3$ emissions associated with the U.S. food export activities.

As the research gap exists in quantifying the formation of secondary iPM_{2.5} experimentally and/or through model simulation in AFO region, the objectives of this research were as follows: (1) investigation of the neutralization degree of NH₃; (2) examination of seasonal variation of PM_{2.5} mass closure; and (3) study of the responses of secondary iPM_{2.5} to the changes of total NH₃, total HNO₃, and total H₂SO₄ in an animal production area of NC under different meteorological conditions.

METHODS

Since NH₄⁺, SO₄²⁻, and NO₃⁻ account for the majority of atmospheric iPM_{2.5} (Bell *et al.*, 2007), this research focuses on the responses of NH₄⁺, SO₄²⁻, and NO₃⁻ to the changes of total NH₃, total HNO₃ and total H₂SO₄ at a site where atmospheric NH₃ is abundant due to NH₃ emissions from AFO.

Research Site Selection and Data Collection

To achieve the research objective, the research site has to be in an area where a significant amount of AFO facilities are present. In addition, simultaneous measurements of gasphase pollutants (e.g., NH₃ and HNO₃) and particle-phase ions (e.g., NH₄⁺, SO₄²⁻, and NO₃⁻) are required input data to conduct ISORROPIA II simulation. Thus, the availability of the required measurement data is another criterion for the site selection. Based upon these two site selection criteria, a monitoring site (35.23146 N, 77.568792 W) in Lenoir County of NC was selected for this research. Fig. 1 shows this site marked on the AFO distribution map developed by Zhao and Wang-Li (2015). The majority of

Sampson County Lenoir County

Fig. 1. Spatial distribution of poultry and swine farms across the entire NC (the black star: iPM_{2.5} and NH₃ monitoring site; the red triangle: swine farms; the green solid circle: poultry farms).

the swine and poultry farms are in the south-central area of NC where the research site was also located.

At the selected site, 24-hr average measurements of PM_{2.5} chemical components (e.g., NH₄⁺, SO₄²⁻, NO₃⁻) and hourly measurements of NH₃, reactive oxides of nitrogen (NO_v), T and RH were taken in 2002–2004 and reported at the EPA's Air Quality System (AQS) (https://aqs.epa.gov/api). The 24-hr PM_{2.5} chemical composition data were measured every sixth day while the hourly NO_v concentrations, T, and RH were measured continuously for three years. To keep these data on the same time scale, hourly data on specific days when the PM_{2.5} chemical composition data were taken were converted into 24-hr average data to match daily measurements of PM_{2.5} chemical components. While the HNO₃ gas concentration is a required input for ISORROPIA II model, the HNO₃ gas measurements were not available. Thus, the NO_v concentration may be used to indirectly determine the HNO₃ gas concentration. In general, NO_v includes nitric oxide (NO), nitrous oxide (N2O), HNO3, peroxyacetyl nitrate (PAN), nitrous acid (HONO), nitrate radical (NO₃), dinitrogen pentoxide (N2O5), organic nitrates etc. In addition, NO, NO₂, HNO₃, and PAN are the major components of NO_v (Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 2006). In atmosphere, HNO₃ is mainly formed through the oxidation of NO₂ following Eq. (2) in the daytime (Pun and Seigneur, 2001; Jacobson, 2005):

$$OH + NO_2 \rightarrow HNO_3 \tag{2}$$

where reaction (2) mainly happens in the daytime in which the photochemical reaction can provide adequate hydroxyl radical (OH).

To estimate the HNO₃ concentration through NO_y concentration, NO₂ concentration should be first determined.

Luke *et al.* (2010) discovered that the fractional contribution of NO₂ in NO_y varied with the time of day. While no NO₂ measurement data were available in Lenoir County, there were simultaneous measurements of hourly NO_y and NO₂ concentrations in 2014 in Wake County, which is another county in southeastern NC (Fig. 1). The median NO₂/NO_y ratios for each of 24 hours in Wake County were used to estimate NO₂/NO_y ratios in Lenoir County. The fractional contributions of NO₂ to the total NO_y are set at different values in each of 24 hours based on the measurement data in Wake County, and this trend is consistent with the measurements performed by Luke *et al.* (2010).

In estimation of the HNO₃ concentrations, it was assumed that different percentages (0%, 0.5%, 1%, 5%, 10%, 25%, 50%, and 100%) of NO₂ might be converted to HNO₃ through Eq. (1). As for H₂SO₄, since it has very low vapor pressure, nearly all of the H₂SO₄ partition into the particle phase (Seinfeld and Pandis, 2006; Makar *et al.*, 2009).

Mass Closure Profile

The contribution of inorganic PM_{2.5} to total PM_{2.5} mass contribution was analyzed using mass closure profile of PM_{2.5} chemical components. Major ions including iPM_{2.5} anions/cations, up to 47 crustal elements, EC and OC as well as PM_{2.5} mass concentration were simultaneously measured by MetOne SASS sampler. To develop a mass closure profile, PM_{2.5} mass concentration measured by MetOne SASS Teflon was used to analyze the mass closure of PM_{2.5} chemical components. When the sum of all the chemical component concentrations were greater than the measured PM_{2.5} mass concentration, those data were excluded from mass closure analysis.

According to Dillner *et al.* (2012) and Weber *et al.* (2003), organic carbon matter (OCM) can be calculated using Eq. (3) to account for elements other than carbon:

$$OCM = 1.4 \times (OC_m - OC_b)$$
 (3)

where OCM = organic carbon matter, OC_m = organic carbon measurement, and OC_b = field blank.

The contributions of various chemical components to $PM_{2.5}$ were calculated using Eq. (4):

$$P_i = (C_i/C_m) \times 100 \tag{4}$$

where P_i = percentage of the chemical component i in $PM_{2.5}$ mass concentration, C_i = concentration of chemical component i, and C_m = measured $PM_{2.5}$ mass concentration from MetOne SASS Teflon filter.

ISORROPIA II Settings

For this study, all the iPM_{2.5} chemical components are assumed to be internally mixed, and the thermodynamic equilibrium is also assumed to be established very rapidly. The ISORROPIA II allows user to specify the problem type (forward or reverse) and thermodynamic state (stable or metastable); in this study, ISORROPIA II is set as forward + stable. As NH₃-NH₄⁺-SO₄²-HNO₃-NO₃⁻ system is determined as the research focus, all the other species concentrations, including total sodium (Na⁺), total hydrochloric acid (HCl), total calcium (Ca²⁺), total potassium (K⁺), and total magnesium (Mg²⁺) are set as 0.

