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The spectral and transport properties of strongly correlated metals, such as SrVO; (SVO), are widely
attributed to electron-electron (e-e) interactions, with lattice vibrations (phonons) playing a secondary role.
Here, using first-principles electron-phonon (e-ph) and dynamical mean field theory calculations, we show
that e-ph interactions play an essential role in SVO: they govern the electron scattering and resistivity in a
wide temperature range down to 30 K, and induce an experimentally observed kink in the spectral function.
In contrast, the e-e interactions control quasiparticle renormalization and low temperature transport, and
enhance the e-ph coupling. We clarify the origin of the near 7> temperature dependence of the resistivity by
analyzing the e-e and e-ph limited transport regimes. Our work disentangles the electronic and lattice
degrees of freedom in a prototypical correlated metal, revealing the dominant role of e-ph interactions

in SVO.

DOI:

Introduction—Strontium vanadate, SrVO; (SVO), is a
perovskite oxide widely studied as a prototypical correlated
metal [1-3]. Experiments have measured transport and
spectral functions in detail in SVO, owing to advances in
growth of clean samples [4,5] and characterization by
angle-resolved photoemission spectroscopy [6—8]. There
are clear spectroscopic signatures of strong electron inter-
actions in SVO, including kinks in the quasiparticle
dispersion [8,9] and mass enhancement with quasiparticle
weight Z ~ 0.5 [6]. In addition, transport measurements
have found a near T?-dependent resistivity in broad
temperature ranges below 300 K [10-14].

These findings are often attributed to strong electron-
electron (e-e) interactions. As a result, SVO serves as a test
bed for theoretical methods treating strongly correlated
materials, including first-principles variants of dynamical
mean field theory (DMFT) such as density functional
theory (DFT) + DMFT [15], GW + DMFT [16-19], and
linear response DMFT [20], and the dynamical cluster [21]
and dynamical vertex approximations [22].

However, one can question whether the transport pro-
perties and spectral features observed in SVO are the
result of purely electronic interactions. In particular,

"Contact author: bmarco@caltech.edu

electron-phonon (e-ph) interactions may also play a role
in SVO, as they do in other correlated metals where
experiments [23-25] and theory [26-28] have highlighted
the importance of e-ph coupling for spectral kinks [23,29]
and electronic transport [30]. A quantitative study combin-
ing e-e and e-ph interactions in SVO is needed to clarify the
microscopic origin of its electronic behavior.

In this Letter, we show calculations of spectral and
transport properties in SVO combining first-principles e-ph
interactions with DFT + DMFT e-¢ interactions [30]. We
find that e-ph interactions govern the resistivity and its
temperature dependence above ~30 K, and account for the
experimentally observed kinks and for most of the line-
width broadening of the spectral functions. In contrast, the
e-e interactions control the resistivity below 20 K, and are
responsible for most of the quasiparticle mass renormal-
ization. We also find that the e-e interactions lead to an
enhancement of the effective e-ph coupling. Our results
provide a blueprint for quantifying electronic and lattice
contributions to the properties of correlated metals.

Electronic structure and electron-phonon coupling—We
calculate the electronic structure, phonon dispersions, and
e-ph coupling using DFT and density functional perturba-
tion theory (DFPT) with the QUANTUM ESPRESSO package
[31-34]. We use the experimental lattice parameter of
3.842 A [2,13] and project the electronic structure onto the
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FIG. 1. (a) DFT electronic band structure (black) and the

spectral function computed with DMFT at 290 K (blue), showing
renormalization by a factor Z ~ 0.5. (b) Imaginary part of the
electron self-energy due to e-e interactions, computed with
DMFT. The lines show a fit to the Fermi liquid form,
ImX~(w, T) = —c[(hw)* + 7*(kgT)?] with c¢~033 eV~
(c) DFPT phonon dispersions in SVO, with colors showing
the e-ph coupling strength |g,(q)| averaged on the Fermi surface.

t, d orbitals of vanadium [35]. We use PERTURBO to
compute the e-ph interactions, e-ph self-energy, spectral
functions, and transport [36]. The e-e self-energy is
obtained with DFT + DMFT using the TRIQS code with
a continuous-time quantum Monte Carlo solver [37-42]
and Padé analytical continuation [38]. We use Hubbard-
Kanamori interactions with U = 4.5 eV and J = 0.15U =
0.675 eV to obtain band renormalization and quasiparticle
weights in agreement with experiments [6—8]. Additional
computational details are provided in the Supplemental
Material (SM) [43].

