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Abstract

The widespread misuse of antibiotics has escalated antibiotic resistance into a critical

global public health concern. Beyond antibiotics, metals function as antibacterial agents.

Metal resistance genes (MRGs) enable bacteria to tolerate metal-based antibacterials
and may also foster antibiotic resistance within bacterial communities through
co-selection. Thus, predicting bacterial MRGs is vital for elucidating their involvement
in antibiotic resistance and metal tolerance mechanisms. The “best hit” approach is
mainly utilized to identify and annotate MRGs. This method is sensitive to cutoff values
and produces a high false negative rate. Other than the best hit approach, only a few
antimicrobial resistance (AMR) detection tools exist for predicting MRGs. However,
these tools lack comprehensive annotation for MRGs conferring resistance to multiple
metals. To address such limitations, we introduce DeepMRG, a deep learning-based
multi-label classifier, to predict bacterial MRGs. Because a bacterial MRG can confer
resistance to multiple metals, DeepMRG is designed as a multi-label classifier capable
of predicting multiple metal labels associated with an MRG. It leverages bit score-based
similarity distribution of sequences with experimentally verified MRGs. To ensure
unbiased model evaluation, we employed a clustering method to partition our dataset
into six subsets, five for cross-validation and one for testing, with non-homologous
sequences, mitigating the impact of sequence homology. DeepMRG consistently
achieved high overall F1-scores and significantly reduced false negative rates across a
wide range of datasets. It can be used to predict bacterial MRGs in metagenomic or
isolate assemblies. The web server of DeepMRG can be accessed at
https://deepmrg.cs.vt.edu/deepmrg and the source code is available at
https://github.com/muhit-emon/DeepMRG under the MIT license.

Introduction

Antibiotic resistance poses a significant threat to global human health and is
increasingly becoming a silent pandemic due to the widespread and inappropriate use of
antibiotics [1,2]. In response, there has been an increased reliance on metal-based
antibacterial agents. However, it is important to note that bacteria can develop resistance
to metals through exposure [3]. Moreover, the use of these antibacterial metals can
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contribute to the emergence and persistence of antibiotic resistance in bacterial
populations through co-selection [4, 5]. Therefore, it is crucial to systematically and
comprehensively detect and annotate bacterial metal resistance genes (MRGs) to gain
insights into their role in developing antibiotic resistance and to understand the key
mechanisms behind bacterial tolerance to metals.

The prediction of an MRG is primarily conducted using the “best hit” method, which
involves comparing the query gene sequence to existing reference databases using
programs such as BLAST [6] and DIAMOND [7] and annotating the gene’s function
based on the reference sequence it shows the highest similarity to [8,9]. However, the
best hit method requires setting identity cutoff scores (and/or alignment lengths) and is
sensitive to these cutoff values, making it challenging to decide on an appropriate
threshold. Generally, a high identity cutoff is applied when using the best hit method to
predict bacterial MRGs. For instance, the authors in [10] and [11] employed the best hit
method with an identity greater than 80% to reference sequences to predict MRGs.
While the best hit method with a high cutoff value generally exhibits a low false positive
rate [12], it can result in a high false negative rate [8, 13].

Apart from the best-hit approach, MEGARes 3.0 (AMR++ 3.0) [14],

AMR-meta [15], and AMRFinderPlus [16] can identify MRGs. MEGARes 3.0
(AMR++ 3.0) and AMR-meta are tailored for metagenomics short-reads and are not
suitable for predicting MRGs in contigs. Additionally, These programs lack detailed
annotation for MRGs that confer resistance to multiple metals. For instance, genes
associated with resistance to multiple metals are annotated in these programs to a
general class called multi-metal resistance, and no details are provided as to what kinds
of metals are included in “multi-metal”. On the other hand, AMRFinderPlus can detect
MRGs from protein sequences and provide detailed annotations for MRGs conferring
resistance to multiple metals using BLAST and HMMER searches. However, its
annotation is limited to a subset of possible multi-label scenarios, as per the BacMet [5]
databases, the most comprehensive databases of bacterial metal resistance genes.

Here, we introduce DeepMRG, a multi-label classifier that utilizes deep learning to
predict bacterial MRGs. We designed DeepMRG as a multi-label classifier since an
MRG can confer resistance to multiple metals. Our model can provide specific
annotations for multi-metal resistance genes, indicating the particular metals to which
the gene confers resistance. DeepMRG aligns a query gene sequence with
experimentally confirmed MRGs, extracting alignment bit scores. These alignment bit
scores are then used to derive the similarity distribution of the query sequence with 66
types of experimentally verified MRGs. This bit score-based similarity distribution
serves as the feature for the deep neural networks. To minimize the effect of sequence
homology on model evaluation, we created the training, validation, and test datasets
with a clustered split method. DeepMRG demonstrated good predictive performance for
MRGs during both 5-fold cross-validation and on the test dataset. Furthermore, we
assessed DeepMRG’s ability to identify and classify sequences with low similarity to
experimentally confirmed MRGs. DeepMRG was also validated using an independent
set of heavy metal resistance genes and in silico spike-in experiment. DeepMRG
excelled in precision, recall, and F1-score in all the conducted experiments, with notably
lower false negative rates. DeepMRG is implemented as an easy-to-use web server
available via https://deepmrg.cs.vt.edu/deepmrg and as a command line tool
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freely available at https://github.com/muhit-emon/DeepMRG. It is fully 78
documented in S1 File. 79
Materials and methods 80
Data collection and processing 81

