

1

## 2 Respective Roles of Electron-Phonon and Electron-Electron Interactions 3 in the Transport and Quasiparticle Properties of SrVO<sub>3</sub>

4 David J. Abramovitch,<sup>1,2</sup> Jernej Mravlje,<sup>3,4</sup> Jin-Jian Zhou,<sup>5</sup> Antoine Georges,<sup>6,2,7,8</sup> and Marco Bernardi,<sup>1,\*</sup>

5 <sup>1</sup>*Department of Applied Physics and Materials Science, and Department of Physics,*

6 *California Institute of Technology, Pasadena, California 91125, USA*

7 <sup>2</sup>*Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA*

8 <sup>3</sup>*Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia*

9 <sup>4</sup>*Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia*

10 <sup>5</sup>*School of Physics, Beijing Institute of Technology, Beijing 100081, China*

11 <sup>6</sup>*Collège de France, Paris, France*

12 <sup>7</sup>*Centre de Physique Théorique, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France*

13 <sup>8</sup>*DQMP, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève, Switzerland*

14 (Received 15 April 2024; accepted 23 September 2024)

15 The spectral and transport properties of strongly correlated metals, such as SrVO<sub>3</sub> (SVO), are widely  
16 attributed to electron-electron (*e-e*) interactions, with lattice vibrations (phonons) playing a secondary role.  
17 Here, using first-principles electron-phonon (*e-ph*) and dynamical mean field theory calculations, we show  
18 that *e-ph* interactions play an essential role in SVO: they govern the electron scattering and resistivity in a  
19 wide temperature range down to 30 K, and induce an experimentally observed kink in the spectral function.  
20 In contrast, the *e-e* interactions control quasiparticle renormalization and low temperature transport, and  
21 enhance the *e-ph* coupling. We clarify the origin of the near  $T^2$  temperature dependence of the resistivity by  
22 analyzing the *e-e* and *e-ph* limited transport regimes. Our work disentangles the electronic and lattice  
23 degrees of freedom in a prototypical correlated metal, revealing the dominant role of *e-ph* interactions  
24 in SVO.

25 DOI:

26 **Introduction**—Strontium vanadate, SrVO<sub>3</sub> (SVO), is a  
27 perovskite oxide widely studied as a prototypical correlated  
28 metal [1–3]. Experiments have measured transport and  
29 spectral functions in detail in SVO, owing to advances in  
30 growth of clean samples [4,5] and characterization by  
31 angle-resolved photoemission spectroscopy [6–8]. There  
32 are clear spectroscopic signatures of strong electron inter-  
33 actions in SVO, including kinks in the quasiparticle  
34 dispersion [8,9] and mass enhancement with quasiparticle  
35 weight  $Z \approx 0.5$  [6]. In addition, transport measurements  
36 have found a near  $T^2$ -dependent resistivity in broad  
37 temperature ranges below 300 K [10–14].

38 These findings are often attributed to strong electron-  
39 electron (*e-e*) interactions. As a result, SVO serves as a test  
40 bed for theoretical methods treating strongly correlated  
41 materials, including first-principles variants of dynamical  
42 mean field theory (DMFT) such as density functional  
43 theory (DFT) + DMFT [15], *GW* + DMFT [16–19], and  
44 linear response DMFT [20], and the dynamical cluster [21]  
45 and dynamical vertex approximations [22].

46 However, one can question whether the transport prop-  
47 erties and spectral features observed in SVO are the  
48 result of purely electronic interactions. In particular,

49 electron-phonon (*e-ph*) interactions may also play a role  
50 in SVO, as they do in other correlated metals where  
51 experiments [23–25] and theory [26–28] have highlighted  
52 the importance of *e-ph* coupling for spectral kinks [23,29]  
53 and electronic transport [30]. A quantitative study combin-  
54 ing *e-e* and *e-ph* interactions in SVO is needed to clarify the  
55 microscopic origin of its electronic behavior.

56 In this Letter, we show calculations of spectral and  
57 transport properties in SVO combining first-principles *e-ph*  
58 interactions with DFT + DMFT *e-e* interactions [30]. We  
59 find that *e-ph* interactions govern the resistivity and its  
60 temperature dependence above  $\sim 30$  K, and account for the  
61 experimentally observed kinks and for most of the line-  
62 width broadening of the spectral functions. In contrast, the  
63 *e-e* interactions control the resistivity below 20 K, and are  
64 responsible for most of the quasiparticle mass renormal-  
65 ization. We also find that the *e-e* interactions lead to an  
66 enhancement of the effective *e-ph* coupling. Our results  
67 provide a blueprint for quantifying electronic and lattice  
68 contributions to the properties of correlated metals.

69 **Electronic structure and electron-phonon coupling**—We  
70 calculate the electronic structure, phonon dispersions, and  
71 *e-ph* coupling using DFT and density functional perturba-  
72 tion theory (DFPT) with the QUANTUM ESPRESSO package  
73 [31–34]. We use the experimental lattice parameter of  
74 3.842 Å [2,13] and project the electronic structure onto the