As shown in Fig. 1(a), our DFT calculations predict a
bandwidth of 2.5 eV for the t,, electronic bands, which is
renormalized by a factor Z ~ 0.5 by DMFT, in agreement
with experiments [6] and previous DMFT results [15,17]. In
the temperature range we study (~115-390 K), the imagi-
nary part of the e-e self-energy, Im>°¢, follows a Fermi
liquid behavior. Figure 1(b) shows that ImX°~¢(w, T') within
100 meV of the Fermi energy can be fit closely by a Fermi
liquid parameterization [44], ImX*~¢(w, T) = —c|[(hw)? +
7% (kgT)?] with ¢ ~ 0.33 eV~! [45]. Therefore, based on the
Kramers-Kronig relations, ReX*"(w, T') and the quasipar-
ticle dispersion near the Fermi energy depend weakly on
temperature.

Figure 1(c) shows the phonon dispersions in SVO
computed with DFPT and color-coded according to the
e-ph coupling strength |g,(q)|, for each phonon mode v and
momentum ¢, averaged over the Fermi surface (see SM
[43]). The e-ph coupling is stronger for the six highest-
energy modes, which involve distortions of the VOg
octahedra, such as Jahn-Teller modes.

Spectral properties—We investigate the contributions of
e-ph and e-e interactions in SVO by computing the
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FIG. 2. (a) Real and (b) imaginary parts of the self-energy at

T =115 K and k = (0.23 x 27/a,0,0), showing contributions
from e-e and e-ph interactions. (c) Spectral functions including
both e-e and e-ph interactions, (d) e-e interactions only, and (e) e-
phinteractions only. Quasiparticle weights Z are indicated for each
spectral function, and the dashed lines in (c) guide the eye to the
quasiparticle dispersion near the kink. All spectral functions are
shown along the I'-X direction near the Fermi surface at 115 K.

corresponding self-energies [30]. The real and imaginary
parts of the e-e and e-ph self-energies at 115 K are shown
in Figs. 2(a) and 2(b), respectively. The e-e interactions
dominate quasiparticle renormalization, as seen from the
greater derivative of ReX®~¢ compared to ReX® P! within
150 meV of the Fermi energy. Accordingly, extracting
quasiparticle  weights Z = {1 — [0ReZ(®)/0w]]|,_o} "
with a fit near the Fermi surface, gives a weak contribution
to renormalization for e-ph interactions (Z._,, = 0.80) and
a dominant contribution for e-e interactions, with Z._, =
0.53 and Z;,, = 0.47.

The imaginary part of the self-energy shows an opposite
behavior: ImX¢~P" is much greater than ImX®~¢, and thus
the e-ph interactions account for the majority of electron
scattering and spectral width at low energy. The dominant
role of e-e interactions on quasiparticle renormalization in
SVO, despite their small effect on low energy scattering,
can be rationalized using the Kramers-Kronig relations
[44,46]: due to the larger energy scales involved, the e-e
interactions dominate the imaginary part of the self-energy
at higher energies (see SM [43]), leading to a greater
magnitude (and energy derivative) of ReX*®(w) compared
to ReX* () at low energy.

