
Quantum Computing Engineeringuantum
Transactions onIEEE

Received 14 February 2024; revised 16 September 2024; accepted 16 September 2024; date of publication 25 September 2024;
date of current version 24 October 2024.

Digital Object Identifier 10.1109/TQE.2024.3467271

FPGA-Based Distributed Union-Find
Decoder for Surface Codes
NAMITHA LIYANAGE , YUE WU, SIONA TAGARE , AND LIN ZHONG
Department of Computer Science, Yale University, New Haven, CT 06511 USA

Corresponding author: Namitha Liyanage (e-mail: namitha.liyanage@yale.edu).

A prior version of this work appeared in [DOI: 10.1109/QCE57702.2023.00106].
This work was supported in part by Yale University and in part by the National Science Foundation through the Major Research
Instrumentation Program under Award 2216030.

ABSTRACT A fault-tolerant quantum computer must decode and correct errors faster than they appear
to prevent exponential slowdown due to error correction. The Union-Find (UF) decoder is promising
with an average time complexity slightly higher than O(d3). We report a distributed version of the UF
decoder that exploits parallel computing resources for further speedup. Using a !eld-programmable gate
array (FPGA)-based implementation, we empirically show that this distributed UF decoder has a sublinear
average time complexity with regard to d, given O(d3) parallel computing resources. The decoding time per
measurement round decreases as d increases, the !rst time for a quantum error decoder. The implementation
employs a scalable architecture called Helios that organizes parallel computing resources into a hybrid
tree-grid structure. Using a Xilinx VCU129 FPGA, we successfully implement d up to 21 with an average
decoding time of 11.5 ns per measurement round under 0.1% phenomenological noise and 23.7 ns for
d = 17 under equivalent circuit-level noise. This performance is signi!cantly faster than any existing decoder
implementation. Furthermore, we show that Helios can optimize for resource ef!ciency by decoding d = 51
on a Xilinx VCU129 FPGA with an average latency of 544 ns per measurement round.

INDEX TERMS Field-programmable gate array (FPGA), quantum error correction (QEC), surface codes,
Union-Find (UF).

I. INTRODUCTION
The high error rates of quantum devices pose a signi!cant
obstacle to realizing a practical quantum computer. As a
result, developing effective quantum error correction (QEC)
mechanisms is crucial for successfully implementing a fault-
tolerant quantum computer.
One promising approach for QEC is surface codes [1],

[2], [3], in which information of a single qubit (called a
logical qubit) is redundantly encoded across many physical
data qubits, with a set of ancillary qubits interacting with
the data qubits. One can detect and potentially correct errors
in physical qubits by periodically measuring the ancillary
qubits.
Once errors have been detected by measuring ancillary

qubits, a classical algorithm, or decoder, guesses the underly-
ing error pattern and corrects it accordingly. The faster errors
can be corrected, the more time a quantum computer can
spend on useful work. Due to the error rate of state-of-the-art
qubits, very large surface codes (d ≈ 27) are necessary to
achieve fault-tolerant quantum computing [2], [4], [5]. Here,
d is the distance of the code and is the minimum number of

bit or phase "ips of physical qubits needed to change the state
of the logical qubit. See Section II for more background.
As surveyed in Section VII, previously reported decoders

capable of decoding errors as fast as measured, or backlog-
free, either exploit limited parallelism [6], [7], [8], [9],
[10] or sacri!ce accuracy [11], [12], [13]. Sparse Blos-
som [8] and Fusion Blossom [14] feature an important al-
gorithmic breakthrough in realizing minimum-weight per-
fect matching (MWPM)-based decoders. Fusion Blossom
can additionally leverage measurement round-level paral-
lelism to meet the throughput requirement of very large
d. Due to their software-based implementations, Sparse
Blossom and Fusion Blossom suffer from decoding times
per round that are orders of magnitude longer than this
work, especially at larger d and higher noise levels. When
used in a quantum computer, the computer would spend
most of the execution time waiting for error correction
results.
In this article, we report a distributed Union-Find (UF)

decoder (see Section III) and its !eld-programmable gate
array (FPGA) implementation calledHelios (see Section IV).

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 5, 2024 3103318

https://orcid.org/0009-0003-7075-9071
https://orcid.org/0009-0005-1510-4843

Engineeringuantum
Transactions onIEEE

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES

GivenO(d3) parallel resources, our decoder achieves sublin-
ear average time complexity according to empirical results
for d up to 21, the !rst to the best of our knowledge. Notably,
adding more parallel resources will not reduce the decoder’s
time complexity due to the inherent nature of error patterns.
Our decoder is a distributed design of and logically equiva-
lent to the UF decoder !rst proposed in [15].
We implement the distributed UF decoder using Helios, a

scalable architecture that ef!ciently organizes parallel com-
putation units. Helios also allows for a customizable balance
between latency and resource usage, adapting to speci!c re-
quirements. Helios is the !rst architecture of its kind that can
scale to arbitrarily large surface codes by exploiting paral-
lelism at the vertex level of the model graph. In Section VI,
we present experimental validations of the distributed UF
decoder and Helios using a VCU129 FPGA board [16] for
various values of d up to 51. When optimized for decoding
time, the decoder can decode d up to 21 for phenomenolog-
ical noise and d up to 17 for circuit-level noise. The aver-
age decoding time per measurement round under 0.1% noise
level is 11.5 and 21.3 ns, respectively. When optimized for
resource usage, the decoder can decode d up to 51, with an
average decoding time of 543.9 ns per measurement round
under phenomenological noise of p = 0.001 for d = 51.
These results show that our decoder is signi!cantly faster
than any existing decoder implementation. Our results also
successfully demonstrate, for the !rst time, a decoder design
with a decreasing average time per measurement round when
d increases. This shows evidence that the decoder can scale
to arbitrarily large surface codes without a growing backlog.
In summary, we report the following contributions in this
article:

1) a distributed algorithm that implements theUF decoder
that can exploit parallel computing units to stop decod-
ing time permeasurement round from growingwith the
code distance d;

2) the Helios architecture and its FPGA-based implemen-
tation that realize the distributed UF decoder;

3) a set of empirical data based on the FPGA imple-
mentation that demonstrates decreasing decoding time
per round as d grows up to d = 21 on a VCU129
FPGA;

4) a set of empirical data that demonstrate that Helios can
trade off resource usage for latency by decoding d =
51 on the VCU129 FPGA.

Helios is open source and available from [17].
This work contains development to the previous work by

modifying Helios to support circuit-level noise, erasure er-
rors, sliding window decoding, and tradeoff latency for lower
resource usage using context switching.

FIGURE 1. (a) Rotated CSS surface code (d = 5), a commonly used type
of surface code. The white circles are data qubits and the black are the
Z-type and X-type ancillas. (b) and (c) Measurement circuit of Z-type and
X-type ancillas. Excluding the ancillas in the border, each Z-type and
X-type ancilla interacts with four adjacent data qubits.

II. BACKGROUND
A. ERROR CORRECTION AND SURFACE CODE
QEC is more challenging than classical error correction due
to the nature of quantum bits (qubits). First, qubits cannot be
copied to achieve redundancy due to the no-cloning theorem.
Second, the values of qubits cannot be directly measured as
measurements perturb the state of qubits. Therefore, QEC is
achieved by encoding the logical state of a qubit as a highly
entangled state of many physical qubits. Such an encoded
qubit is called a logical qubit.

The surface code is the widely used error correction code
for quantum computing due to its high error correction capa-
bility and ease of implementation due to only requiring con-
nectivity between adjacent qubits. A distance d rotated sur-
face code is a topological code made out of 2d2 − 1 physical
qubits arranged as shown in Fig. 1. A key feature of surface
codes is that a larger d can exponentially reduce the rate of
logical errors, making them advantageous. For example, even
if the physical error rate is 10 times below the threshold, d
should be greater than 17 to achieve a logical error rate below
10−10 [2].
A surface code contains two types of qubits, namely, data

qubits and ancilla qubits. The data qubits collectively en-
code the logical state of the qubit. The ancilla qubits (called
X-type and Z-type) entangle with the data qubits, and by
periodically measuring the ancilla qubits, physical errors in
all qubits can be potentially discovered and corrected. An
X error occurring in a data qubit will "ip the measurement
outcome of Z ancilla qubits connected with the data qubit
and a Z error will "ip the X ancilla qubits likewise.

3103318 VOLUME 5, 2024

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES Engineeringuantum
Transactions onIEEE

FIGURE 2. (a) Example syndrome of Z stabilizers for d = 5 surface code
with five rounds of measurements. The syndrome contains an isolated X
error (round 1), an isolated measurement error (rounds 1 and 2), a chain
of two X errors (round 3), and a chain containing X errors and
measurement errors spanning multiple measurement rounds (rounds 3
and 4). (b) Phenomenological noise decoding graph with defect vertices
marked red for the syndrome in (a). (c) Modification of decoding graph
from phenomenological noise to circuit level shown only for eight
adjacent vertices. Extra edges in the circuit-level noise decoding graph
are shown in blue. The thick blue edge represents a hook error and
others represent X errors spanning two measurement rounds.

