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Abstract

This paper studies the stability and convergence properties of a class of multi-agent concurrent learning (CL) algorithms with
momentum and restart. Such algorithms can be integrated as part of the estimation pipelines of data-enabled multi-agent control
systems to enhance transient performance while maintaining stability guarantees. However, characterizing restarting policies that
yield stable behaviors in decentralized CL systems, especially when the network topology of the communication graph is directed,
has remained an open problem. In this paper, we provide an answer to this problem by synergistically leveraging tools from graph
theory and hybrid dynamical systems theory. Specifically, we show that under a cooperative richness condition on the overall multi-
agent system’s data, and by employing coordinated periodic restart with a frequency that is tempered by the level of asymmetry of
the communication graph, the resulting decentralized dynamics exhibit robust asymptotic stability properties, characterized in terms
of input-to-state stability bounds, and also achieve a desirable transient performance. To demonstrate the practical implications of
the theoretical findings, three applications are also presented: cooperative parameter estimation over networks with private data
sets, cooperative model-reference adaptive control, and cooperative data-enabled feedback optimization of nonlinear plants.
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1. INTRODUCTION

Concurrent Learning (CL) techniques have emerged as pow-
erful data-driven tools for designing estimation and learning
dynamics in a wide range of applications where persistence
of excitation (PE) conditions are either impractical or infeasi-
ble [1, 2]. These techniques have demonstrated their utility in
diverse fields, including parameter estimation in batteries [3],
exoskeleton robotic systems [4, 5], mobile robots and aerial
vehicles [6], extremum seeking algorithms [7], and reinforce-
ment learning controllers [8, 9]. In these applications, extensive
datasets containing historical recorded measurements of the rel-
evant system signals are often available and can be leveraged
for estimation purposes. When these datasets are “sufficiently
rich”, they can be seamlessly integrated into dynamic estima-
tion algorithms, enabling (uniform) exponential convergence to
the unknown parameters even in the absence of PE conditions.

However, relaxations of PE conditions can lead to subopti-
mal transient performance, particularly in terms of slow conver-
gence rates that depend on the “level of richness” of the dataset
used by the algorithm. Since datasets readily available in ap-
plications may exhibit prohibitively small levels of richness,
there is a growing need for the development of enhanced CL
techniques that can accelerate the convergence rate of the esti-
mation dynamics while maintaining the desirable stability and
robustness properties.

1.1. Literature Review

One promising direction to alleviate the slow convergence is-
sue in decision-making algorithms is the incorporation of mo-
mentum with dynamic damping, see [3, 10, 11]. For single-
agent gradient-based dynamics with momentum, the use of de-
creasing damping has been shown to play a crucial role in in-
ducing favorable acceleration properties [12, 13, 14, 15]. How-
ever, it has also been shown that stability bounds in terms of
KL functions may not exist for such systems unless the damp-
ing coefficients are persistently exciting [16, Thm. 2], a condi-
tion that precludes vanishing coefficients. Furthermore, it is
well-known that, without proper tuning, the use of momen-
tum can lead to undesirable oscillations [17]. To address po-
tential instability issues and to eliminate oscillatory behaviors,
restart mechanisms that reset the momentum have been devel-
oped for single-agent systems using adaptive [17, 18] and pe-
riodic policies (usually called “scheduled”) with carefully se-
lected restarting frequencies [13, 19, 20, 17]. Recent works
have also investigated the development of similar momentum-
based algorithms in multi-agent systems, including distributed
continuous-time heavy-ball dynamics with constant damping
[21], limiting equations of stochastic recursive algorithms as
multi-agent flows with momentum [22], and decision-making
algorithms with momentum for high-order multi-agent systems
[23, 24, 25]. However, existing approaches have primarily fo-
cused on undirected network topologies. Additionally, the in-
corporation of momentum and restarting mechanisms in de-
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centralized concurrent learning algorithms has remained unex-
plored. Such algorithms are essential when a network of agents
seeks to collaboratively and efficiently learn a common model
by sharing local estimates with neighboring agents, without re-
vealing their private data. Applications of these algorithms
span various domains, including source seeking in autonomous
mobile robots [26], adaptive formation control of robotic teams
[27], and cooperative adaptive control [28].

