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Abstract 1

The widespread misuse of antibiotics has escalated antibiotic resistance into a critical 2

global public health concern. Beyond antibiotics, metals function as antibacterial agents. 3

Metal resistance genes (MRGs) enable bacteria to tolerate metal-based antibacterials 4

and may also foster antibiotic resistance within bacterial communities through 5

co-selection. Thus, predicting bacterial MRGs is vital for elucidating their involvement 6

in antibiotic resistance and metal tolerance mechanisms. The “best hit” approach is 7

mainly utilized to identify and annotate MRGs. This method is sensitive to cutoff values 8

and produces a high false negative rate. Other than the best hit approach, only a few 9

antimicrobial resistance (AMR) detection tools exist for predicting MRGs. However, 10

these tools lack comprehensive annotation for MRGs conferring resistance to multiple 11

metals. To address such limitations, we introduce DeepMRG, a deep learning-based 12

multi-label classifier, to predict bacterial MRGs. Because a bacterial MRG can confer 13

resistance to multiple metals, DeepMRG is designed as a multi-label classifier capable 14

of predicting multiple metal labels associated with an MRG. It leverages bit score-based 15

similarity distribution of sequences with experimentally verified MRGs. To ensure 16

unbiased model evaluation, we employed a clustering method to partition our dataset 17

into six subsets, five for cross-validation and one for testing, with non-homologous 18

sequences, mitigating the impact of sequence homology. DeepMRG consistently 19

achieved high overall F1-scores and significantly reduced false negative rates across a 20

wide range of datasets. It can be used to predict bacterial MRGs in metagenomic or 21

isolate assemblies. The web server of DeepMRG can be accessed at 22

https://deepmrg.cs.vt.edu/deepmrg and the source code is available at 23

https://github.com/muhit-emon/DeepMRG under the MIT license. 24

25

Introduction 26

Antibiotic resistance poses a significant threat to global human health and is 27

increasingly becoming a silent pandemic due to the widespread and inappropriate use of 28

antibiotics [1, 2]. In response, there has been an increased reliance on metal-based 29

antibacterial agents. However, it is important to note that bacteria can develop resistance 30

to metals through exposure [3]. Moreover, the use of these antibacterial metals can 31

1/20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2024. ; https://doi.org/10.1101/2023.11.14.566903doi: bioRxiv preprint 

https://orcid.org/0000-0002-8190-4495
https://orcid.org/0000-0003-4660-9199
https://deepmrg.cs.vt.edu/deepmrg
https://github.com/muhit-emon/DeepMRG
https://doi.org/10.1101/2023.11.14.566903
http://creativecommons.org/licenses/by/4.0/


contribute to the emergence and persistence of antibiotic resistance in bacterial 32

populations through co-selection [4, 5]. Therefore, it is crucial to systematically and 33

comprehensively detect and annotate bacterial metal resistance genes (MRGs) to gain 34

insights into their role in developing antibiotic resistance and to understand the key 35

mechanisms behind bacterial tolerance to metals. 36

The prediction of an MRG is primarily conducted using the “best hit” method, which 37

involves comparing the query gene sequence to existing reference databases using 38

programs such as BLAST [6] and DIAMOND [7] and annotating the gene’s function 39

based on the reference sequence it shows the highest similarity to [8, 9]. However, the 40

best hit method requires setting identity cutoff scores (and/or alignment lengths) and is 41

sensitive to these cutoff values, making it challenging to decide on an appropriate 42

threshold. Generally, a high identity cutoff is applied when using the best hit method to 43

predict bacterial MRGs. For instance, the authors in [10] and [11] employed the best hit 44

method with an identity greater than 80% to reference sequences to predict MRGs. 45

While the best hit method with a high cutoff value generally exhibits a low false positive 46

rate [12], it can result in a high false negative rate [8, 13]. 47

Apart from the best-hit approach, MEGARes 3.0 (AMR++ 3.0) [14], 48

AMR-meta [15], and AMRFinderPlus [16] can identify MRGs. MEGARes 3.0 49

(AMR++ 3.0) and AMR-meta are tailored for metagenomics short-reads and are not 50

suitable for predicting MRGs in contigs. Additionally, These programs lack detailed 51

annotation for MRGs that confer resistance to multiple metals. For instance, genes 52

associated with resistance to multiple metals are annotated in these programs to a 53

general class called multi-metal resistance, and no details are provided as to what kinds 54

of metals are included in “multi-metal”. On the other hand, AMRFinderPlus can detect 55

MRGs from protein sequences and provide detailed annotations for MRGs conferring 56

resistance to multiple metals using BLAST and HMMER searches. However, its 57

annotation is limited to a subset of possible multi-label scenarios, as per the BacMet [5] 58

databases, the most comprehensive databases of bacterial metal resistance genes. 59

Here, we introduce DeepMRG, a multi-label classifier that utilizes deep learning to 60

predict bacterial MRGs. We designed DeepMRG as a multi-label classifier since an 61