We compute the spectral function
—(1/7)ImG, (@) from the Green’s function

Ank (C()) =

F2:1
F2:2
F2:3
F2:4
F2:5
F2:6
F2:7
F2:8

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132



F3:1
F3:2
F3:3
F3:4

133
135
136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

PHYSICAL REVIEW LETTERS VOL..XX, 000000 (XXXX)

(a)20 7 (b) 20 7 (c) 10°
Fouchet et al. / g
=== Brahlek et al. R4
- == Ahnetal. / - ’ -
g 15 4 =@~ e-ph + e-e ,’ 810 1 /’ E -1
c =@— ephonly ¢ c 1 / G107 4
= =@— econly , 2 =
2101 s 2 5] d 2
= s = R >
E’ /’ z ,’ Fouchet et al. E 1077 3~ f Brahlek et al.
$ 5 ,/ $ 4 == Brahlek et al. 8 == Ahnetal.
lod RS Iod ,’ == Ahnetal. o4 —_— e-e T2 fit
Lz 2 14 =@— e-ph (Full BTE) =@— e-ph (Full BTE)
_.ﬁ-—*—"’. — Tt 1073 - — T
0 - T T T T LI | ™
100 200 300 100 200 300 10 20 30 40 60 100
Temperature (K) Temperature (K) Temperature (K)
FIG. 3. (a)Resistivity as a function of temperature calculated using the Green-Kubo formalism with e-e interactions, e-ph interactions,

and their combination. (b) Temperature dependence of the e-ph limited resistivity calculated using the full (iterative) solution of the
BTE. (c) Low-temperature e-ph and e-e limited transport. Experimental data (from which the 7 = 0 residual resistivity was subtracted)

are from Refs. [11,13,14].

G (@, T) = [w— g, +p—Zy(0, 7)) (1)

at energy w for electron band n» and momentum k. Here, €,
is the DFT band energy, y is the Fermi energy, and X, (w, T')
is the electron self-energy. Following our previous work
[30], in separate calculations we compute this Green’s
function using the self-energy from DMFT e-e interactions,
the lowest-order self-energy from e-ph interactions, and
their sum [47], obtaining corresponding spectral functions
capturing different combinations of interactions [Figs. 2(c)—
2(e)]. The spectral functions from e-ph, and those from e-ph
plus e-e interactions, show a kink around 60 meV from the
Fermi energy that has been observed in experiments [8,9].
There is a corresponding sharp change in the derivative of

ReZZ;ph (w) at this energy [Fig. 2(a)], whereas this feature is
absent in ReX$ *(w). This result shows that the 60 meV
kink observed experimentally in SVO is caused by e-ph
interactions.

Transport—Numerous experiments have measured a
near T2 temperature dependence of the resistivity in
SVO below 300 K [2,4,11,13,48-52]. Because of the
strong electronic correlations in SVO, several studies have
attributed this resistivity to e-e interactions in the Fermi
liquid regime [11,48,52], where T? behavior is expected.
An exception is recent work by Mirjolet ef al., who argued
that the temperature dependence is better explained by e-ph
limited resistivity with strong coupling to a dominant
phonon mode [12]. Recently, the growth of ultraclean
samples has enabled detailed measurements of the resis-
tivity with reduced defect scattering [4,13]. In these
samples, Ahn et al. [13] and Brahlek e al. [14] find a
near-T? resistivity below 25 K and between about 100—
300 K, together with a stronger than 72 temperature
dependence at intermediate temperatures.

To understand the microscopic origin of this behavior,
we compute the resistivity arising from e-ph and e-e

interactions using the Green-Kubo formula [30,53],

he?
—1 T :ﬂ-
pa/}( ) Vuc

/da)[—f’(a),T)]szkvkank(a),T)Q, (2)
nk

where p,; is the resistivity tensor, a and f are Cartesian
directions, f'(w,T) is the energy derivative of the Fermi
occupation factor, v%, is the band velocity, and A, (@, T) is
the spectral function. The resistivity for different combi-
nations of interactions is shown in Fig. 3(a) and compared
with experimental data [11,13,14].