1.2. Contributions

Motivated by the previous background, in this paper we study
the synthesis and analysis of decentralized concurrent learn-
ing dynamics with momentum and restart for general directed
graphs. In particular, we consider a model that extends the cen-
tralized dynamics studied in [13, 14], and [19] to cases where
each agent implements its own restart policy and shares infor-
mation only with neighbors characterized by the topology of
the communication graph. To assess the impact of the topol-
ogy of the graph on the stability properties of the dynamics,
we exploit analytical tools from graph theory [29] and hybrid
dynamical system’s theory [30]. Using these tools, this paper
makes the following primary contributions:

(1) We first introduce a class of multi-agent concurrent learn-
ing (CL) algorithms that incorporate momentum and a restart-
ing mechanism coordinated by a centralized resetting state. We
demonstrate that if: (a) the graph is strongly connected, (b)
the overall data collected by the agents satisfies a “cooperative
richness condition,” and (c) the restarting frequency exceeds
a certain threshold that encodes the “asymmetry” of the com-
munication graph, then the resulting error estimation dynamics
are input-to-state stable [31] with respect to measurement noise
and model error approximations. Furthermore, the convergence
is exponential with rates assignable via the restarting period.
These results are presented in Theorem 1.

(2) Next, by leveraging the robustness properties of the
dynamics, we interconnect the momentum-based concurrent
learning algorithms with a fully decentralized coordinated
restarting mechanism, enabling a complete decentralized im-
plementation. The resulting dynamical systems are also glob-
ally stable and exhibit convergence rates consistent with Theo-
rem 1, following an initial synchronization phase of the restart-
ing times. These results are presented in Theorem 2.

(3) Finally, we present three applications of the proposed
momentum-based CL algorithms with restart within the con-
text of data-enabled control: (a) cooperative parameter estima-
tion without persistently exciting regressors in networks where
nodes have private data with heterogeneous informativity prop-
erties; (b) data-enabled cooperative model-reference adaptive
control; (c) data-enabled cooperative feedback-optimization.
By employing (hybrid) Lyapunov-based techniques, we show
that the resulting closed-loop systems exhibit favorable stabil-
ity and convergence properties, which are also illustrated via
numerical examples.

The rest of this paper is organized as follows: Section 2
presents the preliminaries. Section 3 presents the problem
formulation. Section 4 presents the main results. Section 5

presents applications, Section 6 includes the proofs, and Sec-
tion 7 concludes the paper.

2. Preliminaries

Notation: We use rB to denote a closed ball of appropriate
dimension in the Euclidean space, of radius r > 0, and centered
at the origin. Let Ei j be the matrix with all entries equal to zero
except the i jth entry, which is equal to one. Let 1n ∈ Rn be the
vector of all ones, and In ∈ Rn×n be the identity matrix. Given
x, y ∈ Rn, we let (x, y) B [x⊤, y⊤]⊤ denote their concatenation.
We use {e1, e2, . . . , en} to denote the standard basis of Rn. A
matrix M ∈ RN×N is represented in terms of its entries as M =
[mi j], with mi j ∈ R being its i jth entry. Similarly, we use M =
[Mi j] to represent a block matrix M in terms of its blocks, and
use diag ({M1, . . . ,MJ}) to build a block diagonal matrix from
the set of matrices {M j}

