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Abstract—In this paper, the Cramér-Rao Bounds (CRB) for
the simultaneous estimation of power system electromechanical
modes and forced oscillations (FO) are derived. Two cases are
considered; in the first case only the steady-state response to the
FO is present in the measured system output used by estimation
algorithms. In the second, the startup transient of the FO is
present in addition to the steady-state response. The CRBs are
analyzed numerically to explore sensitivities to FO frequency,
signal-to-noise ratio (SNR) and observation window length. It is
demonstrated that 1) the CRB of FO parameters is not affected
by the presence of the transient response, 2) the CRB of the
system modes is not affected by the presence of an FO in steady-
state and 3) the CRB of the system modes can be drastically
reduced by the presence of a FO startup transient.

I. INTRODUCTION

The ability to estimate electromechanical modes as accu-
rately as possible during a forced oscillation (FO) event is a
critical task due to the potential for mode meters to model
the FO as a system mode and throw false alarms on low
damping [1]. With the ever-increasing penetration of inverter-
based generation and microgrids, the potential for FOs is also
increasing [2], while traditional power system components
continue to cause FOs such as the 2019 system-wide event
in the United States Eastern Interconnection [3].

A highly useful tool for assessing the accuracy of an
estimation algorithm is the Cramér-Rao Bound (CRB), which
defines the theoretical lower limit on the variance of an
unbiased estimator. The CRB may be used as a benchmark
with which to compare the variance of potential mode meters
and FO parameter estimators before a particular method is
selected for use. Additionally, analysis of the CRBs may yield
insight into the underlying processes being estimated. Such a
study was completed for mode meters under purely ambient
conditions in [4], while the authors of [5] and [6] considered
the case where unknown FOs were present in a known power
system.

This paper considers the practical case where neither the
FO nor the system parameters are known. After a brief review
of small-signal power system modeling, the CRBs for FO
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parameters and mode frequency and damping are derived for
two specific cases: one where only the steady-state response
to the FO is present, and one that includes the FO startup
transient. A simulation study is conducted that reveals several
interesting observations, the most important of which is that
the presence of transients associated with the onset of a FO can
drastically increase the accuracy of electromechanical mode
meters.

II. SYSTEM MODELS

It is well-known that for the purposes of electromechan-
ical mode meters and oscillation monitoring systems where
preprocessed PMU data are used (e.g., lowpass filtered and
detrended bus voltage angle differences), a power system un-
der ambient conditions is well-modeled with an autoregressive
moving average (ARMA) structure. When N samples of y are
collected at sampling rate f,, they are indexed from k£ = 0 to
k = N — 1 with the k" sample of system output y given as
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where A(q) and C(q) are the AR and MA polynomials in
delay operator ¢ such that ¢~ "y[k] = y[k — n], and e is
Gaussian White Noise (GWN) attributed to low-level random
load variations. The electromechanical mode frequency and
damping are computed from the system poles, i.e., the n,
roots of A(gq). For the i*" pole p;, the modal frequency in Hz
and percent damping are found as
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Note that in (1), e is the only system input being modeled.
When FOs are present in y, the autoregressive moving average
with exogenous input (ARMAX) model may be used:
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where B(q) = b, +big™ '+ + by, ¢ is the X polynomial
and u, the input FO, is in the general the sum of p cosines
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where fl, q~5i, and w; are amplitude, phase in radians, and
frequency in radians per sample. Recall that frequency in Hz
is related to radians per sample by f; = w; fs/(27). Function
I defines the FO starting and ending samples, ¢; and 7;, as
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Note that in reality the sources of these FOs are very much
a part of the power system, despite the use of the word
“exogenous” in the ARMAX acronym. For the remainder of
this paper, in order to simplify derivations and analysis, only
a single FO (p = 1) is considered. Extensions to multiple FOs
are straightforward.