Noise model: A noise model de!nes the types and loca-
tions of X and Z errors in a surface code. The two preva-
lent models are the phenomenological noise model and the
circuit-level noise model. In the phenomenological model,
errors are con!ned to data qubits and occur before gate exe-
cution, consequently "ipping adjacent ancilla qubits in the
same measurement round. Conversely, in the circuit-level
model, errors can arise between gates, resulting in the "ip-
ping of only one adjacent ancilla qubit in the current mea-
surement round and the other in the subsequent round. In
addition, in the circuit-level noise model, errors may occur in
ancilla qubits, which effectively equates to errors in the two
adjacent data qubits. Such errors are termed hook errors.
Besides these errors, there are measurement errors and

erasure errors. A measurement error occurs when an ancilla
qubit produces an erroneous reading due to faults in the read-
out process. An erasure error represents a detectable leakage
of the quantum state in a qubit.
Ameasurement outcome of a "ipped ancilla qubit is called

a defect measurement. The outcomes from multiple rounds
of measurements of ancilla qubits constitute a syndrome.
In practice, a syndrome consists of at least d measurement
rounds. Fig. 2(a) shows a syndrome with sample physical
qubit errors and shows how they are detected by ancilla
qubits. We only show X errors and measurement errors on
Z-type ancillas because Z errors and measurement errors on

X-type ancillas can be independently dealt with in the same
way.
A syndrome can be conveniently represented by a graph

called decoding graph in which each vertex represents amea-
surement outcome of an ancilla. An edge in this graph corre-
sponds to an independent error source, linking two vertices
that represent the defective measurement outcomes caused
by this error. Thus, the number of edges in the graph depends
on the error model under consideration, and the weight of an
edge is determined by the probability of the error correspond-
ing to the edge.
The decoding graph typically contains (d + 1) × ((d −

1)/2) × d vertices. Fig. 2(b) illustrates the decoding graphs
for the phenomenological noise model, and Fig. 2(c) illus-
trates how it will be extended for the circuit-level noise
model. Notably, in the phenomenological noise model, each
vertex has a maximum of six incident edges. Conversely,
in the circuit-level noise model, a vertex can have up to 12
incident edges.

B. ERROR DECODERS
Given a syndrome, an error decoder identi!es the underlying
error pattern, which will be used to generate a correction
pattern. As multiple error patterns can generate the same
syndrome, the decoder has to make a probabilistic guess of
the underlying physical error. The objective is that when the
correction pattern is applied, the chance of the surface code
entering a different logical state (i.e., a logical error) will be
minimized.

1) METRICS
The two important aspects of decoders are accuracy and
speed. A decoder must correct errors faster than syndromes
that are produced to avoid a backlog. A faster decoder allows
faster execution of a quantum computer, reducing the idle
time waiting for decoding to be available. The average de-
coding time permeasurement round is awidely used criterion
for speed.
A decoder must make a careful tradeoff between speed and

accuracy. A faster decoder with lower accuracy requires a
larger d to achieve any given logical error rate, which may
require more computation overall.

2) UF DECODER
The UF decoder is a fast surface code decoder design !rst de-
scribed by Delfosse and Nickerson [15]. According to [19], it
can be viewed as an approximation to the blossom algorithm
that solves MWPM problems. It has a worst case time com-
plexity ofO(d3α(d)), where α is the inverse of Ackermann’s
function, a slow-growing function that is less than three for
any practical code distances. Based on our analysis, it has an
average case time complexity slightly higher than O(d3).

Algorithm 1 describes the UF decoder. It takes a decoding
graph G(V,E) as input. Each edge e ∈ E has a weight and a
growth, denoted by e.w and e.g, respectively. e.g is initialized

VOLUME 5, 2024 3103318

Engineeringuantum
Transactions onIEEE

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES

Algorithm 1: UF Decoder.

with 0 and the decoder may grow e.g until it reaches e.w.
When that happens, we say the edge is fully grown.
The decoder maintains a set of odd clusters, denoted by

L. L is initialized to include all {v} that v ∈ V are defect
measurements (L5). Each cluster C keeps track of whether
its cardinality is odd or even as well as its root element.
TheUF decoder iterates over growing andmerging the odd

cluster list until there are no more odd clusters (inside the
while loop of Algorithm 1). Each iteration has two stages:
Growing and Merging. In the Growing stage, each odd clus-
ter “grows” by increasing the growth of the edges incidental
to its boundary. This process creates a set of fully grown
edges F (L10–L19). The Growing stage is the more time-
consuming step as it requires traversing all the edges in the
boundary of all the odd clusters and updating the global edge
table. Since the number of edges is O(d3), the UF decoder is
not scalable for surface codes with large d.

In theMerging stage, the decoder goes through each fully
grown edge to merge the two clusters connected by the edge
using UNION(u, v) operation. The UNION(u, v) merges the
two clusters containing u and v by assigning a common root
element to the two clusters. When two clusters merge, the
new cluster may become even.
When there are no more odd clusters, the decoder !nds a

correction within each cluster and combines them to produce
the correction pattern (L25).

III. DISTRIBUTED UF DECODER DESIGN
Our goal to build a QEC decoder is scalability to the num-
ber of qubits. As surface codes can exponentially reduce
logical error rate with respect to d, larger surface codes
with hundreds or even thousands of qubits are necessary for

fault-tolerant quantum computing. Therefore, the average
decoding time per measurement round should not grow with
d, to avoid exponential backlog for any larger d.

We choose the UF decoder for two reasons. First, it has a
much lower time complexity than theMWPM algorithm. Al-
though, in general, the UF decoder achieves lower decoding
accuracy than MWPM decoders, it is as accurate in many in-
teresting surface codes and noise models [19], [20]. Second,
the UF decoder maintains fewer intermediate states, which
makes it easier to implement in a distributed manner. We ob-
serve that the Growing stage from L10 to L19 in Algorithm 1
operates on each vertex independently without dependencies
from other vertices. A vertex requires only the parity of the
cluster it is a part of for the growing stage. Second, during
the merging stage, a vertex only needs to interact with its
immediate neighbors (L22).

A. OVERVIEW
Like the original UF decoder, our distributed UF decoder is
also based on the decoding graph. Logically, the distributed
decoder associates a processing element (PE) with each ver-
tex in the graph. Therefore, when describing the distributed
decoder, we often use the PE and vertex in an interexchange-
able manner. All PEs run the same algorithm, speci!ed by
Algorithm 2. Like the UF decoder, a PE iterates over the
Growing andMerging stages with theMerging split into two:
Merging and Checking. Within each stage, PEs operate in-
dependently. A central controller coordinates their transition
from one stage to the next, as speci!ed by Algorithm 6.

A key challenge to the PE algorithm is to (i) merge clusters
and (ii) compute the cluster parity, without central coordina-
tion. To achieve (i), each PE is assigned a unique identi!er
(a natural number) and maintains the identi!er of the cluster
it belongs to, cid. The cid is the lowest identi!er of all its
PEs, and the PE of the lowest identi!er is called the root
of the cluster. When two PEs connected by a fully grown
edge have different cids, the PE with the higher cid adopts
the lower value, resulting in the merging of their clusters. To
achieve (ii), each PE maintains a parent. When a PE adopts
the cid from an adjacent PE, it sets the latter as its parent.
The parenthood relation between PEs creates a spanning tree
for each cluster that is maintained by PEs locally and in
which every PE in the cluster has a directional path to the
root of the cluster. The cluster parity can be computed using
a convergecast algorithm on the spanning tree. We describe
the PE algorithm in detail in Section III-D.
To implement our distributed UF algorithm, we require

several PE states, some of which are located in shared mem-
ories. We limit all communication between PEs and between
PEs and the controller to coherent shared memories to ensure
fast communication and prevent stalling that could result
from message-based communication.

B. PE STATES
A PE has direct read access to its local states and some states
of incident PEs. A PE can only modify its local states.

3103318 VOLUME 5, 2024

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES Engineeringuantum
Transactions onIEEE

Algorithm 2: Algorithm for Vertex v in the Distributed
UF Decoder.

Thanks to the decoding graph, a PE has immediate access
to the following objects:

1) v, the vertex it is associated with;
2) v.E, the set of edges incident to v;
3) v.U , the set of vertices that are incident to any e ∈ v.E

other than v itself. We say these vertices are adjacent
to v.

The algorithm augments the data structures of each vertex
and edge of the decoding graph, according to the UF decoder
design [15]. For each vertex v ∈ V , the following information
is added.

1) id is a unique identity number which ranges from 1
to n where n = |V |. id is statically assigned and never
changes.

2) m is a binary state indicating whether the measure-
ment outcome is a defect measurement (true) or not
(false). m is initialized according to the syndrome.

3) cid is a unique integer identi!er for the cluster to which
v belongs, and is equal to the lowest id of all the ver-
tices inside the cluster. The vertex with this lowest id
is called the cluster root. cid is initialized to be id. That
is, each vertex starts with its own single-vertex cluster.
When cid = id, the vertex is a root of a cluster.

4) odd is a binary state indicating whether the cluster is
odd. odd is initialized to be m.

5) codd is a copy of odd.
6) parent is a reference to the parent. As noted before,

this parenthood relationship creates a spanning tree
that connects all vertices (PEs) with directional edges.

7) st_odd is a binary state representing the parity of m of
v and all its descendants.

8) stage indicates the stage the PE currently operates in
9) busy is a binary state indicating whether the PE has

any pending operations.

For each edge e ∈ E, the decoder maintains e.growth,
which indicates the growth of the edge, in addition to e.w,
the weight. e.growth is initialized as 0. The decoder grows
e.growth until it reaches e.w and e becomes fully grown.

Algorithm 3: Vertex Growing Algorithm.