\*Contact author: bmarco@caltech.edu

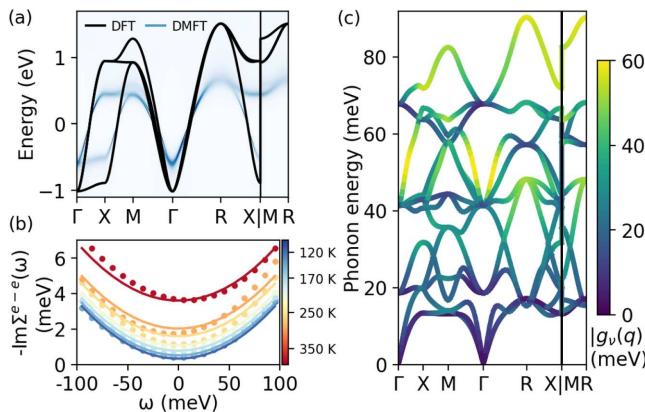


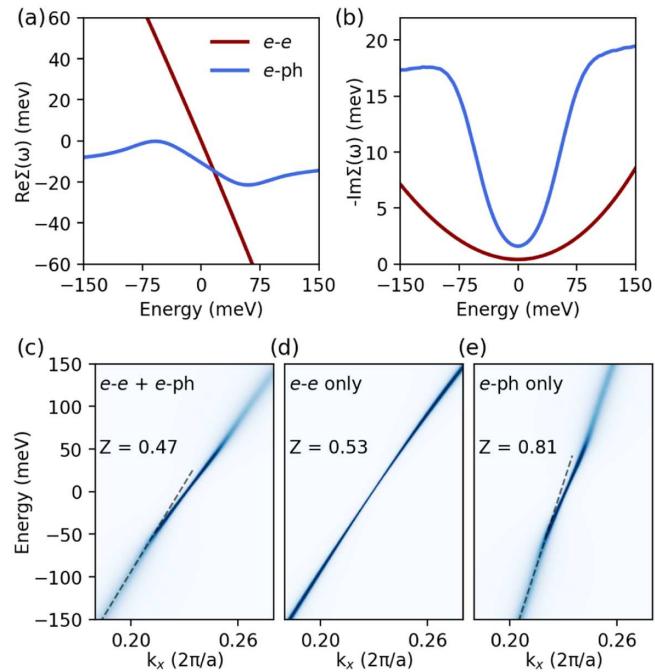

FIG. 1. (a) DFT electronic band structure (black) and the spectral function computed with DMFT at 290 K (blue), showing renormalization by a factor  $Z \approx 0.5$ . (b) Imaginary part of the electron self-energy due to  $e$ - $e$  interactions, computed with DMFT. The lines show a fit to the Fermi liquid form,  $\text{Im}\Sigma^{\text{e-e}}(\omega, T) = -c[(\hbar\omega)^2 + \pi^2(k_B T)^2]$  with  $c \approx 0.33 \text{ eV}^{-1}$ . (c) DFPT phonon dispersions in SVO, with colors showing the  $e$ - $\text{ph}$  coupling strength  $|g_\nu(\mathbf{q})|$  averaged on the Fermi surface.

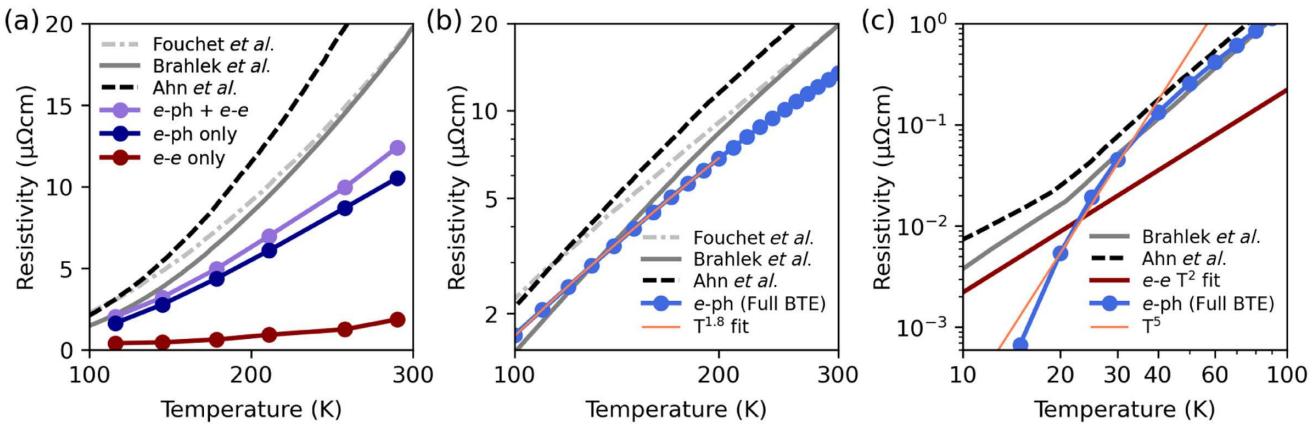
**75**  $t_{2g}$   $d$  orbitals of vanadium [35]. We use PERTURBO to  
**76** compute the  $e$ - $\text{ph}$  interactions,  $e$ - $\text{ph}$  self-energy, spectral  
**77** functions, and transport [36]. The  $e$ - $e$  self-energy is  
**78** obtained with DFT + DMFT using the TRIQS code with  
**79** a continuous-time quantum Monte Carlo solver [37–42]  
**80** and Padé analytical continuation [38]. We use Hubbard-  
**81** Kanamori interactions with  $U = 4.5 \text{ eV}$  and  $J = 0.15U =$   
**82**  $0.675 \text{ eV}$  to obtain band renormalization and quasiparticle  
**83** weights in agreement with experiments [6–8]. Additional  
**84** computational details are provided in the Supplemental  
**85** Material (SM) [43].

**86** As shown in Fig. 1(a), our DFT calculations predict a  
**87** bandwidth of 2.5 eV for the  $t_{2g}$  electronic bands, which is  
**88** renormalized by a factor  $Z \approx 0.5$  by DMFT, in agreement  
**89** with experiments [6] and previous DMFT results [15,17]. In  
**90** the temperature range we study ( $\sim 115$ –390 K), the imagi-  
**91** nary part of the  $e$ - $e$  self-energy,  $\text{Im}\Sigma^{\text{e-e}}$ , follows a Fermi  
**92** liquid behavior. Figure 1(b) shows that  $\text{Im}\Sigma^{\text{e-e}}(\omega, T)$  within  
**93** 100 meV of the Fermi energy can be fit closely by a Fermi  
**94** liquid parameterization [44],  $\text{Im}\Sigma^{\text{e-e}}(\omega, T) = -c[(\hbar\omega)^2 +$   
**95**  $\pi^2(k_B T)^2]$  with  $c \approx 0.33 \text{ eV}^{-1}$  [45]. Therefore, based on the  
**96** Kramers-Kronig relations,  $\text{Re}\Sigma^{\text{e-e}}(\omega, T)$  and the quasipar-  
**97** ticle dispersion near the Fermi energy depend weakly on  
**98** temperature.

**99** Figure 1(c) shows the phonon dispersions in SVO  
**100** computed with DFPT and color-coded according to the  
**101**  $e$ - $\text{ph}$  coupling strength  $|g_\nu(\mathbf{q})|$ , for each phonon mode  $\nu$  and  
**102** momentum  $\mathbf{q}$ , averaged over the Fermi surface (see SM  
**103** [43]). The  $e$ - $\text{ph}$  coupling is stronger for the six highest-  
**104** energy modes, which involve distortions of the  $\text{VO}_6$   
**105** octahedra, such as Jahn-Teller modes.

