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be critically sensitive to model biases in the wave sources. While able to emu-
late accurately the stochastic source term on which they were trained, all of
our schemes fail to simulate fully the expected QBO period or amplitude, even
with the slightest perturbation to the wave sources. The main takeaway is that
some measures will always be required to ensure the proper response to climate
change and to account for model biases. We examine one approach based on
the ideas of optimal transport, where the wave sources in the model are first
remapped to the observed one before applying the data-driven scheme. This
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adheres to the observational constraints, making sure the model yields the right
results for the right reasons.
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1 | INTRODUCTION

A practical problem concerning the development of
data-driven parameterizations of subgrid-scale pro-
cesses is the “graft-versus-host” problem, where a
data-driven scheme may be incompatible with its “host”,
the large-scale model, due to model biases and nonlinear
feedbacks between the resolved and parameterized scales.
In the absence of sufficient observational constraints, tra-
ditional (physics-based) schemes are tuned on a per-host
basis to overcome model biases and yield desirable results.
However, with data-driven schemes one does not have
this luxury. Aside from technical difficulties associated
with the fact that the tunable parameters in such schemes
are only latently related to the physical parameters, tun-
ing an observationally constrained scheme works against
its purpose, to represent the missing process faithfully. To
the extent that the training dataset does, indeed, represent
the observed conditions, the resulting data-driven scheme
ought to be changed as little as possible.

In the present work, we probe the graft-versus-host
problem in the context of data-driven gravity-wave (GW)
parameterizations. The scenario we envisage is one
where a data-driven model is trained on observations (or
high-resolution model simulations) to “learn” a parame-
terization of the form “GW drag = GW drag(flow, GW
sources)”. This parameterization is then transplanted into
an operational climate model, which will almost certainly
exhibit different (biased) wave sources. For convective GW
in the Tropics, this is partly due to the representation
of convection in the model and partly due to the fact
that the GW sources are themselves dependent on the
resolved flow, making them susceptible to model biases.
For the procedure to succeed, the wave sources in the
host model must be within the set of observations used
for training, or the data-driven scheme must generalize
out-of-set. Otherwise, even a “healthy” but incompati-
ble parameterization could lead to “unhealthy” simula-
tions, for example, an unrealistic quasibiennial oscillation
(QBO).

The QBO is the dominant mode of variability in the
tropical stratosphere, consisting of downwelling shear
zones of alternating easterly and westerly winds with
a period of about 28 months (Baldwin et al., 2001). It
was first observed in the mid-1950s and early 1960s
(Ebdon, 1960; Ebdon & Veryard, 1961; Reed et al., 1961)
and was explained theoretically soon after, in the late
1960s and early 1970s (Holton & Lindzen, 1972; Lindzen
& Holton, 1968), by means of a wave-mean-flow interac-
tion driven by upward-propagating waves. As such, the
QBO in general circulation models is particularly sensitive
to the spectrum of the simulated waves and, ultimately,
their momentum deposition. Due to limited (vertical)

resolution, insufficient for resolving wave generation,
upward propagation, and the ensuing wave-mean-flow
interactions, simulations of the QBO as an emergent
phenomenon remained a challenging task for decades,
until the late 1990s and early 2000s. Still, despite constant
improvements in the representation of the (resolved)
tropical wave spectrum, and in lieu of infeasible vertical
resolutions, present-day global climate models (GCMs)
generally rely on the addition of parameterized waves to
obtain realistic QBOs (Geller et al., 2016; Holt et al., 2022;
Richter et al., 2014, 2020). All but one of the models
participating in the QBO initiative (QBOIi) required param-
eterized GW to exhibit a QBO, and the majority of the wave
forcing above the QBO base in those models was attributed
to the parameterized waves (Bushell et al., 2022). More-
over, in practice, given limited observational constraints,
the GW schemes in those models were likely tuned to yield
realistic QBOs.

In addition to traditional GW schemes, the QBO
has recently been used as a key metric for assessing
data-driven schemes. Espinosa et al. (2022) and Con-
nelly and Gerber (2023) used neural networks and ran-
dom forests to emulate the Alexander and Dunker-
ton (1999, henceforth AD99) GW scheme in a Model of
an idealized Moist Atmosphere (MiMA, Jucker & Ger-
ber, 2017; Garfinkel et al., 2020). Mansfield and She-
shadri (2022) have also used Gaussian processes to emu-
late the AD99 scheme in MiMA en route to quantifying the
uncertainties associated with the GW sources. Yang and
Gerber (2024) used encoder-decoders to emulate AD99
in MiMA en route to developing optimal (re)sampling
strategies. Finally, Hardiman et al. (2023) used convo-
lutional neural network for emulating the Warner and
McIntyre GW scheme (Warner & Mclntyre, 1999, 2001)
in the Met Office HadGEM3-GAS.0 climate model (in an
atmosphere-only configuration), while comparing differ-
ent inputs. These studies have all considered the fidelity
of the QBO (among other criteria) to assess the “online”
performance of their respective emulators, that is, when
coupled to the climate model in place of the original
(physics-based) scheme. While demonstrating the feasibil-
ity of emulating physics-based GW schemes, they also raise
questions about the implementation of purely data-driven
ones.

To tackle the graft-versus-host challenge in a controlled
environment, remove climate model complexities, and
facilitate the development of data-driven GW parameter-
izations, we employ a one-dimensional (1D) QBO model
based on the classic model in Lindzen and Holton (1968),
Holton and Lindzen (1972), and Plumb (1977). Aside
from explaining the governing mechanism of the QBO
itself, this model has proven to be a useful abstraction for
explaining other properties of the QBO: for example, the
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formation of the buffer zone below the QBO base (Match
& Fueglistaler, 2020) and the QBO disruption-triggering
mechanism (Match & Fueglistaler, 2021). In the present
work, we add a stochastic source term to the model,
mimicking convectively generated gravity waves in the
Tropics with randomly varying strengths and phase
speeds.

In addition to representing the relevant physical sce-
nario better, this setup enables us to examine the sen-
sitivity of the QBO to the source spectrum parameters,
namely the source flux and spectral width. This allows us
to explore two related questions. First, in a climate-change
context, how well can a data-driven scheme trained on
today’s climate generalize to a perturbed climate (i.e.,
a warmer world)? Second, can a data-driven scheme
trained on observations be calibrated to yield the cor-
rect macroscopic behavior, that is, the “right” QBO,
when grafted into a host climate model with biased GW
sources?

We implement an array of machine learning (ML)
models consisting of a neural network (NN), a convolu-
tional neural network (CNN), an encoder-decoder (ED), a
boosted random forest (BF), and a support-vector regres-
sion (SVR) model. While able to “learn” the GW drags
corresponding to the GW source distribution on which
they were trained, they all fail to capture the sensitivity of
the QBO to perturbations in the source distribution fully,
thatis, fail to generalize to new climate conditions. In addi-
tion, a data-driven scheme trained on observations leads
to a biased simulation of the QBO when fed perturbed GW
sources, that is, when grafted into the host. A key con-
clusion is the fact that some remedy to this problem will
always be required. In the present work, we suggest a pre-
conditioning step based on the ideas of optimal transport,
where the biased source distribution is first remapped back
to the “observed” one before being fed into the data-driven
model. Aside from guaranteeing that the graft and host are
compatible, the advantages of this approach are that it is
agnostic to the data-driven method, and that it guarantees
that the model adheres to the observational constraints,
and so the model yields the right results for the right
reasons.