Algorithm 4: Vertex Merging Algorithm.

Algorithm 5: Vertex Checking Algorithm.

For clarity of exposition, we introduce a mathemati-
cal shorthand v.nb, the set of vertices connected with
v by full-grown edges, i.e., v.nb={u|e = 〈v, u〉 ∈ v.E ∧
e.growth= e.w}. We call these vertices the neighbors of
v. Note neighbors are always adjacent but not all adja-
cent vertices are neighbors. We also use v.child to indi-
cate all child vertices of a vertex in the tree representation,
i.e., v.child={u|u.parent = v.id}. Since trees are built
within a cluster, all child vertices are neighbors but not all
neighbors are child vertices.

C. SHARED MEMORY BASED COMMUNICATION
We use coherent shared memory for a shared state that has a
single writer. For all shared memories, given the coherence,
a read always returns the most recently written value. Like
ordinary memory, we also assume that both read and write
are atomic. Fig. 4 illustrates these memory blocks.

VOLUME 5, 2024 3103318

Engineeringuantum
Transactions onIEEE

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES

Algorithm 6: Controller Coordinates All PEs Along
Stages and Detects the Presence of odd Clusters.

1) Memory read/write for PE (v) and read-only for adja-
cent PEs, i.e., ∀u ∈ v.U . v.id, v.cid, v.odd, v.parent
and v.st_odd reside in this memory (S1).

2) Memory read/write for PE (v) and read-only for the
controller. The PE local states, v.codd, v.stage and
v.busy reside in this memory (S2).

3) Memory for e.growth, which can be written by its
two incident PEs (S3).

4) Memory read/write for the controller and read-only for
all PEs. The controller stateglobal_stage is stored
in this memory (S4).

D. PE ALGORITHM
All PEs iterate over three stages of operation. Within each
stage, they operate independently but transit from one stage
to the next when the controller updates global_stage.
When a PE enters a stage, it sets v.stage accordingly and
keeps v.busy as true until it !nishes all work in the stage.
The controller uses these two pieces of information from
all PEs to determine if a stage has started and completed,
respectively (see Section III-E).
We next describe the three stages of the PE algorithm.

In the Growing stage, vertices at the boundary of an odd
cluster increase e.growth for boundary edges (L46). As
PEs performGrowing simultaneously, two adjacent PEs may
compare e.w and e.growth and update e.growth for the same
e. Such compare-and-update operations must be atomic to
avoid data race.
In the Merging stage, two clusters connected through a

fully grown edgemerge by adopting the lower cluster id (cid)
of theirs. To achieve this, each PE compares its cid with its
neighbors (L56). If the other incident vertex of a fully grown
edge has a lower cid, the PE adopts the lower cid as its own
(L57). The merging process continues until every PE in the
cluster has the same cid, which is the lowest vertex identi!er
of the cluster.

In order to compute the cluster parity, when a PE adopts
the cid of the adjacent PE, it sets the latter as its parent
(L58). This parenthood relation creates a spanning tree for
each cluster that includes all PEs (vertices) with directional
edges. Each PE then calculates the parity of itself and all its
children as st_odd (L65). Note that odd of the root PE is the
same as its st_odd (L64). All other PEs copy the odd of their
respective parents (L65).
Astute readers may point out that v.st_odd should be the

parity of v and all its descendants, not just children. This is
achieved by two modi!cations, compared to the UF decoder.
First, a new stage Checking is added after Merging to see
if the PE (vertex) needs to go back to Merging again (L72).
Second, all PEs iterates through Merging and Checking until
all PEs have nothing to do for Merging. (L34–L39) allow
parity computation to propagate from leaves to the roots of
the spanning trees while cid and odd to propagate from the
roots to the leaves.

1) BUILDING CORRECTIONS WITHIN CLUSTERS
While the original UF decoder builds a spanning tree within
each even cluster in the end to generate a correction (L25),
our distributed UF decoder already has a spanning tree based
on the parenthood relation and, therefore, is more ef!cient in
generating corrections.

E. CONTROLLER ALGORITHM
The controller moves all PEs and itself along the three
stages. In the Growing and Merging stages, it checks for
v.busy signals from each PE. The controller determines
the completion of a stage when all PEs have v.busy as
false. In the Checking stage, the controller determines
the completion of the stage when all PEs have moved
to the Checking stage. Upon completion, the controller up-
dates the global_stage variable to move to the next
stage, and the PEs acknowledge this update by updating their
own v.stage variable.

The controller also calculates the presence of odd clusters.
At the end of the Merging and Checking stages, it reads
the v.odd value of each vertex (L91). If any vertex has
v.odd = true, the controller updates the global stage variable
to Growing to continue the algorithm. Otherwise, it updates
it to Terminate to end the algorithm.

F. WORST CASE TIME COMPLEXITY ANALYSIS
The worst case time complexity of our distributed UF de-
coder is no worse than O(d4 log(d)), which is the product
of the worst case number of stages, O(d4), and the worst
case time complexity of the controller to change stages,
O(log(d)).

We show the worst case number of stages is no worse than
O(d4) as follows. The number of stages is bounded by the
maximum number of Merging and Checking stages (L82–
L89) per iteration of the while loop in L77, times the num-
ber of iterations. These stages in each iteration implement a
shared memory based "ooding and convergecast algorithm

3103318 VOLUME 5, 2024

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES Engineeringuantum
Transactions onIEEE

for all existing clusters in parallel [21]. This algorithm has a
worst case time complexity of O(d3), where d3 bounds the
cluster size [21]. Because each stage implements a step in the
"ooding and convergecast algorithm, the maximum number
of stages in each iteration is bounded by O(d3).
The number of iterations is bounded by d as each iteration

consists of a Growing stage and the maximum number of
iterations any cluster can grow is d. Thus, the total number
of stages is no worse than O(d4).
The controller’s time complexity is contingent upon the

implementation of the shared memory for v.busy and
v.codd. Since both checks involve logical OR operations on
individual PE information, the most ef!cient implementation
consists of a logical tree of OR operations, yielding a time
complexity of O(log(d)).

Nevertheless, the worst case scenario is extremely rare
since larger clusters are exponentially less likely to occur.
As shown in the empirical results reported in Section VI, the
average time grows sublinearly with d.

IV. HELIOS ARCHITECTURE
We next describe Helios, the architecture for the distributed
UF decoder.

A. OVERVIEW
Helios organizes PEs and the controller in a custom topology
that combines a 3-D grid and a tree as illustrated by Fig. 3 and
explained as follows.

1) PEs are organized according to the position of ver-
tices in the model graph they represent. We assign
v.id sequentially, starting with 1 from the bottom left
corner and continuing in row-major order for each
measurement round. Shared memory S1 (v.cid, v.odd,
v.parent and v.st_odd) and S2 (v.codd, v.stage, and
v.busy) are per PE.

2) Shared memory S3 (e.growth) is added to the inci-
dent PE with the lower id.

3) A link between every two adjacent PEs to read from
each other’s S1 and for the one with the higher id to
read the other’s S4. This results in a network of links
in a 3-D grid topology. As a PE represents a vertex in
the model graph, a link represents an edge. Broad pink
lines in Fig. 3 represent these links.

4) The controller is realized as a tree of control nodes (see
Section IV-B). The leaf nodes of the tree contain shared
memory S4.

5) A link between each PE and the controller for the con-
troller to read from S2 and for the PEs to read from S4.
Dashed orange lines in Fig. 3 represent these links.

B. CONTROLLER
Helios implements the controller as a tree of control nodes
to avoid the scalability bottleneck. The controller requires
three pieces of information from each PE: v.codd, v.stage,
and v.busy. Each leaf control node of the tree is directly

FIGURE 3. Helios architecture for d = 5 surface code for five
measurement rounds for phenomenological noise model. As d = 5
surface code has 12 ancilla qubits of Z-type, Helios contains a 12 × 5 PE
array. PE n indicates PE with v.id = n. Not all links from the controller to
PEs and all v.ids are shown in the figure. The architecture for
circuit-level noise has additional links between PEs corresponding to the
additional edges in the decoding graph of circuit-level noise.

connected with a subset of PEs. We can consider these PEs
as the children of the leaf node. Each node in the tree gathers
vertex information from its children and reports it to the
parent. With information from all vertices, the root control
node runs Algorithm 6 and decides whether to advance the
stage.
We leave height, branching factor, and the subset of PEs

connected to each leaf node as implementation choices. The
necessary requirement is that the controller should not slow
down the overall design.

V. FPGA IMPLEMENTATION
Wenext describe an implementation ofHelios targeting a sin-
gle FPGA. We choose an FPGA for two reasons. It supports
massively parallel logic, which is essential as the number of
PEs grows by d3 in our distributed UF design. Moreover, it
allows deterministic latency for each operation, which facili-
tates synchronizing all the PEs. Our implementation contains
approximately 3000 lines of Verilog code, which is publicly
available at [17].