**106** *Spectral properties*—We investigate the contributions of  
**107**  $e$ - $\text{ph}$  and  $e$ - $e$  interactions in SVO by computing the





FIG. 2. (a) Real and (b) imaginary parts of the self-energy at  $T = 115 \text{ K}$  and  $\mathbf{k} = (0.23 \times 2\pi/a, 0, 0)$ , showing contributions from  $e$ - $e$  and  $e$ - $\text{ph}$  interactions. (c) Spectral functions including both  $e$ - $e$  and  $e$ - $\text{ph}$  interactions, (d)  $e$ - $e$  interactions only, and (e)  $e$ - $\text{ph}$  interactions only. Quasiparticle weights  $Z$  are indicated for each spectral function, and the dashed lines in (c) guide the eye to the quasiparticle dispersion near the kink. All spectral functions are shown along the  $\Gamma$ - $X$  direction near the Fermi surface at 115 K.

corresponding self-energies [30]. The real and imaginary parts of the  $e$ - $e$  and  $e$ - $\text{ph}$  self-energies at 115 K are shown in Figs. 2(a) and 2(b), respectively. The  $e$ - $e$  interactions dominate quasiparticle renormalization, as seen from the greater derivative of  $\text{Re}\Sigma^{\text{e-e}}$  compared to  $\text{Re}\Sigma^{\text{e-ph}}$  within 150 meV of the Fermi energy. Accordingly, extracting quasiparticle weights  $Z = \{1 - [\partial\text{Re}\Sigma(\omega)/\partial\omega]\}_{\omega=0}\}^{-1}$  with a fit near the Fermi surface, gives a weak contribution to renormalization for  $e$ - $\text{ph}$  interactions ( $Z_{\text{e-ph}} = 0.80$ ) and a dominant contribution for  $e$ - $e$  interactions, with  $Z_{\text{e-e}} = 0.53$  and  $Z_{\text{both}} = 0.47$ .

The imaginary part of the self-energy shows an opposite behavior:  $\text{Im}\Sigma^{\text{e-ph}}$  is much greater than  $\text{Im}\Sigma^{\text{e-e}}$ , and thus the  $e$ - $\text{ph}$  interactions account for the majority of electron scattering and spectral width at low energy. The dominant role of  $e$ - $e$  interactions on quasiparticle renormalization in SVO, despite their small effect on low energy scattering, can be rationalized using the Kramers-Kronig relations [44,46]: due to the larger energy scales involved, the  $e$ - $e$  interactions dominate the imaginary part of the self-energy at higher energies (see SM [43]), leading to a greater magnitude (and energy derivative) of  $\text{Re}\Sigma^{\text{e-e}}(\omega)$  compared to  $\text{Re}\Sigma^{\text{e-ph}}(\omega)$  at low energy.

We compute the spectral function  $A_{n\mathbf{k}}(\omega) = -(1/\pi)\text{Im}G_{n\mathbf{k}}(\omega)$  from the Green's function

F2:1  
F2:2  
F2:3  
F2:4  
F2:5  
F2:6  
F2:7  
F2:8  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132



F3:1  
F3:2  
F3:3  
F3:4 FIG. 3. (a) Resistivity as a function of temperature calculated using the Green-Kubo formalism with *e-e* interactions, *e-ph* interactions, and their combination. (b) Temperature dependence of the *e-ph* limited resistivity calculated using the full (iterative) solution of the BTE. (c) Low-temperature *e-ph* and *e-e* limited transport. Experimental data (from which the  $T = 0$  residual resistivity was subtracted) are from Refs. [11,13,14].

$$G_{n\mathbf{k}}(\omega, T) = [\omega - \epsilon_{n\mathbf{k}} + \mu - \Sigma_{n\mathbf{k}}(\omega, T)]^{-1} \quad (1)$$

134 at energy  $\omega$  for electron band  $n$  and momentum  $\mathbf{k}$ . Here,  $\epsilon_{n\mathbf{k}}$   
135 is the DFT band energy,  $\mu$  is the Fermi energy, and  $\Sigma_{n\mathbf{k}}(\omega, T)$   
136 is the electron self-energy. Following our previous work  
137 [30], in separate calculations we compute this Green's  
138 function using the self-energy from DMFT *e-e* interactions,  
139 the lowest-order self-energy from *e-ph* interactions, and  
140 their sum [47], obtaining corresponding spectral functions  
141 capturing different combinations of interactions [Figs. 2(c)–  
142 2(e)]. The spectral functions from *e-ph*, and those from *e-ph*  
143 plus *e-e* interactions, show a kink around 60 meV from the  
144 Fermi energy that has been observed in experiments [8,9].  
145 There is a corresponding sharp change in the derivative of  
146  $\text{Re}\Sigma_{n\mathbf{k}}^{\text{e-ph}}(\omega)$  at this energy [Fig. 2(a)], whereas this feature is  
147 absent in  $\text{Re}\Sigma_{n\mathbf{k}}^{\text{e-e}}(\omega)$ . This result shows that the 60 meV  
148 kink observed experimentally in SVO is caused by *e-ph*  
149 interactions.

150 *Transport*—Numerous experiments have measured a  
151 near  $T^2$  temperature dependence of the resistivity in  
152 SVO below 300 K [2,4,11,13,48–52]. Because of the  
153 strong electronic correlations in SVO, several studies have  
154 attributed this resistivity to *e-e* interactions in the Fermi  
155 liquid regime [11,48,52], where  $T^2$  behavior is expected.  
156 An exception is recent work by Mirjolet *et al.*, who argued  
157 that the temperature dependence is better explained by *e-ph*  
158 limited resistivity with strong coupling to a dominant  
159 phonon mode [12]. Recently, the growth of ultraclean  
160 samples has enabled detailed measurements of the resis-  
161 tivity with reduced defect scattering [4,13]. In these  
162 samples, Ahn *et al.* [13] and Brahlek *et al.* [14] find a  
163 near- $T^2$  resistivity below 25 K and between about 100–  
164 300 K, together with a stronger than  $T^2$  temperature  
165 dependence at intermediate temperatures.