We start with a short description of the physical model,
including our modifications and the control experiment,
in Sections 2 and 2.1, respectively. In preparation for study-
ing our envisaged scenario with data-driven methods, we
first examine, in Section 2.2, the sensitivity of the QBO
to changes in the GW sources in the physical model. The
data-driven models are presented in Section 3, their results
on the control experiment in Section 4.1, and their sensitiv-
ity to changes in GW sources in Section 4.2. Our suggested
remedy for a model with biased forcing parameters is
presented in Section 4.3.

Royal Meteorological Society

2 | THE PHYSICAL MODEL: A
STOCHASTICALLY DRIVEN 1D QBO

The 1D QBO model of the present work is a hybrid of
the models introduced in Holton and Lindzen (1972) and
Plumb (1977), coupled with a stochastic source term to
mimic randomly generated GW. The model equation con-
sists of an advection—diffusion equation for the zonal mean
zonal wind (u) with a source term (S) due to GW momen-
tum deposition:

ou ou d*u

% +W0_z - K@ = S(z,u), @8
where t is time, z is the vertical coordinate, w = w(t, 2)
is the (potentially) time- and height-dependent resid-
ual vertical wind, and x is a constant diffusion coef-
ficient. The source term on the right-hand side (RHS)
originates from the divergence of upward zonal momen-
tum fluxes, and, as such, needs to be parameterized fur-
ther in terms of the zonal wind. For upward-propagating
Kelvin(-like) waves in a slowly varying zonal flow, the
resulting forcing due to a sum of monochromatic waves is

(Lindzen, 1971)
' } (2)
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where p(z) is the density, B, are the wave amplitudes, k,
are the wavenumbers, c, are the phase speeds, N is the
Brunt-Viisild frequency, and a(z) is the wave dissipation.

In general, the wave amplitudes can be chosen inde-
pendently of the wave phase speeds, provided only that
sgn(By,) = sgn(cy), SO as to guarantee that westerly (east-
erly) waves carry westerly (easterly) momentum upward.
A more physically plausible assumption in the presence
of many waves is that of a continuous spectrum. In the
present work, we assume a Gaussian wave spectrum sim-
ilar to one used in Alexander and Dunkerton (1999),
namely

2
B(c) « sgn(c) exp l— ln2<c£> ] , 3)

where c,, is the spectral half width.

Aside from the introduction of a continuous wave
spectrum, the key distinction between our 1D QBO model
and its predecessors in Holton and Lindzen (1972) and
Plumb (1977) is the addition of stochasticity to the wave
forcing. At each time step, the total (absolute) source flux
Fso = po ), |Bn| and spectral width ¢, are drawn from a
bivariate log-normal distribution, with the proportionality
coefficient in Equation 3 determined by Fg,. Physically,
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one can think of convectively generated gravity waves in
the Tropics having randomly varying strengths and spec-
tra, with more intense convection causing stronger fluxes
and deeper convection exciting faster waves, and hence
broader spectra (Alexander et al., 2021). The bivariate
log-normal distribution is a minimal distribution, having
just five parameters, capable of describing the above phys-
ical picture, while also guaranteeing that Fg, and c,, are
strictly positive.

Figure 1 shows the GW sources in the stochastic model,
including three wave source distributions (a-c) and the
spectra of three randomly sampled wave packets (e, f)
from the observed distribution in Figure 1a. The control
distribution Figure la was chosen to produce the “ob-
served” amplitude and period of the QBO, as described in
the next section. As Fg relates to the square of the total
latent heating (or total precipitation) and c,, to the depth
of convection, we chose them to be positively correlated.
The perturbed distribution (Figure 1b) can be viewed as
the forcing under a climate perturbation (here, stronger
and slightly deeper convection), or as a host model with a
biased source distribution. Finally, Figure 1c illustrates a
hypothetical distribution with no correlation between Fg,
and c,,, used to test the sensitivity of data-driven models to
the correlation between the two.

The resulting QBO in response to the control and per-
turbed wave forcing is shown in Figure 2a,h. The control
simulation nearly matches the observed QBO by con-
struction, while our “warmer world” exhibits a slower,
but more intense QBO. (To be clear, we have not mod-
ified any other model parameter in the perturbed run,
e.g., a change in the vertical advection w, which would
also impact the QBO.) Aside from the internal variabil-
ity, the main notable difference from the classic model
is the replacement of the critical level mechanism by a
filtering mechanism, where the low phase speed waves
break first as the wind amplifies. This is the result of
using more than two waves in the present model, not the
added stochasticity. Thus, our model maintains the essen-
tial physics of the classic model but allows us to link the
above forcing to variability in the intensity and depth of
convection, as in more advanced GW parameterizations
(e.g., Beres et al., 2004).

2.1 | Control experiment: The
“observed” QBO in our 1D model

Traditional, physics-based, GW schemes are often tuned to
yield the observed/realistic QBO. Among the first param-
eters tuned are those associated with the GW sources. For
convective GW in the Tropics, this is partly due to the rep-
resentation of convection in the model, and partly due to
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FIGURE 1 The gravity-wave sources. At each time step the

total source flux Fgy and spectral width c,, are drawn from one of
three bivariate log-normal distributions: (a) the control distribution,
obtained as described in Section 2.1 and representing the
“observed” distribution, (b) the effective distribution in the “host”
model, which represents model biases or climate change, and (c) a
hypothetical distribution used to test the learning sensitivity to the
correlation (same as the control distribution, but with no
correlation). The distribution parameters are given in Table B1 of
Appendix B. (d—f) Three sample wave packets drawn from the
control distribution in (a), with (d) Fgy = 3.5 mPa and

¢, =32m-s7!, (e) Fgy = 4.0mPa and ¢,, = 32m-s!, and ()

Fgo = 4.0mPa and ¢,, = 70m-s~}, also indicated by red squares in
(a). The resulting gravity-wave drags are shown in Figure 5. [Colour
figure can be viewed at wileyonlinelibrary.com]

the fact that the GW sources are themselves dependent
on the resolved flow, making them susceptible to model
biases. Accordingly, our experimental parameters consist
of the mean source flux Fg, and spectral width ¢,,, with
the control experiment defined by the combination of the
two that yields the amplitude and period of the “observed”
QBO, defined here by minimizing

[6(25 km) —33 m -s7!]?
[33m-s1]2
[6(20 km) — 18 m - s71]?
[18 m-s1]2
[z(25 km) — 28 months]?
[28 months]?