The examination of responses of $iPM_{2.5}$ to the total NH_3 , total HNO_3 , and total H_2SO_4 was based on the minimum, median and maximum concentrations of the input parameters measured in 2002–2004 using ISORROPIA II (Table 1).

Five T and RH conditions were used to test the responses of secondary $iPM_{2.5}$ to the changes of total NH_3 , total H_2SO_4 , and total HNO_3 . These combinations include maximum T + minimum RH, minimum T + maximum RH, median T + median RH, maximum T + maximum RH, minimum T + median RH, of which, maximum T + maximum RH and minimum T + median RH represent the summer and winter conditions, respectively.

Statistical Analysis

All the data analyses, analysis of variance (ANOVA) test, paired *t*-test, and Tukey's Honest Significant Difference (HSD) test were performed using R.

RESULTS AND DISCUSSION

Statistical Characterization of the Field Measurements

Table 2 lists the summary of three-year measurements. Median NH₃ gas concentrations in winter and summer were 0.74 and 3.17 μ g m⁻³, respectively, and median NH₄⁺ concentrations in winter and summer were 1.15 and 1.64 μ g m⁻³, respectively. Research performed by Walker *et al.* (2006) at a site in the neighboring county, Sampson County (Fig. 1), reported the median NH₃ gas concentrations of 2.60 and 6.18 μ g m⁻³ in winter and summer, respectively, and median NH₄⁺ aerosol concentrations of 1.90 and 1.69 μ g m⁻³ in winter and summer, respectively. Comparatively, the NH₃ gas and NH₄⁺ aerosol concentrations at the site in Sampson County were greater than the concentrations

Table 1. Inputs of the ISORROPIA II simulation.

Input variables	Minimum	Median	Maximum
Total NH ₃	0.54	3.16	37.94
Total H ₂ SO ₄	0.59	3.53	14.60
Total HNO ₃	0.24	1.17	4.24
RH (%)	39	77	95
T (K)	271.95	292.05	305.95

Concentrations are expressed in µg m⁻³ as equivalent concentrations; total HNO₃ concentration is calculated based on 3.63% conversion percentage of NO₂ to HNO₃.

measured in this research. This can be justified by the difference of AFO distribution and density in these two counties shown in Fig. 1. The AFO density is much higher in Sampson County than in Lenoir County. In addition, minimum, median and maximum total H₂SO₄ concentrations of this site (0.59, 3.53 and 14.60) are comparable with those (0.58, 3.43 and 14.30) in Sampson County reported by Goetz *et al.* (2012).

Responses of Total iPM_{2.5} to Different Conversion Percentages of NO₂ to HNO₃

As it has been stated, 0%, 0.5%, 1%, 5%, 10%, 25%, 50% and 100% of NO₂ were assumed to be converted through Eq. (1) to HNO₃; in each case scenario, gas-phase HNO₃ and total HNO₃ concentrations were calculated based upon the different conversion ratios. The calculated total HNO₃ along with other model inputs (median values) were then used to simulate the formation of iPM_{2.5} using ISORROPIA II. The predicted iPM_{2.5} was compared with the measured iPM_{2.5} concentrations under different NO₂-to-HNO₃ conversion percentages (Fig. 2).

Fig. 2 shows that as the percentage of NO₂ to HNO₃ conversion was increased from 0% to 100%, the ratio of predicted iPM_{2.5} over measured iPM_{2.5} was increased from 0.95 to 1.80, correspondingly. This can be explained that in Lenoir County, ambient NH₃ is abundant (GR > 1); while NH₃ preferentially reacted with H₂SO₄ to form (NH₄)₂SO₄ and ammonium bisulfate (NH₄HSO₄), excessive NH₃ could react with HNO₃ to form NH₄NO₃ (Tanner *et al.*, 1981; Yu *et al.*, 2005). When NH₃ concentration in the atmosphere exceeds the amount needed to fully neutralize both total HNO₃ and total H₂SO₄, more HNO₃ can favor the formation of NH₄NO₃, then increase the concentration of iPM_{2.5}.

When the conversion percentage of NO_2 to HNO_3 was set at 3.63%, the ratio of predicted $iPM_{2.5}$ over measured $iPM_{2.5}$ was close to 1, which may be indicative of a reasonable estimate of the conversion ratio. Moreover, Goetz *et al.* (2012) reported the minimum, median, and maximum concentrations of total HNO_3 were 0.26, 1.07, and 5.24 μ g m⁻³, respectively, in eastern NC in 2001–2004. The estimated minimum, median, and maximum total HNO_3 in this research were 0.24, 1.17, and 4.24 μ g m⁻³, respectively in 2002–2004. Thus, the estimation of the HNO_3 concentration generally agreed with the previous research.