166 To understand the microscopic origin of this behavior,  
167 we compute the resistivity arising from *e-ph* and *e-e*

interactions using the Green-Kubo formula [30,53],

$$\rho_{\alpha\beta}^{-1}(T) = \frac{\pi\hbar e^2}{V_{uc}} \int d\omega [-f'(\omega, T)] \sum_{n\mathbf{k}} v_{n\mathbf{k}}^\alpha v_{n\mathbf{k}}^\beta A_{n\mathbf{k}}(\omega, T)^2, \quad (2)$$

169 where  $\rho_{\alpha\beta}$  is the resistivity tensor,  $\alpha$  and  $\beta$  are Cartesian  
170 directions,  $f'(\omega, T)$  is the energy derivative of the Fermi  
171 occupation factor,  $v_{n\mathbf{k}}^\alpha$  is the band velocity, and  $A_{n\mathbf{k}}(\omega, T)$  is  
172 the spectral function. The resistivity for different combi-  
173 nations of interactions is shown in Fig. 3(a) and compared  
174 with experimental data [11,13,14].

175 Surprisingly, we find that the resistivity is governed by  
176 the *e-ph* interactions in SVO. The *e-ph* limited resistivity is  
177 an order of magnitude greater than the *e-e* limited resistiv-  
178 ity, with the latter accounting for only  $\sim 10\%$  of the  
179 experimental value. This result is in contrast with the  
180 conventional wisdom that transport properties in SVO are  
181 governed by purely electronic interactions. In addition, the  
182 contributions are opposite to another prototypical strongly  
183 correlated metal,  $\text{Sr}_2\text{RuO}_4$ , where the *e-ph* interactions  
184 account for only  $\sim 10\%$  of the resistivity [30]. In SVO, the  
185 *e-ph* contribution is similar in magnitude to the exper-  
186 imental value, and the total resistivity including both  
187 interactions is in good agreement with experiments.  
188 Interestingly,  $\text{Im}\Sigma^{\text{e-ph}}$  and the *e-ph* limited resistivity are  
189 similar in SVO and  $\text{Sr}_2\text{RuO}_4$ , a result consistent with their  
190 similar low-energy electronic structure governed by  $t_{2g}$  *d*  
191 orbitals. Below, we show that taking into account the  
192 electron correlation induced enhancement of the *e-ph*  
193 interactions increases the resistivity and brings the results  
194 in even better agreement with experiments.

195 The temperature dependence of the *e-ph* limited resis-  
196 tivity is analyzed in more detail in Fig. 3(b), where we show  
197 our results on a log-log plot and compare them with  
198 experiments [11,13]. In that plot, the resistivity is computed  
199 with the full (iterative) solution of the Boltzmann transport

equation (BTE) [36] to include backscattering and improve the treatment of acoustic phonons. The computed  $e$ -ph limited resistivity follows a  $T^{1.8}$  temperature dependence between 100–200 K, in excellent agreement with the  $T^{1.8\text{--}2}$  dependence found in experiments in that temperature range [11,13,14], and falls to  $T^{1.5}$  at 300 K. We identify the origin of this nearly  $T^2$  temperature trend of the  $e$ -ph limited resistivity by analyzing the contribution of different phonon modes. Our calculations show that the increasing contribution of strongly coupled optical phonons at higher temperatures is responsible for the  $T^2$  dependence of the resistivity between 100–200 K (see SM [43]).

Next, we focus on transport at low temperature, where the  $e$ -ph contribution is expected to be weaker. While DMFT calculations become difficult at low temperatures, we obtain the  $e$ - $e$  limited resistivity by extrapolating our higher-temperature DMFT calculations with a  $T^2$  fit. This approach is justified because the  $e$ - $e$  scattering is in the Fermi liquid regime below at least 400 K. Figure 3(c) shows the computed  $e$ -ph and DMFT  $e$ - $e$  limited resistivities below 100 K. We find a clear crossover between 20–30 K from  $e$ -ph to  $e$ - $e$  dominated transport. The  $e$ -ph limited resistivity becomes much smaller than the  $e$ - $e$  limited resistivity below 20 K, showing that  $e$ - $e$  scattering governs transport at low temperature. This result indicates that  $e$ - $e$  interactions are the origin of the  $T^2$  resistivity observed experimentally below 25 K, with the  $e$ -ph contribution causing deviations from a  $T^2$  behavior above 25 K. Note that our DMFT resistivity underestimates the experimental value below 25 K by a factor of 2–3 [14]. We attribute this discrepancy to limitations of single-site DMFT [54,55], which employs a local, and thus  $\mathbf{k}$ -independent,  $e$ - $e$  self-energy. Including nonlocal correlations is expected to improve the description of  $\mathbf{k}$ -dependent  $e$ - $e$  scattering, which controls transport at low temperature.

*Correlation-corrected electron-phonon interactions*—Strong electronic interactions are known to significantly modify  $e$ -ph interactions [56,57]. In correlated metals,  $e$ -ph coupling is often enhanced. For example, calculations using hybrid functionals and the  $GW$  method found correlation-enhanced  $e$ -ph coupling in unconventional superconductors, attributing the enhancement to decreased electronic screening [26]. Similarly, in multiband  $d$ -electron systems such as FeSe, treating correlations with DMFT enhances  $e$ -ph coupling, in this case by increasing the orbital polarization response to phonon perturbations [27].

To study the role of correlations in SVO, we compute the  $e$ -ph interactions using Hubbard-corrected DFPT ( $DFPT + U$ ) [33,34], which captures the strong local interactions between  $d$  orbitals in a static approximation and accounts for the resulting change in orbital polarization response. We use a Hubbard- $U$  parameter of 3 eV, which provides orbital polarization responses to phonon perturbations similar to our DMFT settings ( $U = 4.5$  eV and  $J = 0.15U$ ) and to a calculation using a Hubbard- $U$

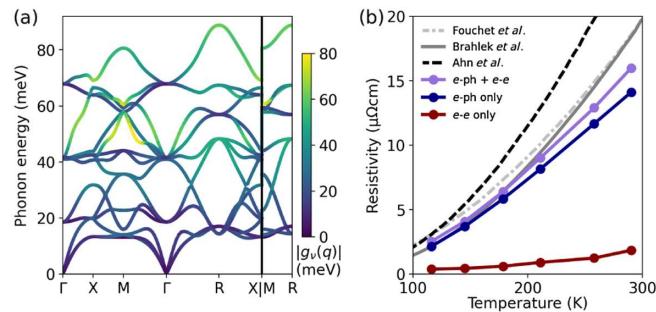



FIG. 4. (a) Phonon dispersions and  $e$ -ph coupling as in Fig. 1(c) but calculated with  $DFPT + U$ . Note the change in  $e$ -ph coupling scale. (b) Transport as in Fig. 3(a) but calculated with  $DFPT + U$  phonons and  $e$ -ph couplings, showing improved agreement with experiments [11,13].

parameter computed from linear-response theory [58] ( $U = 5.1$  eV) in combination with Hund's coupling  $J = 0.15U$  (see SM [43]).