; “

where ¢ denotes the QBO amplitude in m-s~! and 7 the
QBO period in months. Following Garfinkel et al. (2022),
the QBO amplitude is evaluated in the mid (z = 25km)
and low (z = 20 km) stratosphere by means of the zonal
wind standard deviation, and the QBO period is evalu-
ated in the mid stratosphere by means of the dominant
Fourier mode. While this choice of vertical levels is arbi-
trary, the results are insensitive to variations, provided
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FIGURE 2 Thesimulated QBO in the data-driven models. Left column: in response to the “true” GW sources. Right column: in
response to the biased GW sources. From top to bottom, (a,h) the physical model for comparison, (b,i) the linear regression model, (c,j) the
fully connected neural network, (d,k) the dilated convolutional neural network, (e,1) the encoder-decoder, (f,m) the boosted forest, (g,n) the
support-vector regression model. The color scale is determined by the global absolute maximum of the zonal wind in the control experiment
of the physical model, with 21 equally spaced contours between + max |u|, and is uniform across all panels. The high-level amplitude (o,s),
low-level amplitude (o4), and period (z,s) of the simulated QBO in each model, estimated as detailed in Section 2.1, are indicated in the
panels. [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 The QBO objective. The (log-scaled) objective in
Equation 4 as a function of the mean source flux (ordinate) and
spectral width (abscissa). The optimum at Fg, = 3.5 mPa,

Cw = 32m-s~! (precise to 0.1 mPa in Fg, and 1 m-s~! in ¢,),
indicated by a black dot, corresponds to the control source
distribution and represents the “observed” distribution. The black
star at Fgy = 4.5mPa, ¢,, = 40 m-s~! indicates the biased
distribution in the “host” model. [Colour figure can be viewed at
wileyonlinelibrary.com]

one avoids getting too close to the lower boundary at z =
17 km, where the winds are held fixed. The incorporation
of the lower-level amplitude helps narrow down the opti-
mum but is not essential. The existence of a well-defined
dominant Fourier mode in our simulations is confirmed in
Figure S1 of the supplementary material.

Figure 3 shows the resulting (log-scaled) objective
in Equation 4 as a function of the mean source flux
and spectral width. The experimental range (3 < Fso <
5mPa, 25 < ¢, < 45m-s~!) was chosen by trial and error
to be as large as possible while maintaining numeri-
cal stability, a meaningful QBO (exhibiting descending
shear zones), and a “not too long” QBO period (up to 56
months). Reassuringly, this range covers the main por-
tion of the corresponding parameter space (1.3 < Fgy <
6.3mPa, 5<7¢, <45m-s7!) in Garfinkel et al. (2022),
who studied the QBO’s sensitivity to these parame-
ters in MiMA. Within the sampled resolution, the opti-
mum is located around Fgy = 3.5mPa and ¢,, = 32 m-s~.,
denoted by a black dot. The simulated QBO at this
point, which serves as our control experiment, is shown
in Figure 2a for the last 6 years of a 108-year-long
simulation. The remaining physical model parameters
used throughout this work are listed in Table B1 of
Appendix B.

2.2 | Perturbation experiments:
Sensitivity to the source spectrum

Having identified the optimal source distribution (the one
leading to the observed QBO amplitude and period), we
now examine the sensitivity of the solutions to changes
in the mean source flux Fg, and spectral width ¢,,. These
two parameters correspond to primary sources of uncer-
tainty in GCMs, total precipitation and depth of convec-
tion, respectively, and constitute our key experimental
parameters.

First, compare the perturbed QBO in Figure 2h, cor-
responding to a source distribution with (Fso = 4.5mPa,
¢y = 40 m-s~1), with the “observed” one in Figure 2a, cor-
responding to a source distribution with (Fg, = 3.5 mPa,
¢w = 32m-s71). Increasing the mean source flux and spec-
tral width results, in this case, in a slower and stronger
QBO. The period increases from 27.6 +0.5 months to
32.4 £ 0.5 months. The high-level amplitude, for example,
increases from 33 + 4m-s~! to 49 + 5m-s~1.

Next, in order to examine the sensitivity to changes in
the mean source flux and spectral width in more detail,
we integrate the model for each combination of Fg, and
¢y in our experimental range for 108 years and calcu-
late the amplitude and period after 12 years of “spinup”.
Figure 4a shows the resulting high-level amplitude (left,
blue shading), low-level amplitude (center, green shad-
ing), and period (right, purple shading) in the physical
model, as functions of ¢, (abscissa) and Fg, (ordinate).
The control distribution is indicated by a black dot and
the perturbed one by a black star. Indeed, increasing
both Fgo and ¢, results in a slower and stronger QBO.
More accurately, however, increasing ¢, while holding
Fg, fixed leads to stronger QBO amplitudes and longer
QBO periods, whereas increasing the source flux Fso
while holding ¢, fixed leads to stronger amplitudes but
shorter periods.

The sensitivities of the QBO amplitude and period in
our stochastic model are consistent with those predicted
by the classic model in Holton and Lindzen (1972) and
Plumb (1977). As in the classic model, distancing the crit-
ical levels (increasing c,,) increases the wind amplitudes
and lengthens the time taken for the winds above the
shear zone to dissipate, while increasing the wave ampli-
tude (increasing Fgo) shortens the time taken for the shear
zones to descend and form in the first place. Unlike Holton
and Lindzen (1972) and Plumb (1977), the presence of
more than two waves results in a wave filtering mecha-
nism, instead of the critical levels mechanism, so the effect
of increasing F does not saturate.

The QBO amplitude sensitivity in our stochastic 1D
model is also qualitatively consistent with that found in
Garfinkel et al. (2022) using MiMA, but is quantitatively

QSUAIT suowwo)) danea1) djqestjdde o) Aq pauroaos dre Sa[ONIER () 98N JO SO[NI 10) AIeIqI duI[uQ AJ[IA UO (SUOHIPUOI-PUB-SULIA)/ WO KI[1m’ A1eiqijoul[uo//:sdny) SUONIPUO)) pue SWId, 91 39S *[$707/S0/67] U0 Areiqr auruQ LSIp Kisioatun 10X maN £q £0Lt'b/z001 0 1/10p/wod Ka[im° KreiqrjoutjuosjouLy//:sdny woiy papeojumo( ‘0 ‘XOLSLLY |


http://wileyonlinelibrary.com

SHAMIR ET AL.

Quarterly Journal of the LRMets 7

Amp(25 km)
(a) Physical
5

Amp(20 km)

Period(25 km)

Fso[mPa]

3l
(b) Fully-connected neural network

<
[ )

:Eso[mPa]
_

(c) Dilated convolution neural network

,':SU [mPa]
u

(d) Encoder-decoder

= *
o
£ a
o <
w’ . T
(e) Boosted forest
N
—_ S
©
o
E
o D
||_|‘_” > 20 o
> . (3 \)\
© N >

(f) Support vector regression

Fsg [mPa]
W
A
w

30 40
Cwlms™]

0 40 30 40

Cylms™] Cylms™1]

36 14 28 42 56
[months]

20 40 60 12 24
[m/s] [m/s]

FIGURE 4 The QBO sensitivity in the data-driven models.
The sensitivities of the high-level amplitude (left, blue shading),
low-level amplitude (center, green shading), and period (right,
purple shading) to changes in the mean spectral width c,, (abscissa)
and source flux Fg, (ordinate). From top to bottom: (a) the physical
model for comparison, (b) the fully connected neural network, (c)
the dilated convolutional neural network, (d) the encoder-decoder,
(e) the boosted forest, (f) the support-vector regression model. The
black dot at (¢,, = 32m-s~!, Fgy = 3.5mPa) in each panel indicates
the control experiment used for training. The black star at

(Fso = 4.5mPa, ¢, = 40 m-s~*) indicates the biased distribution.
The white ellipse in panel (a) indicates the standard deviation of Fg,
and c,, samples in the training dataset. [Colour figure can be viewed
at wileyonlinelibrary.com]
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more sensitive. For the same range of source fluxes and
spectral widths, the total amplitude variation found in
Garfinkel et al. (2022) was about 30%-50%, compared with
100%-250% in the present work. This is to be expected,
at the very least considering the fact that the resolved
and parameterized waves in QBOi models have compara-
ble contributions (Bushell et al., 2022). The 1D model is
also more sensitive in terms of the QBO period. Garfinkel
et al. (2022) found little to no change in the QBO period
over the range of source fluxes and spectral widths con-
sidered here. While we cannot expect a more quantitative
agreement, it is worthwhile mentioning that the control
values (Fgy = 3.5mPa, ¢,, = 32 m-s~!) are remarkably close
to those used in Garfinkel et al. (2022) (Fso = 4.3 mPa, ¢, =
35m-s71h).