MRG can confer resistance to multiple metals. Our model can provide specific 62

annotations for multi-metal resistance genes, indicating the particular metals to which 63

the gene confers resistance. DeepMRG aligns a query gene sequence with 64

experimentally confirmed MRGs, extracting alignment bit scores. These alignment bit 65

scores are then used to derive the similarity distribution of the query sequence with 66 66

types of experimentally verified MRGs. This bit score-based similarity distribution 67

serves as the feature for the deep neural networks. To minimize the effect of sequence 68

homology on model evaluation, we created the training, validation, and test datasets 69

with a clustered split method. DeepMRG demonstrated good predictive performance for 70

MRGs during both 5-fold cross-validation and on the test dataset. Furthermore, we 71

assessed DeepMRG’s ability to identify and classify sequences with low similarity to 72

experimentally confirmed MRGs. DeepMRG was also validated using an independent 73

set of heavy metal resistance genes and in silico spike-in experiment. DeepMRG 74

excelled in precision, recall, and F1-score in all the conducted experiments, with notably 75

lower false negative rates. DeepMRG is implemented as an easy-to-use web server 76

available via https://deepmrg.cs.vt.edu/deepmrg and as a command line tool 77
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freely available at https://github.com/muhit-emon/DeepMRG. It is fully 78

documented in S1 File. 79

Materials and methods 80

Data collection and processing 81

We collected antibacterial biocide and metal resistance genes from BacMet [5]. BacMet 82

contains 753 gene sequences in a database named BacMet EXP DB where the genes 83

have been experimentally verified to confer resistance to metals and/or antibacterial 84

biocides. Additionally, it provides BacMet Predicted DB, a database containing 155,512 85

potential resistance genes compiled from public sequence repositories based on 86

sequence homology to genes with experimentally verified resistance functions. 87

We focus on predicting bacterial MRGs in this paper. Therefore, we extracted MRGs 88

from BacMet databases by searching for metal names in gene metadata, excluding 89

genes that confer resistance only to antibacterial biocides. It left us 485 sequences in 90

BacMet EXP MRG DB and 93,367 sequences in BacMet Predicted MRG DB, as shown 91

in Fig 1A. BacMet EXP MRG is used throughout the paper to denote a gene in BacMet 92

EXP MRG DB, and BacMet Predicted MRG is used to indicate a gene sequence 93

belonging to BacMet Predicted MRG DB. 94

We validated the annotations of BacMet Predicted MRGs by taking their best hit to 95

BacMet EXP MRG DB. We employed DIAMOND [7], a tool similar to BLAST [6] but 96

considerably faster, to align the BacMet Predicted MRGs against BacMet EXP MRG 97

DB and identified their best hit. Based on the sequence identity, e-value, and coverage 98

of the best hit alignment, the BacMet Predicted MRGs were divided into the following 99

two databases, as shown in Fig 1B: 100

1. BacMet Predicted MRG DB partition 1: A BacMet Predicted MRG is included 101

in the BacMet Predicted MRG DB partition 1 if its best hit to a BacMet EXP 102

MRG has ≥ 50% sequence identity, e-value ≤ 1e-10, alignment coverage ≥ 80%, 103

and it has the same metal resistance annotation to the BacMet EXP MRG. 78,012 104

genes passed these constraints and were added to the BacMet Predicted MRG DB 105

partition 1. We set the cutoffs of identity and e-value following [17] where these 106

thresholds were used to identify high and mid quality antibiotic resistance genes 107

from public databases. The alignment coverage cutoff was selected following [5]. 108

2. BacMet Predicted MRG DB partition 2: A BacMet Predicted MRG is added to 109

the BacMet Predicted MRG DB partition 2 if its best hit to a BacMet EXP MRG 110

has < 50% sequence identity, e-value ≤ 1e-10, alignment coverage ≥ 80%, and 111

possesses identical metal resistance annotation as the BacMet EXP MRG. After 112

satisfying all these constraints, 5885 genes were placed in the BacMet Predicted 113

MRG DB partition 2. 114

We used the sequences in BacMet Predicted MRG DB partition 1 to construct the 115

training, validation, and test datasets for our DeepMRG model. We held out the 116

sequences in BacMet Predicted MRG DB partition 2 and the test set sequences for 117

evaluating and comparing the performance of DeepMRG with the BLAST best hit 118

method and AMRFinderPlus [16]. 119
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Fig 1. Collection and processing of data. A: Extraction of MRGs from BacMet [5] databases by searching metal names in
gene metadata. B: Partition of BacMet Predicted MRG DB sequences into two databases. BacMet Predicted MRGs were
aligned against the experimentally verified MRGs using DIAMOND [7]. The best hit was selected for each BacMet Predicted
MRG and a set of filters were applied to create BacMet Predicted MRG DB partitions 1 and 2.

