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Abstract—In this paper, the Cramér-Rao Bounds (CRB) for
the simultaneous estimation of power system electromechanical
modes and forced oscillations (FO) are derived. Two cases are
considered; in the first case only the steady-state response to the
FO is present in the measured system output used by estimation
algorithms. In the second, the startup transient of the FO is
present in addition to the steady-state response. The CRBs are
analyzed numerically to explore sensitivities to FO frequency,
signal-to-noise ratio (SNR) and observation window length. It is
demonstrated that 1) the CRB of FO parameters is not affected
by the presence of the transient response, 2) the CRB of the
system modes is not affected by the presence of an FO in steady-
state and 3) the CRB of the system modes can be drastically
reduced by the presence of a FO startup transient.

I. INTRODUCTION

The ability to estimate electromechanical modes as accu-

rately as possible during a forced oscillation (FO) event is a

critical task due to the potential for mode meters to model

the FO as a system mode and throw false alarms on low

damping [1]. With the ever-increasing penetration of inverter-

based generation and microgrids, the potential for FOs is also

increasing [2], while traditional power system components

continue to cause FOs such as the 2019 system-wide event

in the United States Eastern Interconnection [3].

A highly useful tool for assessing the accuracy of an

estimation algorithm is the Cramér-Rao Bound (CRB), which

defines the theoretical lower limit on the variance of an

unbiased estimator. The CRB may be used as a benchmark

with which to compare the variance of potential mode meters

and FO parameter estimators before a particular method is

selected for use. Additionally, analysis of the CRBs may yield

insight into the underlying processes being estimated. Such a

study was completed for mode meters under purely ambient

conditions in [4], while the authors of [5] and [6] considered

the case where unknown FOs were present in a known power

system.

This paper considers the practical case where neither the

FO nor the system parameters are known. After a brief review

of small-signal power system modeling, the CRBs for FO
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parameters and mode frequency and damping are derived for

two specific cases: one where only the steady-state response

to the FO is present, and one that includes the FO startup

transient. A simulation study is conducted that reveals several

interesting observations, the most important of which is that

the presence of transients associated with the onset of a FO can

drastically increase the accuracy of electromechanical mode

meters.

II. SYSTEM MODELS

It is well-known that for the purposes of electromechan-

ical mode meters and oscillation monitoring systems where

preprocessed PMU data are used (e.g., lowpass filtered and

detrended bus voltage angle differences), a power system un-

der ambient conditions is well-modeled with an autoregressive

moving average (ARMA) structure. When N samples of y are

collected at sampling rate fs, they are indexed from k = 0 to

k = N − 1 with the kth sample of system output y given as

y[k] =
C(q)

A(q)
e[k] =

1 + c1q
−1 + · · ·+ cnc

qnc

1 + a1q−1 + · · ·+ ana
qna

e[k] (1)

where A(q) and C(q) are the AR and MA polynomials in

delay operator q such that q−ny[k] = y[k − n], and e is

Gaussian White Noise (GWN) attributed to low-level random

load variations. The electromechanical mode frequency and

damping are computed from the system poles, i.e., the na
roots of A(q). For the ith pole pi, the modal frequency in Hz

and percent damping are found as

fmi =
Im(fs log pi)

2π
(2)

ζmi = − cos ( fs log pi)× 100% (3)

Note that in (1), e is the only system input being modeled.

When FOs are present in y, the autoregressive moving average

with exogenous input (ARMAX) model may be used:

y[k] =
B(q)

A(q)
u[k] +

C(q)

A(q)
e[k] (4)



where B(q) = bo + b1q
−1 + · · ·+ bnb

qnb is the X polynomial

and u, the input FO, is in the general the sum of p cosines

u[k] =

p
∑

i=1

Ãi cos
(

ωik + ϕ̃i

)

Iϵi,ηi
[k] (5)

where Ã, ϕ̃i, and ωi are amplitude, phase in radians, and

frequency in radians per sample. Recall that frequency in Hz

is related to radians per sample by fi = ωifs/(2π). Function

I defines the FO starting and ending samples, ϵi and ηi, as

Iϵi,ηi
[k] =

{

1, ϵi ≤ k ≤ ηi

0, else
(6)

Note that in reality the sources of these FOs are very much

a part of the power system, despite the use of the word

“exogenous” in the ARMAX acronym. For the remainder of

this paper, in order to simplify derivations and analysis, only

a single FO (p = 1) is considered. Extensions to multiple FOs

are straightforward.