3 | DATA-DRIVEN MODELS

Recall the scenario envisaged: a data-driven GW param-
eterization is trained on observed GW drags, as well as
some proxies of the GW sources, to yield a relation of the
form “GW drag = GW drag (flow, GW sources)”, and this
parameterization is then implemented in an operational
GCM having perturbed (biased) sources. For convective
GW in the Tropics, this is partly due to the representation
of convection in the model, and partly due to the fact that
the GW sources are themselves dependent on the resolved
flow, making them susceptible to model biases. The ques-
tion is then how will a data-driven model trained on a
certain distribution fare when fed a perturbed one, and
how willit respond to changes in the sources under climate
perturbations?

The learning task at hand is a supervised regression
task consisting of finding a function, f : [u, Fso, cw] — S,
that best fits the given data samples {[u, Fso, cyl;, Si}isi“‘p
In other words, our inputs, or features, consist of the zonal
wind, source flux, and spectral width, and the outputs,
or labels, consist of the resulting wave drag. Our training
dataset, shown in Figure 5, consists of 96 years of daily
samples, after 12 years of spinup, simulated using the con-
trol parameters described in Section 2.1, and representing
the “observed” record. The samples are not necessarily
sequentially ordered during training. Due to the tempo-
ral correlation, consecutive samples add less information
to the training data. Indeed, for the neural networks, we
found that randomly shuffling the training data improves
the convergence. This is also consistent with the results of
Pahlavan et al. (2024), who found that 72 weeks of data
are sufficient for training a CNN on the 1D QBO model,
provided they are spaced 1 month apart to cover different
phases of the QBO.
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(a) Inputs (features): zonal wind
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(b) Inputs (features): source flux
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FIGURE 5 The training dataset. A total of 6 years of daily
time samples, out of the 96 years available in the training dataset,
are shown. The samples need not be ordered sequentially during
training. For each sample, the inputs consist of (a) the zonal wind
profile (excluding the top and bottom boundaries), (b) the source
flux, and (c) the spectral width of the GW packet. The output consists
of the GW drags (excluding the boundaries). During training, the
data are subject to standardization, and hence the units are
arbitrary. [Colour figure can be viewed at wileyonlinelibrary.com]

In order to account for the zero wind (Dirichlet) bound-
ary conditions imposed in the physical model, we found
it easiest to exclude the boundaries during training. After
removing the top and bottom boundaries, [u, Fg,c,] €
RWsamp*Niew) and S € R Nsamp)¥WNiey=2)

We consider the following six models.

(i) Alinear regression model: While S is a nonlinear
and nonlocal function of u, empirically it is similar to
the zonal wind shear du/dz. This is a manifestation of
the idealized case of constant wave flux density stud-
ied in Lindzen and Holton (1968), where the forcing
is exactly proportional to the zonal wind shear. Since
ou/dz can be linearly approximated by u (to any
desired accuracy), it is conceivable that linear regres-
sion will approximate the forcing to some degree. The
linear model used here includes a bias term, that is,
we seek the least-squares fit to S = [u, Fso, ¢y ]JW + b,
where W € RMe*WNiv=2) " and b € RWe—2), Hence,

(i)

(iii)

(iv)

the total number of “trainable” parameters
is 5254.

A fully connected feed-forward neural network
(NN): The theoretical basis for this type of model is
the universal approximation theorem(s), which, gen-
erally speaking, establishes their ability to approx-
imate nonlinear functions to any desired accuracy
provided there are sufficient degrees of freedom. See,
for example, Goodfellow et al. (2016) for an expo-
sition and Espinosa et al. (2022) for an application
to GW parameterizations. We start with a fully con-
nected, feed-forward, network, where each neuron in
one layer is connected to all neurons in the following
layer and the information flows sequentially from the
input layer, through the hidden layers, to the output
layer. The network’s architecture and optimization
parameters are given in Table B2 of Appendix B. The
training dataset was first randomly shuffled and then
split in half, for a total of 48 years of training samples
and 48 years of validation samples. The data were
propagated through the network in batches of 360
days for 100 epochs. The output S was scaled by F.
No scaling was applied on the inputs u, Fs, Or .

A dilated convolutional neural network (CNN):
CNNs are a specialized form of NNs particularly
suitable for data made up of distinct and repeat-
able “building blocks”, for example, headlights and
bumpers of motor vehicles, or the shear zones of
the QBO. See, for example, Goodfellow et al. (2016)
for an exposition and Chattopadhyay et al. (2020)
for an application to climate data. An important fea-
ture of CNNs is that they are less prone to over-
fitting than fully connected networks. The CNN
used here has the same architecture as the dilated
CNN used in Hardiman et al. (2023), consisting of
one-dimensional filters with fixed kernel size and
increasing dilation (increasing the filters’ receptive
fields). The network architecture is given in Table B3
of Appendix B. The optimization parameters and
training procedure were identical to those used for
the NN.

An encoder-decoder (ED): This encoder-decoder
structure is inspired by CNN variational autoen-
coders. ED is not an autoencoder, since the input
and output are not the same, but the same struc-
ture is used to encode and decode information.
Convolutional layers are used to encode the input
information locally onto a reduced dimension latent
space, where global interactions are processed with
dense layers. The resulting latent-space variable is
then decoded with transposed convolutional layers to
yield the output. See Kingma and Welling (2013) for
a general exposition and Yang and Gerber (2024) for
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application to GW parameterizations. The
parameters of the ED used here are given in Table B4
of Appendix B. The training dataset was split in half,
for a total of 48 years of training samples and 48
years of validation samples.

(v) A boosted forest (BF): Regression trees make pre-
dictions by traversing a binary tree according to the
components of the input vector. At each level, the
traversal moves to the left or right by comparing a
particular component of the input against a prede-
termined threshold. The returned value is the mean
of the training samples that reached the same leaf
as the input. Boosted forests are ensembles of trees
where each new tree is trained on the residuals of
those trained before it, so that the ensemble pre-
diction zeros in on the correct answer. See Breiman
et al. (1984) and Friedman (2001) for expositions of
regression trees and boosted forests, respectively, and
Connelly and Gerber (2023) for an application to GW
parameterizations. The parameters of the BF used
here are given in Table B5 of Appendix B.