Construction of training, validation, and test datasets using clustered split 120

We created the training, validation, and test datasets from the BacMet Predicted MRG 121

DB partition 1 following the non-homologous database split technique employed in [18]. 122

The sequences in BacMet Predicted MRG DB partition 1 are categorized into 63 123

different types based on the metal labels they confer resistance to (types and the number 124

of sequences within each type are presented in S2 File). We utilized MMseqs2 [19] to 125

cluster the sequences in each type using 40% sequence identity and 50% coverage 126

thresholds. Then, the clusters in each type were randomly split into six sets, where an 127

entire cluster was placed in one of the six sets. Subsequently, we combined the 128

corresponding sets from all 63 types and obtained six datasets (D1-D5 and TEST). 129

Datasets D1 to D5 were used for 5-fold cross-validation, and the dataset TEST was for 130

testing, as shown in Fig 2. Constructing training, validation, and test datasets utilizing 131

this clustered split approach reduces the impact of sequence homology on evaluating the 132

deep learning model. 133
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Fig 2. Clustered split. The sequences in BacMet Predicted MRG DB partition 1 are categorized
into 63 types based on their metal resistance labels. The sequences in each type (type X in this
figure where 1 ≤ X ≤ 63) were grouped into clusters using MMseqs2 [19] at 40% identity and
50% coverage. The clusters were randomly partitioned in six sets (D1X-D5X and TESTX) where
an entire cluster was included in one of the six sets. Finally, the corresponding datasets from the
remaining types were combined to make the datasets used for 5-fold cross-validation and testing
(D1-D5 and TEST) of our deep learning model.

Feature extraction 134

Deep learning models require a sequence to be represented as a vector of numerical 135

values called features for prediction or classification tasks. In this paper, we adopted the 136

concept of bit score-based similarity distribution used in [17] and [20]. The features are 137

the alignment bit scores between full-length gene sequences and 66 types of 138

experimentally verified MRGs available in BacMet EXP MRG DB. We used the bit 139

score as the indicator of sequence similarity because it is independent of the database 140

size, unlike the e-value [21]. The process for computing features for a full-length gene 141
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sequence is outlined as follows (refer to Fig 3): 142

1. The query gene sequence (QS) is aligned to the experimentally confirmed 485 143

MRGs in BacMet EXP MRG DB using DIAMOND under the ‘very sensitive’ 144

parameter with the alignment constraints: a minimum sequence identity of 20%, 145

an e-value lower than 1e-7, and a minimum alignment coverage of 60%. If QS 146

does not have alignment with any of the 485 BacMet EXP MRGs, it is filtered out 147

and not considered for further prediction. Otherwise, we go to the following steps 148

to calculate the feature vector of QS. The alignment step works as a filter and 149

only passes MRG-like sequences to our deep learning model for prediction. 150

2. BacMet EXP MRGs are categorized into 66 types according to their metal 151

resistance labels (types and the number of sequences within each type are 152

presented in S3 File). 153

3. Here, we use the type X (1 ≤ X ≤ 66) to demonstrate how we compute the feature 154

vector for QS. Assume that there are N MRGs in type X. The alignment bit scores 155

between QS and these N MRGs are obtained from step 1. Subsequently, we take 156

the maximum among these N bit scores, yielding bit scoreX, which serves as the 157

representative bit score between QS and type X of experimentally verified MRGs. 158

Similarly to the previous procedure, we get 66 bit scores which are then normalized 159

to the [0,1] interval to represent the similarity distribution of QS with 66 types of 160

experimentally confirmed bacterial MRGs. Thus, the feature vector of QS for 161

DeepMRG is VQS ∈ R66 where VQS = [bit score1, ... , bit score33, ... , bit score66]. 162

Deep learning model architecture and training 163

Subsequently, we trained DeepMRG, a multi-label deep neural network model, for 164

classifying a gene sequence into one or multiple metal resistance categories by taking 165

into account the similarity distribution of the sequence to 66 types of experimentally 166

verified bacterial MRGs. Deep learning models can discern relevant features without 167

human interference, which is one of its key advantages [22]. The DeepMRG model 168

consists of an input layer, three hidden dense layers with 55, 45, and 35 nodes 169

respectively, and an output layer. Each hidden dense layer utilizes the ELU activation 170

function. To prevent overfitting, we applied dropout regularization with a dropout rate 171

of 10% after each hidden layer. The Adam optimizer was used to update the weights, 172

and binary cross entropy served as the loss function. The output layer consists of 23 173

nodes (one per metal). We employed the sigmoid activation function in the output layer, 174

which computes the likelihood scores for each metal category. The model architecture is 175

shown in Fig 4. The model was implemented using Python 3.6 with Scikit-learn 0.24.2 176

and Keras 2.2.0 with Tensorflow 2.2.0 backend. 177

We performed 5-fold cross-validation using sets D1 to D5 (see Fig 2), training five 178

deep neural networks, each sequentially using one set for validation and the remaining 179

four for training. 180

In 5-fold cross-validation, we trained five deep neural networks. For an input query 181

gene sequence, these five neural networks produce likelihood scores for each metal 182

category. Then, we sum the scores from the five neural networks for each metal (the 183
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maximum achievable score is 5 per metal). The query sequence is then classified into 184

the metal categories with the corresponding score of more than a threshold (default 3.5). 185