The FO observed in output y depends on when the FO starts

and stops. This paper considers two specific cases. In case 1,

the FO starts long before the first observation of y, and lasts

throughout the entirety of the data record. In this case, only

the steady-state response of the FO is present in y:

y[k] = A1 cos(ω1k + ϕ1) +
C(q)

A(q)
e[k] (7)

where amplitude and phase of the output FO are

A1 =
|B(ω1)|

|A(ω1)|
Ã1 (8)

ϕ1 = ϕ̃1 + B(ω1)− A(ω1) (9)

In case 2, the FO again lasts throughout the entirety of the

data record, however it starts precisely at the first sample of

y. Thus, y becomes

y[k] =
B(q)

A(q)
Ã1 cos(ω1k + ϕ̃1) +

C(q)

A(q)
e[k]

=

na
∑

i=1

rip
k
i +A1 cos(ω1k + ϕ1) +

C(q)

A(q)
e[k]

(10)

where ri are residue terms that depend upon both the FO

parameters and the coefficients of B(q) and A(q) and pi
are the poles of A(q). While both (7) and (10) contain the

same ARMA process and steady-state FO response, only

(10) contains the FO startup transient response,
∑na

i=1
rip

k
i .

It is demonstrated later that this additional term can have a

profound effect on the CRB of the mode meter frequency and

damping estimators.

The polynomial coefficients and FO parameters of models

(7) and (10) may be collected in a vector termed θo. Estimating

these parameters from observations of y involves minimizing

a cost function of prediction errors, which are defined as

ε(k, θ̂) = y[k]− ŷ(k, θ̂) (11)

where θ̂ is an estimate of θo and predictor ŷ is the estimate of

y for a particular θ̂. The prediction errors are thus estimates

of the random system input e. Indeed, ε(k, θo) = e[k].

III. ASYMPTOTIC CRAMÉR-RAO BOUNDS

In [7], a general expression for the asymptotic CRB of a

dynamical system is given as

Cov(θ̂) ≥
σ2

e

N

[

1

N

N−1
∑

k=0

E
{

ψ(k, θo)ψ
T (k, θo)

}

]

−1

(12)

where E is the expected value operation, σ2

e is the variance

of e, and ψ is gradient

ψ(k, θo) =
d

dθ
ŷ(k, θo) (13)

In practice, the expected value operation in (12) must be

approximated numerically by averaging over M Monte Carlo

simulations, each using statistically independent realization of

e. The approximate CRB is

Cov(θ̂) ⪆
σ2

e

N

[

1

N

N−1
∑

k=0

1

M

M
∑

i=1

{

ψi(k, θo)ψ
T
i (k, θo)

}

]

−1

(14)

where ψi(k, θ) is the gradient vector from the ith Monte Carlo

trial. In practice, M = 1000 Monte Carlo trials is more than

sufficient to observe convergence in the average.

Finally, note that the electromechanical mode frequency and

damping are secondary parameters. They do not appear in θo,

but are are functions of some of the elements of θo. In order

to find the CRB for these, the Taylor Series method used in

[4] may be applied.

In the following two subsections, the CRB are derived for

the cases defined in (7) and (10).

A. Case 1

Here only the steady-state FO response is present in y.