(vi) A support-vector regression (SVR) model: SVR is
a variation of support-vector machines, a classifica-
tion algorithm that attempts to make the data linearly
separable by mapping them to higher dimensions.
Similarly, by mapping the data with the so-called
“kernel trick”, SVR aims to restrict data points within
an e-tube of a hyperplane. Intuitively, the kernel
allows one to narrow the space of comparison for
an input sample, allowing for nonlinear regression.
Also, like support-vector machines, one then finds
only a subset of input data points, called supported
vectors, that have contributed to determining the
SVR model. See, for example, Drucker et al. (1996)
and Smola and Scholkopf (2004) for a general expo-
sition. Since SVR, by its nature, is designed for
one-dimensional output regression, we used a col-
umn of independent one-dimensional SVR models
in our task. This model architecture harms the effi-
ciency, as each of these one-dimensional SVR models
uses a different subset of support vectors. In practice,
we minimize the size of the training dataset to con-
trol the number of support vectors. We found that an
SVR model can emulate the source term satisfacto-
rily even with only 1% of the dataset used for training
(less than 1 year of data). The parameters of the SVR
model used here are given in Table B6 of Appendix B.

These models were chosen to provide a “representa-
tive” sample of frequently used data-driven methods and
highlight potential strengths and weakness of different
ML strategies, but not to make definitive statements that
approach A is always better than approach B. Importantly,
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they were not purposely designed for the present work. For
example, the CNN was optimized to emulate the Warner
and MclIntyre scheme in the Met Office HadGEM3-GAS8.0
climate model (Hardiman et al., 2023); we use the same
architecture, but trained on our control experiment.
Likewise, the ED and BF were designed to emulate the
AD99 (Alexander & Dunkerton, 1999) GW parameter-
ization in MiMA. In general, any ML strategy can be
further optimized, and the “best” approach depends on
the circumstances. For a climate model, for instance, the
constraint is ultimately the best skill for the least amount
of computational time, but even “skill” can be subjec-
tive: should we require the best climatology, or the best
representation of extreme events?

4 | RESULTS

We are interested in the coupled problem, where
Equation 1 is integrated numerically with the RHS
replaced by the corresponding model, often referred to as
an “online” simulation. When doing so, it is imperative
to assess the skill of the models in their intended modus
operandi. Attempting to optimize the models based on
offline metrics can lead to online instability, which is per-
haps associated with overfitting. We therefore focus on
our main goal: how do these models perform online when
grafted into the host?

41 | Control experiment: Simulating
the present day climate

Figure 2 shows the QBO generated by the various ML mod-
els, compared with the physical model in panels (a,h), for
the last 6 years of a 108-year-long simulation. The left col-
umn shows the QBO in response to the control GW source
distribution, and the right column the response to the per-
turbed wave distribution. That is, the left column shows
the response to the wave distribution on which the ML
models were trained, while the right column shows the
QBO in response to an out-of-set GW source distribution.
Aside from the generation and maintenance of the QBO,
performance can be gauged by the amplitude and period
of the resulting QBO, indicated in each panel.

Starting with the control experiment, all models
(except linear regression) are able to capture both the
QBO period and amplitude quite well. To be more pre-
cise, the estimated uncertainty in the QBO period for these
centennial length integrations is 0.5 months (0.4 for the
linear model), based on the width of the dominant Fourier
mode (Figure S1 in the supplementary material). All mod-
els agree with the “observed” QBO period (the physical
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model) to within this uncertainty, except for the CNN,
where the period is biased long by 2 months. The QBO
amplitude is also within the estimated uncertainty for all
cases (except linear regression), based on the standard
error of the standard deviation.

The linear model is able to capture the QBO period sur-
prisingly well, but not the amplitude. Examining the zonal
wind as a function of time (Figure S2 of the supplementary
material), it is evident that the linear model is unstable.
There is a slow but steady trend in the amplitude, where
changes in the wind strength feedback on the forcing. In
this particular case, the trend happens to be negative (the
wind diminishes with time), but in other cases the lin-
ear model showed a positive trend (e.g., with an annually
varying vertical wind). With L, regularization (i.e., ridge
regression) the results are nearly identical. In particular,
the model is still unstable. With L, regularization (i.e.,
Lasso regression) the model does not converge, which is
perhaps another manifestation of the nonlinearity of the
source term.

The fact that all of the data-driven schemes per-
form well makes it easy to gloss over the key result in
Figure 2b-g: all ML schemes produce a stable and accu-
rate simulation of the QBO when forced using the control
GW sources. Their stability is confirmed in Figure S2 of
the supplementary material, which verifies that there is no
trend in the zonal wind at z = 25km for up to 108 years.
The stability of the simulated QBO is not a trivial result. It
is an “open secret” in the community that high accuracy
during training does not guarantee online stability (e.g.,
Brenowitz et al., 2020), and a stable QBO is, after all, the
raison d’étre of a QBO model.

4.2 | Source spectrum sensitivity:
Capturing the response to a climate
perturbation

We now examine the ability of our data-driven models to
capture the sensitivities of the QBO amplitude and period
to changes in Fy and ¢,,. The context of this experiment
is climate change. We use data-driven models trained only
on the control GW source distribution (Fgy = 3.5mPa,
Cw = 32m-s71) to simulate the QBO in a perturbed climate
where the source parameters have changed. This is a chal-
lenging test. While neural networks are capable of extrap-
olation, the BF and SVR methods can only predict some
combination of the data they have seen during training.
Still, due to the variability in Fgy and ¢, within the con-
trol integration (which represents the natural variability in
observations), even these two methods have a chance. The
question is whether it is possible to learn enough from vari-
ability in the “observations” to capture systematic changes

introduced by the climate perturbation, at least to some
extent.

First, consider the response to the perturbed source
distribution (Fso = 4.5mPa, ¢,, = 40m-s~!)in Figure 2i-n.
This systematic increase in both the source intensity and
spectral width could reflect a warmer climate with more
intense and deeper convection. The QBO amplitude in the
fully connected NN and dilated CNN models increases in
response to this change in the wave sources, in agreement
with the physical model, the differences being well within
the sampling uncertainty. However, the QBO period in
both simulations decreases relative to the control, in con-
trast to the physical model where the period increased!
That is, these models fail to capture the sensitivity of the
QBO period to the change in source distribution, even
qualitatively. In contrast, the encoder-decoder model does
capture the increase in the QBO period, but not the ampli-
tude. In fact, the amplitude of the QBO in the perturbed
simulation of the ED model is almost the same as that
of the “observed” QBO, suggesting the ED model has not
“learned” the QBO amplitude sensitivity at all. The SVR
model fails to capture the changes in both the amplitude
and period, even qualitatively. The BF is the only one that
captures the qualitative changes in both the QBO ampli-
tude and period, namely a slower and stronger QBO, but it
fails to capture the changes quantitatively.

The perturbation experiment considered above repre-
sents just one, perhaps extreme, scenario. We now con-
sider the sensitivities of the different models to changes in
the mean source flux and spectral width across the (Fs0, Cw)
plane. We integrate the models for each combination of
Fg and ¢, in our experimental range (3 < Fsy < 5mPa,
25 < ¢, < 45m-s71). For each integration, we compute the
amplitude of the QBO at 25 and 20 km and its period, sum-
marizing the results in Figure 4b-f. The black dot in all
panels indicates the control experiment on which the mod-
els were trained. The white ellipse in Figure 4a indicates
the standard deviation of Fs and c,, samplesin the training
dataset. The perturbation experiment shown in Figure 2 is
marked by the black star, highlighting its distance from the
control experiment.