VOLUME 5, 2024 3103318

Engineeringuantum
Transactions onIEEE

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES

A. LEVERAGING GLOBAL SYNCHRONIZATION IN THE
FPGA
We leverage global synchronization inside the FPGA to
speed up our distributed UF algorithm. Running the FPGA
design in a single-clock domain allows us to have all the
PEs and the control nodes tightly synchronized. Notably, we
simplify our algorithm as follows. First, we run the Merging
(L121) and Checking stages (L139) in parallel within each
PE. The tight synchronization of all PEs guarantees that false
negative busy signals do not occur.
Second, we reduce the overhead of synchronization by

having the controller only coordinate moving to the Growing
stage at the beginning of each iteration (L101). As each PE
can perform the Growing stage deterministically in a single
cycle, PEs can move to the Merging stage without central
coordination (L102).
In addition, as the controller deterministically knows the

exact stage each PE is in, stage is stored locally and not
shared with the controller. Thus, the information from the
PEs to the controller is limited to two bits: v.busy and
v.odd.
Algorithms 7 and 8 lists the FPGA-oriented algorithm of

PE and the controller. The logic at every positive edge is
executed in parallel. Fig. 5 provides a simple example of how
the FPGA implementation merges a cluster of four defect
measurements in eight cycles.

1) TIME COMPLEXITY
Theworst case cycle count of the FPGAdesign is bounded by
3d4 + 2d. Themerging stage consists of three primary opera-
tions: a broadcast (cid), a convergecast (st_odd), and another
broadcast (odd) with each operation requiring at most d3

cycles. In addition, the merging stage needs an extra cycle
to verify completion. Conversely, the growth stage requires
a single cycle. As a result, each iteration requires at most
3d3 + 2 cycles. Since the number of iterations is at most
d, the worst case cycle count is bounded by 3d4 + 2d. The
worst case time complexity of the FPGA design is O(d4) in
contrast toO(d4 log(d)) of the distributed UF algorithm. The
log(d) factor in the latter originates from the coordination
overhead associated with transitioning between the stages.
The FPGA design performs stage transition in a single cycle,
effectively eliminating the log(d) factor.

B. OPTIMIZING RESOURCE EFFICIENCY
As the resource usage grows O(d3log(d)), the number of
lookup tables (LUTs) limits the largest d that can be im-
plemented on a given FPGA. To address this constraint,
we adopt a method !rst proposed by Heer et al. [22]. This
method !rst partitions the decoding graph into multiple sub-
graphs and then time-multiplexes them in the FPGA.
We !rst partition the decoding graph into multiple sub-

graphs by splitting it evenly along one or more axes. This
even partitioning ensures that each subgraph is roughly the

same size, thereby increasing resource utilization. The nec-
essary condition for partitioning is that each subgraph must
be sized to !t within a single FPGA.
Time multiplexing of multiple subgraphs is as follows. We

!rst implement a graph in the FPGA with the same topology
as a subgraph and at least as large as the largest subgraph,
which we will call a lattice. We then iteratively map each
subgraph to the lattice during each decoding stage. All sub-
graphs of the decoding graph can be mapped to the same lat-
tice due to the homogeneous topology of the decoding graph
where each PE has a !xed number of edges that connect to
adjacent PEs. If n subgraphs timeshares a lattice, we denote
the implementation as Helios-n. By default, Helios denotes
Helios-1 when there is no multiplexing.
We implement context switching between subgraphs at

the PE level. We augment each PE in the lattice, which
we label as a physical PE, with a local memory. During
context switching, each PE stores its PE states in the local
memory and loads the PE states of the corresponding PE of
the next subgraph from the local memory. This is akin to
context switching of threads in an operating system. Fig. 4
shows a minimal diagram of a physical PE. In the FPGA,
this local memory is mapped to LUTRAM rather than block
RAM (BRAM), due to its shallower depth. We also note that
context switching in Helios consumes a single cycle as it is
essentially reading and writing from local memory.
In the example in Fig. 5, adding context switching requires

two additional cycles for the cluster, occurring after the
growing stage (cycle 1) and the merging stage (cycle 8).
A careful reader may point out that time multiplexing

through multiple subgraphs would require extra connections
between physical PEs to provide adjacent PE information to
virtual PEs mapped to the boundary of the lattice. Indeed,
this is the case for the original design proposed by Heer
et al. [22]. We avoid these extra connections by carefully
mapping virtual PEs to physical PEs. We always map any
pair of adjacent virtual PEs in the decoding graph belonging
to different subgraphs, to the same physical PE. Thus, the
missing information of adjacent PEs at the lattice boundary
can be loaded from the local memory of the physical PE.

C. IMPLEMENTATION DETAILS
We next list the other implementation choices of our design.

1) CONTEXT SWITCHING
On the VCU129 FPGA development board [16], without
context switching, we can support the distributed UF decoder
with d up to 21 for the phenomenological noise model and
up to 17 for circuit-level noise, due to resource limits. We
use context switching only for d exceeding those limits. Fur-
thermore, we restrict the partitioning of the decoding graph
along a single axis to avoid excessive sequential reads from
local memory by physical PEs at the boundary of the lattice.

2) CONTROLLER
Since the largest number of PEs we can implement a single
VCU129 FPGA is 4620 (d = 21), a single-node controller

3103318 VOLUME 5, 2024

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES Engineeringuantum
Transactions onIEEE

FIGURE 4. Bottom left corner of the PE array shown in Fig. 3. Only part of the logic and memory inside PE 1 is shown: growth (S3) is per edge and is
stored in the PE with lower id . grow logic (in brown) calculates the updated growth value. edge_busy (in green) is per adjacent PE and is used to
calculate v.busy.

suf!ces. The node controller reads busy of each PE, every
clock cycle to identify the completion of a stage.

3) SHARED MEMORY
We implement all shared memories as FPGA registers, i.e.,
reg in Verilog. FPGA registers by design guarantee that a
read returns the last written value. In order to ensure that
the S4 memory has a single writer, we adjust the PE logic

to update growth by implementing a modi!ed compare-and-
update operation (L109), as shown in Fig. 6. The PE that
houses the S3 memory performs this operation, increasing
e.growth by two when both endpoints of the edge have
v.odd set to true.

D. RESOURCE USAGE
Table 1 shows the resource usage for various d for phe-
nomenological noise model and circuit-level noise.

VOLUME 5, 2024 3103318

Engineeringuantum
Transactions onIEEE

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES

FIGURE 5. Example figure showing how the FPGA implementation groups four nearby defect measurements into a single cluster in eight cycles. (a) Each
defect measurement is mapped to a PE, and initially, the four defect measurements have v.id = 1, 2, 3, 4, v.cid = v.id , and v.st_odd = v.odd = 1. (b)
First growth cycle results in fully grown edges between {1,3}, {1,4}, and {2,4}. (c) During merging, PEs 3 and 4 set their v.cid as 1 and set their parents to
1 (shown with orange arrows). (d) In the next cycle, PE 1 calculates the parity of the subtree rooted at 1 (PEs 1, 3, 4), while PE 2 updates its v.cid and
parent. (e) and (f) This results in an update of v.st_odd of subtrees rooted at 4 and 1 in the next two cycles. Simultaneously, the root node (PE 1)
updates the parity of the cluster (v.odd = 0). (g) v.odd is propagated to all PEs in the cluster in two cycles, and no change occurring in the eighth cycle
tells the controller to advance the stage.

FIGURE 6. Circuit diagram of grow submodule and Verilog implementation. This implements the atomic compare and update operation in L45 as part of
the PE module. odd[0] and odd[1] represent the odd states of the two incident PEs of the edge.

TABLE 1. Resource Usage of Helios on VCU129 FPGA Board for
Selected d

While the numbers of vertices and edges grow by O(d3),
resource usage grows faster for the following reasons. First,

resource usage by a PE grows due to the increase of bit
width required for v.id and v.cid. A PE for d = 21 with
six adjacent PEs requires 200 LUTs, and a similar PE for
d = 5 requires only 155 LUTs. Second, PEs on the surface
of the 3-D array, as shown in Fig. 3, use fewer resources
than those inside because the latter have more incident edges.
When d increases, a higher portion of PEs are inside the
array. The increased number of incident edges also causes
the Helios for circuit-level noise to use twice the resources
as in circuit-level noise each PE inside the graph can have up
to 12 incident edges.
Existing commercial FPGAs like VCU129 often dedicate

a lot of silicon to digital signal processing (DSP) units and
BRAMs. However, our design does not use any DSPs be-
cause it only requires comparison operators and !xed point

3103318 VOLUME 5, 2024

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES Engineeringuantum
Transactions onIEEE

additions. We only use BRAMs to support interfacing with
the MicroBlaze core and implement context switching using
LUTRAMs instead of BRAMs Therefore, an ideal FPGA
designed to run our distributed UF decoder would be simpler
than current large FPGAs, as it would only need a large
number of LUTs, no DSP units, and a limited amount of
BRAM.

E. CLOCK FREQUENCY
The architectural mismatch between the 3-D design of Helios
and the 2-D structure of an FPGA creates a fundamental
limitation in the maximum clock frequency Helios can run
when implemented on an FPGA. Despite Helios’s capability
to scale to arbitrarily large d, the maximum clock frequency
of the FPGA implementation must decrease as d increases
and eventually Helios will not be able to decode at the rate
of measurement. In our implementation, we reach the limit
of FPGA resources before the clock frequency becomes the
bottleneck, at d ≤ 51. We estimate that with an arbitrarily
large FPGA with the same routing technology as Virtex Ul-
traScale+ device, Helios’s clock frequency will become the
bottleneck and will fail to decode at the rate of measurement
at around d ≈ 1800.