Surprisingly, we find that the resistivity is governed by
the e-ph interactions in SVO. The e-ph limited resistivity is
an order of magnitude greater than the e-e limited resis-
tivity, with the latter accounting for only ~10% of the
experimental value. This result is in contrast with the
conventional wisdom that transport properties in SVO are
governed by purely electronic interactions. In addition, the
contributions are opposite to another prototypical strongly
correlated metal, Sr,RuO,, where the e-ph interactions
account for only ~10% of the resistivity [30]. In SVO, the
e-ph contribution is similar in magnitude to the exper-
imental value, and the total resistivity including both
interactions is in good agreement with experiments.
Interestingly, ImX®P" and the e-ph limited resistivity are
similar in SVO and Sr,RuQy,, a result consistent with their
similar low-energy electronic structure governed by 7, d
orbitals. Below, we show that taking into account the
electron correlation induced enhancement of the e-ph
interactions increases the resistivity and brings the results
in even better agreement with experiments.

The temperature dependence of the e-ph limited resis-
tivity is analyzed in more detail in Fig. 3(b), where we show
our results on a log-log plot and compare them with
experiments [11,13]. In that plot, the resistivity is computed
with the full (iterative) solution of the Boltzmann transport
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equation (BTE) [36] to include backscattering and improve
the treatment of acoustic phonons. The computed e-ph
limited resistivity follows a T'® temperature dependence
between 100200 K, in excellent agreement with the 782
dependence found in experiments in that temperature range
[11,13,14], and falls to 7' at 300 K. We identify the origin
of this nearly T? temperature trend of the e-ph limited
resistivity by analyzing the contribution of different phonon
modes. Our calculations show that the increasing contri-
bution of strongly coupled optical phonons at higher
temperatures is responsible for the 72 dependence of the
resistivity between 100-200 K (see SM [43]).

Next, we focus on transport at low temperature, where
the e-ph contribution is expected to be weaker. While
DMEFT calculations become difficult at low temperatures,
we obtain the e-e limited resistivity by extrapolating our
higher-temperature DMFT calculations with a 72 fit. This
approach is justified because the e-e scattering is in the
Fermi liquid regime below at least 400 K. Figure 3(c)
shows the computed e-ph and DMFT e-e limited resistiv-
ities below 100 K. We find a clear crossover between 20—
30 K from e-ph to e-e dominated transport. The e-ph
limited resistivity becomes much smaller than the e-e
limited resistivity below 20 K, showing that e-e scattering
governs transport at low temperature. This result indicates
that e-e interactions are the origin of the T2 resistivity
observed experimentally below 25 K, with the e-ph
contribution causing deviations from a 72 behavior above
25 K. Note that our DMFT resistivity underestimates the
experimental value below 25 K by a factor of 2-3 [14].
We attribute this discrepancy to limitations of single-
site. DMFT [54,55], which employs a local, and thus
k-independent, e-e self-energy. Including nonlocal correla-
tions is expected to improve the description of k-dependent
e-e scattering, which controls transport at low temperature.

Correlation-corrected electron-phonon interactions—
Strong electronic interactions are known to significantly
modify e-ph interactions [56,57]. In correlated metals, e-ph
coupling is often enhanced. For example, calculations using
hybrid functionals and the GW method found correlation-
enhanced e-ph coupling in unconventional superconduc-
tors, attributing the enhancement to decreased electronic
screening [26]. Similarly, in multiband d-electron systems
such as FeSe, treating correlations with DMFT enhances
e-ph coupling, in this case by increasing the orbital
polarization response to phonon perturbations [27].

To study the role of correlations in SVO, we compute
the e-ph interactions using Hubbard-corrected DFPT
(DFPT + U) [33,34], which captures the strong local
interactions between d orbitals in a static approximation
and accounts for the resulting change in orbital polarization
response. We use a Hubbard-U parameter of 3 eV, which
provides orbital polarization responses to phonon pertur-
bations similar to our DMFT settings (U = 4.5 eV and
J =0.15U) and to a calculation using a Hubbard-U

20
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FIG. 4. (a)Phonon dispersions and e-ph coupling as in Fig. 1(c)
but calculated with DFPT + U. Note the change in e-ph coupling
scale. (b) Transport as in Fig. 3(a) but calculated with DFPT + U
phonons and e-ph couplings, showing improved agreement with
experiments [11,13].

parameter computed from linear-response theory [58]
(U = 5.1 V) in combination with Hund’s coupling J =
0.15U (see SM [43]).