In terms of the QBO amplitude, the different mod-
els succeed to varying extent. The NN and CNN capture
the amplitude sensitivity “quite well”, perhaps even quan-
titatively considering the estimated uncertainty. The BF
and SVR model capture the amplitude sensitivity qual-
itatively, in the sense that the amplitude increases with
increasing Fso and ¢C,, while the ED struggles to cap-
ture the amplitude sensitivity even qualitatively. In terms
of the QBO period, all five models fail to fully capture
the period sensitivity. The CNN and SVR model capture
the period sensitivity qualitatively, in the sense that the
period increases with decreasing Fs, and increasing c,.
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The NN captures the qualitative increase in the period with
decreasing F g, but struggles to capture the sensitivity to ¢,,
altogether. The ED and BF capture the qualitative increase
in the period with increasing c¢,,, but struggle to capture the
sensitivity to 1750.

Recall that Fg and ¢, are positively correlated, rep-
resenting the positive correlation between the total pre-
cipitation and depth of convection. Is it possible that this
correlation is the reason why the NN, ED, and BF are
only able to learn the period sensitivity to one of them?
Unlikely, considering that the NN and BF do capture the
sensitivity of the amplitude to both of these parameters
and considering the CNN does capture the period sensitiv-
ity to both. However, in order to rule out this hypothesis
we have repeated the above calculation using the neural
network with zero correlation between Fgy, and c, and
the results are nearly identical (Figures S3 and S4 in the
supplementary material).

The observed QBO in the atmosphere is more irregular
than that in our simple model, due to the annual cycle in
the vertical advection and GW sources and random fluc-
tuations from synoptic and planetary-scale waves. Can we
improve the ML scheme’s ability to generalize by training
on less regular data, allowing the models to “see” a wider
range of wind profiles? To test this hypothesis we have
repeated the above calculations for all five models with an
annual cycle added to the vertical wind. Instead of the con-
stant Brewer-Dobson upwelling w = 3 x 10~* m-s~! used
above, we repeated the calculations for

. 2t —4 -1
H=13+2 _— 10 5
w(t) [ + sm<360 days> +£W] X ms—, (5)

where ¢, ~ U(—0.5,0.5) is white noise. Figures S5 and
S6 in the supplementary material show that our mod-
els learn the new, less regular, control QBO. Despite this,
we observed no improvements in terms of their ability to
capture the sensitivity to changes in Fso and ¢,,.

Having examined the global sensitivity of the solu-
tions over our wide experimental range, we now take a
closer look at the local sensitivity in the vicinity of the
control source distribution, which would represent a grad-
ual climate drift. Figure 6 shows the partial derivatives
of the high-level amplitude (left column, blue shading),
low-level amplitude (center column, green shading), and
period (right column, purple shading) with respect to Fs,
(top row) and ¢, (bottom row). The partial derivatives in
this figure are normalized on the corresponding deriva-
tives in the physical model. Thus a value of 1 corresponds
to the correct response, and values greater (less) than 1
indicate an exaggerated (muted) response relative to the
physical model.
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No one method perfectly captures the partial deriva-
tives at the control distribution. The NN and CNN are
overly sensitive to changes in Fg, for both the QBO ampli-
tude and period, but underpredict the response to changes
in ¢,. As observed above, the ED struggles to capture any
response to changes in Fg, and responds only weakly to
changes in ¢,. The BF performs well across most met-
rics, but captures the wrong sign of the period response to
changes in Fg,. Finally, considering the estimated uncer-
tainty, the SVR model is perhaps the most accurate locally.

4.3 | Calibration: Preconditioning
the source distribution

In the climate-change context of the previous section, we
wanted the data-driven schemes to capture the response
to changes in the source distribution. However, this skill
does not assist with the calibration problem and can work
against it. A scheme perfectly capable of generalizing will
react to model biases and cement them when grafted into
a numerical model with biased sources. Thus, a different
measure is needed to account for model biases, and, to the
extent that the training dataset does, indeed, represent the
observed conditions, the scheme ought to be changed as
little as possible.

A simple way to overcome a model bias in the sources,
while also adhering to the observational constraints, is
a preconditioning step where the wave sources are first
remapped to the observed distribution before being fed
to the GW scheme. For example, if the precipitation in a
model is systematically too large relative to the observa-
tions, one would always need to reduce the value of Fg
provided by the model before passing it to the data-driven
scheme; otherwise, the GW momentum forcing would be
systematically larger, biasing the QBO. The mapping is
done by means of the cumulative distribution function
(CDF) of the sources, such that the amplitude of convec-
tion at the 95th percentile level in the model is rescaled to
that of the 95th percentile in the observations, and so forth.
The advantage of this approach is that it is agnostic to the
chosen data-driven method.

The procedure is greatly simplified by the fact that
our data-driven schemes are only weakly sensitive to
the correlation between the source flux and spectral
width (Section 4.2 and Figures S3 and S4 in the sup-
plementary material), and can be treated as indepen-
dent random variables. Using (informally) the solution of
the one-dimension optimal transport problem, they are
remapped as follows:

Xremapped = CDF, ;blservedOCDF biased (Xbiased)s (6)
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where X € {Fgg, ¢, }. The CDFs are evaluated empirically

as
N,

samples

CDF(x) = — 2 > e (7)

samples ;=

where 1 x, is the indicator function (i.e., 1x<, = 1 for X <
x and 0 otherwise). The observed sources enter Equation 6
implicitly via their estimated distribution. In practice,
Equation 7 is evaluated on the sampled wave sources. In
order to apply CDFO‘blServe 4 0 arbitrary images of CDFyjased,
the CDFs were linearly interpolated.

Figure 7 shows the CDFs of the “observed” (blue dots),
biased (green dots), and (a) the remapped source flux and
(b) spectral width, confirming that the remapped sources
are distributed according to the “observed” distribution.
Figure 8 shows the simulated QBO, using the neural net-
work, (a) before and (b) after remapping the sources. Upon
remapping the sources, the neural network yields the cor-
rect QBO amplitude and period and is stable for at least
108 years, confirming, a posteriori, our assumption that
Fgo and ¢, can be treated independently for the purpose of
modeling the wave drags.

While providing a simple solution in our idealized 1D
model, the application of this preconditioning approach
to parameterized GWs in GCMs is more involved. Most
notably, if the source flux and spectral width in obser-
vations cannot be remapped independently, as in the
present case, one has to solve a two-dimensional opti-
mal transport problem. Moreover, this approach relies on
having faithful estimations of the GW source distribu-
tion in both the observations and the host. Specifically, a
continuous approximation of the CDFs is required. The
first can be difficult to obtain from observations with lim-
ited spatio-temporal coverage, and would likely have do
be estimated from high-resolution global climate models.
The second can be computationally taxing. In the present

FIGURE 6 The QBO local sensitivity. The gradient of the
high-level amplitude (left, blue shading), low-level amplitude
(center, green shading), and period (right, purple shading) for the
control distribution. Top: the partial derivative with respect to the
mean source flux F,. Bottom: the partial derivative with respect to
the mean spectral width c,,. The derivatives for each model (each
bar) are normalized by the corresponding derivative of the physical
model. [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7  Source distribution preconditioning. The

“observed” (blue dots), biased (green), and remapped (orange)
CDFs of the (a) source flux and (b) spectral width. [Colour figure
can be viewed at wileyonlinelibrary.com]

work, the wave sources can be drawn from the bivariate
log-normal distribution upfront, so the empirical CDFs
can be evaluated a priori, and the interpolation has to be
applied only once. In GCMs, the wave sources are gener-
ated online, so the CDFs have to be evaluated and interpo-
lated repeatedly, every time the wave sources in the model
are regenerated.