Fig 3. The feature vector construction process of a query gene sequence (QS). QS is aligned with the experimentally verified
bacterial MRGs using DIAMOND [7]. BacMet EXP MRGs are categorized into 66 types according to their metal resistance labels.
We use type X (1 ≤ X ≤ 66) in this figure to show the feature extraction process for QS. We assume that N experimentally verified
MRGs are in type X. We get the bit scores between QS and these N MRGs from the alignment step. Selecting the highest bit score
among these N scores yields bit scoreX, representing the similarity between QS and type X of BacMet EXP MRGs. Similarly, we
get 66 such bit scores for each of the 66 types. The feature vector VQS ∈ R66 of QS contains these bit scores as feature values.
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Fig 4. DeepMRG model architecture.

Competing methods 186

We compared our tool with the BLAST [6] best hit method and AMRFinderPlus [16] 187

for classifying MRGs using protein or gene sequences as input. 188

189

BLAST best hit. BLAST [6] is one of the widely used sequence alignment tools. We 190

aligned the query sequences against the BacMet experimentally confirmed MRG 191

database using BLASTp and took the best hit to annotate them. We ran the BLASTp 192

program with the option ‘-max target seqs 1’ and utilized various sequence identity 193

cutoffs as the representatives of the best hit approach. 194

195

AMRFinderPlus. AMRFinderPlus [16] classifies MRGs by employing BLAST and 196

HMMER searches against its reference gene catalog. This catalog encompasses 197

antimicrobial resistance, acid, biocide, metal, heat resistance genes, and virulence genes. 198

We ran the AMRFinderPlus program with the default parameters and utilized the ‘plus’ 199

subset of the reference gene catalog (database version 2024-1-31.1), which includes 200

genes associated with metal resistance. 201

Results 202

Performance evaluation metrics 203

We evaluated the performance of DeepMRG using both label-based and sample-based 204

metrics. Label-based metrics assess the model’s performance based on the prediction of 205
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class labels. We used precision, recall, and F1-score as label-based metrics. We also 206

reported both macro-average and weighted-average results. The macro-average 207

calculates the average performance of all classes, treating each class equally. On the 208

other hand, the weighted average takes into account the number of sequences in each 209

class, providing a performance measure that is influenced by the class distribution. The 210

weighted-average is particularly useful when the class sizes are imbalanced. 211

Additionally, we utilized sample-based metrics to evaluate the performance of our 212

model. Sample-based metrics assess the model’s performance on an individual sample 213

level within the dataset. As sample-based metrics, we reported samples-average 214

precision, samples-average recall, and samples-average F1-score. A detailed description 215

of the performance evaluation metrics is provided in S4 File. 216

Performance of DeepMRG under 5-fold cross-validation 217

We evaluated the performance of DeepMRG through 5-fold cross-validation using 218

clustered splits (see Fig 2). The overall F1-scores, including their mean and standard 219

deviation, obtained from all five cross-validation experiments, are presented in Table 1. 220

DeepMRG consistently achieved high F1-scores, with an average macro-average of 221

98.2%, an average weighted-average of 98.8%, and an average samples-average of 222

98.4%. These results indicate that DeepMRG can accurately predict MRGs and exhibits 223

good generalization capabilities as a deep learning model. Furthermore, the standard 224

deviations of 1.3% for macro-average F1-scores, 0.4% for weighted-average, and 0.5% 225

for samples-average F1-scores across five independent cross-validation experiments 226

highlight DeepMRG’s stability. Detailed classification reports for each metal, including 227

precision, recall, and F1-score per fold, can be found in S5 File. 228

Performance on the test dataset 229

We compared DeepMRG with AMRFinderPlus and BLAST best hit approaches on the 230

test dataset comprising 11,447 sequences created using a clustered split method, as 231

shown in Fig 2. The overall performance of these methods on the test dataset is 232

presented in Table 2, and the individual metal category-wise results are shown in Fig 5. 233

Upon analyzing the reference gene catalog of AMRFinderPlus, we found that it 234

identifies MRGs associated with resistance to 12 metals, including arsenic (As), 235

cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), gold (Au), lead (Pb), mercury 236

(Hg), nickel (Ni), silver (Ag), tellurium (Te), and zinc (Zn). However, on our test 237

dataset, AMRFinderPlus could not detect any MRGs conferring resistance to cadmium 238

(Cd), cobalt (Co), lead (Pb), tellurium (Te), and zinc (Zn). Additionally, it exhibited 239

poor recall rates for arsenic (As), chromium (Cr), copper (Cu), nickel (Ni), and silver 240

(Ag), while achieving very high F1-scores for gold (Au) and mercury (Hg). BLAST 241

best hit with an identity cutoff at 80% (BLAST-80%), a common choice in prior 242

studies [10, 11] to predict bacterial MRGs, achieved very high precision (≥ 0.99) for all 243

metal categories on our test dataset. However, its recall was compromised for many 244

metals, impacting the overall F1-scores. BLAST best hit with an identity cutoff of 60% 245

(BLAST-60%) maintained the same precision levels as BLAST-80% while significantly 246

improving recall across all metal categories, resulting in a higher overall F1-scores on 247

the test dataset. DeepMRG also exhibited very high precision (≥ 0.98) for all metal 248
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Table 1. The 5-fold cross-validation results of DeepMRG to predict MRGs.