We collected antibacterial biocide and metal resistance genes from BacMet [5]. BacMet &

contains 753 gene sequences in a database named BacMet EXP DB where the genes 83
have been experimentally verified to confer resistance to metals and/or antibacterial 84
biocides. Additionally, it provides BacMet Predicted DB, a database containing 155,512 s
potential resistance genes compiled from public sequence repositories based on 86
sequence homology to genes with experimentally verified resistance functions. 87

We focus on predicting bacterial MRGs in this paper. Therefore, we extracted MRGs s
from BacMet databases by searching for metal names in gene metadata, excluding 89
genes that confer resistance only to antibacterial biocides. It left us 485 sequences in 90

BacMet EXP MRG DB and 93,367 sequences in BacMet Predicted MRG DB, as shown o
in Fig 1A. BacMet EXP MRG is used throughout the paper to denote a gene in BacMet o
EXP MRG DB, and BacMet Predicted MRG is used to indicate a gene sequence 03
belonging to BacMet Predicted MRG DB. 94

We validated the annotations of BacMet Predicted MRGs by taking their best hitto o5
BacMet EXP MRG DB. We employed DIAMOND [7], a tool similar to BLAST [6] but o6
considerably faster, to align the BacMet Predicted MRGs against BacMet EXP MRG o7
DB and identified their best hit. Based on the sequence identity, e-value, and coverage s
of the best hit alignment, the BacMet Predicted MRGs were divided into the following o
two databases, as shown in Fig 1B: 100

1. BacMet Predicted MRG DB partition 1: A BacMet Predicted MRG is included 101
in the BacMet Predicted MRG DB partition 1 if its best hit to a BacMet EXP 102
MRG has > 50% sequence identity, e-value < le-10, alignment coverage > 80%, 103
and it has the same metal resistance annotation to the BacMet EXP MRG. 78,012 104
genes passed these constraints and were added to the BacMet Predicted MRG DB 105
partition 1. We set the cutoffs of identity and e-value following [17] where these 106
thresholds were used to identify high and mid quality antibiotic resistance genes 107
from public databases. The alignment coverage cutoff was selected following [5]. 108

2. BacMet Predicted MRG DB partition 2: A BacMet Predicted MRG is added to 109
the BacMet Predicted MRG DB partition 2 if its best hit to a BacMet EXP MRG 110
has < 50% sequence identity, e-value < le-10, alignment coverage > 80%, and 111
possesses identical metal resistance annotation as the BacMet EXP MRG. After 112
satisfying all these constraints, 5885 genes were placed in the BacMet Predicted 113

MRG DB partition 2. 114

We used the sequences in BacMet Predicted MRG DB partition 1 to construct the 115
training, validation, and test datasets for our DeepMRG model. We held out the 116
sequences in BacMet Predicted MRG DB partition 2 and the test set sequences for 117
evaluating and comparing the performance of DeepMRG with the BLAST best hit 118
method and AMRFinderPlus [16]. 119
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Fig 1. Collection and processing of data. A: Extraction of MRGs from BacMet [5] databases by searching metal names in
gene metadata. B: Partition of BacMet Predicted MRG DB sequences into two databases. BacMet Predicted MRGs were
aligned against the experimentally verified MRGs using DIAMOND [7]. The best hit was selected for each BacMet Predicted
MRG and a set of filters were applied to create BacMet Predicted MRG DB partitions 1 and 2.