In addition, while this preconditioning approach
works well for calibrating the scheme to work in the cur-
rent climate, it is unclear how much it can be trusted
in a climate-change context. It would provide the correct
response if the relative change in the source distribution in
the host matches the relative change in the “true” source
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(a) Neural network w. biased sources
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FIGURE 8  Source remapping in the neural network model.

The simulated QBO using the neural network (a) with biased
sources and (b) after remapping the biased sources to the observed
ones. The color scale is determined by the global absolute
maximum of the zonal wind in the unbiased physical model (i.e., as
in Figure 2), with 21 equally spaced contours between + max |u|.
The high-level amplitude (o5s), low-level amplitude (c4), and
period (z,5) of the simulated QBO in each model, estimated as
detailed in Section 2.1, are indicated in the panels. [Colour figure
can be viewed at wileyonlinelibrary.com]

distribution. This is admittedly a tall order if the source
distribution in the host is different from that in the control
climate to begin with.

5 | DISCUSSION

A primary concern with the advent of machine learning for
climate modeling is making sure that the models yield the
right results for the right reasons. The particular example
studied here is the graft-versus-host problem, where a
data-driven scheme might be incompatible with its host
climate model, leading to erroneous results. This problem
emerges in two related physical contexts, a climate-change
context (the generalization problem) and model biases
context (the calibration problem). In the former, we want
to capture the response to a physically induced change in
the sources. In the latter, we have to correct for a nonphys-
ical bias in the model’s sources. These can be conflicting
aims. A scheme can be well calibrated to provide the right
results for the control climate, but have no ability to gener-
alize to different conditions. The best we can hope for is a
scheme that generalizes well and can be adjusted sensibly
to work in the control climate.

Royal Meteorological Society

We considered the graft-versus-host problem for
data-driven gravity wave (GW) parameterizations in a
stochastically driven 1D quasibiennial oscillation (QBO)
model, where both climate change and model biases are
represented by perturbations in the GW source distribu-
tion. The 1D model provides a control environment where
the two issues can be examined independently, as opposed
to a climate model where the drifting climate is not eas-
ily disentangled from model biases. We first examined
the expected response of the physical model to pertur-
bations in the GW source distribution. Having trained
various data-driven schemes on the “control” distribu-
tion, we examined the ability of these schemes to capture
the expected perturbations, compared with the physical
model, that is, their ability to generalize. We then pro-
posed a preconditioning approach to calibrate a perturbed
model.

Our results demonstrate that data-driven schemes
trained on “observations” are sensitive to perturbations in
the wave sources. While all methods considered here were
able to emulate accurately the stochastic source term on
which they were trained, no one method was able to gen-
eralize fully to perturbations in the wave sources, in terms
of the amplitude and period of the resulting QBO. Some
methods were able to capture the sensitivity of the QBO
amplitude to changes in the wave sources (even quantita-
tively), others captured the sensitivity of the QBO period
(mostly qualitatively), but no method captured the full
response.

We showed that a scheme can be calibrated by pre-
conditioning the sources to account for differences in the
source distribution between the observed climate and host
model. For a relatively low-dimensional problem like this,
optimal transport allows us to remap the source distribu-
tions, so that a data-driven scheme sees the same wave
distribution when grafted into the host as it did from the
observations. This approach, however, will only generalize
to new climate conditions to the extent that a data-driven
scheme can learn the climate sensitivity from the observed,
present-day, variability.

We have focused on the sensitivity to perturbations
in the wave sources, which is a primary source of uncer-
tainty in climate models. Other model biases can trig-
ger the graft-versus-host problem as well, for example,
biases in the Brewer-Dobson circulation (represented
here by the upwelling velocity w), or differences in the
resolved wave forcing. This raises the difficult issue of
making a data-driven scheme scale-aware. In a realis-
tic context, one must make assumptions about what
is “resolved” versus “unresolved” in the construction
of the training dataset. Ideally, one could custom-build
the training dataset for a given model, but when this
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is not practical, transfer learning may be an option.
Transfer learning is also an option for preparing a scheme
to work in a climate-change context if one can obtain
limited data from the future climate, for example, from
a high-resolution model with modified boundary condi-
tions taken from a climate-change scenario integration
Sun et al. (2023b).

Another issue concerning the development of
data-driven parameterizations is the length of the train-
ing set. In the present work, we considered a plentiful
data limit in order to test our schemes at their best. In
practice, however, the high-frequency, high-resolution,
outputs required to resolve gravity waves limit the
length of the records. A typical training set is expected
to cover short periods, of the order of weeks (e.g., Sun
et al., 2023a) to months. Pahlavan et al. (2024) studied
the small versus large data regimes in a 1D QBO model
in more detail. They found that 18 months of data were
insufficient for emulating a (physically and numeri-
cally) stable QBO using a 12-layer CNN (with about
11,000 trainable parameters), even for a simpler config-
uration of the model with only two waves, no vertical
advection, and a white noise forcing. They were able
to make their scheme stable by retraining the second
and last layers of their CNN iteratively (with additional
data), a form of transfer learning termed “offline-online
learning”.

The limited data problem, however, is exacerbated in
the 1D model. A data-driven method trained on higher
complexity climate model outputs benefits from additional
variables and geographical regions, such as outside the
Tropics. Indeed, Espinosa et al. (2022) were able to learn
the AD99 scheme in MiMA using only 12 months of
global data, when the QBO was in its westerly phase: the
key was training data from the midlatitudes, which pro-
vided a wider range of wind and momentum deposition
profiles.

Transfer learning seems to be a useful approach for
handling both the scale-awareness and small-data prob-
lems, and perhaps other problems in the context of
data-driven parameterizations. However, it also raises
another problem, the fidelity problem. The challenge is
that, more so than traditional physics-based schemes,
a data-driven scheme must adhere to the observational
constraints imposed during training. Retraining parts
of the scheme using data from the host model, for
example, runs the risk of overriding the observational
constraints.

The strength of the 1D model is that it allows us to
explore all the difficult issues on the machine-learning
side with a very simple atmospheric model, here simply
the left-hand side of Equation 1. It allowed us to explore

a wide range of data-driven approaches in the coupled
context, highlighting strengths and weaknesses of each
approach. In future work, we plan to use it to explore these
thornier questions of calibration in the context of more var-
ied model biases, and to extend the offline-online learning
approach of Pahlavan et al. (2024) to the climate-change
context.
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APPENDIX A. NUMERICAL SCHEME

Equation 1 is discretized using a semi-implicit scheme,
combining an implicit scheme for the advection/diffusion
terms (centered in both time and space) and a (explicit)
leapfrog scheme for the source term. The discretized
model equation on the numerical grid (iAt, jAz), for fixed
At,Az,i=1,2,3,...,N,and j =1,2,3, ... ,N,is

[T+ At(diagw™*")D1 — kD2)|u™*"!
= [I— At(diagw™™")D1 — kD2)|u""! — 2A1S", (A1)

where the superscripts denote the time step, u® =
i, ... ,u}\,)T is the vector of discretized unknowns, S° =
sz, ... ,SITV)T is the vector of discretized source terms,

W' =W, ... ,w;,)T is the vector of discretized vertical
wind, I is the N X N identity, and D1 and D2 are the
differentiation matrices for the first- and second-order
derivatives, defined here as

0 fori=1,1<j <N,
Dlij= (5ij+1_5ij—1)/2AZ fOI'l<i<N,1SjSN,
0 fori=N,1<j <N,
(A2)
and
0 fori=1,1<j <N,
D2ij= (5ij+1—25ij+5ij_1)/AZZ for1<i<N,1§j§N,
0 fori=N,1<j <N,
(A3)

where §; ; is the Kronecker delta.