Neutralization Degree of NH₃: GR

The neutralization degree of NH₃ was characterized by

		NIT I	IDIO	NITT +	N IO =	GO 2-	_	TNILL	TINIO	THE	T (IZ)	DII (0/)
Season		NH ₃	HNO ₃	NH ₄ ⁺	NO_3^-	SO_4^{2-}	iPM _{2.5}	TNH ₃	THNO ₃	TH_2SO_4	T (K)	RH (%)
Winter	N	28	28	28	28	28	28	28	28	28	28	28
	Mean	1.68	0.71	1.21	1.75	2.62	5.58	2.74	2.49	2.67	281.17	68.30
	SD	1.96	0.34	0.55	0.91	1.17	2.16	1.80	1.02	1.20	5.42	14.57
	Median	0.74	0.62	1.15	1.69	2.39	5.53	2.05	2.43	2.43	280.65	72.96
	Min	0.36	0.14	0.28	0.17	1.14	2.22	0.78	0.51	1.16	271.95	39.38
	Max	7.90	1.43	2.62	3.35	6.35	11.52	8.35	4.24	6.48	294.15	92.96
Spring	N	30	30	30	30	30	30	30	30	30	30	30
	Mean	4.47	0.32	1.42	0.82	4.00	6.25	5.73	1.16	4.08	290.90	75.08
	SD	4.23	0.13	0.77	0.45	1.73	2.82	4.30	0.49	1.76	5.42	11.09
	Median	3.12	0.30	1.48	0.66	4.14	6.25	4.41	1.09	4.23	290.50	76.37
	Min	0.36	0.12	0.01	0.26	0.58	0.85	0.69	0.46	0.59	279.65	45.46
	Max	15.29	0.60	3.19	1.78	7.39	11.86	18.12	2.17	7.54	300.45	94.71
Summer	N	30	30	30	30	30	30	30	30	30	30	30
	Mean	6.13	0.24	1.68	0.67	4.77	7.11	7.77	0.92	4.87	299.67	79.73
	SD	7.83	0.11	1.18	0.34	2.81	4.20	7.99	0.40	2.87	3.08	8.16
	Median	3.17	0.25	1.64	0.64	4.68	7.14	4.97	0.96	4.78	300.10	80.08
	Min	0.43	0.08	0.17	0.23	1.14	1.54	0.61	0.32	1.16	291.45	65.42
	Max	36.62	0.52	5.50	1.79	14.30	21.02	38.07	2.23	14.60	305.95	94.67
Fall	N	27	27	27	27	27	27	27	27	27	27	27
	Mean	2.97	0.52	1.67	0.93	4.42	7.02	4.49	1.47	4.51	293.18	79.37
	SD	6.99	0.39	1.38	0.70	3.21	4.95	6.68	0.90	3.27	5.93	8.46
	Median	1.10	0.46	1.30	0.58	3.40	5.41	2.50	1.11	3.47	293.85	80.75
	Min	0.35	0.06	0.07	0.18	0.66	0.94	0.54	0.24	0.67	280.95	62.58
	Max	36.96	1.87	6.61	2.76	14.30	23.67	36.52	3.67	14.60	301.85	95.00

Table 2. The statistics of concentrations of different gases and PM_{2.5} chemical components by season.

All the concentration values are expressed in µg m⁻³.

The concentration of HNO₃ is calculated based on the assumption that 3.63% of NO₂ was converted to HNO₃ through Eq. (1). TNH₃ = NH₃ + NH₄⁺; THNO₃ = HNO₃ + NO₃⁻; TH₂SO₄ = H₂SO₄; TNH₃, THNO₃, TH₂SO₄ are all expressed as the equivalent concentration; iPM_{2.5} is the sum of NH₄⁺, NO₃⁻ and SO₄²⁻; T is temperature; RH is relative humidity.

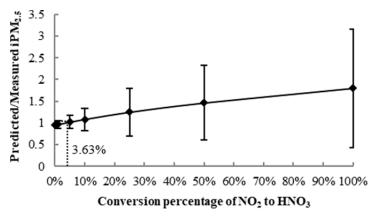


Fig. 2. The ratio of predicted $iPM_{2.5}$ concentration over measured $iPM_{2.5}$ concentration against conversion percentage of NO_2 to HNO_3 .

GR. The ranges of GR in four seasons are listed in Table 3. This area was classified as the NH_3 -rich area since the GR values were greater than 1 in most of the time. Specifically, in summer, 29 out of 30 data points were characterized as $GR \geq 1$; even in winter, 23 out of 28 data points were GR ≥ 1 . In addition, the median GRs in four seasons were all larger than 1 with the highest GR-12.69 in summer. This observation indicated that the research site in Lenoir County was dominated by NH_3 -rich condition such that there was a great potential for neutralizing acidic gases with

excessive NH₃ in atmosphere.

Seasonal Variations of PM_{2.5} Chemical Speciation

In Lenoir County, $PM_{2.5}$ mass concentration was measured in 2002–2004 using two methods, Federal Reference Method (FRM) and MetOne SASS chemical speciation sampler; both datasets came from gravimetric analysis. To check the data quality, the comparison between these two datasets were performed and the results are listed in Table 4.

As indicated by Table 4, the PM_{2.5} mass concentration measurements from MetOne SASS sampler are significantly

greater than the measurements from FRM method. The seasonal mass closure profile is shown in Fig. 3.

Table 3. Numbers in different GR ranges in four seasons of Lenoir County.

Season Median GR	Madian CD	NI		Numbers of GRs in different ranges				
	IN	GR ≤ 1	$1 < GR \le 3$	$3 < GR \le 10$	GR > 10			
Winter	1.93	28	5	14	7	2		
Spring	10.30	30	2	9	4	15		
Summer	12.69	30	1	2	9	18		
Fall	4.35	27	2	10	12	3		

Median GR is calculated based on the median total HNO_3 , median total H_2SO_4 and median total NH_3 concentrations. N is the total data point number in each season.

Table 4. Comparison of FRM vs. MetOne SASS measured $PM_{2.5}$ mass concentration.

Season	N	p-value	Mean ± SD (FRM vs. MetOne SASS)	
All (4 seasons)	160	7.59×10^{-6}	11.60 ± 5.77	12.72 ± 5.99
Winter	35	0.003	9.84 ± 3.33	11.01 ± 4.34
Spring	41	6.33×10^{-5}	11.15 ± 4.80	12.27 ± 5.07
Summer	46	0.19	13.77 ± 7.01	14.60 ± 6.95
Fall	38	0.01	11.09 ± 6.25	12.48 ± 6.55

Comparison is performed using paired *t*-test, 0.05 significance level.

FRM uses R&P Partisol Plus 2025 sequential air sampler with EPA Well Impact Ninety-Six (WINS) impactor.

MetOne SASS uses sharp cut cyclone (SCC) and Teflon filter.

N = number of samples.

Fig. 3. PM_{2.5} chemical speciation mass fractions in Lenoir County in four seasons.

As can be seen from Fig. 3, iPM_{2.5} accounted for a large proportion of the total PM_{2.5}, and this fraction was highest in spring (51%) and lowest in summer (40%). For iPM_{2.5} alone, three chemical species, SO_4^{2-} , NO_3^{-} and NH_4^{+} , also accounted for different fractions in four seasons. The results of Tukey's test were shown in Table 5.