Fold Macro-average F1-score Weighted-average F1-score Samples-average F1-score
1st 0.99 0.99 0.99
2nd 0.99 0.99 0.98
3rd 0.98 0.98 0.98
4th 0.99 0.99 0.98
5th 0.96 0.99 0.99

Mean ± SD 0.982 ± 0.013 0.988 ± 0.004 0.984 ± 0.005
Performance assessment of DeepMRG through 5-fold cross-validation. Here, SD stands for standard deviation.

labels, akin to BLAST-80% and BLAST-60%. It demonstrated similar or better recall 249

rates than the best hit methods across all metals except copper (Cu) and achieved better 250

F1-scores than AMRFinderPlus for most metal categories. For gold (Au) and mercury 251

(Hg) resistance, both DeepMRG and AMRFinderPlus performed equally well. Overall, 252

DeepMRG outperformed AMRFinderPlus and BLAST-80% in terms of F1-scores. It 253

achieved a similar weighted-average F1-score and samples-average F1-score as 254

BLAST-60%, along with a slightly better macro-average F1-score than BLAST-60%. 255

Performance on the sequences in BacMet Predicted MRG DB partition 2 256

We employed DeepMRG to classify the 5885 sequences from BacMet Predicted MRG 257

DB Partition 2 and conducted a performance comparison with AMRFinderPlus and 258

BLAST best hit approaches. The construction process of this database is detailed earlier 259

in the “data collection and processing” section. None of these 5885 sequences were 260

utilized for training DeepMRG. Notably, 75% of these sequences exhibit less than 60% 261

sequence identity with our training set, as shown in S1 Fig. Because the sequences in 262

BacMet Predicted MRG DB Partition 2 have less than 50% sequence identity with the 263

BacMet EXP MRGs (see Fig 1), using a 50% or greater identity cutoff in the BLAST 264

best hit method would result in these potential MRGs not being detected. Therefore, in 265

this section, we employed 40% and 30% identity cutoff values for the BLAST best hit 266

method (namely BLAST-40% and BLAST-30%) to compare with DeepMRG. 267

BLAST-40% achieved similar or better precision compared to BLAST-30% on 268

individual metal labels, while BLAST-30% exhibited higher recall rates (see S6 File). 269

Table 2. Performance on test dataset.

Methods Macro-average F1-score Weighted-average F1-score Samples-average F1-score
DeepMRG 0.99 0.98 0.95

AMRFinderPlus 0.31 0.17 0.10
BLAST best hit (80%, 1e-7, 60%) 0.87 0.84 0.71
BLAST best hit (60%, 1e-7, 60%) 0.98 0.98 0.95

Performance of DeepMRG, AMRFinderPlus, and BLAST best hit methods under different parameters on test dataset. Here,
BLAST best hit (x%, y, z%) refers to the best alignment hit with identity ≥ x%, e-value ≤ y, and coverage ≥ z%.
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Fig 5. Precision, recall, and F1-score comparison among DeepMRG, AMRFinderPlus, and BLAST best hit approaches with
different parameter settings for individual metal categories in the test dataset. The precision, recall, and F1-score values for
metal categories where AMRFinderPlus does not provide predictions are denoted as N/A. BLAST best hit (x%, y, z%) in this
figure refers to the best alignment hit with identity ≥ x%, e-value ≤ y, and coverage ≥ z%. As a result of the clustered split, not all
23 metal labels are present in the test dataset.

The overall F1-scores of DeepMRG, AMRFinderPlus, BLAST-40%, and BLAST-30% 270

are presented in Table 3. AMRFinderPlus performed poorly on the BacMet Predicted 271

MRG DB partition 2 dataset, only identifying MRGs associated with resistance to 272

mercury (Hg) with an F1-score of 0.5. DeepMRG outperformed AMRFinderPlus, 273

BLAST-40%, and achieved overall F1-scores highly comparable to BLAST-30%. For 274

most metal categories, DeepMRG demonstrated higher F1-scores than BLAST-40% and 275

F1-scores on par with BLAST-30%, except for silver (Ag). 276

This comparison underscores the best hit approach’s sensitivity to sequence identity 277

cutoffs, while DeepMRG eliminates the need for these threshold settings, delivering 278

consistent and excellent performance in predicting MRGs across diverse datasets. 279
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Table 3. Performance on BacMet Predicted MRG DB partition 2.