The signal propagation latency increases by O(d) in the
FPGA implementation, causing a decrease in maximum
clock frequency as observed in Table 1. When d increases,
PEs adjacent in Helios must be placed farther apart within the
FPGA, causing this increase. Speci!cally, the critical path’s
routing latency increases from 3.77 ns for a d = 3 circuit-
level noise model design to 11.56 ns for a d = 17 design. In
addition, the increase in bit width of d increases the logical
processing latency by O(log(log(d))), which is signi!cantly
less compared to the delay due to propagation. When we
synthesize PEs in isolation, the logic delay increases slightly
from 1.475 to 1.552 ns when increasing d from 5 to 21. We
should also note that the signi!cantly high maximum oper-
ating frequency for d = 3 under phenomenological noise is
due to the unique situation of the decoding graph for d = 3,
where no PE has more than three incident edges.
A potential approach to circumvent this architectural mis-

match is to preserve Helios’s 3-D structure by mapping the
decoder across multiple FPGAs. However, the limitation of
I/O pins in existing FPGAs and signi!cant inter-FPGA la-
tency of a few tens of nanoseconds prohibit practical im-
plementation of Helios across multiple FPGAs ef!ciently
compared to a single FPGA implementation.
Implementation choice: For most experiments, we synthe-

size the design targeting a clock frequency of 100 MHz. This
choice ensures suf!cient latency for completing the critical
path within a single clock cycle, allowing for a uniform
comparison of the effects of our distributed UF decoder. We
used slower clock frequencies, which were necessary due to
resource congestion, only for the implementations of circuit-
level noise at d = 17 and the resource-ef!cient implementa-
tion at d = 51.

F. POWER CONSUMPTION
The power consumption of the implementation depends upon
the number of PEs actively participating in the clustering
process. For d = 13, the Vivado synthesizer estimates power
consumption at 4.639W for the FPGA implementation. This
estimation is based on assuming random input values toggled
continuously, which results in all PEs being active at the same
time [23]. The power consumption during decoding is likely
to be much lower because most syndromes contain only a
small number of defect measurements, and as a result, only
a small number of PEs are typically active at a time during
the decoding process.

VI. EVALUATION
The main objective of our evaluation is to assess the scala-
bility of our distributed UF implementation. To that end, we
answer the following questions in our evaluation.

1) Latency growth: Does the latency of distributed-UF
decoder grow sublinearly for both phenomenological
noise and circuit-level noise?

2) Context switching overhead: Can we use context
switching to decode large surface codes without
excessive latency growth?

3) Extensibility: Can Helios architecture be extended to
support erasure errors, weighted edges, and sliding-
window decoding?

We !rst describe our methodology and follow that with the
evaluation results to answer the aforementioned questions.

A. METHODOLOGY
For speed, we measure the number of cycles required to
decode a syndrome. To evaluate correctness, we compare the
results of our distributed UF decoder with those of the origi-
nal UF decoder.We compare clusters because the original UF
decoder and ours only differ in implementing clustering. In
the rest of our evaluation, we will focus only on the speed of
the distributed UF decoder and not on the accuracy of its re-
sults as our decoder and the original UF decoder by Delfosse
and Nickerson [15] produces the same decoding output for
any given syndrome. Nevertheless, for completeness, Fig. 7
compares the logical error rates between our distributed UF
decoder and the MWPM decoder. We obtain results in Fig. 7
using a software implementation of the UF decoder and the
MWPM decoder under circuit-level noise, with each data
point representing the average of 108 trials [24].

1) EXPERIMENTAL SETUP
As our evaluation setup, we use the Xilinx VCU129 FPGA
development board [16], which contains one of the largest
FPGAs available on a Xilinx development board. We sim-
ulate a surface code on a personal computer under various
noise models to generate syndromes, storing the output in
a !le. Subsequently, a MicroBlaze soft processor core [25],
instantiated within the FPGA, reads this syndrome !le. The

VOLUME 5, 2024 3103318

Engineeringuantum
Transactions onIEEE

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES

FIGURE 7. Logical error rate of distributed UF decoder (dark lines) in
comparison with the MWPM decoder (dashed lines).

core then transmits the syndromes to Helios, which operates
within the same FPGA. We ran 106 trials for each error rate
and distance.

2) NOISE MODEL
We use phenomenological noise model [1], circuit-level
noise model [26], and phenomenological noise model with
erasure errors [15]. As decoding for X errors and Z errors
are independent and identical, we only focus on decoding X
errors in the evaluation.
We use three noise models in our experiments: the

phenomenological noise model [1], the circuit-level noise
model [24], [26], and the phenomenological noise model
with erasure errors [15]. Each of these models additionally
includes measurement errors. As the decoding for X errors
and Z errors are independent and identical, we focus solely
on decoding X errors in our evaluation.
To simulate noise, we independently "ip data qubits and

ancilla qubits in our simulation model. In the phenomeno-
logical noise model, data qubits are independently "ipped
between each measurement round with a probability p. For
circuit-level noise, we "ip both data and ancilla qubits be-
tween each pair of gates and between gates and measure-
ments, also with a probability p. For erasure errors, we erase
data qubits between measurement rounds with a probabil-
ity pe, and ancilla qubits adjacent to the erased qubit are
"ipped with a 50% chance to emulate erasure effects. To
emulate measurement errors, we "ip ancilla qubits with a
probability of p. This is a widely used approach by prior QEC
decoders [7], [11], [14], [15], [26], [27].We then generate the
syndrome from the physical errors and provide it as input to
our decoder.
For most of our experiments, we use as default p = 0.001,

like other works [7], [10], [14]. This value is reasonable
for surface codes, as p should be suf!ciently below the
threshold (at least ten times lower) to exponentially reduce

errors. We note that the UF decoder has a threshold of p =
0.024 for phenomenological noise calculated by Delfosse
and Nickerson [15]. Similarly, for circuit-level noise, the UF
decoder has a threshold of p = 0.0078 calculated by Barber
et al. [10].

B. DECODING TIME
We experimentally show how the average decoding time
grows with the surface code size for different noise models.

1) AVERAGE TIME
To demonstrate the scalability of our algorithm with respect
to the size of the surface code, we measure the average time
for decoding for various sizes of the surface code. Fig. 8(a)
shows the average decoding time in nanoseconds grows sub-
linearly with the distance (d) of the surface code (x-axis). We
see that for both phenomenological noise and circuit-level
noise we tested against, average decoding time grows sub-
linearly with respect to the surface code size, which satis!es
the scalability criteria to avoid an exponential backlog. This
implies that the average time to decode a measurement round
reduces with increasing d, as shown in Fig. 8(b).

2) DISTRIBUTION OF DECODING TIME
To understand the growth of decoding time with respect to
the code distance, in Fig. 9(a), we plot the distribution of
decoding time for different code distances. The y-axis shows
the decoding time and the x-axis shows the distance (d) of
the surface code. We indicate the average cycle count with
×.
The key factor determining the decoding time is the num-

ber of iterations of growing and merging the distributed UF
decoder requires. The peaks in the probability distribution
for each distance in Fig. 9(a) correspond to the number of
iterations. The variation around each peak is caused by the
time required to sync c_id and calculate odd. The number of
iterations is related to the size of the largest cluster, which
in turn correlates with the size of the longest error chain in
the syndrome. As the size of the surface code increases, the
probability of a longer error chain also increases, resulting in
the probability distribution shifting to the right.
Furthermore, as seen in Fig. 9(a), the distribution for

each surface code size is right-skewed. For d = 13, as seen
in Fig. 10, 97% of trials required two iterations or fewer,
which were completed within 250 ns. In the same test,
99.99% of trials were completed within 510 ns. Only expo-
nentially fewer error patterns require long decoding times,
corresponding to syndromes with longer error chains, which
contributes less to the average decoding time. For example,
excluding the 0.01% samples in the tail yields an average
decoding time of 194.16 ns, compared to 194.19 ns for all
samples.
The longest decoding latency we observe in our trials,

920 ns, is signi!cantly lower than the theoretical worse case

3103318 VOLUME 5, 2024

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES Engineeringuantum
Transactions onIEEE

FIGURE 8. Average decoding time scales sublinearly with d . We measure the average decoding time for phenomenological noise (phen) of 0.005 and
0.001 and circuit-level noise (cct) of 0.001. (Left) Average decoding time. The average time per measurement round reducing continuously justifies that
our decoder is scalable for large surface codes under both phenomenological noise and circuit-level noise. The unusual increase at d = 17 for
circuit-level noise is caused by reducing the operating frequency to 75 MHz. The dashed line shows the calculated value at 100 MHz. We show the
distributions separately in Fig. 9(a). (a) Average decoding time. (b) Average decoding time per measurement round.

FIGURE 9. Distribution of decoding time (T) with the mean marked with
×. Each distribution includes 106 data points. By default, d = 13, and
phenomenological noise of p = 0.001 is unweighted. (a) T increases
with d . (b) T grows with the physical error rate.

FIGURE 10. Histogram of decoding time (latency) from 2 × 107 data
points at d = 13 and p = 0.001 phenomenological noise. This shows
long decoding times are exponentially unlikely.

decoding time of 857 µs, calculated by the equation in Sec-
tion V-A. This discrepancy arises because the worst case
scenario requires a very speci!c pattern of syndromes, which
is exceedingly rare and highly unlikely to occur in typical
simulation settings.

3) EFFECT OF PHYSICAL ERROR RATE
To understand the effect of the physical error rate on decod-
ing time, in Fig. 9(b), we plot the distribution of latency for
!ve different noise levels for d = 13. The y-axis shows the
latency and the x-axis the physical error rate.