Note, zeroing-out the first and last rows of D1 and D2
implies that the tendency at the boundaries is determined
by the source term, that is,

T+1

(1N (A4)

u =u’7l - 20tS]

{1LN} 1.N}?

where the subscripts denote the vertical levels. Numeri-
cally, we compute the source term by applying D1 to the
flux (the sum in in Equation 2), which zeros-out the source
term at the boundaries. Thus, if the initial wind and wind
tendency at the boundaries are zero, ”?1,1\1} remain zero for
all7=0,1,2, ....

Model parameters and various neural network param-
eters are given in Tables B1-B4, while Table B5 lists
boosted forest parameters and Table B6 SVR model
parameters.
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APPENDIX B. PARAMETER TABLES

TABLE Bl Physical model parameters.

Domain

Final time (¢;) 108 years?

Temporal spacing (At) 86,400's

Bottom boundary (z;) 17x10°m

Top boundary (zy) 35%10°m

Vertical spacing (Az) 250 m

Background state

Density profile® (p) (Po/RqTo) expl—(g/RaTo)z]
Reference pressure (P) 101,325 Pa

Gas constant for dry air (Ry) 287.04J kg 1.K!

Reference temperature (Tj) 204K
Gravitational acceleration (g) 9.8 m-s~2
Brunt-Viisili frequency? (N) 216 x 1072571
Model

Diffusion coefficient® (k) 0.3 m?.s7!

Vertical wind®f (w) 3x 1074 m-s?
GW forcing
Number of waves (Nyaves) 20

Zonal wavenumbers (k,,) 2x27/(4x10)m ! forn=1, ... ,20

-100m-s'+10n—1)m-st forn=1,....,10

Phase speeds (c,,)
10(n —10) m - s7!

Wave dissipation® (a) B

forn=11, ... ,20

Quarterly Journal of the SRMets
Royal Meteorological Society S

%days_l + (Z—J ) 2—21days‘1 for 17 km < z <30 km

2—31days"1 for 30 km < z < 35 km
GW source distribution “Observed” “Perturbed/biased”
Mean total source flux (Fs,) 3.5mPa 4.5 mPa
STD total source flux 0.3 mPa 0.3 mPa
Mean spectral width (c,,) 32m-s7! 40m-s!
STD spectral width (STDc,,) 16 m-s~! 16m-s~!
Correlation 0.75 0.75

*Using a 30-day month calendar (i.e., 1 year = 360 days).
hFollowing Holton and Lindzen (1972).
‘ Assuming an isothermal atmosphere.

! Corresponding to the chosen values of P, and T, for an isothermal atmosphere (i.e., not an additional free parameter).

‘ Corresponding to the Brewer-Dobson circulation in the Tropics at 70 hPa (Butchart, 2014).
'In Section 4.2 we also examine an annually varying vertical wind with noise as detailed in Equation 5.
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TABLE B2  Fully connected feed-forward neural network TABLE B5 Boosted forest parameters.
parameters.
[Linear(# inputs, Architecture
Architecture # outputs), activation] .
Tree maximum depth? 15
H - ab
Input layer [Linear(nlev-2 + 2, nlev), ReLU] Number of trees 7
(Hidden) layers 2-9 |Linear(nlev, nlev), ReLU] Fraction of samples per tree® 0.5
Output layer [Linear(nlev, nlev-2), None] T — 0.5
Tzl o ORI Sl Trainable parameters 1,111,866
Optimization Optimization
Loss function Relative MSE = . ..
. ) Impurity Gini
Y (prediction — target)*/
Y target? Learning rate® 0.05
Optimizer Adam®4 Validation set® 20% of training data
Learning rate 107 ‘Selected with threefold cross-validation.

“The linear layers are written in PyTorch syntax.
" Similar results were obtained using a tanh activation instead.

‘Kingma and Ba (2014).

“Similar results were obtained using stochastic gradient descent instead.

TABLE B3
parameters.

Architecture
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8

Trainable parameters

Dilated convolutional neural network

[ConvlD (in channels, out channels,
kernel size, stride, padding, dilation),
activation]?

[ConvlD(1, 20, 5, 1, 2, 0), ReLU]
[Conv1D(20, 40, 5, 1, 6, 3), ReLU]
[Conv1D(40, 60, 5, 1, 10, 5), ReLU]
[Conv1D(60, 80, 5, 1, 22, 11), ReLU]
[Conv1D(80, 60, 5, 1, 10, 5), ReLU]
[Conv1D(60, 40, 5, 1, 6, 3), ReLU]|
[Conv1D(40, 20, 5, 1, 2, 0), None]
[Conv1D(20, 1, 5, 1, 2, 0), None|
80,521

Note: The optimization parameters are the same as for the NN in Table B2.

‘The 1D convolution layers are written in PyTorch syntax.

TABLE B4

Architecture
Trainable parameters
Activation function
Optimization

Loss function
Optimizer

Learning rate

‘Kingma and Ba (2014).

Encoder-decoder network parameters.

Encoder-dense-decoder
13,261

Exponential linear unit function

Mean-squared error
Adam?

Start at 1e—3, and reduce on plateau
by 0.5

*Used to determine when to stop adding trees to the ensemble.

TABLE B6

Architecture

# support vectors

Support-vector regression model parameters.

20% (train/test split) * 34,560

(size of dataset) = 6912

Kernel: RBF kernel

K(x,y) = exp(=7|lx = ylI3),

where y = 0.05%

Trainable parameters
Optimization

Loss function
Regularization (penalty)

“The notation follows Sklearn syntax.

490,823

Cc=16

Hinge loss with ¢ = 1e — 4

QSUAIT suowwo)) danea1) djqestjdde o) Aq pauroaos dre Sa[ONIER () 98N JO SO[NI 10) AIeIqI duI[uQ AJ[IA UO (SUOHIPUOI-PUB-SULIA)/ WO KI[1m’ A1eiqijoul[uo//:sdny) SUONIPUO)) pue SWId, 91 39S *[$707/S0/67] U0 Areiqr auruQ LSIp Kisioatun 10X maN £q £0Lt'b/z001 0 1/10p/wod Ka[im° KreiqrjoutjuosjouLy//:sdny woiy papeojumo( ‘0 ‘XOLSLLY |



	The graft-versus-host problem for data-driven gravity-wave parameterizations in a one-dimensional quasibiennial oscillation model 
	1 INTRODUCTION
	2 THE PHYSICAL MODEL: A STOCHASTICALLY DRIVEN 1D QBO
	2.1 Control experiment: The ``observed'' QBO in our 1D model
	2.2 Perturbation experiments: Sensitivity to the source spectrum

	3 DATA-DRIVEN MODELS
	4 RESULTS
	4.1 Control experiment: Simulating the present day climate
	4.2 Source spectrum sensitivity: Capturing the response to a climate perturbation
	4.3 Calibration: Preconditioning the source distribution

	5 DISCUSSION

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	Supporting Information
	APPENDIX A. NUMERICAL SCHEME
	APPENDIX B. PARAMETER TABLES