Rewriting expression (7) as

A(q)y[k] = A(q)A1 cos(ω1k + ϕ1) + C(q)e[k] (15)

leads to

ŷ(k, θo) = −

na
∑

i=1

aiy[k − i] +

nc
∑

i=1

ciε(k − i, θo)

+

na
∑

i=0

aiA1 cos(ω1(k − 1) + ϕ1)

(16)

where

θo =
[

a1 · · · ana
c1 · · · cnc

A1 ϕ1 ω1

]T
(17)

The resultant gradient vector is

ψ(k, θo) =

[

∂ŷ(k, θo)

∂a1
· · ·

∂ŷ(k, θo)

∂ana

∂ŷ(k, θo)

∂c1
· · ·

∂ŷ(k, θo)

∂cnc

∂ŷ(k, θo)

∂A1

∂ŷ(k, θo)

∂ϕ1

∂ŷ(k, θo)

∂ω1

]T

(18)



with elements

∂ŷ(k, θo)

∂ai
=

1

C(q)
A1 cos(ω1(k − i) + ϕ1)

−
1

C(q)
y[k − i]

(19)

∂ŷ(k, θo)

∂ci
=

1

C(q)
ε(k − i, θo) (20)

∂ŷ(k, θo)

∂A1

=
A(q)

C(q)
cos(ω1k + ϕ1) (21)

∂ŷ(k, θo)

∂ϕ1
=
A(q)

C(q)
(−A1 sin(ω1k + ϕ1)) (22)

∂ŷ(k, θo)

∂ω1

=
A(q)

C(q)
(−A1k sin(ω1k + ϕ1)) (23)

where the details of the derivative calculations have been

omitted due to space constraints.

Thus, finding the CRB of θ̂ for a particular ARMA model

and FO involves the following steps. First, M independent

N -sample sequences of e are generated and used to create

M realizations of y. These, along with the sinusoids in (19)

- (23), are filtered through 1/C(q) or A(q)/C(q) to obtain

the M realizations of ψ that are used by (14) to obtain the

CRB. A subtle but very important detail here is that since y
only contains steady-state FO responses, care must be taken

to ensure that only the steady-state responses to the filtering

operations in (19) - (23) are included in the gradient vectors.

The CRB of A1, ϕ1 and ω1 are found as the final three

diagonal elements of the CRB of θ̂, and the CRB of the mode

frequency and damping are obtained by applying the the CRB

of the AR polynomial coefficients (the na×na upper left block

of the CRB of θ̂) to the methods found in [4].

B. Case 2

Rewriting (10),

ŷ(k, θo) = −

na
∑

i=1

aiy[k − i] +

nc
∑

i=1

ciε(k − i, θo)

+

nb
∑

i=0

biÃ1 cos(ω1(k − 1) + ϕ̃1)

(24)

with

θo =
[

a1 · · · ana
b0 · · · bnb

c1 · · · cnc
Ã1 ϕ̃1 ω1

]T (25)

and

ψ(k, θo) =

[

∂ŷ(k, θo)

∂a1
· · ·

∂ŷ(k, θo)

∂ana

∂ŷ(k, θo)

∂b0
· · ·

∂ŷ(k, θo)

∂bnb

∂ŷ(k, θo)

∂c1
· · ·

∂ŷ(k, θo)

∂cnc

∂ŷ(k, θo)

∂Ã1

∂ŷ(k, θo)

∂ϕ̃1

∂ŷ(k, θo)

∂ω1

]T

(26)

with elements

∂ŷ(k, θo)

∂ai
=

1

C(q)
(−y[k − i]) (27)

∂ŷ(k, θo)

∂bi
=

1

C(q)
Ã1 cos(ω1(k − i) + ϕ̃1) (28)

∂ŷ(k, θo)

∂ci
=

1

C(q)
ε(k − i, θo) (29)

∂ŷ(k, θo)

∂Ã1

=
B(q)

C(q)
cos(ω1k + ϕ̃1) (30)

∂ŷ(k, θo)

∂ϕ̃1
=
B(q)

C(q)
(−Ã1 sin(ω1k + ϕ̃1)) (31)

∂ŷ(k, θo)

∂ω1

=
B(q)

C(q)
(−Ã1k sin(ω1k + ϕ̃1)) (32)

Similar to Case 1, M independent realizations of e are

created and applied to (10) to generate M independent realiza-

tions of y, both of which are filtered by 1/C(q) or B(q)/C(q)
along with the sinusoids of (27) - (32) to create M realizations

of ψ that are used by (14) to obtain the CRB. Here, the

subtle but important note is that since y does contain the start-

up transient responses of the FO, so to should the gradient

elements.