As indicated by Table 5, the PM_{2.5} concentration in summer was significantly higher than in winter; this can be explained by the seasonal variations of the major chemical components. The OCM and SO₄²⁻ together accounted for 41.4–54.2% of PM_{2.5} mass concentration in four seasons; both species' concentrations were higher in summer than in winter. In addition, SO_4^{2-} was also the major component of iPM_{2.5} and it accounted for 47.9-67.0% in the whole iPM_{2.5}. The NO₃⁻ concentration was significantly higher in winter than in summer. This may be due to semi-volatile characteristic of NH₄NO₃, according to Olszyna et al. (2005), SO₄²⁻ salts and NO₃⁻ salts own different levels of thermal stability, the NH₄NO₃ is not thermally stable so that it may decompose to gaseous HNO₃ and NH₃ when environmental conditions (high T and low RH) do not favor the particle phase. On the other hand, SO_4^{2-} salts are thermally stable compared with NO₃⁻ salts. In summer, the ambient conditions do not favor the formation of NH₄NO₃. However, the $(NH_4)_2SO_4$ can still form in summer; thus, SO_4^{2-} was the year-round major component of iPM_{2.5} and this is consistent with the finding from Holt et al. (2015). However, as for NH₄⁺, there is no significant difference between four seasons. The NH₃-rich conditions dominated in four seasons; NH₃ exceeded the amount needed to fully neutralize both HNO₃ and H₂SO₄. The NH₄⁺ in the form of (NH₄)₂SO₄ was higher in summer than in winter and NH₄⁺ in the form of NH₄NO₃ was higher in winter than in summer; thus, both seasonal variations offset the change of the NH₄⁺ concentration in winter and summer.

Response of Secondary iPM_{2.5} to Total NH₃

In this analysis, median total H_2SO_4 concentration and median total HNO_3 concentration were used under five T and RH case scenarios (Table 1) to simulate the $iPM_{2.5}$ formation with total NH_3 concentration ranging from 0.54 to 37.94 μg m⁻³. The responses of $iPM_{2.5}$ to the change of total NH_3 are shown in Fig. 4. Under different conditions, the responses of $iPM_{2.5}$ to total NH_3 were different. The concentration of $iPM_{2.5}$ responded to the total NH_3 nonlinearly.

Under maximum T + minimum RH (305.95 K + 39%), the change of iPM_{2.5} concentration is caused by the change of SO_4^{2-} , HSO_4^{-} , and NH_4^{+} . When the total NH_3 concentration is changed from 0.54 µg m⁻³ to 37.94 µg m⁻³, the GR is also changed from -2.17 to 116.29; during this process, the response of iPM_{2.5} to total NH₃ is changed from sensitive to insensitive. When $GR \leq 0$, increasing total NH₃ concentration can increase the concentration of particle-phase SO_4^{2-} and NH_4^+ while at the same time decrease the concentration of HSO₄⁻. This is because that when NH₃ gas is insufficient for fully neutralizing total H₂SO₄, both (NH₄)₂SO₄ and NH₄HSO₄ exist in the system and adding more NH₃ can react with the available H₂SO₄ and at the same time convert NH₄HSO₄ to (NH₄)₂SO₄. When GR > 0, NH_3 is adequate to fully neutralize total H_2SO_4 , and there is excessive NH3 in the system. In the whole

Table 5. Comparisons of different PM_{2.5} chemical component concentrations by season.

Species	Season	N	$Mean \pm SD$	Tukey Grouping
PM _{2.5}	Winter	35	11.01 ± 4.34	В
	Spring	41	12.27 ± 5.07	A/B
	Summer	46	14.60 ± 6.95	A
	Fall	38	12.77 ± 6.88	A/B
OCM	Winter	23	2.42 ± 1.93	В
	Spring	34	2.74 ± 2.18	В
	Summer	38	4.29 ± 2.89	A
	Fall	34	3.35 ± 2.12	A/B
EC	Winter	35	0.36 ± 0.18	A
	Spring	41	0.25 ± 0.25	A/B
	Summer	46	0.18 ± 0.10	В
	Fall	38	0.34 ± 0.37	A
SO_4^{2-}	Winter	35	2.81 ± 1.34	В
	Spring	41	4.09 ± 1.61	A/B
	Summer	46	4.60 ± 2.55	A
	Fall	38	2.98 ± 2.88	A/B
NO_3^-	Winter	35	1.97 ± 1.09	A
	Spring	41	0.94 ± 0.58	В
	Summer	46	0.66 ± 0.36	В
	Fall	38	1.02 ± 0.94	В
$\mathrm{NH_4}^+$	Winter	35	1.33 ± 0.68	A
	Spring	41	1.51 ± 0.76	A
	Summer	46	1.62 ± 1.07	A
	Fall	38	1.52 ± 1.24	A

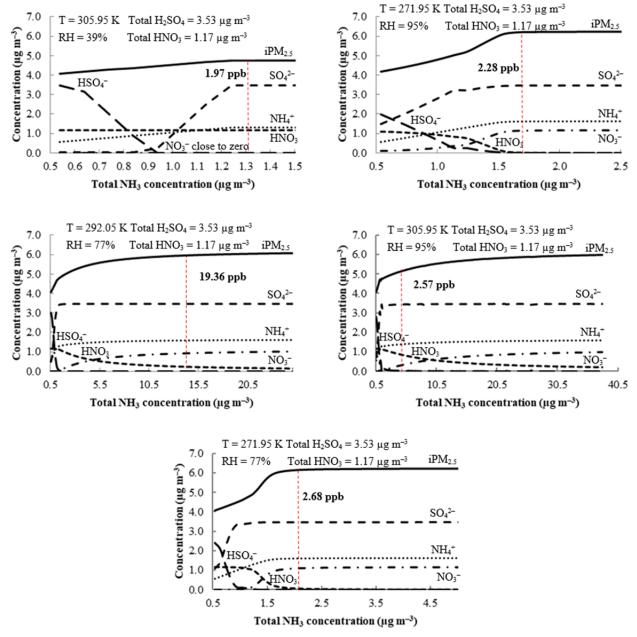


Fig. 4. Responses of different iPM_{2.5} chemical components to total NH₃ concentration under five T and RH conditions.

process, NO₃⁻ aerosol is close to 0, and HNO₃ concentration remains the constant. This is because that high T and low RH do not favor the formation of semi-volatile compound NH₄NO₃; even when there is excessive NH₃ existing in the system, HNO₃ will not react with NH₃ to be converted to NO₃⁻. Thus, in the end, increasing NH₃ will not change the concentration of any component in the system, and the response of iPM_{2.5} to total NH₃ is insensitive.

