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Editorial Overview: Insect cold tolerance research reaches a Swift new Era
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Past Eras

We are pleased to present a series of papers on the molecular physiology of cold tolerance in
insects. This area of research kicked off with the pioneering work of RW Salt in the 1930’s
(reviewed in Salt, 1961), who defined some of the basic principles of insect cold tolerance,
including categories of cold tolerance strategies and the role of low molecular weight
cryoprotectants. Since that time, the field has gone through several “eras”. We now enjoy a
highly integrative community of researchers seeking to understand what sets the limits of low
temperature tolerance, how wide variation in low temperature tolerance (and related stressors)
has evolved, and how insects might respond to rapid environmental change.

The first era of insect cold hardiness research was largely ecophysiological, addressing the
question “what happens to insects when it gets too cold?”” In the 1970’s and 80’s, we got our first
detailed descriptions of seasonal responses like diapause (Denlinger et al., 1972), as well as
flurry of studies that characterized cold tolerance strategies in insects (reviewed by Lee, 1991).
These foundational studies began to define the limits of possibility regarding insects as low
temperatures. Important discoveries include careful distinctions between freeze tolerant and
freeze-intolerant insects (reviwed by Bale, 1993), unique adaptations such as thermal hysteresis
(Duman, 1979), and impressive feats of phenotypic plasticity like rapid cold hardening (Lee et
al., 1987). This era also kicked off spirited debates on appropriate terminology for describing
cold tolerance strategies, a debate that may never end.

Given the diversity of insects and their outsized role in human society, ecophysiological
characterizations of insect cold tolerance limits and strategies have continued unabated. But the
1980’s and 90’s ushered in a biochemical era for insect cold tolerance research, largely aimed at
characterizing metabolic shifts that accompany cold tolerance. The individual painstaking
characterization of dozens of metabolites and enzymes by Storey and others (e.g., Joanisse and
Storey, 1994; Storey et al., 1981) is an impressive feat in today’s omics world, and these
important studies lay the groundwork for today’s questions on cryoprotection and bioenergetics,
both of which are featured in this review collection. Biochemical characterization of ice
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interacting proteins also began during this era (e.g., Patterson et al., 1981), at a time when
studying the sequence and molecular evolution of these genes was not on the radar.

In the 1990’s and early 2000’s, studies characterizing suborganismal responses to cold stress
entered the fray. Enthusiastically stabbing insects with electrodes and collecting hemolymph
samples, physiologists determined the important roles of ion and water balance in surviving the
cold (Kostal et al., 2004; Zachariassen et al., 2004 for an early review). At the molecular level,
some of the first studies linking specific genes to cold stress were published, starting with classic
protein- (Joplin et al., 1990) and RNA-based methods (Misener et al., 2001; Yocum, 2001) and
later transitioning to techniques such as qPCR that are still widely used today (Sinclair et al.,
2007). This time frame also brought forth some of the first high-throughput characterizations of
biochemical responses to cold, profiling global changes in lipid composition (e.g., Kostal and
Simek, 1998) and metabolite content (Michaud and Denlinger, 2006; Overgaard et al., 2007).
While the tools were now in place to start looking inward at cold tolerance, this era also includes
high profile studies that looked outward at the ecological and evolutionary drivers of cold
tolerance (e.g., Addo-Bediako et al., 2000; Sinclair et al., 2003) by synthesizing the
ecophysiological studies of prior eras.

Finally, like practically other field of biological research, insect cold tolerance research joined
the omics era in the late 2000’s and 2010’s. Studies using proteomics (e.g., Li and Denlinger,
2008; Overgaard et al., 2014), transcriptomics (e.g., MacMillan et al., 2016; Teets et al., 2012),
metabolomics (e.g., Colinet et al., 2012; Kostal et al., 2011), and genome resequencing
approaches (Gerken et al., 2015; Waldvogel et al., 2018) proliferated. These studies provided
important insights into the systems biology of cold tolerance, and while functional studies
validating these gene targets were slower on the uptake, a handful of studies have also begun to
manipulate gene expression and/or function in the context of cold tolerance (Freda et al., 2022;
Newman et al., 2017; Teets and Hahn, 2018).

The Current Era

The above tour of insect cold physiology “eras” was unscientific and mainly to set the stage (and
perhaps appeal to the Swifties out there), but it is interesting to speculate how the current era will
be defined. If anything, the collection of articles in this special issue highlights the continually
growing diversity and integration of approaches in insect cold tolerance research. Today, the
tools are in place to study cold tolerance at many levels of biological organization and build
conceptual models that extend across these levels (see reviews by Overgaard and MacMillan,
2017; Teets et al., 2023; Toxopeus and Sinclair, 2018). The current trend in the field is therefore
to move beyond reductionist approaches and synthesize insights across molecular biology,
biochemistry, tissue function, organismal phenotypes, and evolutionary patterns. Many of the
reviews in this collection reflect that integrative way of thinking.