Note that in this case, while θo contains the FO frequency

common to both the input and output FO, it only contains the

amplitude and phase of the input FO. Thus, while the CRB

of ω1 is found as the last diagonal element of the CRB of θ̂,

the CRB of A1 and ϕ1 must be obtained by applying Taylor

Series linearizations to the CRB of θ̂.

Referring back to (8) and (9), define X as the phasor

representation of the output FO

X = A1e
jϕ1 =

B(ω1)

A(ω1)
Ã1e

jϕ̃1 = α+ jβ (33)

where α and β are the real and imaginary parts of X . First,

the CRB of
[

α β
]T

is found from the CRB of θ̂ as

Cov

[

α
β

]

= JαβCov(θ̂)JT
αβ (34)

where the Jacobian is obtained from the real and imaginary

parts of complex Jacobian JX

Jαβ =

[

Re(JX)
Im(JX)

]

(35)

where

JX =

[

∂X

∂a1
· · ·

∂X

∂ana

∂X

∂b0
· · ·

∂X

∂bnb

∂X

∂c1
· · ·

∂X

∂cnc

∂X

∂Ã1

∂X

∂ϕ̃1

∂X

∂ω1

] (36)



with elements

∂X

∂ai
=

−e−jiω1B(ω1)

A2(ω1)
Ã1e

jϕ̃1 (37)

∂X

∂bi
=
e−jiω1

A(ω1)
Ã1e

jϕ̃1 (38)

∂X

∂ci
= 0 (39)

∂X

∂Ã1

=
B(ω1)

A(ω1)
ejϕ̃1 (40)

∂X

∂ϕ̃1
=
B(ω1)

A(ω1)
jÃ1e

jϕ̃1 (41)

∂X

∂ω1

=

B(ω1)
na
∑

i=0

iaie
−jiω1 −A(ω1)

nb
∑

i=0

ibie
−jiω1

A2(ω1)

× Ã1e
jϕ̃1 (42)

The CRB of
[

A1 ϕ1
]T

is then found from the CRB of
[

α β
]T

as

Cov

[

A1

ϕ1

]

= JAϕCov

[

α
β

]

JT
Aϕ (43)

with Jacobian

JAϕ =







∂A1

∂α

∂A1

∂β
∂ϕ1
∂α

∂ϕ1
∂β






=

1

A1

[

A1 cos(ϕ1) A1 sin(ϕ1)
− sin(ϕ1) cos(ϕ1)

]

(44)

Finally, the CRBs of A1 and ϕ1 are the diagonal elements of

(43), and as with Case 1, the CRB of the mode frequency and

damping are obtained from applying the Taylor Series methods

of [4] to the na × na upper left block of the CRB of θ̂).

IV. SIMULATION STUDY

To illustrate how FO parameters may affect system identi-

fication accuracy, a simulation study was conducted using a

low-order ARMAX approximation of the minniWECC model.

Details on the full minniWECC model are found in [8]. As

was initially demonstrated in [4], when a single output of the

minniWECC model is preprocessed by detrending, lowpass

filtering and downsampling from 120 samples per second to

3, only a few of the system dynamics remain. The resulting

process is very well-modeled as a low-order ARMAX system.

Here, simulations were conducted with AR and MA orders of

10, and an X order of 1. The power spectral density (PSD) of

the ARMA portion of the system is shown in Fig. 1, where

the local maxima correspond to system modes that range from

0.21 Hz to 0.69 Hz. Here the main North-South interarea mode

at 0.372 Hz and 4.67% damping was considered for estimation.