Construction of training, validation, and test datasets using clustered split

We created the training, validation, and test datasets from the BacMet Predicted MRG
DB partition 1 following the non-homologous database split technique employed in [18].
The sequences in BacMet Predicted MRG DB partition 1 are categorized into 63
different types based on the metal labels they confer resistance to (types and the number
of sequences within each type are presented in S2 File). We utilized MMseqs2 [19] to
cluster the sequences in each type using 40% sequence identity and 50% coverage
thresholds. Then, the clusters in each type were randomly split into six sets, where an
entire cluster was placed in one of the six sets. Subsequently, we combined the
corresponding sets from all 63 types and obtained six datasets (D1-D5 and TEST).
Datasets D1 to D5 were used for 5-fold cross-validation, and the dataset TEST was for
testing, as shown in Fig 2. Constructing training, validation, and test datasets utilizing
this clustered split approach reduces the impact of sequence homology on evaluating the
deep learning model.
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Fig 2. Clustered split. The sequences in BacMet Predicted MRG DB partition 1 are categorized
into 63 types based on their metal resistance labels. The sequences in each type (type X in this
figure where 1 < X < 63) were grouped into clusters using MMseqs2 [19] at 40% identity and
50% coverage. The clusters were randomly partitioned in six sets (D1x-D5x and TESTy) where
an entire cluster was included in one of the six sets. Finally, the corresponding datasets from the
remaining types were combined to make the datasets used for 5-fold cross-validation and testing
(D1-D5 and TEST) of our deep learning model.

Feature extraction

Deep learning models require a sequence to be represented as a vector of numerical
values called features for prediction or classification tasks. In this paper, we adopted the
concept of bit score-based similarity distribution used in [17] and [20]. The features are
the alignment bit scores between full-length gene sequences and 66 types of
experimentally verified MRGs available in BacMet EXP MRG DB. We used the bit
score as the indicator of sequence similarity because it is independent of the database
size, unlike the e-value [21]. The process for computing features for a full-length gene
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sequence is outlined as follows (refer to Fig 3): 142

1. The query gene sequence (QS) is aligned to the experimentally confirmed 485 143
MRGs in BacMet EXP MRG DB using DIAMOND under the ‘very sensitive’ 144
parameter with the alignment constraints: a minimum sequence identity of 20%, 145
an e-value lower than le-7, and a minimum alignment coverage of 60%. If QS 14
does not have alignment with any of the 485 BacMet EXP MRG:s, it is filtered out 147
and not considered for further prediction. Otherwise, we go to the following steps 148

to calculate the feature vector of QS. The alignment step works as a filter and 149
only passes MRG-like sequences to our deep learning model for prediction. 150
2. BacMet EXP MRGs are categorized into 66 types according to their metal 151
resistance labels (types and the number of sequences within each type are 152
presented in S3 File). 153

3. Here, we use the type X (1 < X < 66) to demonstrate how we compute the feature 154
vector for QS. Assume that there are N MRGs in type X. The alignment bit scores 155
between QS and these N MRGs are obtained from step 1. Subsequently, we take 156
the maximum among these N bit scores, yielding bit scorey, which serves as the 157
representative bit score between QS and type X of experimentally verified MRGs. 158

Similarly to the previous procedure, we get 66 bit scores which are then normalized 150

to the [0, 1] interval to represent the similarity distribution of QS with 66 types of 160
experimentally confirmed bacterial MRGs. Thus, the feature vector of QS for 161
DeepMRG is Vps € R where Vs = [bit score, ..., bit scoress, ... , bit scoreg). 162
Deep learning model architecture and training 163
Subsequently, we trained DeepMRG, a multi-label deep neural network model, for 164

classifying a gene sequence into one or multiple metal resistance categories by taking 165
into account the similarity distribution of the sequence to 66 types of experimentally 166
verified bacterial MRGs. Deep learning models can discern relevant features without 167
human interference, which is one of its key advantages [22]. The DeepMRG model 168
consists of an input layer, three hidden dense layers with 55, 45, and 35 nodes 169
respectively, and an output layer. Each hidden dense layer utilizes the ELU activation 170
function. To prevent overfitting, we applied dropout regularization with a dropout rate 171
of 10% after each hidden layer. The Adam optimizer was used to update the weights, 17
and binary cross entropy served as the loss function. The output layer consists of 23 173
nodes (one per metal). We employed the sigmoid activation function in the output layer, 174
which computes the likelihood scores for each metal category. The model architecture is 175
shown in Fig 4. The model was implemented using Python 3.6 with Scikit-learn 0.24.2 17
and Keras 2.2.0 with Tensorflow 2.2.0 backend. 177

We performed 5-fold cross-validation using sets D1 to D5 (see Fig 2), training five 178
deep neural networks, each sequentially using one set for validation and the remaining 17

four for training. 180

In 5-fold cross-validation, we trained five deep neural networks. For an input query 1s
gene sequence, these five neural networks produce likelihood scores for each metal 182
category. Then, we sum the scores from the five neural networks for each metal (the 163

6/20


https://doi.org/10.1101/2023.11.14.566903
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.14.566903; this version posted April 10, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

maximum achievable score is 5 per metal). The query sequence is then classified into  1s4
the metal categories with the corresponding score of more than a threshold (default 3.5). 1ss