As the noise level increases, the probability distribution
of latency shifts to the right. This is caused by the increased
probability of a longer error chain when the physical error
rate increases, which in turn requires more iterations to de-
code. As a result, the average decoding time increases with
the physical error rate. For the highest tested physical error
rate of 0.02, the average decoding time is 814.6 ns. Thus,
even when the physical error rate is closer to the threshold,
the decoder is an order of magnitude faster than the rate of
measurement.

C. EFFECT OF OPTIMIZING FOR RESOURCE USAGE
We next show that Helios can decode surface codes larger
than d = 21 by dividing and time multiplexing the decoding
graph. We !rst show that Helios can decode d = 27, a pos-
sible d to run useful quantum algorithms [5], and then show
Helios can even decode signi!cantly large d such as 51.
In Fig. 11(a), we plot the average latency for decoding

d = 27 surface code under phenomenological noise of 0.001
and 0.005 for Helios-4 to Helios-27. The Y -axis shows the
average latency and the X-axis shows the number of LUTs
required for implementation. We only show the average as it
is the critical factor enabling backlog-free decoding and the
distribution observes a similar pattern as distributions shown
in Fig. 11(c). In Fig. 11(b), we plot the corresponding LUT
count for Helios-n con!gurations shown in Fig. 11(a). We
use the LUT count to indicate resource usage because it is the

VOLUME 5, 2024 3103318

Engineeringuantum
Transactions onIEEE

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES

FIGURE 11. Helios can optimize for resource usage by mapping multiple virtual PEs to a single physical PE. (a) Average latency per measurement round
for d = 27 under two different phenomenological noise levels. (b) Corresponding resource use for the Helios-n configurations for d = 27.
(c) Distribution of decoding time for d = 51 with Helios-51. This configuration can decode faster than the rate of measurement for p = 0.001, but is
slightly slower than the rate of measurement for p = 0.005. (a) Latency increases with n. (b) Resource use decreases with n. (c) Helios can decode
d = 51.

limiting factor when running a decoder on a given FPGA. In
Fig. 11(a) and (b), we select Helios-n con!gurations resulting
in maximum resource utilization. Due to the restriction of
partitioning solely across the measurement round axis, cer-
tain mappings, like Helios-8, are inef!cient. Helios-8 will
have a lattice with a height of four physical PEs, but the
PEs in the topmost layer would only have three virtual PEs
mapped to each physical PE. Conversely, Helios-7 results in
the same number of physical PEs but with a lesser number of
context switchings.
Fig. 11(a) shows that under phenomenological noise of

0.001, Helios can decode a d = 27 surface code at an average
latency of 48.5 ns per measurement round by mapping four
virtual PEs to each physical PE. This rate is over 20 times
faster than the measurement rate. By mapping 27 virtual PEs
to each physical PE, resource usage can be further reduced to
173KLUTs, whilemaintaining the ability to decode at 360 ns
per measurement round. In this con!guration, each physical
PE cycles through a single measurement result of the corre-
sponding ancilla in each context. The reduced LUT count is
particularly signi!cant as it enables the implementation to be
mapped onto more cost-effective FPGA models.
Helios can decode d = 51 faster than the rate of measure-

ment for phenomenological noise of p = 0.001 but is slightly
slower than the rate of measurement when p = 0.005. The
average latencies for the noise level above are 543.9 and
1064.0 ns, respectively. This design targeting d = 51 re-
quired around 796K LUTs and operates at 85 MHz. In-
creased resource utilization at d = 51 causes the reduction
in operating frequency. The distribution of latency is shown
in Fig. 11(c).

D. DECODER EXTENSIONS
We next analyze the impact of extending our decoder
for other requirements. We consider three situations: non-
identically distributed errors, erasure errors, and inde!nite
preserving of logical state.

1) NONIDENTICALLY DISTRIBUTED ERRORS
We next analyze the decoding process of a surface code with
varying error probabilities for data and measurement qubits.

While identically distributed errors are useful for evaluating
the decoder’s performance, practical implementation of sur-
face codes may have different error probabilities for each
qubit. To address this issue, each edge i in the decoding graph
is assigned a weight wi that ranges from 2 to wmax and is
proportional to − log(pi), where pi is the error probability
corresponding to edge i. wmax is a user-speci!ed parameter
indicating the resolution of error probabilities.
Noise model: We assign random error probabilities from

a standard normal distribution with a mean of 0.001 and a
standard deviation of 0.0005.

Fig. 12(a) shows that the average latency increases as
wmax increases. When the errors have a higher resolution,
more iterations are required for each cluster, leading to an in-
crease in latency. For the unweighted graph with d = 13, the
average decoding time per round of 15 ns increases to 38 ns
when wmax increases to 16. Notably, all of these values are
signi!cantly faster than the rate of measurement. As a result,
decoding nonidentically distributed errors can be performed
in real time using distributed UF on Helios.

2) ERASURE ERRORS
The introduction of erasure errors slightly increases the de-
coding latency. Fig. 12(c) shows the distribution of latency
when erasure errors are added on top of p. An erasure rate
of 0.001 results in an increase in average decoding time by
approximately 63 ns. Notably, 40 ns of this increase (four
FPGA clock cycles) comes from an extra merging stage
prior to the initial growing stage. This extra merging
stage is necessary because erasure errors reduce an edge’s
weight to zero when an erasure occurs, which can lead to the
merging of vertices before any growing of clusters. Thus, the
overall latency distribution is right-shifted by 40 ns with a
slight additional increase of latency due to X errors caused
by erasures.

3) PRESERVING LOGICAL STATE INDEFINITELY
We next show that Helios can be extended to preserve logical
state inde!nitely using the sliding windowmethod [1].While
standard decoder evaluations focus on decoding d rounds,

3103318 VOLUME 5, 2024

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES Engineeringuantum
Transactions onIEEE

FIGURE 12. Distribution of decoding time (T) for decoder extensions. The mean is marked with ×. Each distribution includes 106 data points. By default,
d = 13, and phenomenological noise of p = 0.001 is unweighted. (a) T grows with the weight of the edges. (b) T shifts with erasures. (c) T increases
with sliding window.

TABLE 2. Implementations of Surface Code Decoders on Classical Hardware (FPGA)

practical applications require a decoder to continuously pro-
cess incoming measurement rounds to maintain the logical
state inde!nitely. The prevalent method for achieving this is
the sliding window method. In this method, 2d rounds are
decoded simultaneously, but corrections are only committed
for the oldest d rounds. Subsequently, the decoding window
advances by d rounds, resulting in continuous decoding for
an inde!nite period.
We implement sliding window decoding by extending the

PE array for 2d measurement rounds. This results in a slight
increase in latency and more than a doubling of resource
usage. For instance, a d = 13 decoder supporting the sliding
windowmethod requires 371K LUTs, compared to the 166K
LUTs needed for the !nite-window version. However, due
to the vertex-level parallelism, the decoding latency has a
modest increase from 194 to 230 ns. Thus, even with sliding
window decoding, the decoder is 56 times faster than the rate
of measurement.

E. QUANTITATIVE COMPARISON WITH RELATED WORK
Our empirical results, as shown in Fig. 9(a), suggest that
Helios has a lower asymptotic complexity than any existing
MWPM or UF implementation for which asymptotic com-
plexities are available, e.g., [15], [28]. Indeed, the empirical
results suggest that our decoder has a sublinear time com-
plexity: the decoding time per round decreases with the num-
ber of measurement rounds, which has never been achieved
before. This implies that Helios can support arbitrarily large

d as the rate of decoding will always be faster than the rate
of measurement.
In Table 2, we compare our decoder with other hardware

decoders in the literature that provide implementation-based
results. We report the average decoding time for d = 13 for
decoders capable of decoding d > 13. For other decoders,
we report the average decoding time for the maximum d it
can support.
As seen in Table 2, the most notable prior implementation

is the Collision Clustering decoder by Riverlane [10]. This
decoder, like our work, is an alternative implementation of
the UF algorithm. Its novel approach involves each vertex
tracking its growth and using a hardware-implemented func-
tion for ef!cient distance computation between vertices to
decide which vertices should merge. This reduces the mem-
ory access requirements for UF implementation, compared
to similar prior designs like AFS [7]. The reuse of the dis-
tance calculation function in all merging operations results
in substantially lower resource consumption for the Collision
Clustering decoder compared to Helios. For example, for
d = 13, the Collision Clustering decoder requires about 6K
LUTs, whereas Helios requires 340K LUTs.
However, the average case latency per measurement round

in the Collision Clustering decoder increases linearly with d,
creating an upper bound of maximum d that can be decoded
in real time. In contrast, Helios can decode arbitrarily large d,
as shown in this work. Furthermore, the speed of the decoder
relies on the ef!cient calculation of the distance between
any two nodes. While this is straightforward for unweighted

VOLUME 5, 2024 3103318

Engineeringuantum
Transactions onIEEE

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES

edges, when weighted edges or erasure errors are present,
the decoder requires a complex function such as Dijkstra’s
algorithm to calculate distances. Using such a function for
distance calculation can signi!cantly increase the decoding
time, making decoding erasure errors or weighted edges
faster than the rate of measurement likely prohibitive.
LILLIPUT [6], Astrea-G [9], and WIT-Greedy [13] are

not scalable for large d, due to their excessively high stor-
age requirements. LILLIPUT [6] is an LUT-based decoder.
LUT-based decoders can achieve fast decoding but are not
scalable beyond d = 5 as the LUT size grows O(2d