Methods Macro-average F1-score Weighted-average F1-score Samples-average F1-score
DeepMRG 0.96 0.99 0.98

AMRFinderPlus 0.04 0.04 0.03
BLAST best hit (40%, 1e-7, 60%) 0.90 0.87 0.80
BLAST best hit (30%, 1e-7, 60%) 0.99 0.99 0.99

Performance of DeepMRG, AMRFinderPlus, and BLAST best hit methods with different parameter settings on the sequences
belonging to BacMet Predicted MRG DB partition 2. Here, BLAST best hit (x%, y, z%) refers to the best alignment hit with
identity ≥ x%, e-value ≤ y, and coverage ≥ z%.

Validation through an independent set of heavy metal resistance genes 280

Based on an independent study by Klonowska et al. [23], we obtained 53 heavy metal 281

resistance (HMR) genes from heavy metal-tolerant Cupriavidus strain STM 6070 to 282

evaluate DeepMRG’s ability to predict novel bacterial MRGs. In this study, the authors 283

conducted wet lab experiments to demonstrate that STM 6070 exhibits significantly 284

higher tolerance to Ni2+and Zn2+concentrations compared to Cupriavidus taiwanensis 285

strains. Moreover, computational and comparative genomics approaches were used to 286

identify HMR genes in the STM 6070 genome, potentially involved in arsenic, 287

cadmium, chromium, cobalt, copper, nickel, silver, and zinc resistance. 288

Employing a sequence identity threshold of 50% or more in the best hit approach is a 289

common practice in bioinformatics [24]. Therefore, we set the identity cutoff parameter 290

to 50% for the BLAST best hit method (BLAST-50%) and compared its results with 291

those of DeepMRG for the independent dataset. AMRFinderPlus failed to detect any 292

HMR gene in the independent dataset using its default parameters. Subsequently, we 293

re-ran the tool with the identity parameter set to 50% using the option ‘-i 0.5’, denoted 294

as AMRFinderPlus-50%. The prediction results of DeepMRG, AMRFinderPlus-50%, 295

and BLAST-50% in terms of F1-scores for the HMR genes in the independent dataset 296

are shown in Table 4. BLAST best hits of these HMR genes against the experimentally 297

validated MRGs, along with details on sequence identity and alignment coverage, are 298

presented in S7 File. While BLAST-50% exhibited better precision for nickel (Ni) and 299

silver (Ag), DeepMRG consistently achieved equal or higher recall than BLAST-50% 300

for all eight metal labels in the independent set (refer to Table 1 of S8 File). 301

AMRFinderPlus-50%, on the other hand, was unable to identify any HMR genes 302

associated with resistance to cadmium (Cd), chromium (Cr), cobalt (Co), and zinc (Zn). 303

Although it showed better precision than DeepMRG for predicting nickel (Ni) 304

resistance, DeepMRG demonstrated higher F1-scores than AMRFinderPlus-50% for all 305

eight metals available in the independent dataset, surpassing it in overall F1-scores. 306

Additionally, DeepMRG yielded higher F1-scores than BLAST-50% for all metals 307

except nickel (Ni), outperforming BLAST-50% in overall F1-scores. It is noteworthy 308

that STM 6070 displays higher tolerance to Ni2+and Zn2+, and DeepMRG achieved 309

high recall (≥ 0.75) for both metals. 310

We found that out of these 53 HMR genes, six were initially filtered out by our 311

alignment step due to high e-value and low coverage. Adjusting the e-value and 312
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Table 4. Performance on the independent dataset.

Methods Macro-average F1-score Weighted-average F1-score Samples-average F1-score
DeepMRG 0.72 0.75 0.71

AMRFinderPlus-50% 0.20 0.14 0.17
BLAST best hit (50%, 1e-7, 60%) 0.58 0.56 0.47

Performance of DeepMRG, AMRFinderPlus with 50% identity threshold (AMRFinderPlus-50%), and BLAST best hit
method at 50% identity cutoff (BLAST-50%) on the independent set of Cupriavidus strain STM 6070 HMR genes. BLAST
best hit (x%, y, z%) refers to the best alignment hit with identity ≥ x%, e-value ≤ y, and coverage ≥ z%.

coverage cutoffs to 1e-3 and 40%, respectively, following [5, 25], we re-evaluated 313

DeepMRG on the independent dataset. Although two genes were still filtered out during 314

the alignment step, DeepMRG demonstrated improved performance as shown in Tables 315

2 and 3 of S8 File. 316

Validation of DeepMRG through an in silico spike-in experiment 317

MRGs might constitute only a minor portion of the genes in real-world microbial 318

datasets. Thus, assessing how well DeepMRG performs when non-target genes are 319

prevalent is essential. To evaluate DeepMRG’s ability to predict a small number of 320