Reference
BacMet EXP MRG DB BacMet EXP MRG DB
(485 MRGs) (485 MRGs)
; l
Alignment Categorize into 66 types of MRGs
Query Gene Sequence (QS) ———> (DIAMOND) ™77 based on metal resistance labels
identity > 20%

e-value < le-7

coverage > 60%
max target seqs = 485

EXP MRGs EXP MRGs

Feature representation of QS

1
1
1
1
1
1
1
1
1
1
: Type 1 Type 66
1
1
1
1
1
1
1
1
1
1

--------------- » bitscorey ; « « « « bitscorey y

| |
)

Maximum

l

bit scorey

Obtain feature vector of QS

[bit scoreq, . ... ,bitscoress, . ... ,bitscoreg]

Fig 3. The feature vector construction process of a query gene sequence (QS). QS is aligned with the experimentally verified
bacterial MRGs using DIAMOND [7]. BacMet EXP MRGs are categorized into 66 types according to their metal resistance labels.
We use type X (1 < X < 66) in this figure to show the feature extraction process for QS. We assume that N experimentally verified
MRGs are in type X. We get the bit scores between QS and these N MRGs from the alignment step. Selecting the highest bit score
among these N scores yields bit scorey, representing the similarity between QS and type X of BacMet EXP MRGs. Similarly, we
get 66 such bit scores for each of the 66 types. The feature vector Vg € R% of QS contains these bit scores as feature values.
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bit score-based similarity distribution with 66 types
of experimentally confirmed MRGs
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Nodes = 45

| Elu + Dropout (0.1) >— Dense layers

Nodes =35

VElu + Dropout (0.1)

Nodes =23
—
Sigmoid
Y
Multi-label
output

Fig 4. DeepMRG model architecture.
Competing methods 186

We compared our tool with the BLAST [6] best hit method and AMRFinderPlus [16] 187
for classifying MRGs using protein or gene sequences as input. 188
189

BLAST best hit. BLAST [06] is one of the widely used sequence alignment tools. We 100

aligned the query sequences against the BacMet experimentally confirmed MRG 101
database using BLASTp and took the best hit to annotate them. We ran the BLASTp 102
program with the option ‘-max _target_seqs 1’ and utilized various sequence identity 103
cutoffs as the representatives of the best hit approach. 104

195
AMRFinderPlus. AMRFinderPlus [16] classifies MRGs by employing BLAST and 196
HMMER searches against its reference gene catalog. This catalog encompasses 107
antimicrobial resistance, acid, biocide, metal, heat resistance genes, and virulence genes. 19
We ran the AMRFinderPlus program with the default parameters and utilized the ‘plus’ 100

subset of the reference gene catalog (database version 2024-1-31.1), which includes 200
genes associated with metal resistance. 201
Results 202
Performance evaluation metrics 203

We evaluated the performance of DeepMRG using both label-based and sample-based 204
metrics. Label-based metrics assess the model’s performance based on the prediction of 205
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class labels. We used precision, recall, and F1-score as label-based metrics. We also 206
reported both macro-average and weighted-average results. The macro-average 207
calculates the average performance of all classes, treating each class equally. On the 208

other hand, the weighted average takes into account the number of sequences in each 209
class, providing a performance measure that is influenced by the class distribution. The 210
weighted-average is particularly useful when the class sizes are imbalanced. 211

Additionally, we utilized sample-based metrics to evaluate the performance of our 212
model. Sample-based metrics assess the model’s performance on an individual sample 213

level within the dataset. As sample-based metrics, we reported samples-average 214
precision, samples-average recall, and samples-average F1-score. A detailed description 215
of the performance evaluation metrics is provided in S4 File. 216
Performance of DeepMRG under 5-fold cross-validation 217
We evaluated the performance of DeepMRG through 5-fold cross-validation using 218

clustered splits (see Fig 2). The overall F1-scores, including their mean and standard 219
deviation, obtained from all five cross-validation experiments, are presented in Table 1. 220
DeepMRG consistently achieved high F1-scores, with an average macro-average of 21
98.2%, an average weighted-average of 98.8%, and an average samples-average of 222
98.4%. These results indicate that DeepMRG can accurately predict MRGs and exhibits 223
good generalization capabilities as a deep learning model. Furthermore, the standard 224
deviations of 1.3% for macro-average F1-scores, 0.4% for weighted-average, and 0.5% 225

for samples-average F1-scores across five independent cross-validation experiments 226
highlight DeepMRG’s stability. Detailed classification reports for each metal, including 227
precision, recall, and F1-score per fold, can be found in S5 File. 228
Performance on the test dataset 220