The FO observed in output y depends on when the FO starts
and stops. This paper considers two specific cases. In case 1,
the FO starts long before the first observation of y, and lasts
throughout the entirety of the data record. In this case, only
the steady-state response of the FO is present in y:
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In case 2, the FO again lasts throughout the entirety of the
data record, however it starts precisely at the first sample of
y. Thus, y becomes
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where 7; are residue terms that depend upon both the FO
parameters and the coefficients of B(g) and A(g) and p;
are the poles of A(g). While both (7) and (10) contain the
same ARMA process and steady-state FO response, only
(10) contains the FO startup transient response, » . ripk.
It is demonstrated later that this additional term can have a
profound effect on the CRB of the mode meter frequency and
damping estimators.

The polynomial coefficients and FO parameters of models
(7) and (10) may be collected in a vector termed 6,. Estimating
these parameters from observations of y involves minimizing
a cost function of prediction errors, which are defined as
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where 6 is an estimate of ¢, and predictor § is the estimate of
y for a particular #. The prediction errors are thus estimates
of the random system input e. Indeed, (&, §,) = elk].
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III. ASYMPTOTIC CRAMER-RAO BOUNDS

In [7], a general expression for the asymptotic CRB of a
dynamical system is given as
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where E is the expected value operation, o2 is the variance

of e, and ® is gradient
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In practice, the expected value operation in (12) must be
approximated numerically by averaging over M Monte Carlo

simulations, each using statistically independent realization of
e. The approximate CRB is
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where v;(k, 6) is the gradient vector from the i*» Monte Carlo
trial. In practice, M = 1000 Monte Carlo trials is more than
sufficient to observe convergence in the average.

Finally, note that the electromechanical mode frequency and
damping are secondary parameters. They do not appear in 6,
but are are functions of some of the elements of 6,. In order
to find the CRB for these, the Taylor Series method used in
[4] may be applied.

In the following two subsections, the CRB are derived for
the cases defined in (7) and (10).

A. Case 1

Here only the steady-state FO response is present in .
Rewriting expression (7) as
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with elements
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where the details of the derivative calculations have been
omitted due to space constraints.

Thus, finding the CRB of 9 for a particular ARMA model
and FO involves the following steps. First, M independent
N-sample sequences of e are generated and used to create
M realizations of y. These, along with the sinusoids in (19)
- (23), are filtered through 1/C(q) or A(q)/C(q) to obtain
the M realizations of v that are used by (14) to obtain the
CRB. A subtle but very important detail here is that since y
only contains steady-state FO responses, care must be taken
to ensure that only the steady-state responses to the filtering
operations in (19) - (23) are included in the gradient vectors.

The CRB of A, ¢; and w; are found as the final three
diagonal elements of the CRB of é, and the CRB of the mode
frequency and damping are obtained by applying the the CRB
of the AR polynomial coefficients (the n, xn, upper left block
of the CRB of é) to the methods found in [4].

B. Case 2
Rewriting (10),
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Similar to Case 1, M independent realizations of e are
created and applied to (10) to generate M independent realiza-
tions of y, both of which are filtered by 1/C(q) or B(q)/C(q)
along with the sinusoids of (27) - (32) to create M realizations
of 1) that are used by (14) to obtain the CRB. Here, the
subtle but important note is that since y does contain the start-
up transient responses of the FO, so to should the gradient
elements.

Note that in this case, while 6, contains the FO frequency
common to both the input and output FO, it only contains the
amplitude and phase of the input FO. Thus, while the CRB
of wy is found as the last diagonal element of the CRB of 6,
the CRB of A; and ¢; must be obtained by applying Taylor
Series linearizations to the CRB of 6.

Referring back to (8) and (9), define X as the phasor
representation of the output FO
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where « and 3 are the real and imaginary parts of X. First,
the CRB of [oz B]T is found from the CRB of 6 as
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where the Jacobian is obtained from the real and imaginary
parts of complex Jacobian Jx
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The CRB of [Al ¢1]T is then found from the CRB of
[ 6]T as
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Finally, the CRBs of A; and ¢; are the diagonal elements of
(43), and as with Case 1, the CRB of the mode frequency and
damping are obtained from applying the Taylor Series methods
of [4] to the n, X n, upper left block of the CRB of é).