Under minimum T + maximum RH (271.95 K + 95%), the change of iPM_{2.5} concentration is caused by the changes of SO_4^{2-} , HSO_4^{-} , NH_4^{+} and NO_3^{-} . When $GR \le 1.63$, increasing total NH_3 concentration can increase the concentration of SO_4^{2-} , NH_4^{+} and NO_3^{-} while at the same time decrease the concentration of HSO_4^{-} . This is owing to the fact that low T and high RH can favor the formation of

NH₄NO₃; when GR \leq 0, adding more NH₃ can react with H₂SO₄ and at the same time convert NH₄HSO₄ to (NH₄)₂SO₄. When 0 < GR \leq 1.63, the excessive NH₃ can react with HNO₃ to form NH₄NO₃ until all the HNO₃ is depleted. After GR > 1.63, adding more NH₃ will not change the concentration of iPM_{2.5} significantly; this is due to lack of available acidic gases, which have been fully neutralized by NH₃ gas.

Under median T + median RH (292.05 K + 77%), changes in the iPM_{2.5} chemical composition are similar to those under the condition of minimum T + maximum RH (271.95 K + 95%); the difference is the peak iPM_{2.5} concentration value and the GR at which the system reaches the peak iPM_{2.5} concentration. Fig. 4 shows that the difference in peak iPM_{2.5} concentration is caused by the NO_3^- concentration.

Lower T and higher RH can favor the formation of NH_4NO_3 ; thus, the peak $iPM_{2.5}$ under median T + median RH is about 6.13 $\mu g \ m^{-3}$, which is less than the peak $iPM_{2.5}$ concentration (6.24 $\mu g \ m^{-3}$) under minimum T + maximum RH (271.95 K + 95%) and greater than the peak $iPM_{2.5}$ concentration (4.76 $\mu g \ m^{-3}$) under maximum T + minimum RH.

According to Table 2, at summertime, the ambient meteorology was characterized by high T + high RH; at wintertime, the ambient meteorology was characterized by low T + median RH. In order to capture the seasonal variation of iPM_{2.5}, these two combinations of T and RH are added to the analysis. As shown in Fig. 4, under maximum T + maximum RH (305.95 K + 95%), the change of iPM_{2.5} concentration is similar to the condition of median T + median RH. The difference is the peak iPM_{2.5} concentration; the peak iPM_{2.5} concentration under maximum T + maximum RH is close to 6.00 μg m⁻³, which is lower than the peak iPM_{2.5} concentration, 6.13 µg m⁻³, under median T + median RH. This is owing to the fact that higher T does not favor the formation of NH₄NO₃ and this case scenario can represent ambient condition in the summertime of this region. Under minimum T + median RH (271.95 K + 77%), the change of $iPM_{2.5}$ concentration is caused by the change of SO_4^{2-} , NH_4^+ , NO_3^- , and HSO_4^- , and this trend is similar to the condition of minimum T + maximum RH; the difference is the threshold value of total NH₃ concentration that indicates the transition from sensitive to the insensitive region.

Upon the above analysis, the threshold values of total NH₃ concentration at which transition from sensitive to the insensitive happens are identified for all the case scenarios (Table 6). Greater than threshold values, the iPM_{2.5} becomes insensitive to the change of total NH₃ concentration.

Table 6 shows that under condition of median T + median RH, the threshold values of total NH₃ concentration and GR are the largest. Under condition of minimum T + maximum RH, the threshold values of total NH₃ concentration and GR are the smallest. According to Table 3, the ambient condition is dominated by NH₃-rich condition; thus, under most of the cases, the response of iPM_{2.5} to total NH₃ is insensitive. Thus, reducing total NH₃ concentration will not lead to significant decrease of iPM_{2.5} concentration.

Response of Secondary iPM_{2.5} to Total H₂SO₄

In this analysis, median total NH₃ concentration and median total HNO₃ concentration were used under five T

and RH case scenarios (Table 1) to simulate the $iPM_{2.5}$ formation with total H_2SO_4 concentration changing from 0.59 to 14.60 $\mu g \ m^{-3}$. The results are shown in Fig. 5.

Fig. 5 shows that the response of iPM_{2.5} to total H₂SO₄ is linear. Increasing total H₂SO₄ concentration can lead to the increase of iPM_{2.5} concentration. Under maximum T + minimum RH (305.95 K + 39%), the change of iPM_{2.5} concentration is caused by the change of SO_4^{2-} , HSO_4^{-} , and NH₄⁺. As the formation of NH₄NO₃ is not favored under this condition, the concentration of NO₃⁻ is close to 0, and HNO₃ gas concentration remains the constant. While under the conditions of minimum T + maximum RH (271.95 K + 95%), median T + median RH (292.05 K + 77%), maximum T + maximum RH (305.95 K + 95%), and minimum T + median RH (271.95 K + 77%), the change of iPM_{2.5} concentration is caused by the change of SO₄²⁻, HSO₄, NH₄ and NO₃. With the increase of total H₂SO₄, NH₃ gas concentration is decreased due to the reaction with H₂SO₄, and during this process, H₂SO₄ also competes with HNO3 to react with NH3 to form (NH4)2SO4 and NH₄HSO₄. When total H₂SO₄ concentration is greater than 9.0 μg m⁻³, HSO₄ begins to increase; this is because that if total NH₃ is not adequate to fully neutralize H₂SO₄, adding more H₂SO₄ can convert (NH₄)₂SO₄ to NH₄HSO₄.

In summary, the response of secondary iPM_{2.5} to total H₂SO₄ concentration is linear. Adding more H₂SO₄ can increase iPM_{2.5} concentration significantly; this is because of the excessive NH₃ existing in the system. When all the NH₃ gas is neutralized by H₂SO₄, SO₄²⁻ is converted to HSO₄⁻; thus concentration of iPM_{2.5} is increased. Response of secondary iPM_{2.5} to total H₂SO₄ is not determined by NH₃-rich or NH₃-poor conditions in this research. This is because that in NH₃-NH₄⁺-SO₄²⁻-HNO₃-NO₃⁻ system, NH₃ gas preferentially reacts with H₂SO₄, and if total NH₃ is in excess of fully neutralizing H₂SO₄, excessive NH₃ can react with HNO₃. In this research, when there is excessive NH₃ existing in the system, adding more H₂SO₄ can directly increase the concentration of (NH₄)₂SO₄. After all the NH₃ is neutralized, (NH₄)₂SO₄ is then converted to NH₄HSO₄. In total, the iPM_{2.5} concentration keeps increasing but with lower increasing rate (there are two stages in the Fig. 5, higher increase rate in the first stage and lower increase rate in the second stage).