We compared DeepMRG with AMRFinderPlus and BLAST best hit approaches on the 230

test dataset comprising 11,447 sequences created using a clustered split method, as 231
shown in Fig 2. The overall performance of these methods on the test dataset is 232
presented in Table 2, and the individual metal category-wise results are shown in Fig 5. 233
Upon analyzing the reference gene catalog of AMRFinderPlus, we found that it 234
identifies MRGs associated with resistance to 12 metals, including arsenic (As), 235
cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), gold (Au), lead (Pb), mercury 236
(Hg), nickel (Ni), silver (Ag), tellurium (Te), and zinc (Zn). However, on our test 237

dataset, AMRFinderPlus could not detect any MRGs conferring resistance to cadmium  23s
(Cd), cobalt (Co), lead (Pb), tellurium (Te), and zinc (Zn). Additionally, it exhibited 239
poor recall rates for arsenic (As), chromium (Cr), copper (Cu), nickel (Ni), and silver 240
(Ag), while achieving very high F1-scores for gold (Au) and mercury (Hg). BLAST 241

best hit with an identity cutoff at 80% (BLAST-80%), a common choice in prior 242
studies [10, 11] to predict bacterial MRGs, achieved very high precision (> 0.99) for all 243
metal categories on our test dataset. However, its recall was compromised for many 244

metals, impacting the overall F1-scores. BLAST best hit with an identity cutoff of 60% 245
(BLAST-60%) maintained the same precision levels as BLAST-80% while significantly 246
improving recall across all metal categories, resulting in a higher overall F1-scores on 247
the test dataset. DeepMRG also exhibited very high precision (> 0.98) for all metal 248
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Table 1. The 5-fold cross-validation results of DeepMRG to predict MRGs.

Fold Macro-average F1-score Weighted-average F1-score Samples-average F1-score
Ist 0.99 0.99 0.99
2nd 0.99 0.99 0.98
3rd 0.98 0.98 0.98
4th 0.99 0.99 0.98
Sth 0.96 0.99 0.99
Mean + SD 0.982 £ 0.013 0.988 £ 0.004 0.984 £ 0.005

Performance assessment of DeepMRG through 5-fold cross-validation. Here, SD stands for standard deviation.

Table 2. Performance on test dataset.

labels, akin to BLAST-80% and BLAST-60%. It demonstrated similar or better recall
rates than the best hit methods across all metals except copper (Cu) and achieved better
F1-scores than AMRFinderPlus for most metal categories. For gold (Au) and mercury
(Hg) resistance, both DeepMRG and AMRFinderPlus performed equally well. Overall,
DeepMRG outperformed AMRFinderPlus and BLAST-80% in terms of F1-scores. It
achieved a similar weighted-average F1-score and samples-average F1-score as
BLAST-60%, along with a slightly better macro-average F1-score than BLAST-60%.

Performance on the sequences in BacMet Predicted MRG DB partition 2

We employed DeepMRG to classify the 5885 sequences from BacMet Predicted MRG
DB Partition 2 and conducted a performance comparison with AMRFinderPlus and
BLAST best hit approaches. The construction process of this database is detailed earlier
in the “data collection and processing” section. None of these 5885 sequences were
utilized for training DeepMRG. Notably, 75% of these sequences exhibit less than 60%
sequence identity with our training set, as shown in S1 Fig. Because the sequences in
BacMet Predicted MRG DB Partition 2 have less than 50% sequence identity with the
BacMet EXP MRGs (see Fig 1), using a 50% or greater identity cutoff in the BLAST
best hit method would result in these potential MRGs not being detected. Therefore, in
this section, we employed 40% and 30% identity cutoff values for the BLAST best hit
method (namely BLAST-40% and BLAST-30%) to compare with DeepMRG.
BLAST-40% achieved similar or better precision compared to BLAST-30% on
individual metal labels, while BLAST-30% exhibited higher recall rates (see S6 File).

Methods Macro-average F1-score Weighted-average Fl1-score Samples-average F1-score
DeepMRG 0.99 0.98 0.95
AMRFinderPlus 0.31 0.17 0.10
BLAST best hit (80%, le-7, 60%) 0.87 0.84 0.71
BLAST best hit (60%, le-7, 60%) 0.98 0.98 0.95

Performance of DeepMRG, AMRFinderPlus, and BLAST best hit methods under different parameters on test dataset. Here,
BLAST best hit (x%, y, z%) refers to the best alignment hit with identity > x%, e-value <y, and coverage > z%.
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Fig 5. Precision, recall, and F1-score comparison among DeepMRG, AMRFinderPlus, and BLAST best hit approaches with
different parameter settings for individual metal categories in the test dataset. The precision, recall, and F1-score values for
metal categories where AMRFinderPlus does not provide predictions are denoted as N/A. BLAST best hit (x%, y, z%) in this
figure refers to the best alignment hit with identity > x%, e-value <y, and coverage > z%. As a result of the clustered split, not all
23 metal labels are present in the test dataset.