3
). For

d = 7 surface code with sevenmeasurement rounds, it would
require a memory of 2168 bytes, which is infeasible in
any foreseeable future. Astrea-G [9] and WIT-Greedy [13]
store weights of all pairs of vertices and compare probable
matchings. Astrea-G uses a greedy algorithm to preselect
matchings, and WIT-Greedy selects the least weight match-
ing directly using a greedy algorithm, reducing accuracy
further. The memory requirement for their weight tables
grows O(d6), limiting their implementations at d = 9 and
d = 11, respectively. In contrast, our work has successfully
demonstrated the implementation of a d = 51 surface code
on a VCU129 FPGA. Furthermore, while these decoders
could be adapted to circuit-level noise, accommodating
erasure errors would exacerbate their already substantial
memory requirements, due to the need to process additional
erasure inputs.
Overwater et al. [29] implement a neural-network-based

decoder. As shown by the authors, the decoder requires 44K
LUTs for distance 5 for a single measurement round. This
worsens with distance as the input layer scales O(d2) with
distance and O(d3) if d rounds of measurements are consid-
ered. In comparison, Helios with d = 5 with !ve measure-
ment rounds requires only 11K LUTs.
Our decoder outperforms the two fastest software MWPM

decoder, Sparse Blossom [8] and Fusion Blossom [14], by
an order of magnitude. According to our evaluation, Sparse
Blossom and Fusion Blossom take 160 and 295 ns per mea-
surement round, respectively, for d = 13 under p = 0.1%
phenomenological noise, using a single core of an M1 Max
processor. In contrast, Helios achieves an average decoding
time of 15 ns per measurement round under the same con-
ditions, which is more than 60 times faster than the current
state-of-the-art measurement rate [4].

VII. RELATED WORK
There is a large body of literature on fast QEC decoding,
e.g., [30], [31], [32], [33]. The most related are solutions that
leverage parallel computing resources.
Fowler [28] describes a method for decoding at the rate

of measurement (O(d)). The proposed design divides the de-
coding graph among specialized hardware units arranged in a
grid. Each unit contains a subset of vertices and can indepen-
dently decode error chains contained within it. The design is
based on the observation that large error patterns spanning

multiple units are exponentially rare, so interunit communi-
cation is not frequently required. It, however, paradoxically
assumes that the number of vertices per unit is “suf!ciently
large,” and a unit can !nd an MWPM for its vertices within
half the measurement time on average. Not surprisingly, to
date, no implementation or empirical data have been reported
for this work. Our approach uses vertex-level parallelism and
leverages the same observation that communication between
distant vertices is infrequent.
NISQ+ [11] and QECOOL [12] parallelize computation

at the ancilla level, where a single compute unit handles all
vertices in the decoding graph representing measurements of
one ancilla. This results in an increase in decoding time per
measurement round as d increases. In contrast, we allocate a
PE per vertex, which results in decreasing decoding time per
measurement round with d at the expense of the number of
parallel units growing O(d3). Furthermore, they both imple-
ment the same greedy decoding algorithm, which is much
lower in accuracy than the UF decoder used in this work.
QECOOL has an accuracy of approximately four orders of
magnitude lower than a UF decoder [7], and NISQ+ ig-
nores measurement errors, further lowering its accuracy than
QECOOL.
Wu and Zhong [14], Skoric et al. [27], and Tan et al. [34]

propose similar methods of using measurement round-level
parallelism, in which a decoder waits for a large number
of measurement rounds to be completed and then decodes
multiple blocks of measurement rounds in parallel. By using
suf!cient parallel resources, these methods can achieve a
faster decoding rate than the measurement rate. However,
the latency of such approaches grows with the number of
measurement rounds the decoder needs to batch to achieve a
throughput equal to the rate of measurement. In contrast, our
approach exploits vertex-level parallelism and completes the
decoding of every d round of measurements with an average
latency that grows sublinearly with d.

Since the initial release of this work [18], two alterna-
tive designs employing vertex-level parallelism have been
reported: Actis [35] and Heer et al. [36]. Both map each
vertex to a PE and support nearest neighbor communication.
However, unlike our approach, these designs incorporate
communication of PEs with the central controller through the
vertex array, resulting in a notable increase in coordinating
overhead. Furthermore, no implementation has been reported
for either of them, making a direct comparison in terms of
resource usage dif!cult.
Pipelining can be considered a special form of using com-

pute resources in parallel, i.e., in different pipeline stages.
Examples include AFS [7], LILLIPUT [6], Astrea-G [9], and
Collision Clustering [10]. However, pipelining is limited in
howmuch parallelism it can leverage: the number of pipeline
stages. This results in a maximum d, which they can decode
faster than the rate ofmeasurement. The largest d reported for
pipelined decoders is d = 23, which the application-speci!c
integrated circuit (ASIC) design described in [10] achieves

3103318 VOLUME 5, 2024

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES Engineeringuantum
Transactions onIEEE

Algorithm 7: FPGA-Oriented Algorithm for Vertex v in
the Distributed UF Decoder.

with 240 ns per measurement round. The parallelism of our
decoder grows along d3, which enables us to achieve a
sublinear average case latency, including decoding d = 23
within 24.1 ns. However, Helios uses signi!cantly more re-
sources due to increased parallelism.

VIII. CONCLUSION
In this article, we describe a distributed design for the UF de-
coder for quantum error-correcting surface codes, along with
Helios, a system architecture for its realization. Our FPGA-
based implementation of Helios demonstrates empirically
that the average decoding time grows sublinearly with the d.
Using a VCU129 FPGA, Helios decodes distance 21 surface
codes at an average speed of 11.5 ns per measurement round,
the fastest to the best of our knowledge. Helios is faster
and more scalable than any previously reported surface code
decoder implementations. Furthermore, to address resource
constraints, Helios can ef!ciently reuse FPGA resources, al-
beit with increased latency. We experimentally demonstrate
that Helios can decode extremely large surface codes such as
d = 51 on a VCU129 FPGA, which validates that Helios can
support the surface code of any useful distance.

APPENDIX A
FPGA-ORIENTED ALGORITHM

Algorithm 8: FPGA-Oriented Controller Logic.

In Algorithms 7 and 8, we show the FPGA-oriented
algorithm for distributed UF.

REFERENCES
[1] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quan-

tum memory,” J. Math. Phys., vol. 43, no. 9, pp. 4452–4505, 2002,
doi: 10.1063/1.1499754.

[2] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface
codes: Towards practical large-scale quantum computation,” Phys. Rev. A,
vol. 86, no. 3, 2012, Art. no. 032324, doi: 10.1103/PhysRevA.86.032324.

[3] J. P. B. Ataides, D. K. Tuckett, S. D. Bartlett, S. T. Flammia, and B.
J. Brown, “The XZZX surface code,” Nat. Commun., vol. 12, no. 1,
Apr. 2021, Art. no. 2172, doi: 10.1038/s41467-021-22274-1.

[4] Z. Chen et al., “Exponential suppression of bit or phase errors with cyclic
error correction,” Nature, vol. 595, no. 7867, pp. 383–387, Jul. 2021,
doi: 10.1038/s41586-021-03588-y.

VOLUME 5, 2024 3103318

https://dx.doi.org/10.1063/1.1499754
https://dx.doi.org/10.1103/PhysRevA.86.032324
https://dx.doi.org/10.1038/s41467-021-22274-1
https://dx.doi.org/10.1038/s41586-021-03588-y

Engineeringuantum
Transactions onIEEE

Liyanage et al.: FPGA-BASED DISTRIBUTED UNION-FIND DECODER FOR SURFACE CODES

[5] C. Gidney and M. Ekerå, “How to factor 2048 bit RSA integers in 8 hours
using 20 million noisy qubits,” Quantum, vol. 5, Apr. 2021, Art. no. 433,
doi: 10.22331/q-2021-04-15-433.

[6] P. Das, A. Locharla, and C. Jones, “LILLIPUT: A lightweight low-latency
lookup-table decoder for near-term quantum error correction,” in Proc.
ACM Int. Conf. Archit. Support Program. Lang. Oper. Syst., 2022, pp. 541–
553, doi: 10.1145/3503222.3507707.

[7] P. Das et al., “AFS: Accurate, fast, and scalable error-decoding
for fault-tolerant quantum computers,” in Proc. IEEE Int.
Symp. High-Perform. Comput. Archit., 2022, pp. 259–273, doi:
10.1109/HPCA53966.2022.00027.

[8] O. Higgott and C. Gidney, “Sparse blossom: Correcting a mil-
lion errors per core second with minimum-weight matching,” 2023.
arXiv:2303.15933, doi: 10.48550/arXiv.2303.15933.

[9] S. Vittal, P. Das, and M. Qureshi, “Astrea: Accurate quantum
error-decoding via practical minimum-weight perfect-matching,” in
Proc. ACM/IEEE Int. Symp. Comput. Archit., 2023, pp. 1–16, doi:
10.1145/3579371.3589037.

[10] B. Barber et al., “A real-time, scalable, fast and highly resource ef-
!cient decoder for a quantum computer,” 2023, arXiv:2309.05558,
doi: 10.48550/arXiv.2309.05558.

[11] A. Holmes, M. R. Jokar, G. Pasandi, Y. Ding, M. Pedram, and F. T. Chong,
“NISQ+: Boosting quantum computing power by approximating quantum
error correction,” in Proc. ACM/IEEE Int. Symp. Comput. Archit., 2020,
pp. 556–569, doi: 10.1109/ISCA45697.2020.00053.