MRGs within a majority of non-target genes, we constructed a negative microbial 321

dataset simulating a spike-in metagenomic experiment. In this section, our primary 322

emphasis is on the binary classification performance of DeepMRG, specifically in 323

distinguishing positive samples (MRGs) from negative samples. To create negative 324

samples, we collected 27,036 bacterial housekeeping genes from UniProt [26], using 325

184 different Gene Ontology (GO) terms obtained from [27]. The associated GO terms 326

and biological functions for these genes can be found in S9 File. Employing MMseqs2 327

at 30% identity and 50% coverage, we conducted clustering of the housekeeping genes 328

together with the experimentally validated MRGs. Those housekeeping genes sharing a 329

cluster with an experimentally confirmed MRG were excluded, resulting in a final set of 330

26,377 genes as negative samples. Next, we selected the 53 HMR genes from the 331

independent dataset to serve as positive samples. The resulting spike-in dataset 332

comprised a total of 26,430 genes, with the positive samples accounting for 333

(53/26,430)% = 0.2%. DeepMRG achieved an 85% recall rate, identifying 45 out of 334

53 HMR genes, with a very low false positive rate (< 1%). This highlights DeepMRG’s 335

efficacy in predicting MRGs within a large pool of negative samples, mirroring 336

real-world scenarios where MRGs account for a small fraction of the total genes. 337

Application of DeepMRG on metagenomic or isolate assembly data 338

DeepMRG can be applied to metagenomic or isolate assemblies to predict bacterial 339

MRGs. We implemented a pipeline, as shown in Fig 6, for predicting bacterial MRGs 340

from metagenomic or isolate assembled contigs. This pipeline takes assembled contigs 341

as input and employs Prodigal [25] to predict genes from the contigs. These predicted 342

genes are then aligned to the experimentally confirmed 485 MRGs in BacMet EXP 343

MRG DB using DIAMOND with the alignment parameters: sequence identity ≥ 20%, 344

13/20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2024. ; https://doi.org/10.1101/2023.11.14.566903doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.14.566903
http://creativecommons.org/licenses/by/4.0/


e-value ≤ 1e-7, and alignment coverage ≥ 60% as discussed earlier in the “feature 345

extraction” section. Then, using our feature computation approach, each predicted gene 346

is represented by a vector V ∈ R66 referring to the bit score-based similarity distribution 347

with 66 types of BacMet EXP MRGs. Finally, DeepMRG is employed to identify and 348

annotate MRGs. The entire pipeline was built using Nextflow [29], with parallel 349

computation for the gene prediction step by Prodigal. 350

Discussion 351

In this paper, we developed a deep learning model, DeepMRG, for bacterial MRG 352

classification. To the best of our knowledge, DeepMRG is the first work solely designed 353

for bacterial MRG prediction which can offer detailed annotation for multi-metal 354

resistance genes, indicating the specific metal labels to which the gene confers 355

resistance. It leverages bit-score based similarity distribution with 66 types of 356

experimentally confirmed MRGs. To mitigate the impact of sequence homology on 357

model evaluation, we utilized a clustered split method with 40% identity threshold to 358

create the training, validation, and test datasets. DeepMRG’s performance on the 359

validation and test datasets demonstrates its ability to generalize well. DeepMRG 360

performed better than AMRFinderPlus and the BLAST best hit methods on the test 361

dataset. It outperformed AMRFinderPlus in identifying and classifying sequences in the 362

BacMet Predicted MRG DB partition 2 dataset, where the sequences exhibit lower 363

similarity (< 50%) to experimentally validated MRGs. Moreover, DeepMRG achieved 364

comparable performance with the BLAST best hit method in this dataset. In the 365

independent set of heavy metal resistance (HMR) genes from the Cupriavidus strain 366

STM 6070, DeepMRG achieved better performance than AMRFinderPlus and the 367

BLAST best hit method. Based on wet lab experiments, the strain STM 6070 exhibits 368

heightened tolerance to Ni2+and Zn2+ concentrations. Our model, DeepMRG, 369

demonstrated a high recall (≥ 0.75) in predicting the HMR genes of STM 6070 that 370

confer resistance to these two metals. This validation underscores the effectiveness of 371

our model in real-world scenarios. With the increasing prevalence of antimicrobial 372

resistance worldwide, our tool can assist researchers in precisely and accurately 373

identifying MRGs for effective mitigation of resistance spread. 374

Our model focuses entirely on MRG prediction. Users interested in multiple types of 375

antimicrobial resistance (AMR), such as antibiotic drug and metal resistance, can 376

combine our tool with others to obtain a more comprehensive AMR profile. For 377

instance, if a gene sequence confers resistance to beta-lactams, copper, and zinc, users 378

can employ DeepARG [17], HMD-ARG [30], ARG-SHINE [31], etc., for beta-lactam 379

resistance prediction. DeepMRG can be utilized to predict metal resistances of the gene 380

sequence. 381

Availability and future directions 382

DeepMRG can be accessed through our web server at 383

https://deepmrg.cs.vt.edu/deepmrg, providing a user-friendly interface for 384

bacterial MRG prediction tasks. Alternatively, it can be installed locally and run as a 385
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Fig 6. Pipeline for predicting bacterial MRGs from assembled contigs using DeepMRG.