The central role of metabolism in cold tolerance has been apparent since the early days of RW
Salt, and three of the reviews in this collection broach that topic. First, Hayward and Colinet
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(2023) summarize the insights provided by metabolomics in the study of insect cold tolerance.
While metabolomics has been used for nearly two decades to study cold tolerance (see above),
this review highlights the important technological advances and design considerations that are
needed to maximize the impact of metabolomics moving forward. Further, the authors identify
key knowledge gaps and recommend approaches for functional validation of metabolomics
results, including injection or dietary manipulation to manipulate key metabolites. While the role
of lipid reserves in overwintering insects has been long appreciated, Enriquez and Visser (2023)
synthesize the most recent five years of research to describe what is (and isn’t) known about the
molecular regulation of lipid metabolism in overwintering insects, highlighting that there doesn’t
seem to be a “one-size-fits-all” molecular program for lipid remodeling. Also, the authors
describe distinct phases of lipid metabolism in overwintering insects, including mechanisms and
patterns of lipid accumulation and utilization, as well as the importance of lipid reserves in
fueling spring reproduction. Fully appreciating organismal patterns of metabolic depression and
oxidative stress in the cold requires drilling down to the level of organelles. Lebenzon et al.
(2023) provide important insights into the role of mitochondria in overwintering insects. We now
know that mitochondrial metabolism has cascading effects on whole-organism metabolism, and
that protecting mitochondrial health is key to avoiding unwanted cell death in the cold.
Thankfully. tools for studying mitochondrial metabolism have dramatically expanded in recent
years.

Whereas the first three papers discussed above were concerned with subcellular processes, the
next review in the collection, by Robertson et al. (2023), goes one level higher and looks at
tissue-specific responses to cold, specifically in the nervous system. Chill coma in insects is
caused, in part, by a cortical spreading depression in the brain, a phenomenon also associated
with migraines and seizures in mammals, and thus preventing this shutdown is necessary to
remain active at low temperature. This review summarizes the state of knowledge regarding the
mechanisms and implications of CNS shutdown, as well as how insects can use phenotypic
plasticity to fine-tune CNS function for low-temperature survival.

The next two reviews move up the ladder of biological organization and discuss the interplay
between cold and other ecological stressors. While reductionist approaches in experimental
biology have traditionally involved isolating the effects of cold, in nature cold stress is
accompanied by numerous other challenges. The consequences of multiple stressors can be
unpredictable, in some cases leading to beneficial cross-protection (e.g., through cross-talk and
cross-tolerance), while in other cases causing synergistic effects that exacerbate the cold stress.
Boardman (2024) discusses the various stressors that interact with cold, including variable water
and oxygen availability, and biotic stressors such as infection. The review also includes a
discussion of potential molecular mechanisms that may be driving cross-talk. El-Saadi et al.
(2023) take a similar approach regarding the overlap between cold stress and immune function in
insects. During the winter, most insects are immobile and confined to hibernacula, putting them
at high risk of infection. Cold exposure often results in upregulation of immune-related genes,
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but whether these molecular changes are adaptive, and how they are mediated, is unclear. In this
paper, the authors propose that oxidative stress, which is associated with both cold exposure and
infection, and likely related to impacts of cold on mitochondria, may be regulating this cascade
of events, providing a mechanistic link between disparate stressors.

The final review in our collection addresses a practical application of insect cold tolerance
research. Fluctuating thermal regimes (FTRs) can dramatically improve the longevity and
performance of managed insects, but the mechanisms of protection have been unclear. Torson et
al. (2024) summarize the state of knowledge regarding the molecular processes that extend
survival during FTRs and propose hypotheses for new lines of investigation. Specifically, FTRs
may repair neuronal damage (thus providing some potential links to the mechanisms discussed
by Robertson et al. in this same issue), and the warming pulse during FTRs may synchronize
circadian clocks and avoid deleterious effects of a malfunctioning internal clock. Together, this
work has implications for both understanding the fundamentals of cold injury and improving
FTRs for storing managed insects.

Conclusion

Regardless of how this era of insect cold tolerance research is ultimately defined, the above
papers provide exciting new directions for our field. They highlight the importance of integrating
across levels of organization and considering multiple stressors when assessing potential
ecological responses to low temperature. Given rapid rates of climate change, emerging threats
from invasive pests and disease vectors, and the ability to study insect physiology in multiple
dimensions, these papers are timely, and we hope they will lay a foundation for the next decade
of work in this field. We thank the authors for their hard work on these submissions, and we
sincerely appreciate all of the thoughtful comments provided by expert peer reviewers.
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