Adding the Hubbard correction has a small effect on the phonon dispersions, but it enhances the  $e$ -ph interactions, as shown in Fig. 4(a). The enhancement is mode-dependent and is generally higher for strongly coupled optical phonons involving  $\text{VO}_6$  distortions. The enhancement is also higher for phonons with momenta away from the  $\Gamma$  point, suggesting a more important role of correlations for distortions breaking lattice-translation symmetry. The spectral and transport properties computed with enhanced  $e$ -ph coupling from  $DFPT + U$  give results qualitatively similar to those from  $DFPT$  [43], but with stronger  $e$ -ph effects. Notably, the  $e$ -ph limited resistivity increases by  $\sim 35\%$  at room temperature [Fig. 4(b)], bringing the resistivity computed with both  $e$ -ph and  $e$ - $e$  interactions into very good agreement with experiments. For example, the computed resistivity at 290 K is  $16 \mu\Omega\text{cm}$ , versus an experimental value of  $19\text{--}25 \mu\Omega\text{cm}$  [11,13,14].

*Discussion*—The origin of the temperature dependence of the resistivity merits further discussion. While the  $T^2$  trend for  $e$ - $e$  interactions is expected based on Fermi liquid theory [53], the origin of the near- $T^2$  behavior of the  $e$ -ph limited resistivity is less clear. At very low temperatures, the  $e$ -ph limited resistivity in metals is expected to exhibit a  $T^5$  temperature dependence [59] when scattering is dominated by acoustic phonons with momentum  $q \propto k_B T$ . In our calculations, we find a  $T^5$   $e$ -ph limited resistivity below  $\sim 30$  K, but the overall resistivity becomes  $e$ - $e$  limited in this temperature range, explaining the experimental  $T^2$  resistivity below 25 K.

In the high-temperature limit, based on the temperature dependence of the phonon occupations, one expects a  $T$ -linear  $e$ -ph limited resistivity [59]. However, this requires that all phonon modes contribute equally to  $e$ -ph scattering, with no mode frozen out. While our computed  $e$ -ph limited resistivity becomes nearly  $T$ -linear well above 300 K, it is close to a  $T^2$  behavior between  $\sim 100\text{--}200$  K, in agreement

F4:1  
F4:2  
F4:3  
F4:4  
F4:5  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
288  
289  
290  
291  
292  
293  
294

295 with experiments. As discussed above, this  $T^2$  trend is due to  
 296 the increasing contribution of higher-energy optical phonons  
 297 with strong  $e$ -ph coupling for increasing temperatures  
 298 [43]. Note also that  $e$ -ph scattering above  $\sim 50$  K in SVO  
 299 involves phonons with all momenta, ruling out momentum-  
 300 dependent mechanisms resulting in  $T^2$  behavior [60].

301 Finally, we analyze two approximations made in the  $e$ -ph  
 302 transport calculations (see results in SM [43]). First, we  
 303 examine the use of the lowest-order  $e$ -ph self-energy  
 304 [61,62] by computing the resistivity with a cumulant  
 305 diagram-resummation method capable of treating delocalized  
 306 polarons [63]. Including polaron effects leads to a  
 307 small increase in the resistivity, showing that lowest-order  
 308  $e$ -ph interactions are adequate to describe SVO. Second, we  
 309 examine the effect of vertex corrections to the current-  
 310 current correlation function in the Green-Kubo formalism  
 311 [44,53]. Vertex corrections improve the description of  
 312 backscattering and the momentum dependence of  $e$ -ph  
 313 scattering, which is particularly important at low temper-  
 314 ature [53]. We assess their role above 100 K in the  
 315 semiclassical limit by comparing the full solution of the  
 316 BTE, which includes vertex corrections, to the relaxation  
 317 time approximation, which neglects them. We find that  
 318 vertex corrections in the BTE give only a small increase in  
 319 the resistivity and its temperature dependence. This analy-  
 320 sis shows that higher-order  $e$ -ph interactions and vertex  
 321 corrections play a minor role in SVO and do not affect our  
 322 conclusions.

323 *Conclusion*—In summary, we have shown that  $e$ -ph  
 324 interactions play an essential role in the transport and  
 325 spectral properties of a prototypical correlated metal, SVO.  
 326 In this material, electronic correlations control other aspects  
 327 of the low energy physics, including the quasiparticle mass  
 328 renormalization and transport at low temperature. We also  
 329 found that electronic correlations lead to an effective  
 330 enhancement of the  $e$ -ph interactions. This suggests that  
 331 SVO may serve as a test bed for investigating the interplay  
 332 between electron correlations and  $e$ -ph interactions. Our  
 333 results highlight the potential of first-principles calculations  
 334 combining  $e$ - $e$  and  $e$ -ph interactions in a consistent way as  
 335 an emerging tool to study correlated materials. This work  
 336 paves the way for a quantitative description of transport and  
 337 spectral properties in broad classes of correlated quantum  
 338 materials.

339 *Acknowledgments*—We thank Andrew Millis, Jennifer  
 340 Coulter, and Roman Engel-Herbert for helpful discussions.  
 341 D. J. A. is supported by the National Science Foundation  
 342 Graduate Research Fellowship under Grant No. 2139433.  
 343 This work was also supported by the National Science  
 344 Foundation under Grant No. OAC-2209262, which pro-  
 345 vided for code development. D. J. A. and M. B. were  
 346 partially supported by the AFOSR and Clarkson  
 347 Aerospace under Grant No. FA95502110460. J.-J. Z.  
 348 acknowledges support from the National Key R&D

349 Program of China (Grant No. 2022YFA1403400) and  
 350 the National Natural Science Foundation of China  
 351 (Grant No. 12104039). J. M. is supported by the  
 352 Slovenian Research Agency (ARIS) under Grants  
 353 No. P1-0044 and No. J1-2458. This research used resour-  
 354 ces of the National Energy Research Scientific Computing  
 355 Center, a DOE Office of Science User Facility supported by  
 356 the Office of Science of the U.S. Department of Energy  
 357 under Contract No. DE-AC02-05CH11231 using NERSC  
 358 award NERSC DDR-ERCAP0026831. The Flatiron  
 359 Institute is a division of the Simons Foundation.