command-line tool. The source code of DeepMRG, along with detailed instructions for 386

installation and execution, can be found on our GitHub repository at 387

https://github.com/muhit-emon/DeepMRG. All the datasets used in this paper are 388

available from Zenodo (https://doi.org/10.5281/zenodo.10070602). 389

DeepMRG can process either full-length gene sequences or pre-assembled contigs 390

for MRG prediction. In the case of contigs, the first step involves predicting open 391

reading frames (ORFs), and subsequently, the resulting protein sequences are fed into 392

DeepMRG for MRG prediction. However, the current pipeline of DeepMRG has a 393

limitation in that it cannot directly handle short reads without the need for assembly. To 394

address this limitation, our future plans involve expanding DeepMRG’s capabilities to 395

enable direct prediction from short reads, eliminating the need for assembly. This 396

development would significantly enhance DeepMRG’s applicability in genomics or 397

metagenomics research and enable more efficient analysis of short read data. 398

As DeepMRG’s initial step involves aligning query gene sequences with 399

experimentally validated MRGs, it might face some drawbacks typically associated with 400

alignment-based methods. For example, DIAMOND may fail to identify MRGs very 401

diverged from the experimentally validated MRGs, leading to false negatives. 402

Comparatively, protein structures are more conserved than sequences and, therefore, can 403

be leveraged to improve the performance of the prediction models. Consequently, we 404

aim to incorporate protein 3D structures and protein language model (PLM) generated 405

embeddings into DeepMRG. This integration of structural data and PLM is expected to 406

significantly enhance the accuracy and reliability of the prediction model, providing 407

deeper insights into the functional properties and mechanisms underlying metal 408

resistance. By leveraging such information, DeepMRG will be better equipped to make 409

precise predictions and contribute to a more comprehensive understanding of MRGs. 410

Supporting information 411

S1 File. DeepMRG documentation. Complete documentation for using DeepMRG. 412

(PDF) 413
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S2 File. Types of the sequences in BacMet Predicted MRG DB partition 1. Types 414

of the sequences belonging to BacMet Predicted MRG DB partition 1 and the number 415

of sequences within each type. 416

(PDF) 417

S3 File. Types of BacMet EXP MRG DB sequences. Types of the sequences in 418

BacMet EXP MRG DB and the number of sequences within each type. 419

(PDF) 420

S4 File. Performance evaluation metrics. Details of the performance evaluation 421

metrics used in our paper. 422

(PDF) 423

S5 File. Detailed results of DeepMRG under 5-fold cross-validation. Individual 424

metal category-wise classification reports of DeepMRG for each fold under the 5-fold 425

cross-validation experiment. 426

(PDF) 427

S6 File. Detailed results of DeepMRG, AMRFinderPlus, and BLAST best hit 428

approaches on BacMet Predicted MRG DB partition 2. Individual metal 429

category-wise classification reports of DeepMRG, AMRFinderPlus, and BLAST best 430

hit methods (under different parameters) on the sequences in BacMet Predicted MRG 431

DB partition 2. 432

(PDF) 433

S7 File. BLAST best hit sequence identity of Cupriavidus strain STM 6070 heavy 434

metal resistance (HMR) genes against the experimentally confirmed MRGs. 435

BLAST best hits of all 53 STM 6070 HMR genes against the BacMet experimentally 436

confirmed MRG database, including sequence identity and alignment coverage 437

information. 438

(PDF) 439

S8 File. Detailed results of DeepMRG, AMRFinderPlus with 50% identity 440

threshold (AMRFinderPlus-50%), and BLAST best hit at 50% sequence identity 441

cutoff (BLAST-50%) on the independent set. (Table 1) Individual metal 442

category-wise classification reports of DeepMRG, AMRFinderPlus-50%, and 443

BLAST-50% on the HMR genes in the independent dataset. (Table 2) The overall 444

F1-scores of DeepMRG (with the initial DIAMOND alignment parameters: identity ≥ 445

20%, e-value ≤ 1e-3, and alignment coverage ≥ 40%) on the independent dataset. 446

(Table 3) Individual metal category-wise classification results of DeepMRG (with the 447

initial DIAMOND alignment parameters: identity ≥ 20%, e-value ≤ 1e-3, and coverage 448

≥ 40%) on the independent set. 449

(PDF) 450
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S9 File. Gene Ontology (GO) terms of bacterial housekeeping genes. Biological 451

functions and GO terms associated with the bacterial housekeeping genes used to 452

construct the negative microbial dataset. 453

(PDF) 454

S1 Fig. Sequence identity histogram of BacMet Predicted MRG DB partition 2 455

against our training dataset. Histogram of the best hit identity of the sequences in 456

BacMet Predicted MRG DB partition 2 with our training dataset. 457

(TIF) 458
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