Response of Secondary iPM_{2.5} to Total HNO₃

In this analysis, median total NH₃ concentration and median total H₂SO₄ concentration were used under the five

Table 6. Threshold values of insensitive response of iPM_{2.5} to total NH₃.

Ambient Conditions	Threshold total NH ₃ concentration	Threshold GR value
Maximum T + minimum RH	$1.34 \ \mu g \ m^{-3} (1.97 \ ppb)$	0.37
Minimum T + maximum RH	$1.74 \mu \text{g m}^{-3} (2.28 \text{ppb})$	1.63
Median T + median RH	$13.74 \ \mu g \ m^{-3} \ (19.36 \ ppb)$	39.64
Maximum T + maximum RH	$1.74 \mu \text{g m}^{-3} (2.57 \text{ppb})$	1.63
Minimum T + median RH	$2.04 \mu g m^{-3} (2.68 ppb)$	2.58

When d(iPM_{2.5})/d(total NH₃) is less than 0.2, the response of iPM_{2.5} to total NH₃ is defined as insensitive.

Threshold GR value is calculated based on median total H_2SO_4 concentration and median total HNO_3 concentration, 3.53 and 1.17 $\mu g \ m^{-3}$, respectively.

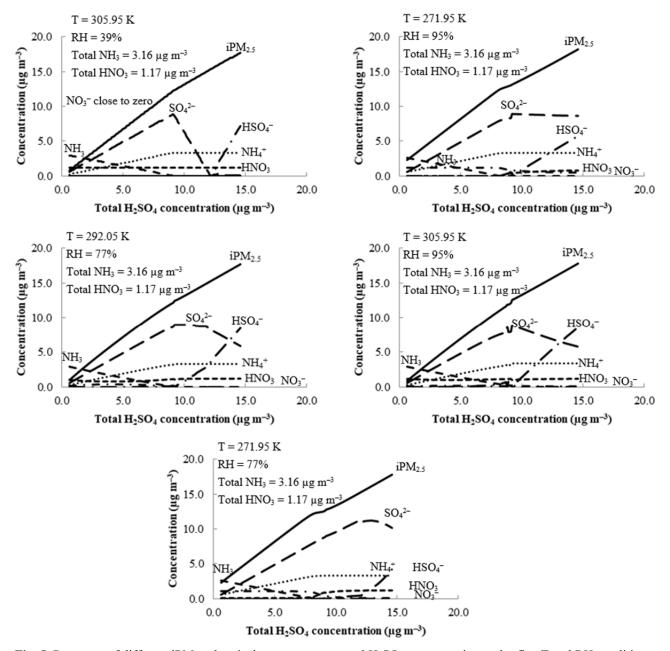


Fig. 5. Response of different iPM_{2.5} chemical components to total H₂SO₄ concentration under five T and RH conditions.

T and RH case scenarios (Table 1) to simulate the $iPM_{2.5}$ formation with total HNO₃ concentration changing from 0.24 to 4.24 μg m⁻³. The results are shown in Fig. 6.

Under maximum T + minimum RH (305.95 K + 39%), iPM_{2.5} is insensitive to the change of total HNO₃. This is owing to the fact hat high T and low RH do not favor the formation of NH₄NO₃; even if there is excessive NH₃ gas in the system, it will not react with the added HNO₃ to form NH₄NO₃. Thus, all the other chemical components remain the constant and NO₃⁻ concentration is close to 0.

Under the conditions of minimum T + maximum RH (271.95 K + 95%), median T + median RH (292.05 K + 77%), maximum T + maximum RH (305.95 K + 95%), and minimum T + median RH (271.95 K + 77%), the changes of iPM_{2.5} concentration is caused by the change of

 ${
m NH_4}^+$ and ${
m NO_3}^-$. This is because that under these four conditions, the formation of ${
m NH_4NO_3}$ is not limited by the ambient meteorology; thus, adding more ${
m HNO_3}$ can react with the available ${
m NH_3}$ to form ${
m NH_4NO_3}$, which leads to the increase of ${
m NO_3}^-$ and ${
m NH_4}^+$ simultaneously. The ${
m SO_4}^{2-}$ concentration remains the constant; this is due to the full neutralization of ${
m H_2SO_4}$ by ${
m NH_3}$.

In summary, the response of secondary $iPM_{2.5}$ to total HNO₃ is linear; adding more HNO₃ to the system can increase the $iPM_{2.5}$ concentration linearly due to the formation of NH₄NO₃. Under different ambient conditions, the increase rate of $iPM_{2.5}$ is different; lower T and higher RH favor the formation of NH₄NO₃ and lead to higher $iPM_{2.5}$ concentration.

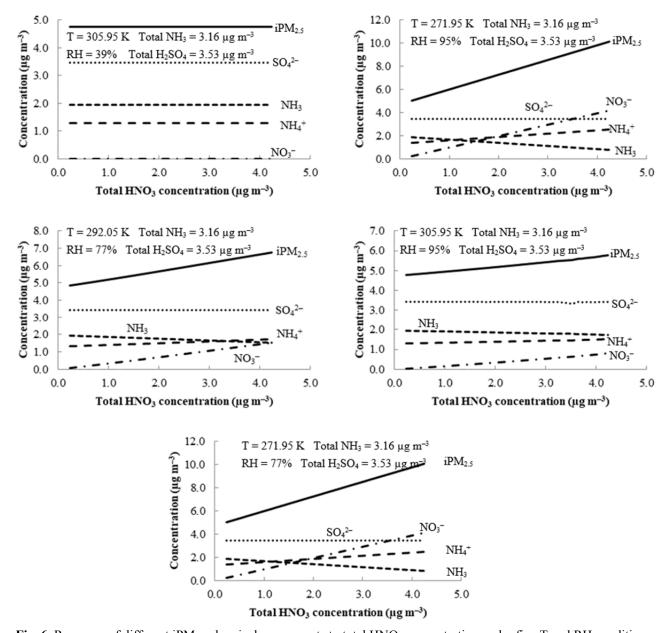


Fig. 6. Response of different iPM_{2.5} chemical components to total HNO₃ concentration under five T and RH conditions.