[12] Y. Ueno, M. Kondo, M. Tanaka, Y. Suzuki, and Y. Tabuchi, “QE-
COOL: On-line quantum error correction with a superconducting de-
coder for surface code,” in Proc. ACM Des. Automat. Conf., pp. 451–456,
2021,doi: 10.1109/DAC18074.2021.9586326.

[13] W. Liao, Y. Suzuki, T. Tanimoto, Y. Ueno, andY. Tokunaga, “WIT-Greedy:
Hardware system design of weighted iterative greedy decoder for sur-
face code,” in Proc. ACM Asia South Paci!c Des. Automat. Conf., 2023,
pp. 209–215, doi: 10.1145/3566097.3567933.

[14] Y. Wu and L. Zhong, “Fusion blossom: Fast MWPM decoders for QEC,”
in Proc. IEEE Int. Conf. Quantum Comput. Eng., 2023, pp. 928–938,
doi: 10.1109/QCE57702.2023.00107.

[15] N. Delfosse and N. H. Nickerson, “Almost-linear time decoding algo-
rithm for topological codes,” Quantum, vol. 5, Art. no. 595, Dec. 2021,
doi: 10.22331/q-2021-12-02-595.

[16] Xilinx, “Virtex UltraScale 56G PAM4 VCU129 FPGA evaluation kit.”
Accessed: Feb. 14, 2024. [Online]. Available: https://www.xilinx.com/
products/boards-and-kits/vcu129.html

[17] “Helios scalable QEC,” 2023. [Online]. Available: https://github.com/
yale-paragon/Helios_scalable_QEC

[18] N. Liyanage, Y. Wu, A. Deters, and L. Zhong, “Scalable quan-
tum error correction for surface codes using FPGA,” in Proc.
IEEE Int. Conf. Quantum Comput. Eng., 2023, pp. 916–927, doi:
10.1109/QCE57702.2023.00106.

[19] Y. Wu, N. Liyanage, and L. Zhong, “An interpretation of union-
!nd decoder on weighted graphs,” 2022, arXiv:2211.03288, doi:
10.48550/arXiv.2211.03288.

[20] S. Huang, M. Newman, and K. R. Brown, “Fault-tolerant weighted union-
!nd decoding on the toric code,” Phys. Rev. A, vol. 102, no. 1, Jul. 2020,
Art. no. 012419, doi: 10.1103/PhysRevA.102.012419.

[21] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Sim-
ulations, and Advanced Topics, 2nd ed. Hoboken, NJ, USA: Wiley,
2004.

[22] M. J. Heer, J.-E. R.Wichmann, andK. Sano, “Achieving scalable quantum
error correction with union-!nd on systolic arrays by using multi-context
processing elements,” in Proc. IEEE Int. Conf. Quantum Comput. Eng.,
2023, pp. 242–243, doi: 10.1109/QCE57702.2023.10224.

[23] V. Xilinx, “Design suite user guide: Power analysis and optimization,
Xilinx,” Oct. 2021, UG907. [Online]. Available: https://www.xilinx.com/
support/documents/sw_manuals/xilinx2021_2/ug907-vivado-power-
analysis-optimization.pdf#page=16.10

[24] “QEC Playground,” 2023. [Online]. Available: https://github.com/yuewuo
/QEC-Playground

[25] Xilinx, “MicroBlaze processor quick start guide.” Accessed: Feb.
14, 2024. [Online]. Available: https://docs.xilinx.com/v/u/en-US/
microblaze-quick-start-guide-with-vitis

[26] A. J. Landahl, J. T. Anderson, and P. R. Rice, “Fault-tolerant
quantum computing with color codes,” 2011, arXiv:1108.5738, doi:
10.48550/arXiv.1108.5738.

[27] L. Skoric, D. E. Browne, K. M. Barnes, N. I. Gillespie, and E. T. Camp-
bell, “Parallel window decoding enables scalable fault tolerant quantum
computation,” Nat. Commun., vol. 14, no. 1, Nov. 2023, Art. no. 7040,
doi: 10.1038/s41467-023-42482-1.

[28] A. G. Fowler, “Minimum weight perfect matching of fault-tolerant topo-
logical quantum error correction in average O(1) parallel time,” 2014,
arXiv:1307.1740, doi: 10.48550/arXiv.1307.1740.

[29] R. W. J. Overwater, M. Babaie, and F. Sebastiano, “Neural-network de-
coders for quantum error correction using surface codes: A space explo-
ration of the hardware cost-performance tradeoffs,” IEEE Trans. Quantum
Eng., vol. 3, 2022, Art. no. 3101719, doi: 10.1109/TQE.2022.3174017.

[30] F. Battistel et al., “Real-time decoding for fault-tolerant quantum com-
puting: Progress, challenges and outlook,” Nano Futures, vol. 7, no. 3,
Aug. 2023, Art. no. 032003, doi: 10.1088/2399-1984/aceba6.

[31] B. M. Terhal, “Quantum error correction for quantum memories,”
Rev. Modern Phys., vol. 87, no. 2, pp. 307–346, Apr. 2015, doi:
10.1103/RevModPhys.87.307.

[32] D. Gottesman, “An introduction to quantum error correction
and fault-tolerant quantum computation,” 2009, arXiv:0904.2557,
doi: 10.48550/arXiv.0904.2557.

[33] H. Bombín, “Topological codes,” in Quantum Error Correction, D. A.
Lidar and T. A. Brun, Eds., Cambridge, U.K.: Cambridge Univ. Press,
2013, pp. 455–481.

[34] X. Tan, F. Zhang, R. Chao, Y. Shi, and J. Chen, “Scalable surface-code
decoders with parallelization in time,” PRX Quantum, vol. 4, Dec. 2023,
Art. no. 040344, doi: 10.1103/PRXQuantum.4.040344.

[35] T. Chan and S. C. Benjamin, “Actis: A strictly local union–!nd
decoder,” Quantum, vol. 7, Nov. 2023, Art. no. 1183, doi:
10.22331/q-2023-11-14-1183.

[36] M. J. Heer, E. D. Sozzo, K. Fujii, and K. Sano, “Novel union-!nd-based
decoders for scalable quantum error correction on systolic arrays,” inProc.
IEEE Int. Parallel Distrib. Process. Symp. Workshops, 2023, pp. 524–533,
doi: 10.1109/IPDPSW59300.2023.00092.

3103318 VOLUME 5, 2024

https://dx.doi.org/10.22331/q-2021-04-15-433
https://dx.doi.org/10.1145/3503222.3507707
https://dx.doi.org/10.1109/HPCA53966.2022.00027
https://dx.doi.org/10.48550/arXiv.2303.15933
https://dx.doi.org/10.1145/3579371.3589037
https://dx.doi.org/10.48550/arXiv.2309.05558
https://dx.doi.org/10.1109/ISCA45697.2020.00053
https://dx.doi.org/10.1109/DAC18074.2021.9586326
https://dx.doi.org/10.1145/3566097.3567933
https://dx.doi.org/10.1109/QCE57702.2023.00107
https://dx.doi.org/10.22331/q-2021-12-02-595
https://www.xilinx.com/penalty%20-@M%20products/boards-and-kits/vcu129.html
https://www.xilinx.com/penalty%20-@M%20products/boards-and-kits/vcu129.html
https://github.com/penalty%20-@M%20yale-paragon/Helios_scalable_QEC
https://github.com/penalty%20-@M%20yale-paragon/Helios_scalable_QEC
https://dx.doi.org/10.1109/QCE57702.2023.00106
https://dx.doi.org/10.48550/arXiv.2211.03288
https://dx.doi.org/10.1103/PhysRevA.102.012419
https://dx.doi.org/10.1109/QCE57702.2023.10224
https://www.xilinx.com/penalty%20-@M%20support/documents/sw_manuals/xilinx2021_2/ug907-vivado-power-penalty%20-@M%20analysis-optimization.pdf#page=16.10
https://www.xilinx.com/penalty%20-@M%20support/documents/sw_manuals/xilinx2021_2/ug907-vivado-power-penalty%20-@M%20analysis-optimization.pdf#page=16.10
https://www.xilinx.com/penalty%20-@M%20support/documents/sw_manuals/xilinx2021_2/ug907-vivado-power-penalty%20-@M%20analysis-optimization.pdf#page=16.10
https://github.com/yuewuopenalty%20-@M%20/QEC-Playground
https://github.com/yuewuopenalty%20-@M%20/QEC-Playground
https://docs.xilinx.com/v/u/en-US/penalty%20-@M%20microblaze-quick-start-guide-with-vitis
https://docs.xilinx.com/v/u/en-US/penalty%20-@M%20microblaze-quick-start-guide-with-vitis
https://dx.doi.org/10.48550/arXiv.1108.5738
https://dx.doi.org/10.1038/s41467-023-42482-1
https://dx.doi.org/10.48550/arXiv.1307.1740
https://dx.doi.org/10.1109/TQE.2022.3174017
https://dx.doi.org/10.1088/2399-1984/aceba6
https://dx.doi.org/10.1103/RevModPhys.87.307
https://dx.doi.org/10.48550/arXiv.0904.2557
https://dx.doi.org/10.1103/PRXQuantum.4.040344
https://dx.doi.org/10.22331/q-2023-11-14-1183
https://dx.doi.org/10.1109/IPDPSW59300.2023.00092