---

[1] M. Onoda, H. Ohta, and H. Nagasawa, Metallic properties of perovskite oxide  $\text{SrVO}_3$ , *Solid State Commun.* **79**, 281 (1991).  
 [2] Y. Lan, X. Chen, and M. He, Structure, magnetic susceptibility and resistivity properties of  $\text{SrVO}_3$ , *J. Alloys Compd.* **354**, 95 (2003).  
 [3] L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H.-T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H. F. Haneef, N. J. Podraza, M. W. Chan, V. Gopalan, K. M. Rabe, and R. Engel-Herbert, Correlated metals as transparent conductors, *Nat. Mater.* **15**, 204 (2016).  
 [4] M. Brahlek, L. Zhang, C. Eaton, H.-T. Zhang, and R. Engel-Herbert, Accessing a growth window for  $\text{SrVO}_3$  thin films, *Appl. Phys. Lett.* **107**, 143108 (2015).  
 [5] M. Brahlek, L. Zhang, H.-T. Zhang, J. Lapano, L. R. Dedon, L. W. Martin, and R. Engel-Herbert, Mapping growth windows in quaternary perovskite oxide systems by hybrid molecular beam epitaxy, *Appl. Phys. Lett.* **109**, 101903 (2016).  
 [6] T. Yoshida, K. Tanaka, H. Yagi, A. Ino, H. Eisaki, A. Fujimori, and Z.-X. Shen, Direct observation of the mass renormalization in  $\text{SrVO}_3$  by angle resolved photoemission spectroscopy, *Phys. Rev. Lett.* **95**, 146404 (2005).  
 [7] M. Kobayashi, K. Yoshimatsu, E. Sakai, M. Kitamura, K. Horiba, A. Fujimori, and H. Kumigashira, Origin of the anomalous mass renormalization in metallic quantum well states of strongly correlated oxide  $\text{SrVO}_3$ , *Phys. Rev. Lett.* **115**, 076801 (2015).  
 [8] T. Yoshida, M. Kobayashi, K. Yoshimatsu, H. Kumigashira, and A. Fujimori, Correlated electronic states of  $\text{SrVO}_3$  revealed by angle-resolved photoemission spectroscopy, *J. Electron Spectrosc. Relat. Phenom.* **208**, 11 (2016).  
 [9] S. Aizaki, T. Yoshida, K. Yoshimatsu, M. Takizawa, M. Minohara, S. Ideta, A. Fujimori, K. Gupta, P. Mahadevan, K. Horiba, H. Kumigashira, and M. Oshima, Self-energy on the low- to high-energy electronic structure of correlated metal  $\text{SrVO}_3$ , *Phys. Rev. Lett.* **109**, 056401 (2012).  
 [10] J. A. Moyer, C. Eaton, and R. EngelHerbert, Highly conductive  $\text{SrVO}_3$  as a bottom electrode for functional perovskite oxides, *Adv. Mater.* **25**, 3578 (2013).  
 [11] A. Fouchet, M. Allain, B. Bérini, E. Popova, P.-E. Janolin, N. Guiblin, E. Chikoidze, J. Scola, D. Hrabovsky, Y. Dumont, and N. Keller, Study of the electronic phase transition with low dimensionality in  $\text{SrVO}_3$  thin films, *Mater. Sci. Eng. B* **212**, 7 (2016).

408 [12] M. Mirjolet, F. Rivadulla, P. Marsik, V. Borisov, R. Valentí,  
409 and J. Fontcuberta, Electron–phonon coupling and electron–  
410 phonon scattering in  $\text{SrVO}_3$ , *Adv. Sci.* **8**, 2004207 (2021).  
411

412 [13] G. Ahn, M. Zingl, S. J. Noh, M. Brahlek, J. D. Roth, R.  
413 Engel-Herbert, A. J. Millis, and S. J. Moon, Low-energy  
414 interband transition in the infrared response of the correlated  
415 metal  $\text{SrVO}_3$  in the ultraclean limit, *Phys. Rev. B* **106**,  
416 085133 (2022).  
417

418 [14] M. Brahlek, J. D. Roth, L. Zhang, M. Briggeman, P. Irvin, J.  
419 Lapano, J. Levy, T. Birol, and R. Engel-Herbert, Hidden  
420 transport phenomena in an ultraclean correlated metal, *Nat. Commun.* **15**, 5304 (2024).  
421

422 [15] I. A. Nekrasov, K. Held, G. Keller, D. E. Kondakov, T.  
423 Pruschke, M. Kollar, O. K. Andersen, V. I. Anisimov, and D.  
424 Vollhardt, Momentum-resolved spectral functions of  $\text{SrVO}_3$   
425 calculated by LDA + DMFT, *Phys. Rev. B* **73**, 155112  
426 (2006).  
427

428 [16] J. M. Tomczak, M. Casula, T. Miyake, F. Aryasetiawan, and  
429 S. Biermann, Combined GW and dynamical mean-field  
430 theory: Dynamical screening effects in transition metal  
431 oxides, *Europhys. Lett.* **100**, 67001 (2012).  
432

433 [17] C. Taranto, M. Kaltak, N. Parragh, G. Sangiovanni, G.  
434 Kresse, A. Toschi, and K. Held, Comparing quasiparticle  
435 GW + DMFT and LDA + DMFT for the test bed material  
436  $\text{SrVO}_3$ , *Phys. Rev. B* **88**, 165119 (2013).  
437

438 [18] R. Sakuma, P. Werner, and F. Aryasetiawan, Electronic  
439 structure of  $\text{SrVO}_3$  within GW + DMFT, *Phys. Rev. B* **88**,  
440 235110 (2013).  
441