The overall F1-scores of DeepMRG, AMRFinderPlus, BLAST-40%, and BLAST-30%
are presented in Table 3. AMRFinderPlus performed poorly on the BacMet Predicted
MRG DB partition 2 dataset, only identifying MRGs associated with resistance to
mercury (Hg) with an F1-score of 0.5. DeepMRG outperformed AMRFinderPlus,
BLAST-40%, and achieved overall F1-scores highly comparable to BLAST-30%. For
most metal categories, DeepMRG demonstrated higher F1-scores than BLAST-40% and
F1-scores on par with BLAST-30%, except for silver (Ag).

This comparison underscores the best hit approach’s sensitivity to sequence identity
cutoffs, while DeepMRG eliminates the need for these threshold settings, delivering
consistent and excellent performance in predicting MRGs across diverse datasets.
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Table 3. Performance on BacMet Predicted MRG DB partition 2.

Methods Macro-average F1-score Weighted-average Fl1-score Samples-average F1-score
DeepMRG 0.96 0.99 0.98
AMRFinderPlus 0.04 0.04 0.03
BLAST best hit (40%, le-7, 60%) 0.90 0.87 0.80
BLAST best hit (30%, le-7, 60%) 0.99 0.99 0.99

Performance of DeepMRG, AMRFinderPlus, and BLAST best hit methods with different parameter settings on the sequences
belonging to BacMet Predicted MRG DB partition 2. Here, BLAST best hit (x%, y, z%) refers to the best alignment hit with
identity > x%, e-value <y, and coverage > z%.

Validation through an independent set of heavy metal resistance genes

Based on an independent study by Klonowska et al. [23], we obtained 53 heavy metal
resistance (HMR) genes from heavy metal-tolerant Cupriavidus strain STM 6070 to
evaluate DeepMRG’s ability to predict novel bacterial MRGs. In this study, the authors
conducted wet lab experiments to demonstrate that STM 6070 exhibits significantly
higher tolerance to Ni>*and Zn>* concentrations compared to Cupriavidus taiwanensis
strains. Moreover, computational and comparative genomics approaches were used to
identify HMR genes in the STM 6070 genome, potentially involved in arsenic,
cadmium, chromium, cobalt, copper, nickel, silver, and zinc resistance.

Employing a sequence identity threshold of 50% or more in the best hit approach is a
common practice in bioinformatics [24]. Therefore, we set the identity cutoff parameter
to 50% for the BLAST best hit method (BLAST-50%) and compared its results with
those of DeepMRG for the independent dataset. AMRFinderPlus failed to detect any
HMR gene in the independent dataset using its default parameters. Subsequently, we
re-ran the tool with the identity parameter set to 50% using the option ‘-i 0.5’, denoted
as AMRFinderPlus-50%. The prediction results of DeepMRG, AMRFinderPlus-50%,
and BLAST-50% in terms of F1-scores for the HMR genes in the independent dataset
are shown in Table 4. BLAST best hits of these HMR genes against the experimentally
validated MRGs, along with details on sequence identity and alignment coverage, are
presented in S7 File. While BLAST-50% exhibited better precision for nickel (Ni) and
silver (Ag), DeepMRG consistently achieved equal or higher recall than BLAST-50%
for all eight metal labels in the independent set (refer to Table 1 of S8 File).
AMRFinderPlus-50%, on the other hand, was unable to identify any HMR genes

associated with resistance to cadmium (Cd), chromium (Cr), cobalt (Co), and zinc (Zn).

Although it showed better precision than DeepMRG for predicting nickel (Ni)
resistance, DeepMRG demonstrated higher F1-scores than AMRFinderPlus-50% for all
eight metals available in the independent dataset, surpassing it in overall F1-scores.
Additionally, DeepMRG yielded higher F1-scores than BLAST-50% for all metals
except nickel (Ni), outperforming BLAST-50% in overall F1-scores. It is noteworthy
that STM 6070 displays higher tolerance to Ni>Tand Zn>*, and DeepMRG achieved
high recall (> 0.75) for both metals.

We found that out of these 53 HMR genes, six were initially filtered out by our
alignment step due to high e-value and low coverage. Adjusting the e-value and
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Table 4. Performance on the independent dataset.

Methods Macro-average F1-score Weighted-average Fl1-score Samples-average F1-score
DeepMRG 0.72 0.75 0.71
AMRFinderPlus-50% 0.20 0.14 0.17
BLAST best hit (50%, le-7, 60%) 0.58 0.56 0.47

Performance of DeepMRG, AMRFinderPlus with 50% identity threshold (AMRFinderPlus-50%), and BLAST best hit
method at 50% identity cutoff (BLAST-50%) on the independent set of Cupriavidus strain STM 6070 HMR genes. BLAST
best hit (x%, y, z%) refers to the best alignment hit with identity > x%, e-value <y, and coverage > z%.

coverage cutoffs to 1e-3 and 40%, respectively, following [5,25], we re-evaluated
DeepMRG on the independent dataset. Although two genes were still filtered out during
the alignment step, DeepMRG demonstrated improved performance as shown in Tables
2 and 3 of S8 File.