Adding the Hubbard correction has a small effect on the
phonon dispersions, but it enhances the e-ph interactions,
as shown in Fig. 4(a). The enhancement is mode-dependent
and is generally higher for strongly coupled optical
phonons involving VOq4 distortions. The enhancement is
also higher for phonons with momenta away from the I"
point, suggesting a more important role of correlations for
distortions breaking lattice-translation symmetry. The spec-
tral and transport properties computed with enhanced e-ph
coupling from DFPT + U give results qualitatively similar
to those from DFPT [43], but with stronger e-ph effects.
Notably, the e-ph limited resistivity increases by ~35% at
room temperature [Fig. 4(b)], bringing the resistivity
computed with both e-ph and e-e interactions into very
good agreement with experiments. For example, the com-
puted resistivity at 290 K is 16 pQcm, versus an exper-
imental value of 19-25 pQcm [11,13,14].

Discussion—The origin of the temperature dependence
of the resistivity merits further discussion. While the T2
trend for e-e interactions is expected based on Fermi liquid
theory [53], the origin of the near-72 behavior of the e-ph
limited resistivity is less clear. At very low temperatures,
the e-ph limited resistivity in metals is expected to exhibit a
T> temperature dependence [59] when scattering is domi-
nated by acoustic phonons with momentum g « kz7. In
our calculations, we find a 7> e-ph limited resistivity below
~30 K, but the overall resistivity becomes e-e limited in
this temperature range, explaining the experimental T2
resistivity below 25 K.

In the high-temperature limit, based on the tempera-
ture dependence of the phonon occupations, one expects a
T-linear e-ph limited resistivity [59]. However, this requires
that all phonon modes contribute equally to e-ph scattering,
with no mode frozen out. While our computed e-ph limited
resistivity becomes nearly 7-linear well above 300 K, it is
close to a T2 behavior between ~100-200 K, in agreement
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with experiments. As discussed above, this 72 trend is due to
the increasing contribution of higher-energy optical pho-
nons with strong e-ph coupling for increasing temperatures
[43]. Note also that e-ph scattering above ~50 K in SVO
involves phonons with all momenta, ruling out momentum-
dependent mechanisms resulting in 72 behavior [60].

Finally, we analyze two approximations made in the e-ph
transport calculations (see results in SM [43]). First, we
examine the use of the lowest-order e-ph self-energy
[61,62] by computing the resistivity with a cumulant
diagram-resummation method capable of treating delocal-
ized polarons [63]. Including polaron effects leads to a
small increase in the resistivity, showing that lowest-order
e-ph interactions are adequate to describe SVO. Second, we
examine the effect of vertex corrections to the current-
current correlation function in the Green-Kubo formalism
[44,53]. Vertex corrections improve the description of
backscattering and the momentum dependence of e-ph
scattering, which is particularly important at low temper-
ature [53]. We assess their role above 100 K in the
semiclassical limit by comparing the full solution of the
BTE, which includes vertex corrections, to the relaxation
time approximation, which neglects them. We find that
vertex corrections in the BTE give only a small increase in
the resistivity and its temperature dependence. This analy-
sis shows that higher-order e-ph interactions and vertex
corrections play a minor role in SVO and do not affect our
conclusions.

Conclusion—In summary, we have shown that e-ph
interactions play an essential role in the transport and
spectral properties of a prototypical correlated metal, SVO.
In this material, electronic correlations control other aspects
of the low energy physics, including the quasiparticle mass
renormalization and transport at low temperature. We also
found that electronic correlations lead to an effective
enhancement of the e-ph interactions. This suggests that
SVO may serve as a test bed for investigating the interplay
between electron correlations and e-ph interactions. Our
results highlight the potential of first-principles calculations
combining e-e and e-ph interactions in a consistent way as
an emerging tool to study correlated materials. This work
paves the way for a quantitative description of transport and
spectral properties in broad classes of correlated quantum
materials.
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