For each of the two FO cases, four scenarios were consid-

ered while the output FO amplitude and phase were held at

A1 = 1 and ϕ1 = 0.8 rad throughout. In the first scenario, the

CRBs were calculated over a range of FO frequencies while

0 0.2 0.4 0.6 0.8 1

Frequency (Hz)

10-1

100

101

102

d
B

PSD of ARMA Process

Fig. 1. Power spectral density of the ARMA system used in the simulations.

the noise variance σ2

e was adjusted to maintain a constant local

signal-to-noise ratio (SNR) of 40 dB. Local SNR is defined

with the output FO as the signal and the PSD of the ARMA

process at only the FO frequency as the noise power. The

second scenario also found the CRBs over a range of FO

frequencies, however a constant global SNR of 9.5 dB was

maintained, where global SNR uses the average of the ARMA

PSD across the entire frequency range as the noise power. In

the third scenario, the CRBs were found over a range of global

SNR while the FO frequency was held at 0.353 Hz. Finally,

in the fourth scenario, the CRBs were found over a variety of

record lengths while the FO frequency and global SNR were

held at 0.353 Hz and 9.5 dB. Note that the first three scenarios

used record lengths of 30 minutes, chosen somewhat arbitrarily

since the CRBs are all inversely proportional to record length.

Results for the FO parameters are shown in Fig. 2. First note

that in all four scenarios, the CRBs for the two FO cases were

nearly identical to each other. This suggests that the presence

of the FO transient response has little effect on the ability

to estimate its steady-state parameters. Aside from that, the

results are to be expected. In the leftmost plots, it is illustrated

that the the CRB are nearly independent of FO frequency when

local SNR is held constant, while they reflect the shape of the

ARMA PSD (Fig. 1) when global SNR is held. Both of the

rightmost plots demonstrate that the CRBs decrease as global

SNR or record length increase, albeit at different rates.

Results for the CRBs of the mode frequency and damping

are shown in Fig. 3. Note that in all four scenarios the CRBs

from case 1 are nearly identical to those from purely ambient

conditions (no FO). This implies that when only the FO

steady-state is present in the measured output, the FO has

little effect on the CRB of the mode meter. The case 2 results

tell a different story. In the leftmost plots, a slight decrease in

CRB was observed when the FO frequency was near the 0.372

Hz mode frequency, while a large drop in CRB was observed

for FO frequencies outside the 0.2 to 0.7 Hz range of mode

frequencies. There, the amplitude of the 0.372 Hz component

of the FO transient response was especially large, providing a

high energy ringdown in the data. In the rightmost plots, it was

observed that the CRBs decreased with increasing global SNR

or record length, the former of which can also be attributed

to increasing amplitude in the 0.372 Hz component of the

transient. This indicates that since the onset of a FO excites

the system modes, including FO startup transients in an

analysis window can improve mode estimation accuracy.
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Fig. 2. Square root CRB of FO parameters for both FO cases as a function of FO frequency with constant local SNR (upper left), as a function of FO
frequency with constant global SNR (lower left), as a function of global SNR with constant FO frequency (upper right), and as a function of record length
with constant SNR and FO frequency (lower right).
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Fig. 3. Square root CRB of modal frequency and damping for both FO cases and ambient conditions as a function of FO frequency with constant local SNR
(upper left), as a function of FO frequency with constant local SNR (upper left), as a function of FO frequency with constant global SNR (lower left), as a
function of global SNR with constant FO frequency (upper right), and as a function of record length with constant SNR and FO frequency (lower right).

V. CONCLUSIONS

Through the derivation and analysis of the CRB on the

variance of FO parameters and modal frequency and damping,

several interesting observations were made. Arguably the most

important is that whenever possible, one should include in their

analysis window the FO startup transient. Ongoing work in

this area includes a deeper investigation into the mechanisms

behind these observations and the implications they may

have on system probing. Additionally, these results should be

extended to include FO ending transients, along with using

the CRBs to benchmark the performance of several recently

developed FO estimation and mode meter algorithms.
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