Validation of DeepMRG through an in silico spike-in experiment

MRGs might constitute only a minor portion of the genes in real-world microbial
datasets. Thus, assessing how well DeepMRG performs when non-target genes are
prevalent is essential. To evaluate DeepMRG’s ability to predict a small number of
MRGs within a majority of non-target genes, we constructed a negative microbial
dataset simulating a spike-in metagenomic experiment. In this section, our primary
emphasis is on the binary classification performance of DeepMRG, specifically in
distinguishing positive samples (MRGs) from negative samples. To create negative
samples, we collected 27,036 bacterial housekeeping genes from UniProt [26], using
184 different Gene Ontology (GO) terms obtained from [27]. The associated GO terms
and biological functions for these genes can be found in S9 File. Employing MMseqs?2
at 30% identity and 50% coverage, we conducted clustering of the housekeeping genes
together with the experimentally validated MRGs. Those housekeeping genes sharing a
cluster with an experimentally confirmed MRG were excluded, resulting in a final set of
26,377 genes as negative samples. Next, we selected the 53 HMR genes from the
independent dataset to serve as positive samples. The resulting spike-in dataset
comprised a total of 26,430 genes, with the positive samples accounting for
(53/26,430)% = 0.2%. DeepMRG achieved an 85% recall rate, identifying 45 out of
53 HMR genes, with a very low false positive rate (< 1%). This highlights DeepMRG’s
efficacy in predicting MRGs within a large pool of negative samples, mirroring
real-world scenarios where MRGs account for a small fraction of the total genes.

Application of DeepMRG on metagenomic or isolate assembly data

DeepMRG can be applied to metagenomic or isolate assemblies to predict bacterial
MRGs. We implemented a pipeline, as shown in Fig 0, for predicting bacterial MRGs
from metagenomic or isolate assembled contigs. This pipeline takes assembled contigs
as input and employs Prodigal [25] to predict genes from the contigs. These predicted
genes are then aligned to the experimentally confirmed 485 MRGs in BacMet EXP
MRG DB using DIAMOND with the alignment parameters: sequence identity > 20%,
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e-value < le-7, and alignment coverage > 60% as discussed earlier in the “feature
extraction” section. Then, using our feature computation approach, each predicted gene
is represented by a vector V € R referring to the bit score-based similarity distribution
with 66 types of BacMet EXP MRGs. Finally, DeepMRG is employed to identify and
annotate MRGs. The entire pipeline was built using Nextflow [29], with parallel
computation for the gene prediction step by Prodigal.

Discussion

In this paper, we developed a deep learning model, DeepMRG, for bacterial MRG
classification. To the best of our knowledge, DeepMRG is the first work solely designed
for bacterial MRG prediction which can offer detailed annotation for multi-metal
resistance genes, indicating the specific metal labels to which the gene confers
resistance. It leverages bit-score based similarity distribution with 66 types of
experimentally confirmed MRGs. To mitigate the impact of sequence homology on
model evaluation, we utilized a clustered split method with 40% identity threshold to
create the training, validation, and test datasets. DeepMRG’s performance on the
validation and test datasets demonstrates its ability to generalize well. DeepMRG
performed better than AMRFinderPlus and the BLAST best hit methods on the test
dataset. It outperformed AMRFinderPlus in identifying and classifying sequences in the
BacMet Predicted MRG DB partition 2 dataset, where the sequences exhibit lower
similarity (< 50%) to experimentally validated MRGs. Moreover, DeepMRG achieved
comparable performance with the BLAST best hit method in this dataset. In the
independent set of heavy metal resistance (HMR) genes from the Cupriavidus strain
STM 6070, DeepMRG achieved better performance than AMRFinderPlus and the
BLAST best hit method. Based on wet lab experiments, the strain STM 6070 exhibits
heightened tolerance to Ni>*and Zn’* concentrations. Our model, DeepMRG,
demonstrated a high recall (> 0.75) in predicting the HMR genes of STM 6070 that
confer resistance to these two metals. This validation underscores the effectiveness of
our model in real-world scenarios. With the increasing prevalence of antimicrobial
resistance worldwide, our tool can assist researchers in precisely and accurately
identifying MRGs for effective mitigation of resistance spread.

Our model focuses entirely on MRG prediction. Users interested in multiple types of
antimicrobial resistance (AMR), such as antibiotic drug and metal resistance, can
combine our tool with others to obtain a more comprehensive AMR profile. For
instance, if a gene sequence confers resistance to beta-lactams, copper, and zinc, users
can employ DeepARG [17], HMD-ARG [30], ARG-SHINE [31], etc., for beta-lactam
resistance prediction. DeepMRG can be utilized to predict metal resistances of the gene
sequence.