Possible Mitigation Strategies for Ambient iPM_{2.5} Reduction

Analysis of the $iPM_{2.5}$ responses to the precursor gases may lead to the development of the $iPM_{2.5}$ mitigation strategy. Under different ambient conditions, the responses of $iPM_{2.5}$ to total NH_3 , total HNO_3 , and total H_2SO_4 are different. In general, $iPM_{2.5}$ is more sensitive to the change of total H_2SO_4 concentration. The change of total NH_3 and total HNO_3 may also lead to the change of $iPM_{2.5}$ but may be limited by the neutralization degree of iPM_2 but may be limited by the neutralization degree of iPM_3 and ambient conditions. In iPM_3 -rich condition, the change of total iPM_3 concentration has the least impact on the $iPM_{2.5}$ concentration. Reducing total iPM_2 is more effective to decrease $iPM_{2.5}$ as compared to the reduction of total iPM_3 and total $iPMO_3$.

It needs to be noted that the two acidic gases used in ISORROPIA II, H₂SO₄ and HNO₃, are not directly

emitted, but are transformed from the oxidation of nitrogen oxides (NO_x) and sulfuric dioxide (SO_2) in the atmosphere. Reducing the two acidic gases would require the reduction of their associated primary pollutants, NO_x and SO_2 . Thus, in development of the total H_2SO_4 and HNO_4 concentration reduction strategies, strategies for SO_2 and nitrogen oxide (NO_x) emissions reduction should be taken.

CONCLUSIONS

In this research, the responses of $iPM_{2.5}$ to changes in the total NH_3 , the total HNO_3 , and the total H_2SO_4 were simulated by ISORROPIA II based upon three-year measurements of the chemical components in $iPM_{2.5}$ and gaseous pollutants as well as meteorological conditions. It was found that $iPM_{2.5}$ responds to precursor gases

differently under different T and RH conditions. In general, the response of iPM_{2.5} to the total NH₃ is nonlinear, whereas its response to the total H₂SO₄ and the total HNO₃ is linear. In NH₃-rich regions, iPM_{2.5} is insensitive to the total NH₃ but highly sensitive to the total H₂SO₄ and/or the total HNO3. This research determined that the threshold values for the total NH₃ concentrations, below which the iPM_{2.5} was insensitive to changes in the total NH₃, varied under different ambient conditions. Although dry and wet deposition and the nonlinear conversion of NO_x and SO₂ to HNO₃ and H₂SO₄ were not simulated with the thermodynamic model, inferences can still be drawn from our results about the dynamic changes in iPM_{2.5} in response to changes in precursor gases, offering insight into controlling and regulating iPM_{2.5} in NH₃-rich regions. These findings also illuminate the impact of AFO NH₃ emissions on the formation of secondary iPM_{2.5}, which may help to develop strategies for reducing ambient PM2.5. Future studies may examine the quantitative contribution of AFO NH₃ emissions to forming iPM_{2.5} using the Chemical Transport Model, thus further exploring the dynamic contribution of these emissions to the gas-particle partitioning of NH₃-NH₄⁺.

ACKNOWLEDGMENTS

The AFO farm distribution map was provided by Yijia Zhao. Help from Yijia and individuals from EPA and NCDENR is greatly appreciated. This project was supported by the NSF Award No. CBET-1804720.

SUPPLEMENTARY MATERIALS

The related raw data can found in the following link: https://drive.google.com/drive/folders/1m-QdMBd7T4eZ-AAmkzVIxcP5qG0eyJp8?usp=sharing.

REFERENCES

- Ansari, A.S. and Pandis, S.N. (1998). Response of inorganic PM to precursor concentrations. *Environ. Sci. Technol.* 32: 2706–2714.
- Ansari, A.S. and Pandis, S.N. (1999). An analysis of four models predicting the partitioning of semi-volatile inorganic aerosol components. *Aerosol Sci. Technol.* 31: 129–153.
- Bell, M.L., Dominici, F., Ebisu, K., Zeger, S.L. and Samet, J.M. (2007). Spatial and temporal variation in PM_{2.5} chemical composition in the United States for health effects studies. *Environ. Health Perspect.* 115: 989–995.
- Dillner, A.M., Green, M., Schichtel, B., Malm, B., Rice, J., Frank, N., Chow, J., Watson, J., White, W. and Pitchford, M. (2012). Rationale and recommendations for sampling artifact correction for PM_{2.5} organic carbon, https://www3.epa.gov/ttn/naaqs/standards/pm/data/2012 0614Frank.pdf. Last Access: 10 October 2018.
- Donham, K.J., Reynolds, S.J., Whitten, P., Merchant, J.A., Burmeister, L. and Popendorf, W.J. (1995). Respiratory dysfunction in swine production facility workers: Doseresponse relationships of environmental exposures and

- pulmonary-function. Am. J. Ind. Med. 27: 405-418.
- Finlayson-Pitts, B.J. and Pitts, J.N. (2000). Chemistry of the upper and lower atmosphere: Theory, experiments, and applications, Academic Press.
- Fountoukis, C. and Nenes, A. (2007). ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K⁺-Ca²⁺-Mg²⁺-NH₄⁺-Na⁺-SO₄²⁻-NO₃⁻-Cl⁻-H₂O aerosols. *Atmos. Chem. Phys.* 7: 4639–4659.
- Fountoukis, C., Nenes, A., Pandis, S. and Pilinis, C. (2009). ISORROPIA v2.1 reference manual. University of Miami, Carnegie Mellon University, USA.
- Goetz, S., Aneja, V.P. and Zhang, Y. (2008). Measurement, analysis, and modeling of fine particulate matter in Eastern North Carolina. *J. Air Waste Manage. Assoc.* 58: 1208–1214.
- Heederik, D., Sigsgaard, T., Thorne, P.S., Kline, J.N.,
 Avery, R., Bonlokke, J.H., Chrischilles, E.A., Dosman
 J.A., Duchaine, C., Kirkhorn, S.R., Kulhankova, K. and
 Merchant, J.A. (2007). Health effects of airborne exposures from concentrated animal feeding operations.
 Environ. Health Perspect. 115: 298–302.
- Hinds, W.C. (1998). Aerosol technology: Properties, behavior and measurement of airborne particles, 2nd edition, John Wiley& Sons, New York.
- Holt, J., Selin, N.E. and Solomon, S. (2015). Changes in inorganic fine particulate matter sensitivities to precursors due to large-scale US emissions reductions. *Environ. Sci. Technol.* 49: 4834–4841.
- Jacobson, M.Z. (2005). Fundamentals of atmospheric modeling, Cambridge University Press.
- Li, Q.F. (2012). Particulate matter from an egg production facility: Emission, chemistry and local dispersion.
 Ph. D. Dissertation, Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC.
- Li, Q.F., Wang-Li, L., Liu, Z., Jayanty, R.K.M., Shah, S.B. and Bloomfield, P. (2014a). Major ionic composition of fine particulate matter in an animal feeding operation facility and its vicinity. *J. Air Waste Manage. Assoc.* 64: 1279–1287.
- Li, Q.F., Wang-Li, L., Shah, S.B., Jayanty, R.K.M. and Bloomfield, P. (2014b). Ammonia concentrations and modeling of inorganic particulate matter in the vicinity of an egg production facility in Southeastern USA. *Environ. Sci. Pollut. Res.* 21: 4675–4685.
- Luke, W.T., Kelley, P., Lefer, B.L., Flynn, J., Rappenglück,
 B., Leuchner, M., Dibb, J.E., Ziemba, L.D., Anderson,
 C.H. and Buhr, M. (2010). Measurements of primary
 trace gases and NO_y composition in Houston, Texas.
 Atmos. Environ. 44: 4068–4080.
- Makar, P.A., Moran, M.D., Zheng, Q., Cousineau, S., Sassi, M., Duhamel, A., Besner, M., Davignon, D., Crevier, L.P. and Bouchet, V.S. (2009). Modelling the impacts of ammonia emissions reductions on North American air quality. *Atmos. Chem. Phys.* 9: 5371–5422.
- Nenes, A., Pilinis, C. and Pandis, S.N. (1998). ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. *Aquat. Geochem.* 4: 123–152.