IV. SIMULATION STUDY

To illustrate how FO parameters may affect system identi-
fication accuracy, a simulation study was conducted using a
low-order ARMAX approximation of the minniWECC model.
Details on the full minniWECC model are found in [8]. As
was initially demonstrated in [4], when a single output of the
minniWECC model is preprocessed by detrending, lowpass
filtering and downsampling from 120 samples per second to
3, only a few of the system dynamics remain. The resulting
process is very well-modeled as a low-order ARMAX system.
Here, simulations were conducted with AR and MA orders of
10, and an X order of 1. The power spectral density (PSD) of
the ARMA portion of the system is shown in Fig. 1, where
the local maxima correspond to system modes that range from
0.21 Hz to 0.69 Hz. Here the main North-South interarea mode
at 0.372 Hz and 4.67% damping was considered for estimation.

For each of the two FO cases, four scenarios were consid-
ered while the output FO amplitude and phase were held at
Ay =1 and ¢; = 0.8 rad throughout. In the first scenario, the
CRBs were calculated over a range of FO frequencies while

PSD of ARMA Process
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Fig. 1. Power spectral density of the ARMA system used in the simulations.

the noise variance o was adjusted to maintain a constant local
signal-to-noise ratio (SNR) of 40 dB. Local SNR is defined
with the output FO as the signal and the PSD of the ARMA
process at only the FO frequency as the noise power. The
second scenario also found the CRBs over a range of FO
frequencies, however a constant global SNR of 9.5 dB was
maintained, where global SNR uses the average of the ARMA
PSD across the entire frequency range as the noise power. In
the third scenario, the CRBs were found over a range of global
SNR while the FO frequency was held at 0.353 Hz. Finally,
in the fourth scenario, the CRBs were found over a variety of
record lengths while the FO frequency and global SNR were
held at 0.353 Hz and 9.5 dB. Note that the first three scenarios
used record lengths of 30 minutes, chosen somewhat arbitrarily
since the CRBs are all inversely proportional to record length.
Results for the FO parameters are shown in Fig. 2. First note
that in all four scenarios, the CRBs for the two FO cases were
nearly identical to each other. This suggests that the presence
of the FO transient response has little effect on the ability
to estimate its steady-state parameters. Aside from that, the
results are to be expected. In the leftmost plots, it is illustrated
that the the CRB are nearly independent of FO frequency when
local SNR is held constant, while they reflect the shape of the
ARMA PSD (Fig. 1) when global SNR is held. Both of the
rightmost plots demonstrate that the CRBs decrease as global
SNR or record length increase, albeit at different rates.
Results for the CRBs of the mode frequency and damping
are shown in Fig. 3. Note that in all four scenarios the CRBs
from case 1 are nearly identical to those from purely ambient
conditions (no FO). This implies that when only the FO
steady-state is present in the measured output, the FO has
little effect on the CRB of the mode meter. The case 2 results
tell a different story. In the leftmost plots, a slight decrease in
CRB was observed when the FO frequency was near the 0.372
Hz mode frequency, while a large drop in CRB was observed
for FO frequencies outside the 0.2 to 0.7 Hz range of mode
frequencies. There, the amplitude of the 0.372 Hz component
of the FO transient response was especially large, providing a
high energy ringdown in the data. In the rightmost plots, it was
observed that the CRBs decreased with increasing global SNR
or record length, the former of which can also be attributed
to increasing amplitude in the 0.372 Hz component of the
transient. This indicates that since the onset of a FO excites
the system modes, including FO startup transients in an
analysis window can improve mode estimation accuracy.
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Fig. 2. Square root CRB of FO parameters for both FO cases as a function of FO frequency with constant local SNR (upper left), as a function of FO
frequency with constant global SNR (lower left), as a function of global SNR with constant FO frequency (upper right), and as a function of record length
with constant SNR and FO frequency (lower right).
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Fig. 3. Square root CRB of modal frequency and damping for both FO cases and ambient conditions as a function of FO frequency with constant local SNR
(upper left), as a function of FO frequency with constant local SNR (upper left), as a function of FO frequency with constant global SNR (lower left), as a
function of global SNR with constant FO frequency (upper right), and as a function of record length with constant SNR and FO frequency (lower right).
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