442 [19] J. M. Tomczak, M. Casula, T. Miyake, and S. Biermann,  
443 Asymmetry in band widening and quasiparticle lifetimes in  
444  $\text{SrVO}_3$ : Competition between screened exchange and local  
445 correlations from combined GW and dynamical mean-field  
446 theory GW + DMFT, *Phys. Rev. B* **90**, 165138 (2014).  
447

448 [20] C. P. Koçer, K. Haule, G. L. Pascut, and B. Monserrat,  
449 Efficient lattice dynamics calculations for correlated materials  
450 with DFT + DMFT, *Phys. Rev. B* **102**, 245104 (2020).  
451

452 [21] H. Lee, K. Foyevtsova, J. Ferber, M. Aichhorn, H. O.  
453 Jeschke, and R. Valentí, Dynamical cluster approximation  
454 within an augmented plane wave framework: Spectral  
455 properties of  $\text{SrVO}_3$ , *Phys. Rev. B* **85**, 165103 (2012).  
456

457 [22] A. Galler, P. Thunström, P. Gunacker, J. M. Tomczak, and  
458 K. Held, *Ab initio* dynamical vertex approximation, *Phys.  
459 Rev. B* **95**, 115107 (2017).  
460

461 [23] A. Lanzara, P. Bogdanov, X. Zhou, S. Kellar, D. Feng, E.  
462 Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio *et al.*,  
463 Evidence for ubiquitous strong electron–phonon coupling in  
464 high-temperature superconductors, *Nature (London)* **412**,  
465 510 (2001).  
466

467 [24] C. Gadermaier, A. S. Alexandrov, V. V. Kabanov, P. Kusar,  
468 T. Mertelj, X. Yao, C. Manzoni, D. Brida, G. Cerullo, and D.  
469 Mihailovic, Electron–phonon coupling in high-temperature  
470 cuprate superconductors determined from electron relaxa-  
471 tion rates, *Phys. Rev. Lett.* **105**, 257001 (2010).  
472

473 [25] S. Gerber *et al.*, Femtosecond electron–phonon lock-in by  
474 photoemission and x-ray free-electron laser, *Science* **357**, 71  
475 (2017).  
476

477 [26] Z. P. Yin, A. Kuteпов, and G. Kotliar, Correlation-enhanced  
478 electron–phonon coupling: Applications of GW and screened  
479 hybrid functional to bismuthates, chloronitrides, and other  
480 high-  $T_c$  superconductors, *Phys. Rev. X* **3**, 021011 (2013).  
481

482 [27] S. Mandal, R. E. Cohen, and K. Haule, Strong pressure-  
483 dependent electron–phonon coupling in  $\text{FeSe}$ , *Phys. Rev. B*  
484 **89**, 220502(R) (2014).  
485

486 [28] Z. Li, G. Antonius, M. Wu, F. H. da Jornada, and  
487 S. G. Louie, Electron–phonon coupling from *ab initio*  
488 linear-response theory within the GW method: Correlation-  
489 enhanced interactions and superconductivity in  
490  $\text{Ba}_{1-x}\text{K}_x\text{BiO}_3$ , *Phys. Rev. Lett.* **122**, 186402 (2019).  
491

492 [29] Z. Li, M. Wu, Y.-H. Chan, and S. G. Louie, Unmasking the  
493 origin of kinks in the photoemission spectra of cuprate  
494 superconductors, *Phys. Rev. Lett.* **126**, 146401 (2021).  
495

496 [30] D. J. Abramovitch, J.-J. Zhou, J. Mravlje, A. Georges, and  
497 M. Bernardi, Combining electron–phonon and dynamical  
498 mean-field theory calculations of correlated materials:  
499 Transport in the correlated metal  $\text{Sr}_2\text{RuO}_4$ , *Phys. Rev.  
500 Mater.* **7**, 093801 (2023).  
501

502 [31] P. Giannozzi *et al.*, QUANTUM ESPRESSO: A modular and  
503 open-source software project for quantum simulations of  
504 materials, *J. Phys. Condens. Matter* **21**, 395502 (2009).  
505

506 [32] K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Vanderbilt,  
507 Pseudopotentials for high-throughput DFT calculations,  
508 *Comput. Mater. Sci.* **81**, 446 (2014).  
509

510 [33] J.-J. Zhou, J. Park, I. Timrov, A. Floris, M. Cococcioni, N.  
511 Marzari, and M. Bernardi, *Ab initio* electron–phonon inter-  
512 actions in correlated electron systems, *Phys. Rev. Lett.* **127**,  
513 126404 (2021).  
514

515 [34] A. Floris, I. Timrov, B. Himmetoglu, N. Marzari, S. de  
516 Gironcoli, and M. Cococcioni, Hubbard-corrected density  
517 functional perturbation theory with ultrasoft pseudopoten-  
518 tials, *Phys. Rev. B* **101**, 064305 (2020).  
519

520 [35] A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza,  
521 D. Vanderbilt, and N. Marzari, An updated version of  
522 WANNIER 90: A tool for obtaining maximally-localised  
523 Wannier functions, *Comput. Phys. Commun.* **185**, 2309  
524 (2014).  
525

526 [36] J.-J. Zhou, J. Park, I.-T. Lu, I. Maliyov, X. Tong, and M.  
527 Bernardi, PERTURBO: A software package for *ab initio*  
528 electron–phonon interactions, charge transport and ultrafast  
529 dynamics, *Comput. Phys. Commun.* **264**, 107970 (2021).  
530

531 [37] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov,  
532 M. Troyer, and P. Werner, Continuous-time Monte Carlo  
533 methods for quantum impurity models, *Rev. Mod. Phys.* **83**,  
534 349 (2011).  
535

536 [38] O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I.  
537 Krivenko, L. Messio, and P. Seth, TRIQS: A toolbox for  
538 research on interacting quantum systems, *Comput. Phys.  
539 Commun.* **196**, 398 (2015).  
540

541 [39] P. Seth, I. Krivenko, M. Ferrero, and O. Parcollet, TRIQS/  
542 CTHYB: A continuous-time quantum Monte Carlo hybrid-  
543 isation expansion solver for quantum impurity problems,  
544 *Comput. Phys. Commun.* **200**, 274 (2016).  
545

546 [40] M. Aichhorn, L. Pourovskii, P. Seth, V. Vildosola, M. Zingl,  
547 O. E. Peil, X. Deng, J. Mravlje, G. J. Kraberger, C. Martins  
548 *et al.*, TRIQS/DFTTools: A TRIQS application for *ab initio*  
549 calculations of correlated materials, *Comput. Phys.  
550 Commun.* **204**, 200 (2016).  
551

552 [41] S. Beck, A. Hampel, O. Parcollet, C. Ederer, and A.  
553 Georges, Charge self-consistent electronic structure calcu-  
554 lations with dynamical mean-field theory using QUANTUM  
555 ESPRESSO, WANNIER 90 and TRIQS, *J. Phys. Condens. Matter*  
556 **34**, 235601 (2022).  
557

529 [42] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H.  
 530 Madsen, and L. D. Marks, WIEN2k: An APW + lo program  
 531 for calculating the properties of solids, *J. Chem. Phys.* **152**,  
 532 **074101** (2020).