J
j=1. Given a vector x ∈ Rn, we let

diag(x) represent a diagonal matrix with diagonal entries (i, i)
given by the ith entry of x. A matrix B = [bi j] ∈ RN×N , is said
to be nonnegative (B ≥ 0) if bi j ≥ 0 for all i, j. The spectral
radius of a matrix B is denoted by ρ(B). We use | · | for the
vector 2-norm, ∥ · ∥ for the matrix norm induced by | · |, and
|z|A B inf s∈A |z − s| to denote the distance of a vector z ∈ Rn to
a closed set A ⊂ Rn. With a slight abuse of notation, given a
matrix P ⪰ 0 we define the semi-norm |x|P B (x⊤Px)1/2. Given
a set-valued mapping M : Rm ⇒ Rn, the domain of M is the
set dom(M) = {x ∈ Rm : M(x) , ∅} [32, Def. 2.1]. A function
γ : R≥0 → R≥0 is of class K (γ ∈ K) if it is continuous,
strictly increasing, and satisfies γ(0) = 0. It is said to be of
class K∞ (γ ∈ K∞), if additionally γ(r) → ∞ as r → ∞. A
function β : R≥0 × R≥0 → R≥0 is of class KL (β ∈ KL) if
it is nondecreasing in its first argument, nonincreasing in its
second argument, limr→0+ β(r, s) = 0 for each s ∈ R≥0, and
lims→∞ β(r, s) = 0 for each r ∈ R≥0.

Graph Theory: For a directed graph (digraph) G = (V,E),
with set of nodes V = {1, 2, . . . ,N}, we denote by (i, j) ∈ E

a directed edge from node i to node j, we call node i an in-
neighbor of node j, and we call node j an out-neighbor of node
i. We consider digraphs that do not have self-arcs. A weighted
Laplacian matrix L = [li j] ∈ RN×N associated with G satisfies
the following: the off-diagonal entries are such that li j < 0 if
(i, j) is an edge, and li j = 0 otherwise; the diagonal entries lii
are determined such that every row of L sums to zero, and all its
nonzero eigenvalues have positive real part [29, Lemma 6.5]. A
digraph is strongly connected if for any two distinct nodes i and
j, there is a path from i to j. The Laplacian matrix of a strongly
connected digraph satisfies rank(L) = N − 1 [29, Ch. 6].

Hybrid Dynamical Systems: In this paper, we work with dy-
namical systems that combine continuous-time and discrete-
time dynamics. Such systems are called hybrid dynamical sys-
tems (HDS) [30]. The dynamics of a HDS with state x ∈ Rn

and exogenous input u ∈ Rm are represented as follows:

(x, u) ∈ C B Cx × Rm, ẋ ∈ F(x, u), (1a)
(x, u) ∈ D B Dx × Rm, x+ ∈ G(x), (1b)

where F : Rn ×Rm ⇒ Rn is called the flow map, G : Rn ⇒ Rn

is called the jump map, Cx ⊂ Rn × Rm is called the flow set,
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and Dx ⊂ Rn × Rm is called the jump set. We use H =

(Cx, F,Dx,G, u) to denote the data of the HDS H , where for
simplicity we omit the set Rm where the input u is defined. HDS
generalize purely continuous-time systems (Dx = ∅) and purely
discrete-time systems (Cx = ∅). Time-varying systems can also
be represented as (1) by using an auxiliary state s ∈ R≥0 with
dynamics ṡ > 0 and s+ = s. Solutions to system (1) are param-
eterized by a continuous-time index t ∈ R≥0, which increases
continuously during flows, and a discrete-time index j ∈ Z≥0,
which increases by one during jumps. Therefore, solutions to
(1) are defined on hybrid time domains (HTDs). Solutions to
(1) are required to satisfy dom(x) = dom(u), with u(·, j) being
locally essentially bounded and Lebesgue measurable for each
j. To establish this correspondence, a hybrid input u in (1) is
obtained from a suitable continuous-time input u by using (with
some abuse of notation) u(t, j) = u(t) during the flows (1a) for
each fixed j, and by keeping u constant during the jumps (1b).
For a precise definition of hybrid time domains and solutions to
HDS of the form (1), we refer the reader to [33]. To simplify no-
tation, in this paper we use |u|(t, j) = ess sup(0,0)⪯(t̃, j̃)⪯(t, j)

∣∣∣u(t̃, j̃)
∣∣∣,

and we let |u|∞ B limt+ j→∞ |u|(t, j). The stability properties of
HDS will be studied using the following notion.

Definition 1. Given a closed set A ⊂ Cx ∪Dx, a HDS H of the
form (1) is said to be input-to-state stable (ISS) with respect to
| · |A if there exist β ∈ KL and γ ