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Abstract—This paper presents a multi-mode solution
to the problem of defending a circular protected area
(target) from a wide range of attacks by swarms of risk-
taking and/or risk-averse attacking agents (attackers).
The proposed multi-mode solution combines two de-
fense strategies, namely: 1) an interception strategy
for a team of defenders to intercept multiple risk-
taking attackers while ensuring that the defenders do
not collide with each other, 2) a herding strategy to
herd a swarm of risk-averse attackers to a safe area. In
particular, we develop mixed integer programs (MIPs)
and geometry-inspired heuristics to distribute and as-
sign and/or reassign the defenders to interception and
herding tasks under different spatiotemporal behaviors
by the attackers such as splitting into smaller swarms
to evade defenders easily or high-speed maneuvers
by some risk-taking attackers to maximize damage to
the protected area. We provide theoretical as well as
numerical comparison of the computational costs of
these MIPs and the heuristics, and demonstrate the
overall approach in simulations.

Index Terms—autonomous agents, cooperative
robots, task assignment, and multi-robot systems.

I. Introduction
A. Motivation

Swarm technology has a wide range of applications [1],
however may also pose threat to safety-critical infrastruc-
ture such as government facilities, airports, and military
bases. The presence of adversarial agents or swarms nearby
such entities, with the aim of causing physical damage
or collecting critical information, can lead to catastrophic
consequences. The adversarial agents (attackers) could be
either risk-averse (self-interested), or risk-taking. Risk-
averse attackers will try to avoid collision with other
static or dynamic agents in order to avoid any damage
to themselves. Risk-averse attackers could be more inter-
ested in collecting critical information by loitering around
the safety-critical area (protected area) than intending
to physically damage the protected area. On the other
hand, risk-taking attackers will have low priority for their
own survival compared to their mission. Such attackers
could be interested in physically damaging the protected
area. The degree of risk-aversion could vary among the
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attackers. Furthermore, the attackers may 1) cooperate
among themselves and stay together as a swarm or do not
stay together, or 2) do not cooperate among themselves.

Research has attributed various defense strategies to
defend against different types of attackers, for example, 1)
physical interception strategies [2]–[12] (mostly for risk-
taking attackers), 2) herding strategies [13]–[23] (mostly
against risk-averse attackers). With a wide range of po-
tential behaviors by the attackers, a single type of de-
fense approach may not be sufficient, economical or even
desirable. In this paper, we combine interception-based
and herding-based defense strategies for the defenders to
provide a multi-mode defense solution against a wide range
of adversarial attacks.

B. Related work
1) Multi-player pursuit evasion games: In pursuit-

evasion games a team of pursuers aims to capture or
intercept a team of evaders, while the evaders aim to
evade from pursuers for as long as possible. Various ap-
proaches including optimal control techniques [24], area-
minimization techniques [4], [25], value function based
technique [26], mean-field approach and reinforcement-
learning techniques [27], [28] exist in the literature to solve
pursuit-evasion games. The existing solutions provide use-
ful insights, however they in principle do not consider
an area under risk that is targeted by the attackers.
Therefore, pursuit-evasion approaches are less suitable for
the class of area-defense problems studied in this paper.

2) Multi-agent area (target) defense: The area or target
defense problem with a single agent on either team has
been studied as a zero-sum differential game using vari-
ous solution techniques including optimal control [29]–[33]
and reachability analysis [34]. However, extending these
approaches to multi-agent settings suffers from the curse of
dimensionality. To remedy this, researches have been using
a “divide and conquer" approach, i.e., solve the one-on-one
problem or the problem with small number of agents for all
such combinations of the agents, and scale up this solution
to the original multi-agent problem.

In [3], the authors consider a multiplayer reach-avoid
game. The authors solve the reach-avoid game for each
pair of defender and attacker operating in a compact do-
main with obstacles using a Hamilton-Jacobi-Issacs (HJI)
reachability approach. The solution is then used to assign
defenders against the attackers using graph-theoretic max-
imum matching.

In the perimeter defense problem studied in [10] defend-
ers are restricted to move on the perimeter of a protected
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area. Local games between small teams of defenders and
attackers are solved and then assignments are done using
a polynomial time algorithm.

The aforementioned studies provide useful insights to
the area or target defense problem, however, are limited
in application due to the use of simple motion models,
such as single integrators. In [5], Target-Attacker-Defender
(TAD) game with agents moving under double-integrator
dynamics is considered. Due to the increased computa-
tional complexity of solving a zero-sum differential game
optimally for high-dimensional systems, the authors use an
isochrones method to design time-optimal control strate-
gies for the players in 1-vs-1 TAD game. However, despite
bounded acceleration inputs, no bounded velocities for the
agents can be ensured or is assumed in [5].

In all of the aforementioned work, the defenders coordi-
nate with each other for the assignment task to intercept
the attackers, however, they do not consider collision
avoidance among themshelves. Furthermore, the afore-
mentioned interception strategies, while useful against
risk-taking attackers, may be an extreme measure against
risk-averse attackers. In other words, there may be cases
where one may prefer to herd the risk-averse defenders to
some safe area and take control of these attackers in favor
of the defenders, instead of intercepting them.

3) Swarm herding: Herding has been studied previously
in [13]–[15]. The approach in [13] uses an n-wavefront
algorithm to herd a flock of birds away from an airport,
where the birds on the boundary of the flock are influenced
based on the locations of the airport and a safe area.

The herding method in [14] utilizes a circular-arc for-
mation of herders to influence the nonlinear dynamics of
the herd based on a potential-field approach, and designs a
point-offset controller to guide the herd close to a specified
location. In [15], biologically-inspired strategies are devel-
oped for confining a group of agents; the authors develop
strategies based on the “wall” and “encirclement” methods
that dolphins use to capture a school of fish. In addition,
they compute regions from which this confinement is pos-
sible; however, the results are limited to constant-velocity
motion. A similar approach called herding by caging is
adopted in [16], where a cage of high potential is formed
around the attackers. An RRT approach is used to find a
motion plan for the agents; however, the cage is assumed
to have already been formed around the agents, while
the caging of the agents thereafter is only ensured with
constant velocity motion under additional assumptions on
the distances between the agents. Forming such a cage
could be more challenging in case of self-interested, risk-
averse attackers under non-constant velocity motion.

In [17], [18], the authors discuss herding using a
switched-system approach; the herder (defender) chases
targets (evaders/attackers) sequentially by switching
among them so that certain dwell-time conditions are
satisfied to guarantee stability of the resulting trajectories.
However, the assumption that only one of the targets is
influenced by the herder at any time might be limiting and
non-practical in real applications. The authors in [19] use

approximate dynamic programming to obtain suboptimal
control policies for the herder to chase a target agent to
a goal location. A game-theoretic formulation is used in
[20] to address the herding problem by constructing a
virtual barrier similar to [14]. However, the computational
complexity due to the discretization of the state and
control-action spaces limits its applicability.

Most of the aforementioned approaches for herding are
limiting due to one or many of the following aspects: 1)
simplified motion models, 2) absence of obstacles in the
environment, 3) no consideration of inter-agent collisions,
4) assumption of a particular form of potential field to
model the repulsive motion of the attackers with respect
to the defenders.

We have addressed the above issues in our recent work
[21], [22], which develops a method, termed as ‘StringNet
Herding’, for defending a protected area from a swarm
of attackers in a 2D obstacle environment. In ‘StringNet
Herding’, a closed formation of strings (‘StringNet’) is
formed by the defenders to surround the swarm of attack-
ers. It is assumed that the attackers will stay together
within a circular footprint as a swarm and collectively
avoid the defenders. It is also assumed that the string
between two defenders serves as a barrier through which
the attackers cannot escape (e.g., a physical straight-
line barrier, or some other mechanism). The StringNet is
then controlled to herd the swarm of attackers to a safe
area. The control strategy for the defenders in ‘StringNet
Herding’ is a combination of time-optimal control actions
and finite-time, state-feedback, bounded control actions,
so that the attackers can be herded to safe area in a timely
manner.

In [23], [35], we extended the ‘StringNet Herding’ ap-
proach to scenarios where attackers no longer stay together
and may split into smaller swarms in reaction to the
defenders’ presence. Particularly, we first identify the spa-
tial distributions (clusters/swarms) of the attackers that
satisfy certain properties, using the density-based spatial
clustering for applications with noises (DBSCAN) algo-
rithm [36]. Then, we developed a mixed-integer quadrat-
ically constrained program (MIQCP) to distribute and
assign the sub-teams of the defenders to the identified clus-
ters of the attackers, so that the clusters of the attackers
are herded to one of the safe areas. Note that we use swarm
and cluster interchangeably throughout the paper.

C. Overview of the proposed approach
As discussed above, a wide range of approaches exist

for area defense scenarios. However, only a specific type
of behavior by the attackers is considered in each of the
aforementioned works. To address a wide range of behav-
iors by the attackers a multi-mode solution is provided in
this paper. We first make the following assumption.

Assumption 1 (Inter-Defender Collision-Aware Intercep-
tion Strategy (IDCAIS)). There exists an interception
strategy to intercept multiple attackers in an area-defense
game, such that the defenders account for inter-defender



collisions while they intercept the attackers as quickly as
possible.

Such interception strategy is provided in [12] (under
review).

The multi-mode defense approach discussed in this pa-
per is summarized in Figure 1. In this multi-mode defense
approach, the spatial distributions of the attackers are
continuously monitored using the DBSCAN algorithm,
which classifies attackers into clusters of at least three
agents. The attackers that either belong to clusters of
less than 3 attackers, or are classified as noises by the
DBSCAN algorithm, are called unclustered attackers. At
time t = 0 s (the right half section in Figure 1), the
defending team employs the IDCAIS against the unclus-
tered attackers; under this interception strategy, some of
the defenders are assigned to intercept the unclustered
attackers in minimum time using collision-aware defender-
to-attacker assignment (CADAA) [12] (discussed later),
these defenders are called intercepting defenders. The rest
unassigned defenders, called herding defenders, are dis-
tributed into sub-teams and assigned to herd the identified
clusters of the attackers to one of the safe areas using
‘StringNet Herding’ approach [23], as long as the attackers
stay together and avoid the defenders. If the attackers
further split into new smaller clusters and/or individual
attackers (unclustered attackers) at some time t > 0
(shown in the left half section in Figure 1), then the
defenders are also further distributed into smaller sub-
teams and assigned to herd the newly formed attackers’
clusters and to intercept the newly-identified unclustered
attackers that separated from the original cluster of the
attackers using an optimal assignment algorithm.

D. Summary of our contributions

We develop a multi-mode defense strategy against
wide range of swarm attacks using the IDCAIS and the
‘StringNet Herding’ [22] approach. Compared to the prior
literature and our own work, the contributions of this
paper are:

1) a centralized, iterative algorithm to assign the defend-
ers to the attackers’ clusters identified at t = 0 so
that the defenders gather on the shortest paths of
the attackers’ swarms to the protected area before
the attackers reach there;

2) a decentralized algorithm using mixed integer
quadratically constrained quadratic programs
(MIQCQPs) to assign the defenders to intercept the
unclustered attackers, and to herd the attackers’
newly-formed swarms in the case a swarm of attackers
splits into smaller swarms at any future time t > 0;

3) heuristics to solve the MIQCQP approximately but
quickly to find the assignment in real time;

4) theoretical as well as numerical comparison of the
computational cost of the assignment algorithms.

Figure 1: Overview of the Multi-mode Defense Approach

E. Organization
The rest of the paper is structured as follows. Section II

provides the mathematical modeling, assumptions made
and a statement of the problem studied. The strategy
and the assignment algorithms of the multi-mode defense
approach are discussed in Section III.More specifically,
the optimal assignment algorithms at t = 0 and t > 0,
their sub-optimal but computationally better alternative
algorithms, heuristics to solve these optimal assignment
problems in a computationally efficient manner, as well as
their performance comparison are discussed in Section III.
Simulation results for various scenarios demonstrating the
proposed multi-mode framework are provided in Section
IV. The paper is concluded in Section V.

II. Modeling and Problem Statement
Notation: We use ∥·∥ to denote the Euclidean norm of its

argument. |·| denotes absolute value of a scalar argument
or cardinality of a set argument. A ball of radius ρ centered
at the origin is defined as Bρ = {r ∈ R2| ∥r∥ ≤ ρ} and that
centered at rc is defined Bρ(rc) = {r ∈ R2| ∥r− rc∥ ≤ ρ}.
A\B denotes all the elements of the set A that are not
in the set B. Some most commonly used variables in the
paper are described in Table I.

We consider Na attackers denoted as Ai, i ∈ Ia =
{1, 2, ..., Na}, and Nd defenders denoted as Dj , j ∈ Id =
{1, 2, ..., Nd}, operating in a 2D environment W ⊆ R2

that contains a protected area P ⊂ W , defined as P =
{r ∈ R2 | ∥r∥ ≤ ρp}, and Ns safe areas Sm ⊂ W ,
defined as Sm = {r ∈ R2 | ∥r− rsm∥ ≤ ρsm}, for all
m ∈ Is = {1, 2, ..., Ns}, where ρp and ρsm are the radii of
the protected area and mth safe area, respectively, and
rsm is the center of mth safe area. Visual depiction of
the above elements is shown in Figure 2. The number of
defenders is no less than that of attackers, i.e., Nd ≥ Na.
The agents Ai and Dj are modeled as discs of radii ρa

and ρd, where ρd ≤ ρa, respectively. Let rai = [xai yai]T
and rdj = [xdj ydj ]T be the position vectors of Ai and
Dj , respectively; vai = [vxai

vyai
]T , vdj = [vxdj

vydj
]T be

the velocity vectors, respectively, and uai = [uxai
uyai

]T ,
udj = [uxdj

uydj
]T be the accelerations, which serve also

as the control inputs, respectively, all resolved in a global
inertial frame Fgi(̂i, ĵ) (see Fig.2). The agents move under



Table I: Table of notation
Ai denotes the ith attacker
Ack (t) denotes the group of attackers indexed by Ack (t)
Ack (t) set of indices of the attackers in kth cluster

of attackers at time t
Auc(t) set of indices of the unclustered attackers at time t

A
(k)
c (t) set of indices of clusters of the attackers separated

from the kth cluster of attackers at time t

A
(k)
uc (t) set of indices of the unclustered attackers separated

from the kth cluster of attackers at time t
Ak(tse) data structure storing information of the attackers

in kth cluster of attackers after it splits at t = tse

Ak(tse).f denotes the data field f of the data structure
Ak(tse) at time t = tse

Dj denotes the jth defender
Dck (t) denotes the group of defenders indexed by Dck (t)
Dc

ck
(t), Dt

ck
(t) group of central and terminal defenders on the

Open-StringNet Gop
sn(Dck (t)), resp.

Dl
ck

(t), Dr
ck

(t) group of terminal defenders on the left and right
end of Open-StringNet Gop

sn(Dck (t)), resp.
Dck (t) set of indices of the defenders assigned to kth

cluster of attackers at time t
Dk(tse) data structure storing information of the defenders

indexed by Dk(t−
se)

Dk(tse).f denotes the data field f of the data structure
Dk(tse) at time t = tse

Gcl
sn(Id) Closed-StringNet formed by the defenders with

indices as in the set Id

Gop
sn(Id) Open-StringNet formed by the defenders with

indices as in the set Id

Ia, Iac(t) equals set {1, 2, ..., Na}, {1, 2, ..., Nac(t)|)}, resp.
Id, Idck

(t) equals set {1, 2, ..., Nd}, {1, 2, ..., Rd(|Ack (t)|)}, resp.
Na, Nac(t) number of attackers and attackers’ clusters, resp.
Nd, number of defenders
Rd(·) defender-to-attacker resource allocation function
rai, rdj position of ith attacker, jth defender, resp.
rsm center mth safe area
tse time at which attackers’ split event happens
t−
se time instant just before attackers’ split event

uai, udj acceleration of ith attacker, jth defender, resp.
vai, vdj velocity of ith attacker, jth defender, resp.
βc(t) set of mappings of defenders’ assignment to the

clusters of the attackers at time t
βck (t) mapping that assigns defenders to the kth cluster

of the attackers at time t
βuc(t) mapping that assigns defenders to the unclustered

attackers at time t
ρint

d interception radius of a defender
δherd

jk (t) decision variable to decide if Dj is assigned to
herd attackers’ swarm Ack at time t

δint
ji (t) decision variable to decide if Dj is assigned to

intercept the attacker Ai at time t

double integrator (DI) dynamics with linear drag (damped
double integrator), similar to isotropic rocket [37]:

ẋ⋆ =
[

ṙ⋆

v̇⋆

]
=

[
02 I2
02 −CDI2

]
x⋆ +

[
02
I2

]
u⋆ (1)

where ⋆ ∈ {ai|i ∈ Ia} ∪ {dj|j ∈ Id}, CD > 0 is the known,
constant drag coefficient. The accelerations uai and udj

are bounded by ūa, ūd as given in (2) such that ūa < ūd.

∥uai∥ ≤ ūa, ∥udj∥ ≤ ūd, (2)

By incorporating the drag term, the damped double inte-
grator (1) inherently poses a speed bound on each agent
under a limited acceleration control, i.e., ∥vai∥ < v̄a = ūa

CD

and ∥vdj∥ < v̄d = ūd

CD
, and does not require an explicit

Figure 2: Schematic of a scenario showing multiple attack-
ers (red filled circles with white arrows), some as risk-
averse swarms while some individual risk-taking attackers,
trying to reach the protected area P and defenders (blue
filled circles with white arrows) spread around P.

constraint on the velocity of the agents while designing
bounded controllers, as in earlier literature. So we have
xai ∈ Xa, for all i ∈ Ia, where Xa = R2×Bv̄a and xdj ∈ Xd,
for all j ∈ Id, where Xd = R2×Bv̄d

. We make the following
assumption:

Assumption 2. All the defenders know the position rai

and velocity vai of the attacker Ai that lies inside a circular
sensing zone Zd = {r ∈ R2| ∥r∥ ≤ ϱd} for all i ∈ Ia, where
ϱd > 0 is the radius of the defenders’ sensing zone. Every
attacker Ai has a similar local sensing zone Zai = {r ∈
R2 | ∥r− rai∥ ≤ ϱai}, where ϱai > 0 is the radius of Ai’s
sensing zone (Fig. 2).

For Assumption 2 to hold, a system of sensors such as
radars, lidars, cameras, etc., that are spatially distributed
around the protected area can be used. The data from
these sensors are assumed to be processed by a central
computer and communicated to all the defenders.

Each defender is capable of connecting to other two
defenders via string barriers. String barriers are realized
as impenetrable and extendable line barriers (e.g., spring-
loaded pulley and a rope or other similar mechanism [38])
that prevent attackers from passing through them. The
extendable string barrier allows free relative motion of the
two defenders connected by the string. The string barrier
can have a maximum length of R̄sb. If the string barrier
were to be physical one, then it can be established between
two defenders Dj and Dj′ only when they are close to each
other and have almost same velocity, i.e., ∥rdj − rdj′∥ ≤
ϵ1 < R̄sb and ∥vdj − vdj′∥ ≤ ϵ2, where ϵ1 and ϵ2 are
small numbers that depend on the physical size of the
defenders as well as the mechanism and their capability to
physically connect at a given distance.. Each defender Dj



is endowed with an interception/capture radius ρint
d , i.e.,

the defender Dj is able to physically damage an attacker
Ai when ∥rdj(t)− rai(t)∥ < ρint

d for some t > 0.
The goal of the attackers is to send as many attackers

as possible to the protected area P. The defenders aim to
either intercept these attackers or herd them away to one
of the safe areas in S = {S1,S2, ...,SNs

} in order to defend
the protected area P. Formally, we consider the following
problem.

Problem 1 (Swarm Defense). Design a defense strategy
for a team of defenders to defend a protected area from
a wide range of adversarial attacks by attackers, where
attackers could possibly stay together as swarms or stay
alone during the attack.

Next, we discuss the multi-mode defense strategy that
addresses Problem 1.

III. Multi-mode Defense Strategy
The attackers may show wide range of behaviors, such

as: some or all attackers staying close together, some
or all attackers avoiding defenders while attacking the
protected area, some attackers not intending to damage
the protected area but only interested in reaching in its
neighborhood maybe for collecting some key information,
while some attackers only interested in physically damag-
ing the protected area at any cost, etc.

In this section, we provide a multi-mode algorithm to
combine the ‘StringNet Herding’ approach developed in
[21]–[23] and the IDCAIS to defend against wide range
of behaviors by the attackers discussed earlier. In the
following, we first revisit some key definitions related to
‘StringNet Herding’.

Definition 1 (Closed-StringNet). The Closed-StringNet
Gcl

sn(Id) = (Vcl
sn(Id), Ecl

sn(Id)) is a cycle graph consisting of:
1) a subset of defenders as the vertices, Vcl

sn(Id) = {Dj | j ∈
Id}, 2) a set of edges, Ecl

sn(Id) = {(Dj ,Dj′) ∈ Vcl
sn(Id) ×

Vcl
sn(Id)|Dj

s←→ Dj′}, where the operator s←→ denotes an
impenetrable line barrier between the defenders.

Definition 2 (Open-StringNet). The Open-StringNet
Gop

sn(Id) = (Vop
sn(Id), Eop

sn(Id)) is a path graph consisting of:
1) a set of vertices, Vop

sn(Id) and 2) a set of edges, Eop
sn(Id),

similar to that in Definition 1.

The ‘StringNet Herding’ approach consists of four
phases: 1) gathering, 2) seeking, 3) enclosing, and 4)
herding. In the gathering phase, the defenders establish an
Open-StringNet on the time-optimal path of the attackers’
swarm. Then in the seeking phase they seek to get close
to the attackers’ swarm if they had not traveled along
their time-optimal trajectory as expected by the defenders.
During the seeking phase, the defenders ensure that they
maintain the Open-StringNet formation. Next, during the
enclosing phase, as the defenders come sufficiently close
to the attackers, they enclose the attackers by establish-
ing a Closed-StringNet around the attackers’ swarm. In
the herding phase, the Closed-StringNet is moved to the

nearest safe area which also takes the enclosed attackers
to the safe area.

Next, we describe how the defenders are assigned to
either intercept the unclustered (more likely risk-taking)
attackers or herd the clustered (more likely risk-averse)
attackers during different temporal and spatial events.

A. Optimal assignment at t = 0
We first identify spatial distributions (clusters) of the

attackers that are detected in the annular region between
the circles r = ϱd and r = ϱgame

d (see Fig. 2). For the
cluster identification, we use DBSCAN algorithm [36] with
parameters εnb = ρ̄ac(mpts−1)

Na−1 and mpts = 3 where ρ̄ac =
R̄sb

2 cot( π
Nd

) is the radius of the largest circle inscribed in
the largest Closed-StringNet formation that can be formed
by the Nd defenders. This choice of parameters for the
DBSCAN algorithm ensures that the identified clusters
have more than 3 attackers in them and have sizes for
which subteams of the defenders can be found which can
herd these clusters. This is because one needs at least 3
defenders to form a Closed-StringNet and if Nd = Na

then we may not have enough defenders to enclose all
swarms of the attackers with less than 3 attackers in
them. Hence all the swarms of the attackers with less
than 3 attackers will be termed as singular swarms and
the member attackers of these singular swarms will be
identified as noise by DBSCAN algorithm and classified
as unclustered attackers. For more details on how the
parameters of the DBSCAN are chosen, refer to [23]. Let
Ac(0) = {Ac1(0),Ac2(0), . . . ,AcNac(0)(0)} be the set of
Nac(0) swarms of the attackers at t = 0 identified using the
DBSCAN algorithm. Here Ack

(0) = {Ai|i ∈ Ack
(0)}, for

k ∈ Iac(0) = {1, 2, 3, ..., Nac(0)} where Ack
(0) ⊆ Ia is the

set of indices of the attackers that belong to the kth cluster
of the attackers at t = 0. Let Auc(0) = {Ai|i ∈ Auc(0)}
denote the set of unclustered attackers where Auc(0) ⊆ Ia

is the set of indices of the attackers that are not clustered
by the DBSCAN algorithm, i.e., the attackers that are
treated as the noises by the DBSCAN algorithm. The
defenders aim to intercept the unclustered attackers as-
suming that these attackers are risk-taking while they
attempt to herd the clustered attackers with the hope that
the clustered attackers will stay together and try to avoid
the defenders. For this we need to assign some individual
defenders to intercept the unclustered attackers and some
sub-teams of the defenders to herd the identified clusters
of the attackers. Since the unclustered attackers are likely
to be risk-taking and hence pose more risk to the protected
area, the assignment of the best defenders to intercept
these unclustered attackers is done first and then the rest
defenders are assigned to herd the clustered attackers.

We first us collision-aware defender-to-attacker assign-
ment (CADAA) to assign defenders to intercept the identi-
fied unclustered attackers Auc(0) such that these attackers
are intercepted as quickly as possible and the possible
collisions among the defenders are minimized. Let δint

ji (0)
be the binary decision variable at time t = 0 that takes



value 1 if the defender Dj is assigned to intercept attacker
Ai and 0 otherwise. Let Cint

d (Xai
dj) be the cost incurred by

the defender Dj to capture the attacker Ai and is given
by:

Cint
d (Xai

dj) =
{
tint
d (xdj ,xai), if xai ∈ Rd(xdj);
cl, otherwise;

(3)

where Xai
dj = [xT

dj ,xT
ai]T , tint

d (xdj ,xai) is the minimum time
required by the defender Dj to capture the attacker Ai

that is moving towards the protected area P under time-
optimal control action as defined in [12], cl (>> 1) is a
very large number, and Rd(xdj) = {xa ∈ X̄a|tint

d (xd,xa)−
tint
a (xa, rp) ≤ 0} is the winning region of the defender Dj

starting at xdj , where X̄a = (R2\P) × Bv̄a , tint
a (xa, rp) is

the time that the attacker starting at xa requires to reach
the protected area at rp. Let Ccol

d (Xai
dj ,Xai′

dj′ ) is the cost
associated with a collision that may occur between the
two defenders that are assigned interception task and is
defined as:

Ccol
d (Xai

dj ,Xai′

dj′ ) =


1

tcol
d

(Xai
dj

,Xai′
dj′ ) , if Dj & Dj′ collide;

0, otherwise.
(4)

where tcol
d (Xai

dj ,Xai′

dj′ ) is time of collision between Dj and
Dj′ on their time-optimal trajectories.

We find the optimal δint∗
ji (0) by solving the following

CADAA problem at t = 0:

arg min
δint(0)

∑
i∈Auc(0)

∑
j∈Id

(
(1− w)Cint

d (Xai
dj)δint

ji (0)+

w
∑

i′∈Auc(0)

∑
j′∈Id

Ccol
d (Xai

dj ,Xai′

dj′ )δint
ji (0)δint

j′i′(0)
)

(5a)
Subject to

∑
i∈Auc(0) δ

int
ji (0) = 1, ∀j ∈ Id; (5b)∑

j∈Id
δji(0) = 1, ∀i ∈ Auc(0); (5c)

δint
ji (0) ∈ {0, 1}, ∀j ∈ Id, i ∈ Auc(0); (5d)

where δint(0) = [δint
ji (0)|i ∈ Auc(0), j ∈ Id]T ∈

{0, 1}Nd|Auc(0)| is the binary decision vector and w ∈ (0, 1)
is user specified weight of the collision cost that is used
to adjust the importance of the collisions among the
defenders and the time to intercept the attackers at the
assignment stage.

A mapping βuc(0, ·) : {i ∈ Auc(0)} → {j ∈ Id}, which
gives the index of the defender assigned to intercept a
given unclustered attacker Ai is then defined as:

βuc(t, i) = arg max
j

δint∗
ji (0), ∀t ≥ 0. (6)

Let Duc(0) = {Dβuc(t,i)|i ∈ Auc(0)} denote the set of
defenders that are assigned to the unclustered attackers
Auc(0) and Duc(0) = {βuc(t, i)|i ∈ Auc(0)} be the set of
indices of the defenders in Duc(0). Let Dc(0) = {Dj |j ∈
Dc(0)} denote the set of all the other unassigned defend-
ers, where Dc(0) = Id\Duc(0). These unassigned defenders
Dc(0) are then employed to herd the identified clusters of
the attackers.

Next, we describe a centralized approach to find a time-
opimal, collision free motion plan for the defenders in
Dc(0) to gather on the shortest paths of the attackers’
swarms.

1) Centralized Approach: In this approach, the two
problems: i) of choosing the best gathering formations,
and ii) of the assignment of the defenders in Dc(0) to
the goal locations on these gathering formations are solved
simultaneously. We provide a bisection method based iter-
ative scheme as detailed in Algorithm 1 to solve the above
two problems simultaneously. Let Rd(Na) : Z>0 → Z>0
be the defender-to-attacker resource allocation function
that outputs the number of the defenders that can be
assigned to the given Na attackers. We make the following
assumption about the defender-to-attacker resource allo-
cation function.

Assumption 3. The defender-to-attacker resource allo-
cation function is a strictly monotonically increasing func-
tion, i.e., Rd(Na) < Rd(Na + 1), such that Rd(Na) ≥ Na.

Assumption 3 ensures that there are adequate number
of defenders to go after each attacker in the event the
attackers in the swarm disintegrate into singular swarms.

Consider a line formation F line
dck

characterized by posi-
tions pline

k (rdfk
, ϕk) = {pline

k,1 ,pline
k,2 , ...,pline

k,Rd(|Ack
|)} where

pline
k,l (rdfk

, ϕk) ≜ rdfk
+ R̂lô(ϕk + π

2 ), (7)

for all l ∈ Idck
(0) = {1, 2, ...,Rd(|Ack

(0)|)}, where ô(θ) =
[cos(θ), sin(θ)]T is the unit vector making an angle θ with
x-axis, and R̂l = R̂d,g

d

(
Rd(|Ack

|)−2l+1
2

)
, where R̂d,g

d (≤
R̄sb) is the user defined separation between the defenders
at the gathering formation.

Corresponding to each attackers’ cluster Ack
, the de-

sired gathering formation F g
dck

for the defenders to gather
at is chosen to be a line formation1 F line

dck
centered at

rdfk
with orientation ϕk, characterized by the positions

ξg
ck

= {ξg
ck,1, ξ

g
ck,2, ..., ξ

g
ck,Rd(|Ack

|)} = pline
k (rdfk

, ϕk), as
obtained in Algorithm 1. These positions are static, i.e.,
ξ̇g

ck,l = ξ̈g
ck,l = 0 for all l ∈ Idck

. The gathering centers
rdfk

, for all k ∈ Iac(0), are chosen to lie outside the pro-
tected area P. Algorithm 1 also outputs the Defender-to-
Attacker-Swarm Assignment (DASA), β, which is defined
formally as:

Definition 3 (Defender-to-Attacker-Swarm Assignment).
A set βc(t) = {βc1(t, ·), βc2(t, ·), ...βcNac(t)(t, ·)} of map-
pings βck

(t, ·) : {1, 2, ..., Rd(|Ack
(t)|)} → Id, where, for

all k ∈ Iac(t), βck
(t, l) gives the index of the defender,

at time t, that is assigned to either gather at position
ξg

ck,l on the time-optimal path of swarm Ack
(t) during the

gathering phase, or track the desired position ξs
ck,l or ξe

ck,l

or ξh
ck,l during the seeking or enclosing or herding phase,

1This is a better choice compared to a semicircular formation as
chosen in [22]. Because, the semicircular formation, for a given length
constraint on the string barrier (R̄sb), creates smaller blockage to the
attackers as compared to the line formation. Although, Completing a
circular formation starting from a semicircular formation of the same
radius is faster. It is a trade-off between effectiveness and speed.



respectively, in order to successfully herd the swarm Ack
(t)

to the closest safe area.

The set of defenders assigned to gather on the path
of the cluster Ack

(0) is denoted by Dck
(0) = {Dj |j ∈

Dck
(0)}, where Dck

(0) is the set of indices defined as:
Dck

(0) = {βck
(0, 1), βck

(0, 2), ..., βck
(0,Rd(0, |Ack

|))} for
all k ∈ Iac(0). Each of these sub-teams Dck

(0)’s of
the defenders are tasked to achieve the Open-StringNet
formations Gop

sn(Dck
(0)) on the shortest paths of the on-

coming attacking swarms. Assuming Nd = Na, we choose
Rd(|Ack

|) = |Ack
|, i.e., the number of defenders assigned

to a swarm Ack
is equal to the number of attackers in Ack

.

Algorithm 1: Gathering formations for the de-
fenders
Input: rd(0), xa(0), Dc(0), {Ack

(0)|k ∈ Iac(0)}
1 for k = 1 : Nac(0) do
2 CoM of Ack

(0): xack
(0) =

∑
i∈Ack

(0)
xai(0)

|Ack
(0)| ;

Pack
=timeOptimalTraj (xack

(0));
3 while ΣTlead

> ϵtol do
4 ΣTlead

= 0; γ<
ack

= 0; γ>
ack

= Γack
− ρpa; ξg = [ ];

5 for k = 1 : Nac(0) do
6 γack

= γ<
ack

+γ>
ack

2 ;
7 rdfk

(0) = Pack
(γack

);
8 ξg

ck
= pline

k (rdfk
(0), ϑack

(γack
)− π)

9 ξg ← {ξg, ξg
ck
};

10 [βc(0), T ]=assignDtoGMILP (rdc(0), ξg);
11 for k = 1 : Nac do
12 ΣTlead

= ΣTlead
+ |γack

v̄a
− Tk −∆T g

dck
|;

13 if γack

v̄a
− Tk −∆T g

d <0 then
14 γ>

ack
= γack

;
15 else
16 γ<

ack
= γack

;

17 return ξg, βc(0), {rdf1(0), rdf2(0), ....rdfNac(0)(0)}

In Algorithm 1, timeOptimalTraj(xack
(0)) function

finds the time-optimal trajectory Pack
for an agent start-

ing at xack
(0) to reach the protected area. The trajectory

Pack
is associated with mappings Pack

: [0,Γack
] → R2

and ϑack
: [0,Γack

] → [0, 2π]. Here Pack
(γack

) gives the
Cartesian coordinates, and ϑack

(γack
) gives the direction

of the tangent to the path at the location reached after
traveling γack

distance along the path from the initial
position. rd(0) = {rdj(0)|j ∈ Id} is the set of initial
positions of the defenders and xa(0) = {xai(0)|i ∈ Ia}
is the set of initial states of the attackers. Each defender
is assumed to have zero initial velocity2. The function
assignDtoGMILP assigns each defender Dj in Dc(0) ini-
tially located at rdj(0) to one of the gathering locations
in ξg = {ξg

c1
, ξg

c2
, ..., ξg

cNac(0)
} by solving the following the

2This is not a conservative assumption because if a defender has
non-zero speed, one can apply acceleration opposite to its velocity to
make the speed zero and assume the initial position for that defender
to be the position at which this speed will become zero.

mixed integer linear program (MILP):

arg min
δ

Nac(0)∑
k=1

|Idck
(0)|∑

l=1

∑
j∈Dc(0)

∥∥∥rdj(0)− ξg
ck,l

∥∥∥ δck

jl (8a)

Subject to ∑
k∈Iac(0)

∑
l∈Idck

(0)
δ

ck
jl

=1, ∀j∈Dc(0); (8b)∑
j∈Dc(0)

δ
ck
jl

=1, ∀l∈Idck
(0), ∀k∈Iac(0),; (8c)

δ
ck
jl

∈{0,1}, ∀j∈Dc(0), ∀l∈Idck
(0), ∀k∈Iac(0); (8d)

where the distance between an initial position rdj(0) and
ξg

ck,l is used as the metric for solving the assignment prob-
lem, the constraints (8b) ensure that each defender is as-
signed to a single goal location, the constraints (8c) ensure
that each goal location is assigned a unique defender, and
the last constraints (8d) force the decision variable δck

jl to
be binary. The decision variable δck

jl is 1 if the defender Dj

is assigned to go to the goal location ξg
ck,l and 0 otherwise;

and δ ∈ {0, 1}Nδ(0) is the binary decision vector defined
as δ = [δck

jl |∀j ∈ Dc(0), ∀l ∈ Idck
(0), ∀k ∈ Iac(0)]T , where

Nδ(0) = (Nd−|Auc(0)|)
∑

k∈Iac(0) Rd(|Ack
(0)|). The func-

tion assignDtoGMILP also outputs T = {T1, T2, ..., TNac
},

where Tk, for all k ∈ Iac(0), is the time required by
the sub-team Dck

(0) to gather at their desired gathering
formation. The parameter ϵtol > 0 is a user defined small
number used as the convergence tolerance.

The idea in Algorithm 1 is to find the gathering forma-
tions that are as far from the protected area as possible
and each subteam Dck

(0) of the defenders is able to reach
their assigned gathering formation at least ∆T g

dck
s before

the center of mass (CoM) of Ack
, that follows its time-

optimal trajectory towards the protected area, reaches
the center of the gathering formation. Here ∆T g

dck
, for all

k ∈ Iac(0) is a user-defined time that accounts for the size
of the swarm Ack

and the time required to get connected
by strings once arrived at the desired formation.

The Defender-to-Attacker-Swarm Assignment βck
(0, ·),

for all k ∈ Iac(0), is then obtained as:

βck
(0, l) = arg max

j
δck∗

jl (9)

where δck∗
jl is the optimal value of δck

jl from (8).

B. Optimal assignment when attackers split at t > 0
In reaction to the defenders’ attempt to herd the at-

tackers, the attackers may split into new smaller swarms
and/or scatter as individual attackers. We continuously
track the radii of the clusters and run the DBSCAN algo-
rithm only when at some instant t = tse the connectivity
constraint is violated by the swarms of attackers Ack

(tse)
for some k ∈ Iac(tse) i.e., when the radius ρack

(tse) of the
swarm of attackers Ack

(tse) exceeds the value ρ̄ack
(tse) =

R̄sb

2 cot
(

π
Rd(Na)

)
|Ack

(tse)|−1
Na−1 . The connectivity constraint

violation is termed as split event in this paper. The split
event is formally defined as:

Definition 4 (Split event). An instant tse when
for any swarm Ack

(tse), k ∈ Iac(tse), the ra-
dius of the swarm of attackers Ack

(tse) defined as



ρack
(tse) = maxi∈Ack

(tse) ∥rai(tse)− rack
(tse)∥ exceeds the

value ρ̄ack
(tse).

We also make the following assumption regarding the
splitting behavior of the attackers.

Assumption 4. Once a swarm of attackers splits, its
member attackers never rejoin each other, i.e., for all
i ∈ Ia, if ∃ t > 0 such that Ai /∈ Ack

(t) for any k ∈ Iac(t)
then Ai /∈ Ack

(t′) for all t ≤ t′.

The splitting behavior of the attackers requires re-
assignment of the defenders, that were supposed to herd
the given swarm of the attackers that just split, to the
newly available interception or herding tasks. Next, we de-
scribe a mixed-integer quadratically constrained quadratic
program (MIQCQP) to solve this assignment problem.

1) Decentralized optimal assignment using MIQCQP:
When a swarm of attackers Ack

splits into smaller swarms
at t = tse. The newly identified swarms of the attackers
by the DBSCAN algorithm are assigned new indices.
Namely, one of the swarm is assigned the index k, i.e. the
index of the parent swarm Ack

and the rest swarms are
assigned integers greater than Nac(t−se) as their indices,
where t−se denotes the instant immediately before t = tse.
Let A

(k)
c (tse) denote the indices of the clusters of the

attackers that are newly formed out of the parent cluster
Ack

(t−se), when the cluster Ack
splits at t = tse, as

identified by the DBSCAN algorithm. A(k)
uc (tse) is the

set of unclustered attackers separated from the original
cluster Ack

(tse) after the original cluster has split. We
aim to assign the defenders in Dck

(t−se), that are already
connected via Open-StringNet Gop

sn(Dck
(t−se)) and were

tasked to herd the original cluster Ack
(t−se), to either inter-

cept the unclustered attackers separated from the original
cluster Ack

(t−se) or herd the smaller clusters formed by the
attackers in the original swarm Ack

(t−se) after splitting.
Herding the smaller swarms of the attackers still requires
the sub-teams of the defenders to stay connected via
Open-StringNets while the defenders assigned to intercept
the unclustered attackers will now disconnect themselves
from the rest of the Open-StrigNet. In [23], we solved a
connectivity constrained generalized assignment problem
(C2GAP) to assign connected sub-teams of the defenders
to herd the newly formed sub-swarms of the attackers after
the original attacking swarm splits. In contrast to that,
the current assignment problem is more complex due to
the requirement of assigning some individual defenders,
who shall disconnect themselves from the rest of the Open-
StringNet, to intercept the unclusterd attackers.

Let δherd
jk′ (tse) be the binary decision variable at time

t = tse that takes value 1 if the defender Dj is as-
signed to herd the swarm Ack′ (tse) and 0 otherwise. We
formulate the MIQCQP in (10) to assign the defenders
on the Open-StringNet Gop

sn(Dck
(t−se)) to herd the newly

formed swarms of the attackers, Ack′ (tse), for all k′ ∈
A

(k)
c (tse), and the unclustered attackers A(k)

uc (tse). In (10),
δ(k)(tse) ∈ {0, 1}N

δ(k) (tse) is the binary decision vector
defined as δ(k)(tse) = [[δherd

jk′ (tse)|k′ ∈ A
(k)
c (tse), j ∈

Dck
(t−se)], [δint

ji (tse)|i ∈ A
(k)
uc (tse), j ∈ Dck

(t−se)]]T , where
Nδ(k)(tse) = |Dck

(t−se)|
(
|A(k)

c (tse)|+ |A(k)
uc (tse)|

)
; I ′

dck
=

{1, 2, ..., |Dck
| − 1}; and β−

k (l) = βck
(t−se, l).

The optimization cost in (10) is the sum of distances
of the defenders from the centers of the attackers’ swarms
to which they are assigned, the times to capture required
by the defenders to capture the unclustered attacker that
are assigned to them, and the collision costs incurred by
the defenders that are assigned interception task. This
ensures that the collective effort needed by all the de-
fenders is minimized when enclosing the swarms of the
attackers and that the unclustered attackers are captured
as quickly as possible while minimizing any possible colli-
sions among the fast moving defenders that are assigned
the interception task. The constraints (10b) ensure that
each of the defenders in Dck

(t−se) is assigned either to
exactly one unclustered attacker or to exactly one swarm
of the attackers. The capacity constraints (10c) ensure that
for all k′ ∈ A

(k)
c (tse), the swarm Ack′ (tse) has exactly

Rd(|Ack′ (tse)|) defenders assigned to it. The constraints
(10d) ensure that each unclustered attacker in A(k)

uc (tse)
has exactly one of the terminal defenders assigned to it.
The quadratic constraints (10e) ensure that all the defend-
ers assigned to swarm Ack′ (tse) are connected together
with an underlying Open-StringNet for all k′ ∈ A

(k)
c

and the constraint (10f) ensures that all the |Dck
(t−se)|

defenders are assigned to the attackers’ swarms and the
unclustered attackers.

The aforementioned MIQCQP (10) is solved by the lead
defender in Dck

(t−se), where the lead defender is identified
to be the one in the middle of the Open-StringNet forma-
tion, i.e., the defender Dβk(t−

se,li
) where li = ⌊ |Dck

(t−
se)|

2 ⌋, for
all k for which the Ack

have split. This helps the defenders
find the Defender-to-Attacker-Swarm assignment quickly,
and without having to consider all the agents in the
assignment formulation, i.e., in a decentralized way.

The aforementioned MIQCQP (10) can be solved using
a MIP solver Gurobi [39]. After solving (10), one can find
the mapping βck′ (t, ·), for all k′ ∈ A(k)

c (tse), as follows:

βck′ (t, l) = β−
ck

(l0 + l), ∀t ∈ [tse + tcomp, t
next
se ], (11)

where l0 is the smallest integer for which δβ−
ck

(l0+1)k(tse) =
1; tcomp is the computation time to solve (10); and tnext

se

is an unknown future time at which a split happens. In
other words, the assignment obtained using the states at
tse continues to be a valid assignment until the next split
event happens at some unknown time tnext

se in the future.
The worst-case time complexity of the MIQCQP in (10)
is:

Ccomp
M (tse, k) = O(2N

δ(k) (tse)) (12)

where Nδ(k)(tse) = |Dck
(t−se)|

(
|A(k)

c (tse)|+ |A(k)
uc (tse)|

)
.

C. Suboptimal assignment when attackers split at t > 0
1) Assignment using reduced-size MIQCQP (rs-

MIQCQP): The worst-case complexity Ccomp
M (tse, k)



δ(k)∗(tse) = arg min
δ(k)(tse)

∑
k′∈A

(k)
c (tse)

∑
j∈Dck

(t−
se)

∥∥rack′ (tse)− rdj(tse)
∥∥ δherd

jk′ (tse) +
∑

i∈A
(k)
uc (tse)

∑
j∈Dck

(t−
se)

Cint
d (Xai

dj)δint
ji (tse)

+
∑

i,i′∈A
(k)
uc (tse)

∑
j,j′∈Dck

(t−
se)

Ccol
d (Xai

dj ,Xai′

dj′ )δint
ji (tse)δint

j′i′(tse) (10a)

Subject to
∑

k′∈A
(k)
c (tse) δ

herd
jk′ (tse) +

∑
i∈A

(k)
uc (tse) δ

int
ji (tse) = 1, ∀j ∈ Dck

(t−se); (10b)∑
j∈Dck

(t−
se) δ

herd
jk′ (tse) = Rd(|Ack′ (tse)|), ∀k′ ∈ A(k)

c (tse); (10c)∑
j∈Dck

(t−
se) δ

int
ji (tse) = 1, ∀i ∈ A(k)

uc (tse); (10d)∑
l∈I′

dck

δherd
β−

k
(l)k′(tse)δherd

β−
k

(l+1)k′(tse) ≥ Rd(|Ack′ (tse)|)− 1, ∀k′ ∈ A(k)
c (tse); (10e)∑

j∈Dck
(t−

se)

(∑
k′∈A

(k)
c (tse) δ

herd
jk′ (tse) +

∑
i∈A

(k)
uc (tse) δ

int
ji (tse)

)
= |Dck

(t−se)|; (10f)

δherd
jk′ (tse), δint

ji (tse) ∈ {0, 1}, ∀j ∈ Dck
(t−se), k′ ∈ A(k)

c (tse), i ∈ A(k)
uc (tse); (10g)

of the MIQCQP in (10) can be reduced further under
certain assumption on the behavior of the attackers. Let
us first define a conical envelope around the center of a
swarm.

Definition 5 (Conical Envelope). A conical envelope
Econ(r0, ψ), centered at r0 = [x0, y0]T is defined as
Econ(r0, ψ) =

{
{(x, y) ∈ R2|y − y0 − m1(x − x0) >

0} ∩ {(x, y) ∈ R2|y − y0 −m2(x − x0) < 0}
}
∪

{
{(x, y) ∈

R2|y−y0−m1(x−x0) < 0}∩{(x, y) ∈ R2|y−y0−m2(x−
x0) > 0}

}
, where m1 = tan

(
tan−1( y0−yp

x0−xp
)− π

2 − ψ
)

and

m2 = tan
(

tan−1( y0−yp

x0−xp
)− π

2 + ψ
)

.

Assumption 5. A swarm of the attackers Ack
, for any

k, splits at t = tse, such that all the unclustered attackers
(swarms with less than 3 attackers) are the farthest
from the center of the original swarm Ack

(t−se) and their
centers lie within the conical envelope Econ(rack

(t−se), π
4 ),

i.e., ∀i ∈ A
(k)
uc (tse), ∥rai(tse)− rack

(t−se)∥ >
max

k′∈A
(k)
c (tse)

∥∥rack′ (tse)− rack
(t−se)

∥∥ and rai(tse) ∈
Econ(rack

(t−se), π
4 ) (gray shaded region in Fig. 3).

Assumption 5 implies that the unclustered attackers
aim to spread in the direction transverse to the direction
toward the protected area because of the presence of the
defenders in front of them in order to maximize their
chances of not getting captured by the defenders and
reaching the protected area. Under Assumption 5, we can
assign only the defenders from either end of the Open-
StringNet to intercept the unclustered attackers while
assign the defenders in the central part of the Open-
StringNet to herd the newly formed clusters of the at-
tackers.

Let Dl
ck

(t−se) = {Dj |j ∈ Dl
ck

(t−se)} be the
group of |A(k)

uc (tse)| defenders at the left end of
the Open-StringNet Gop

sn(Dck
(t−se)), where Dl

ck
(t−se) =

{β−
ck

(1), β−
ck

(2), ..., β−
ck

(|A(k)
uc (tse)|)}. Here the left end of

the Open-StringNet formation refers to the end ap-
proached first when one rotates anti-clockwise standing
at the center rdfk

and starting when facing in the di-

Figure 3: Assignment of the defenders after the attackers
split using rs-MIQCQP

rection ϕk of the formation (see Fig. 3). Similarly, let
Dr

ck
(t−se) = {Dj |j ∈ Dr

ck
(t−se)} be the group of |A(k)

uc (tse)|
defenders at the right end of the Open-StringNet forma-
tion Gop

sn(Dck
(t−se)), where Dr

ck
(t−se) = {β−

ck
(|Dck

(t−se)| −
|A(k)

uc |+ 1), β−
ck

(|Dck
(t−se)| − |A(k)

uc |+ 2), ..., β−
ck

(|Dck
(t−se)|)}

(see Fig. 3). Let us call Dt
ck

(t−se) = {Dj |j ∈ Dl
ck

(t−se) ∪
Dr

ck
(t−se)} as the group of terminal defenders of the

Open-StringNet Gop
sn(Dck

(t−se)). We denote by Dc
ck

(t−se) =
{Dj |j ∈ Dc

ck
(t−se)} the central defenders, the group of the

defenders excluding the terminal defenders Dt
ck

(t−se), where
Dc

ck
(t−se) = Dck

(t−se)\Dt
ck

(t−se).
Next, we develop a reduced-size MIQCQP, in which

only the terminal defenders Dt
ck

(t−se) are assigned the
interception task, in (13). In (13) the length of
the decision vector δ

(k)∗
rs (tse) = [[δherd

jk′ (tse)|k′ ∈
A

(k)
c (tse), j ∈ Dck

(t−se)], [δint
ji (tse)|i ∈ A

(k)
uc (tse), j ∈



δ(k)∗
rs (tse) = arg min

δ
(k)
rs (tse)

∑
k′∈A

(k)
c (tse)

∑
j∈Dck

(t−
se)

∥∥rack′ (tse)− rdj(tse)
∥∥ δherd

jk′ (tse) +
∑

i∈A
(k)
uc (tse)

∑
j∈Dt

ck
(t−

se)

Cint
d (Xai

dj)δint
ji (tse)

+
∑

i,i′∈A
(k)
uc (tse)

∑
j,j′∈Dt

ck
(t−

se)

Ccol
d (Xai

dj ,Xai′

dj′ )δint
ji (tse)δint

j′i′(tse) (13a)

Subject to
∑

k′∈A
(k)
c (tse) δ

herd
jk′ (tse) +

∑
i∈A

(k)
uc (tse) δ

int
ji (tse) = 1, ∀j ∈ Dt

ck
(t−se); (13b)∑

k′∈A
(k)
c (tse) δ

herd
jk′ (tse) = 1, ∀j ∈ Dc

ck
(tse); (13c)∑

j∈Dck
(t−

se) δ
herd
jk′ (tse) = Rd(|Ack′ (tse)|), ∀k′ ∈ A(k)

c (tse); (13d)∑
j∈Dt

ck
(t−

se) δ
int
ji (tse) = 1, ∀i ∈ A(k)

uc (tse); (13e)∑
l∈I′

dck

δherd
β−

k
(l)k′(tse)δherd

β−
k

(l+1)k′(tse) ≥ Rd(|Ack′ (tse)|)− 1, ∀k′ ∈ A(k)
c (tse); (13f)∑

j∈Dc
ck

(t−
se)

∑
k′∈A

(k)
c (tse) δ

herd
jk′ (tse) +

∑
j∈Dt

ck
(t−

se)
∑

i∈A
(k)
uc (tse) δ

int
ji (tse) = |Dck

(t−se)|; (13g)

δherd
jk′ (tse), δint

ji (tse) ∈ {0, 1}, ∀j ∈ Dck
(t−se), k′ ∈ A(k)

c (tse), i ∈ A(k)
uc (tse); (13h)

Dck
(t−se)]]T is N

δ
(k)
rs

(tse) = |Dck
(t−se)||A(k)

c (tse)| +
min(2|A(k)

uc (tse)|, |Dck
(t−se)|)|A(k)

uc (tse)|. We have the follow-
ing result about the computation cost of (13).

Lemma 1. The worst-case computational cost of (13),
Ccomp

rsM (tse, k), satisfies:

Ccomp
rsM (tse, k) = O(2

N
δ

(k)
rs

(tse)
) ≤ Ccomp

M (tse, k). (14)

Furthermore, if the number of unclustered attackers is less
than half of the total number of attackers in the original
cluster, i.e., |A(k)

uc (tse)| < |Ack
(t−

se)|
2 , then Ccomp

rsM (tse, k) <
Ccomp

M (tse, k).

Figure 3 shows an instance of the assignment of the
defenders on the Open-StringNet Gop

sn(Dc1(t−se)) at some
time t = tse, where Dc1(t−se) = {1, 2, 3, ..., 13}, to the
newly formed clusters Ac1(tse) = {A1,A3,A4,A6,A9},
Ac2(tse) = {A2,A5,A7,A8,A10} and the unclustrered
attackers A(1)

uc (tse) = {A11,A12,A13}. After solving the
rs-MIQCQP (13), as shown in Fig. 3, defenders Dβ−

1 (1),
Dβ−

1 (2) and Dβ−
1 (13) are assigned to the unclustered at-

tackers A12, A11, A13, respectively, so that these attackers
can be intercepted as soon as possible. The connected
sub-teams {Dβ−

1 (8),Dβ−
1 (9),Dβ−

1 (10),Dβ−
1 (11),Dβ−

1 (12)} and
{Dβ−

1 (3),Dβ−
1 (4),Dβ−

1 (5),Dβ−
1 (6),Dβ−

1 (7)} are assigned to
the newly formed swarms of the attackers Ac1(tse) and
Ac2(tse), respectively.

2) Hierarchical approach to assignment (a heuristic):
Finding the optimal assignment of the defenders for in-
terception and herding tasks by solving the MIQCQPs
(10) and (13) may not be real-time implementable for a
large number of agents (> 100). In this subsection, we
develop a computationally efficient hierarchical approach
to find the defender-to-attacker-swarm assignment under
Assumption 5. The idea is to split a large dimensional
assignment problem into smaller, low-dimensional assign-
ment problems that can be solved optimally and quickly.

Let Ak(tse) be a data structure that stores infor-

mation about the attackers in Ack
(t−se) and has data

fields: Ak(tse).rac = [rack′ |k′ ∈ A
(k)
c (tse)], centers

of the newly formed attackers’ swarms after separat-
ing from the original swarm Ack

(t−se); Ak(tse).nac =
[|Ack′ (tse)||k′ ∈ A

(k)
c (tse)], numbers of the attackers in

each swarm; Ak(tse).Nac = |A(k)
c (tse)|, total number of

attackers’ clusters formed from Ak(t−se); Ak(tse).ruc =
[rai|i ∈ A

(k)
uc (tse)] current states of the unclustered at-

tackers in A(k)
uc (tse); Ak(tse).Nuc, total number of un-

clustered attackers; Ak(tse).Na = |Ack
(t−se)|, total num-

ber of attackers Ack
(t−se). Similarly, Dk(tse) is a data

structure that stores the information of the defenders
on the original Open-StringNet Gop

sn(Dck
(t−se)) with data

fields: Dk(tse).rd = [rdj |j ∈ Dck
(t−se)], positions of the

defenders on Gop
sn(Dck

(t−se)); and Dk(tse).β = βck
(t−se), the

original assignment mapping of the defenders on the Open-
StringNet Gop

sn(Dck
(t−se)).

Algorithm 2 provides the steps to solve the assignment
problem quickly by hierarchically reducing the original big
assignment problem into smaller ones.

In Algorithm 2, the function splitUnclustAtt
(Ak(tse),Dk(tse)) splits the unclustered attackers
A(k)

uc (tse) into two groups: left group A(k),l
uc (tse) and right

group A(k),r
uc (tse). The normal bisector of the line segment

joining the positions rdβ−
ck

(1)(tse) and rdβ−
ck

(|Dck
|)(tse)

acts as separating hyperplane for the groups A(k),l
uc (tse)

and A(k),r
uc (tse). The unclustered attackers that lie in

the half-plane containing the left side of Open-StringNet
and the normal bisector itself are part of the left group
A(k),l

uc (tse) and the rest unclustered attackers in A(k)
uc (tse)

are part of the right group A(k),r
uc (tse) (see Fig. 4). The

function splitUnclustAtt also outputs D(k),l
uc (tse), the

leftmost |A(k),l
uc (tse)| defenders on the Open-StringNet

Gop
sn(Dck

(t−se)); and D(k),r
uc (tse), the rightmost |A(k),r

uc (tse)|
defenders on the Open-StringNet Gop

sn(Dck
(t−se)) (see

Fig. 4). The function CADAA (A(k),l
uc (tse),D(k),l

uc (tse))
assigns the defenders in D(k),l

uc (tse) to intercept the



Algorithm 2: Defender-to-Attacker-Swarm As-
signment (DASA)
Input: Ak(tse),Dk(tse)

1 [A(k),l
uc (tse), D(k),l

uc (tse),A(k),r
uc (tse),D(k),r

uc (tse)] =
2 splitUnclustAtt (Ak(tse),Dk(tse));
3 β

(k),l
uc = CADAA (A(k),l

uc (tse),D(k),l
uc (tse));

4 β
(k),r
uc = CADAA (A(k),r

uc (tse),D(k),r
uc (tse));

5 βuc(tse)← {βuc(tse), β(k),l
uc ∪ β(k),r

uc };
6 Dk(tse).Dck

←
(Dk(tse).Dck

)\(D(k),l
uc (tse) ∪ D(k),r

uc (tse));
7 βc(tse)←
{βc(tse), assignHierarchical(Ak(tse),Dk(tse))};

8 return βuc(tse), βc(tse);

9 Function assignHierarchical(Ak,Dk):
10 if Ak.Nac > Nac then
11 [A l

k ,D
l
k,A

r
k ,D

r
k ] =

12 splitClustersEqual (Ak,Dk);
13 for ι ∈ {l, r} do
14 if A ι

k .Nac > Nac then
15 βι

ck
= assignHierarchical

(A ι
k ,D

ι
k);

16 else
17 βι

ck
= assignMIQCQP (A ι

k ,D
ι
k);

18 βc = {βl
ck
, βr

ck
};

19 else
20 βc=assignMIQCQP (Ak(tse),Dk);
21 return βc;

attackers A(k),l
uc (tse) by solving CADAA (5). Line 6 in

Algorithm 2 removes the the defenders in D(k),l
uc (tse)

and D(k),r
uc (tse), that are already assigned to intercept

the unclustered attackers, from further processing.
The function assignHierarchical(Ak(tse),Dk(tse))
then assigns the remaining connected defenders on
the Open-StringNet to the clusters of the attackers
{Ack′ (tse)|k′ ∈ A(k)

c (tse)}.
In the function assignHierarchical, the function

splitClustersEqual (Ak(tse),Dk(tse)) splits the clusters
of the attackers into two groups A l

k(tse) and A r
k (tse)

of roughly equal number of attackers and the defenders
into two groups D l

k(tse) and Dr
k(tse). The split is per-

formed based on the angles ψk′ made by relative vectors
rack′ (tse)−rdck

(t−se), for all k′ ∈ A(k)
c (tse), with the vector

rdȷt
(t−se) − rdck

(t−se) where rdck
(t−se) = rdȷ1 (tse)+rdȷt (tse)

2
is the center of Dck

(t−se), where ȷ1 = β−
ck

(1) and ȷt =
β−

ck
(|Dck

(t−se)|)). We first arrange these angles ψk′ in the
descending order. The first few clusters in the arranged list
with roughly half the total number of attackers become the
left group A l

k(tse) and the rest become the right group
A r

k (tse) (see Fig. 4). Similarly, the left group D l
k(tse)

is formed by the first A l
k(tse).Na defenders as per the

assignment β−
ck

and the rest defenders form the right group
Dr

k(tse) (see Fig. 4). We assign the defenders in D l
k(tse)

Figure 4: Grouping for the hierarchical algorithm

only to the swarms in A l
k(tse) and those in Dr

k(tse) only
to the swarms in A r

k (tse). By doing so we may or may
not obtain an assignment that minimizes the cost in (10a)
but we reduce the computation time significantly and
obtain a reasonably good assignment quickly. As in the
function assignHierarchical, the process of splitting is
done recursively until the number of attackers’ swarms is
smaller than a pre-specified number Nac(> 2). The func-
tion assignMIQCQP finds the defender-to-attacker-swarm
assignment βc(tse) by solving (13) after setting A

(k)
uc (tse)

and Dt
ck

(t−se) as empty sets, i.e., no assignments of the
terminal defenders to the unclustered attackers as this
assignment is already performed in the prior steps.

We have the following result about the worst-case com-
putational cost of the hierarchical heuristic.

Lemma 2. For a given assignment problem of assigning
|Dck

(t−se)| defenders to Ak(tse).Na (= |Dck
(t−se)|) attackers

divided into Ak(tse).Nac clusters and Ak(tse).Nuc unclus-
tered attackers with a given threshold Nac(> 2), the worst-
case computational cost of the hierarchical heuristic in
Algorithm 2 is:

Ccomp
H (tse, k) = O(2(Ak(tse).Nuc)2 + (N ′

rsM − 1)23N2
ac

+2N
ac

nmax + 23n2
ac,k )

(15)
where N ′

rsM = ⌊Ak(tse).Nac

Nac
⌋, nmax = (Ak(tse).Na −

Ak(tse).Nuc − 3nac,k − 3Nac(N ′
rsM − 1)) and nac,k =

Ak(tse).Nac −N ′
rsMNac.

Proof: In Algorithm 2, two CADAA problems (mixed
integer quadratic programs) are solved (line 3 and 4)
to assign the defenders to the left and right group of
unclustered attackers. Suppose the number of unclustered
attackers in left and right group are N l

uc = |A(k),l
uc (tse)|

and Nr
uc = |A(k),r

uc (tse)|, respectively.
Additionally, there are several rs-MIQCQPs that are

solved in Algorithm 2 to assign defenders to the clusters
of the attackers. Maximum number of the clusters in
any rs-MIQCQP solved in Algorithm 2 is Nac. Based
on the hierarchical breakdown of the original assignment



problem, the maximum number of such rs-MIQCQP’s is
N ′

rsM = ⌊Ak(tse).Nac

N
ac

⌋. Let ni (≥ 3Nac) denote the number
of attackers in the Nac clusters in the ith rs-MIQCQP for
all i ∈ {1, 2, 3, ..., N ′

rsM}. Similarly, let n0 be the number of
attackers in the remaining nac,k = Ak(tse).Nac−N ′

rsMNac

clusters considered in a separate rs-MIQCQP. We also
have that equal number of defenders are to be assigned to
these attackers by solving these integer programs. Then,
the worst-case computational cost of solving all integer
programs in Algorithm 2 is:

Ccomp = O
(
2(N l

uc)2
+ 2(Nr

uc)2︸ ︷︷ ︸
Ccomp

uc

+ 2n0nac,k +
∑N ′

rsM
i=1 2niN

ac︸ ︷︷ ︸
Ccomp

c

)
(16)

where N l
uc + Nr

uc = Ak(tse).Nuc, and
∑N ′

rsM
i=0 ni =

Ak(tse).Na − Ak(tse).Nuc. Since the assignments to un-
clustered and clustered attackers are made separately,
we will find the maximum values of Ccomp

uc and Ccomp
c

separately. The maximum value of Ccomp
uc occurs when

either N l
uc = Ak(tse).Nuc and Nr

uc = 0 or N l
uc = 0 and

Nr
uc = Ak(tse).Nuc. We have that nac,k ≤ Nac. Then,

the maximum value of Ccomp subject to
∑N ′

rsM
i=1 ni =

Ak(tse).Na − Ak(tse).Nuc occurs when all ni, except one
ni for some i ∈ {1, 2, 3, ..., N ′

rsM}, take their smallest
values, i.e., when n0 = 3nac,k, ni = 3Nac for all
i ∈ {2, 3, ..., N ′

rsM} and n1 = nmax = Ak(tse).Na −
Ak(tse).Nuc−3nac,k−3Nac(N ′

rsM −1). Hence, the worst-
case computational cost of the hierarchical heuristic is
Ccomp

H (tse, k) = O(2(Ak(tse).Nuc)2 + (N ′
rsM − 1)23N2

ac +
2Nac(Ak(tse).Na−Ak(tse).Nuc−3nac,k−3Nac(N ′

rsM −1))+23n2
ac,k ).

D. Assignment when attackers’ swarm does not avoid
defenders

When the attackers in a given swarm Ack
(t) do not

try to avoid the defenders and instead just aim to reach
the protected area, i.e., the attackers are risk-taking, then
herding will not be an effective way of defense. Mathe-
matically, this intention of swarm of attackers Ack

(t) to
not avoid defenders and simply target protected area, is
characterized by the following condition.

∥rack
− rp∥ ≤ ∥rdfk

(0)− rp∥ & (rack
−rp)T vack

< 0 (17)

This condition implies that the center of mass of attackers
in Ack

(t) has come closer towards the protected area
than the gathering center of the corresponding herding
defenders in Dck

(t) and the attackers’ average velocity
vector points towards the protected area. In other words,
the attackers in Ack

(t) are not necessarily moving away
from the defenders and they intend to simply reach the
protected area P, i.e., the attackers are risk taking. Once
swarm Ack

(t) satisfies (17), the corresponding defenders
Dck

(t) choose to intercept all the attackers in Ack
(t). The

defenders in Dck
are assigned to intercept the attackers

in Ack
by using CADAA similar to (5) with Ack

(t) and
Dck

(t) at the place of Auc(0) and Id, respectively.

E. Comparison of the assignment algorithms

In this section, we compare the computational perfor-
mance of the assignment algorithms. Using the results
from Lemma 1 and 2, we have the following result about
the computational cost of the MIQCQP, the rs-MIQCQP
and the heuristic in Algorithm 2.

Theorem 3. Let Assumption 5 hold and 1 < Nac < Nac,
then the worst-case computational costs Ccomp

M , Ccomp
rsM and

Ccomp
H of the MIQCQP, the rs-MIQCQP and the heuris-

tic, respectively, satisfy: Ccomp
H (tse, k) < Ccomp

rsM (tse, k) ≤
Ccomp

M (tse, k).

Proof: From Lemma 2, we have:

Ccomp
H = Ccomp

H (tse, k)
= O

(
2(Ak(tse).Nuc)2 + (N ′

rsM − 1)23N2
ac

+2Nacnmax + 23n2
ac,k

)
≤ O

(
2(Ak(tse).Nuc)2+3N2

ac(N ′
rsM −1)+Nacnmax+3n2

ac,k
)

(∵ 2ı + 2ȷ ≤ 2ı+ȷ, ∀ı, ȷ ≥ 1)
≤ O

(
2
(

(Ak(tse).Nuc)2+Nac(Ak(tse).Na−Ak(tse).Nuc)
)
×

2−3N
ac

nac,k+3n2
ac,k

)
≤ O

(
2
(

(Ak(tse).Nuc)2+Nac(Ak(tse).Na

))
(∵ nac,k ≤ Nac)

< O
(
2min(2Ak(tse).Nuc,|Dck

(t−
se)|)Ak(tse).Nuc×

2|Dck
(t−

se)|Ak(tse).Nac
)

(∵ 1 < Nac < Nac)
= Ccomp

rsM (tse, k)
(18)

Using (18) and the result from Lemma 1, we can establish:
Ccomp

H (tse, k) < Ccomp
rsM (tse, k) ≤ Ccomp

M (tse, k).

Next, we analyze the average computational perfor-
mance of the assignment algorithms by numerically evalu-
ating random assignment scenarios on a computer with 16
core Intel-i7 processor and 64 GB RAM using MATLAB.
The computation time for random initializations of the
players for different numbers of clusters of the attackers
and different numbers of the unclustered attackers is
shown in Figure 5(a), and that for different numbers of
attackers is shown in Figure 5(b). Each data point in Fig. 5
is obtained by taking average of the computational costs
for 30 random sets of initial conditions of the players for
each of the possible configurations of the clusters for the
given number of clusters and the total number of agents.
As one can observe, the computation time for MIQCQP
increases with increase in total number of attackers as well
as number of unclustered attackers. Furthermore, even for
Na = 30 and Nuc = 8, the MIQCQP in 13 takes around
25 s, which is not real-time implementable. Similarly, we
show the computation times for the rs-MIQCQP and the
hierarchical heuristic in Figure 6 and 7, respectively. As
one can observe, the computational time for the respective
scenarios for the rs-MIQCQP is significantly smaller than
that for the MIQCQP, but rs-MIQCQP could still be too
slow for a real-time operation. The heuristic has even
smaller computation time than the rs-MIQCQP and thus
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Figure 5: Computation time for MIQCQP in (10)
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Figure 6: Computation time for rs-MIQCQP in (13)

more suitable for real-time operation, see the Figure 8 for
better comparison.

We also compare the resulting cost of the heuristic,
costH , against the optimal cost, costrsM , obtained by
solving the rs-MIQCQP by calculating the percentage
error %E = 100|costrsM −costH |

costrsM
. As one can observe in Fig.9

the percentage error %E is below 4% for all the evaluated
cases. This means that the proposed heuristic provides an
assignment solution that is very close to the one obtained
by rs-MIQCQP within a fraction of the time taken by rs-
MIQCQP. The heuristic algorithm can be run at around
2-5 Hz for problems with up to 60 attackers and up to
24 individual risk taking attackers. The analysis providing
theoretical guarantees on the cost of the heuristic is left
open for future research.
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Figure 7: Computation time for Hierarchical Approach in
Algorithm 2

Figure 8: Comparison of computation times of the rs-
MIQCQP and the hierarchical heuristic (The line types
solid (-), dash (- -), and dash-dot (-.) correspond to the
cases with Nuc = 8, Nuc = 16, Nuc = 24 respectively. )

F. Control augmentation for inter-defender collision
avoidance

The intercepting defenders need to avoid collisions with
other intercepting as well as the herding defenders for
their own safety. Each intercepting defender Dj , for all
j ∈ Duc(t), employs an exponential CBF (ECBF) [40],
[41] based control augmentation to avoid collisions with
other defenders such that their time-optimal control ac-
tion corresponding to their assigned attacker is minimally
augmented. This ECBF based control considers the Open-
StringNets and Close-StringNets formed by the sub-teams
of the herding defenders as big individual agents with
their corresponding formation radii that the individual
intercepting defenders need to avoid.
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Figure 9: % Error in the costs of the rs-MIQCQP and the
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IV. Simulation Results
In this section, we provide MATLAB simulations to

demonstrate the effectiveness of the multi-mode defense
strategy in different scenarios, as explained below. Some
key parameters used in the simulations are: ρa = ρd =
0.5m, CD = 1.5, v̄a = 6m/s (ūa = 9m/s2), v̄d =
12.27m/s (ūd = 18.4m/s2), ϱint

d = 5m, ρp = 45m. The
computer specifications used to run these simulations are
the same as those used in Section III-E.

We consider a total number of five scenarios (case
studies) whose simulation videos are available at
(https://youtu.be/cofhjqudT9U). For the interest of
space, in this section we provide plots of the simulation
of Scenario 3. The description of all scenarios, as well as
the detailed results of Scenario 3, are given in the following
subsections.

1) Defenders and Attackers are equal in number: We
consider three different scenarios.

• Scenario (1): There are 32 attackers that appear, at
t = 0, to be divided into swarms Ac1(0) = {Ai|i ∈
{1, 2, ..., 20}},Ac2(0) = {Ai|i ∈ {21, 22, ..., 29}} and
unclustered attackers Auc(0) = {A30,A31,A32} that
are trying to reach the protected area, and 32 de-
fenders that are aiming to prevent the attackers from
doing so. In this scenario, after some time, Ac1 splits
into 3 smaller swarms and some of the terminal at-
tackers from Ac2 separate into individual risk-taking
attackers.

• Scenario (2): There are 20 attackers that are divided
into swarms Ac1(0) = {Ai|i ∈ {1, 2, ..., 12}},Ac2(0) =
{Ai|i ∈ {13, 14, ..., 17}} and unclustered attackers
Auc(0) = {A18,A19,A20}. In this scenario, some of
the attackers from Ac1 separate as individual risk-
taking attackers.

• Scenario (3): At t=0, when the attackers are first
identified, they are observed to be distributed as: 2

swarms Ac1(0) = {Ai|i ∈ {1, 2, 3, ..., 10}}, Ac2(0) =
{Ai|i ∈ {11, 12, 13, 14}}, and unclustered attckers
Auc(0) = {A15,A16}.

In the interest of space, we only discuss Scenario 3 in
more detail here. For the purpose of demonstration, the
motion of the unclustered attackers is simulated under
the time-optimal control to reach the protected area.
The problem of finding the defenders’ assignment to the
attackers and the gathering formations is solved using
Algorithm 1. This results into two sub-teams of defend-
ers Dc1(0) = {D12,D10,D16,D14,D8,D7,D9,D13,D1,D2}
and Dc2(0) = {D15,D11,D6,D3} being assigned to gather
on the time-optimal paths of Ac1(0) and Ac2(0), re-
spectively, and 2 individual defenders D4 and D5 being
assigned to intercept the unclustered attackers A15 and
A16, respectively. Figure 10a shows the paths traversed
by the players until all defenders’ sub-teams gather at
their respective desired formations, between the time in-
terval [0, 77.66] sec. As observed, both sub-teams of the
defenders are able to successfully gather on the desired
formations before respective attackers’ swarm could reach
there. The paths for the defenders in Dc1(0) and the
attackers in Ac1(0) during the time interval [77.66, 130.14]
sec are shown in Figure 10c. As one can observe, the
attackers Ac1(0) split at t = tse = 93.12 sec into
two smaller swarms Ac1(tse) = {A2,A3,A4,A5} and
Ac3(tse) = {A6,A7,A8,A9}, and two outermost attackers,
classified as unclustered attackers A(1)

uc (tse) = {A1,A10},
separate from the rest of the attackers in an attempt to
circumvent the oncoming defenders. After solving the rs-
MIQCQP (13), the defenders in Dc1(0) are also divided
into two smaller sub-teams Dc1(tse) = {D10,D16,D14,D8}
and Dc3(tse) = {D7,D9,D13,D1} and two terminal de-
fenders D12 and D2. The sub-teams Dc1(tse) and Dc3(tse)
are assigned to herd Dc1(tse) and Dc3(tse), respectively.
And, the terminal defenders D12 and D2 are tasked to
intercept the unclustered attackers A1 and A10, respec-
tively. By the time t = 130.14 sec the two unclustered
attackers are already captured and the two swarms of at-
tackers are also completely enclosed by Closed-StringNets
Gcl

sn(Dc1(tse)) and Gcl
sn(Dc3(tse)). Similarly, as shown in

Figure 10b the defenders in Dc2(0) also successfully en-
close the attackers in Ac2(0) at t = 146.17 sec. Finally,
as observed in Figure 10d all the enclosed attackers’
swarms are herded to the respective closest areas by the
Closed-StringNets formed by the defenders’ sub-teams.
As mentioned also above, simulations for the additional
scenarios are provided in the simulation video available at
https://youtu.be/cofhjqudT9U.

2) Attackers outnumber the defenders: We also studied
the performance of the proposed algorithm in a few scenar-
ios where attackers outnumber the defenders. Particularly,
we consider the following two scenarios.

• Scenario (4): There are 16 attackers that are, at
t = 0, divided into 2 swarms Ac1(0) = {Ai|i ∈
{1, 2, ..., 6}},Ac2(0) = {Ai|i ∈ {7, 8, ..., 14}} and
unclustered attackers Auc(0) = {A15,A16} and there
are only 14 defenders. In this scenario, since the

https://youtu.be/cofhjqudT9U
https://youtu.be/cofhjqudT9U


defenders are short in number by 2 and there are
2 swarms of attackers, resource allocation assigns 5
defenders (Dc1(0) = {D5,D7,D8,D12,D13}) to Ac1

which has 6 attackers in it and 7 defenders (Dc2(0) =
{D2,D1,D9,D6,D10,D11,D14}) to Ac2 which has 8
attackers in it and the remaining two defenders to
intercept the unclustered attackers. As time pro-
gresses, at around tse = 93.58 sec, Ac2(t−se) splits
into two smaller swarms Ac2(tse) = {A7,A8,A9,A10}
and Ac3(tse) = {A11,A12,A13,A14}. Again, since
Dc2(t−se) is short by 1 defender, only 3 defenders
(Dc2(tse) = {D2,D1,D9}) are assigned to Ac2(tse

and 4 defenders ( Dc3(tse) = {D6,D10,D11,D14})
are assigned to Ac3(tse). The trajectories of the play-
ers for this scenario are shown in the simulation
video (https://youtu.be/cofhjqudT9U). As one can
observer in the video, the defenders are still able to
enclose the attackers’ swarms successfully and herd
them to respective safe areas despite more number
of attackers in the attacking swarms. This is because
the attackers did not disperse and stayed in compact
formations throughout, that the available defenders
were capable of enclosing with the given constraints
(R̄). However, this is a very specific behaviour by
the attackers that results in outcomes in favor of the
defenders.

• Scenario (5): There are 6 attackers, all of them indi-
vidual attackers and only 4 defenders. The four at-
tackers (A1,A2,A3,A4) approach the protected area
from one side and the other two (A5,A6) approach
the protected area from the opposite side. Because of
the initial states of the defenders, (D2,D4,D3,D1) are
assigned to attackers (A1,A2,A3,A4) in that order.
After the defender D3 and D1 capture their target
attackers they get assigned to A6 and A5 respectively.
Again, the trajectories of the players are shown in the
simulation video (https://youtu.be/cofhjqudT9U).
As one can observe in the video, despite the re-
assignment, the attackers A5 and A6 are able to
reach the protected area. This is because the attackers
A1 − A4 started moving away from the protected
area as they saw the defenders coming towards them.
By the time the D3 and D1 intercepted A3 and A4,
the defenders had already moved very far from the
protected area and hence were not able to come back
in time and intercept the remaining two attackers.

These two scenarios show that the success of the de-
fenders when attackers outnumber the defenders is not
necessarily govern by the difference in their number but
rather by the initial state of the players and how the
attackers behave.

V. Conclusions
In this paper, we combine a multi-mode inter-defender

collision-aware interception strategy (IDCAIS) with a
swarm-herding strategy (StringNet Herding) to provide
a multi-mode defense strategy against a wide range of
behaviors by the attackers. We provided mixed-integer

programs and computationally-efficient heuristics to al-
locate the interception or herding task to the defenders.
Through simulations we showed how the defenders initially
attempt to herd the attackers instead of intercepting the
risk-averse swarms of the attackers, and how defenders
redistribute to sub-teams and reassign either the herding
or the interception role to themselves as the attackers
split and take on risk-taking or risk-averse roles. The
provided heuristics for solving the assignment problems
offer a significant reduction in the computational time,
by at least a factor of 4-5, while being close to the
optimal solution, within 4% error. Future work will focus
on considering modeling and measurement uncertainty, as
well as extending the formulation to 3D spaces.
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red: attackers)

Figure 10: Snapshots of the paths of the agents during multi-mode defense (blue: defenders, red: attackers)
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