533 [43] See Supplemental Material at <http://link.aps.org/supplemental/10.1103/PhysRevLett.000.000000> for details  
 534 on the computational methods, spectral functions, and self-  
 535 energies at higher energy, effects of higher-order  $e$ -ph  
 536 interactions and vertex correction on the resistivity, origin  
 537 of the temperature dependence of the  $e$ -ph limited resistivity,  
 538 DFPT +  $U$  calculations and choice of the Hubbard- $U$   
 539 parameter, and self-energies and spectral functions with  
 540 DFPT +  $U$   $e$ -ph coupling.

541 [44] P. Coleman, *Introduction to Many-Body Physics* (Cambridge University Press, Cambridge, England, 2015).

542 [45] In the following, we set  $\hbar = k_B = 1$ .

543 [46] S. A. Hartnoll and A. P. Mackenzie, Colloquium: Planckian  
 544 dissipation in metals, *Rev. Mod. Phys.* **94**, 041002 (2022).

545 [47] The  $e$ -ph self-energy calculation uses the DFT electron  
 546 propagator. Unlike in  $\text{Sr}_2\text{RuO}_4$  [30], using the DMFT  
 547 electron propagator has a negligible effect in SVO.

548 [48] I. H. Inoue, O. Goto, H. Makino, N. E. Hussey, and M.  
 549 Ishikawa, Bandwidth control in a perovskite-type 3d<sup>1</sup>-  
 550 correlated metal  $\text{Ca}_{1-x}\text{Sr}_x\text{VO}_3$ . I. Evolution of the electronic  
 551 properties and effective mass, *Phys. Rev. B* **58**, 4372  
 552 (1998).

553 [49] D. R. Ardila, J. P. Andreatta, and H. C. Basso, Preparation,  
 554 microstructural and electrical characterization of  $\text{SrVO}_3$   
 555 single crystal fiber, *J. Cryst. Growth* **211**, 313 (2000).

556 [50] M. Mirjolet, H. B. Vasili, L. LópezCesena, S. Estradé, F.  
 557 Peiró, J. Santiso, F. Sánchez, P. Machado, P. Gargiani, M.  
 558 Valvidares, and J. Fontcuberta, Independent tuning of  
 559 optical transparency window and electrical properties of  
 560 epitaxial  $\text{SrVO}_3$  thin films by substrate mismatch, *Adv.  
 561 Funct. Mater.* **29**, 1904238 (2019).

562 [51] M. Mirjolet, F. Sánchez, and J. Fontcuberta, High carrier  
 563 mobility, electrical conductivity, and optical transmittance in  
 564 epitaxial  $\text{SrVO}_3$  thin films, *Adv. Funct. Mater.* **29**, 1808432  
 565 (2019).

566 [52] T. Berry, S. Bernier, G. Auffermann, T. M. McQueen, and  
 567 W. Adam Phelan, Laser floating zone growth of  $\text{SrVO}_3$   
 568 single crystals, *J. Cryst. Growth* **583**, 126518 (2022).

569 [53] G. D. Mahan, *Many-Particle Physics*, 3rd ed. (Springer,  
 570 Berlin, 2000).

571 [54] A. Mu, Z. Sun, and A. J. Millis, Optical conductivity of the  
 572 two-dimensional hubbard model: Vertex corrections, emergent  
 573 Galilean invariance, and the accuracy of the single-site  
 574 dynamical mean field approximation, *Phys. Rev. B* **106**,  
 575 **085142** (2022).

576 [55] A. Mu, Z. Sun, and A. J. Millis, Adequacy of the dynamical  
 577 mean field theory for low density and Dirac materials, *Phys.  
 578 Rev. B* **109**, 115154 (2024).

579 [56] M. L. Kulić and R. Zeyher, Influence of strong electron  
 580 correlations on the electron-phonon coupling in high- $t_c$   
 581 oxides, *Phys. Rev. B* **49**, 4395 (1994).

582 [57] Z. B. Huang, W. Hanke, E. Arrigoni, and D. J. Scalapino,  
 583 Electron-phonon vertex in the two-dimensional one-band  
 584 Hubbard model, *Phys. Rev. B* **68**, 220507(R) (2003).

585 [58] M. Cococcioni and S. de Gironcoli, Linear response  
 586 approach to the calculation of the effective interaction  
 587 parameters in the LDA +  $U$  method, *Phys. Rev. B* **71**,  
 588 **035105** (2005).

589 [59] J. Bass, W. P. Pratt, and P. A. Schroeder, The temperature-  
 590 dependent electrical resistivities of the alkali metals, *Rev.  
 591 Mod. Phys.* **62**, 645 (1990).

592 [60] C. A. Kukkonen,  $T^2$  electrical resistivity due to electron-  
 593 phonon scattering on a small cylindrical Fermi surface:  
 594 Application to bismuth, *Phys. Rev. B* **18**, 1849  
 595 (1978).

596 [61] A. B. Migdal, Interaction between electrons and lattice  
 597 vibrations in a normal metal, *Sov. Phys. JETP* **7**, 996  
 598 (1958).

599 [62] R. E. Prange and L. P. Kadanoff, Transport theory for  
 600 electron-phonon interactions in metals, *Phys. Rev.* **134**,  
 601 **A566** (1964).

602 [63] J.-J. Zhou and M. Bernardi, Predicting charge transport in  
 603 the presence of polarons: The beyond-quasiparticle regime  
 604 in  $\text{SrTiO}_3$ , *Phys. Rev. Res.* **1**, 033138 (2019).

605

606

607