- Nenes, A., Pandis, S.N. and Pilinis, C. (1999). Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models. *Atmos. Environ.* 33: 1553–1560.
- Olszyna, K.J., Bairai, S.T. and Tanner, R.L. (2005). Effect of ambient NH₃ levels on PM_{2.5} composition in the Great Smoky Mountains National Park. *Atmos. Environ.* 39: 4593–4606.
- Paulot, F. and Jacob, D.J. (2014). Hidden cost of U.S. agricultural exports: Particulate matter from ammonia emissions. *Environ. Sci. Technol.* 48: 903–908.
- Pope, C. III, Ezzati, M. and Dockery, D.W. (2009). Fine particulate air pollution and life expectancy in the United States. *N. Engl. J. Med.* 360: 376–386.
- Pui, D.Y.H., Chen, S. and Zuo, Z. (2014). PM_{2.5} in China: Measurements, sources, visibility and health effects, and mitigation. *Particuology* 13: 1–26.
- Pun, B.K. and Seigneur, C. (2001). Sensitivity of particulate matter nitrate formation to precursor emissions in the California San Joaquin Valley. *Environ. Sci. Technol.* 35: 2979–2987.
- Seinfeld, J.H. and Pandis, S.N. (2006). Atmospheric chemistry and physics: From air pollution to climate change, John Wiley and Sons, New York.
- Tanner, R.L., Marlow, W.H. and Newman, L. (1979). Chemical composition correlations of size-fractionated sulfate in New York City. J. Am. Chem. Soc. 13: 75–78.
- Tanner, R.L., Leaderer, B.P. and Spengler, J.D. (1981). Acidity of atmospheric aerosols. *Environ. Sci. Technol.* 15: 1150–1153.
- Tolocka, M.P., Solomon, P.A., Mitchell, W., Norris, G.A., Gemmill, D.B., Wiener, R.W., Vanderpool, R.W., Homolya, J.B. and Rice, J. (2001). East versus west in the US: Chemical characteristics of PM_{2.5} during the winter of 1999. *Aerosol Sci. Technol.* 34: 88–96.
- U.S. EPA (2015a). Glossary. http://www.epa.gov/airqua lity/airdata/ad_glossary.html. Last access: 10 March 2015.
- U.S. EPA (2015b). Estimating ammonia emissions from anthropogenic nonagricultural sources-draft final report. http://www.epa.gov/ttn/chief/eiip/techreport/volume03/e iip areasourcesnh3.pdf. Last access: 10 March 2015.
- Walker, J., Nelson, D. and Aneja, V.P. (2000a). Trends in ammonium concentration in precipitation and

- atmospheric ammonia emissions at a Coastal Plain Site in North Carolina, U.S.A. *Environ. Sci. Technol.* 34: 3527–3534.
- Walker, J.T., Aneja, V.P. and Dickey, D.A. (2000b). Atmospheric transport and wet deposition of ammonium in North Carolina. *Atmos. Environ.* 34: 3407–3418.
- Walker, J.T., Whitall, D.R., Robarge, W. and Paerl, H.W. (2004). Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density. *Atmos. Environ.* 38: 1235–1246.
- Walker, J.T., Robarge, W.P., Shendrikar, A. and Kimball, H. (2006). Inorganic PM_{2.5} at a U.S. agricultural site. *Environ. Pollut.* 139: 258–271.
- Wang, K., Zhang, Y., Nenes, A. and Fountoukis, C. (2012). Implementation of dust emission and chemistry into the Community Multiscale Air Quality modeling system and initial application to an Asian dust storm episode. *Atmos. Chem. Phys.* 12: 10209–10237.
- Wang-Li, L. (2015). Insights to the formation of secondary inorganic PM_{2.5}: Current knowledge and future needs. *IJABE* 8: 1–13.
- Weber, R., Orsini, D., St, John, J., Bergin, M., Kiang, C.
 S., Chang, M., Carrico, C.M., Lee, Y.N., Dasgupta, P.,
 Slanina, J., Turpin, B., Edgerton, E., Hering, S., Allen,
 G., Solomon, P. and Chameides, W. (2003). Short-term temporal variation in PM_{2.5} mass and chemical composition during the Atlanta Supersite experiment,
 1999. J. Air Waste Manage. Assoc. 53: 84-91.
- Yu, S., Dennis, R., Roselle, S., Nenes, A., Walker, J., Eder, B., Schere, K., Swall, J. and Robarge, W. (2005). An assessment of the ability of three-dimensional air quality models with current thermodynamic equilibrium models to predict aerosol NO₃⁻. *J. Geophys. Res.* 110: 1–22.
- Zhao, Y. and Wang-Li, L. (2015). Spatial distribution of ammonia emission density as impacted by poultry and swine production in North Carolina of the U.S. International Symposium on Animal Environment and Welfare, Oct. 23–26, 2015, Chongqing, China.

Received for review, October 28, 2018 Revised, January 18, 2019 Accepted, January 22, 2019