Availability and future directions

DeepMRG can be accessed through our web server at
https://deepmrg.cs.vt.edu/deepmrg, providing a user-friendly interface for
bacterial MRG prediction tasks. Alternatively, it can be installed locally and run as a
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Fig 6. Pipeline for predicting bacterial MRGs from assembled contigs using DeepMRG.

command-line tool. The source code of DeepMRG, along with detailed instructions for
installation and execution, can be found on our GitHub repository at
https://github.com/muhit-emon/DeeplMRG. All the datasets used in this paper are
available from Zenodo (https://doi.org/10.5281/zenodo.10070602).

DeepMRG can process either full-length gene sequences or pre-assembled contigs
for MRG prediction. In the case of contigs, the first step involves predicting open
reading frames (ORFs), and subsequently, the resulting protein sequences are fed into
DeepMRG for MRG prediction. However, the current pipeline of DeepMRG has a
limitation in that it cannot directly handle short reads without the need for assembly. To
address this limitation, our future plans involve expanding DeepMRG’s capabilities to
enable direct prediction from short reads, eliminating the need for assembly. This
development would significantly enhance DeepMRG’s applicability in genomics or
metagenomics research and enable more efficient analysis of short read data.

As DeepMRG’s initial step involves aligning query gene sequences with
experimentally validated MRGs, it might face some drawbacks typically associated with
alignment-based methods. For example, DIAMOND may fail to identify MRGs very
diverged from the experimentally validated MRGs, leading to false negatives.
Comparatively, protein structures are more conserved than sequences and, therefore, can
be leveraged to improve the performance of the prediction models. Consequently, we
aim to incorporate protein 3D structures and protein language model (PLM) generated
embeddings into DeepMRG. This integration of structural data and PLM is expected to
significantly enhance the accuracy and reliability of the prediction model, providing
deeper insights into the functional properties and mechanisms underlying metal
resistance. By leveraging such information, DeepMRG will be better equipped to make
precise predictions and contribute to a more comprehensive understanding of MRGs.

Supporting information

S1File. DeepMRG documentation. Complete documentation for using DeepMRG.
(PDF)
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S2 File. Types of the sequences in BacMet Predicted MRG DB partition 1. Types
of the sequences belonging to BacMet Predicted MRG DB partition 1 and the number

of sequences within each type.
(PDF)

S3 File. Types of BacMet EXP MRG DB sequences. Types of the sequences in

BacMet EXP MRG DB and the number of sequences within each type.
(PDF)

S4 File. Performance evaluation metrics. Details of the performance evaluation

metrics used in our paper.
(PDF)

S5 File. Detailed results of DeepMRG under 5-fold cross-validation. Individual
metal category-wise classification reports of DeepMRG for each fold under the 5-fold

cross-validation experiment.
(PDF)

S6 File. Detailed results of DeepMRG, AMRFinderPlus, and BLAST best hit

approaches on BacMet Predicted MRG DB partition 2. Individual metal

category-wise classification reports of DeepMRG, AMRFinderPlus, and BLAST best
hit methods (under different parameters) on the sequences in BacMet Predicted MRG

DB partition 2.
(PDF)

S7 File. BLAST best hit sequence identity of Cupriavidus strain STM 6070 heavy

metal resistance (HMR) genes against the experimentally confirmed MRGs.

BLAST best hits of all 53 STM 6070 HMR genes against the BacMet experimentally

confirmed MRG database, including sequence identity and alignment coverage
information.
(PDF)

S8 File. Detailed results of DeepMRG, AMRFinderPlus with 50% identity

threshold (AMRFinderPlus-50%), and BLAST best hit at 50% sequence identity

cutoff (BLAST-50%) on the independent set. (Table 1) Individual metal
category-wise classification reports of DeepMRG, AMRFinderPlus-50%, and

BLAST-50% on the HMR genes in the independent dataset. (Table 2) The overall
F1-scores of DeepMRG (with the initial DIAMOND alignment parameters: identity >
20%, e-value < le-3, and alignment coverage > 40%) on the independent dataset.
(Table 3) Individual metal category-wise classification results of DeepMRG (with the
initial DIAMOND alignment parameters: identity > 20%, e-value < le-3, and coverage

> 40%) on the independent set.
(PDF)
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S9 File. Gene Ontology (GO) terms of bacterial housekeeping genes. Biological
functions and GO terms associated with the bacterial housekeeping genes used to
construct the negative microbial dataset.

(PDF)

S1Fig. Sequence identity histogram of BacMet Predicted MRG DB partition 2
against our training dataset. Histogram of the best hit identity of the sequences in
BacMet Predicted MRG DB partition 2 with our training dataset.

(TIF)
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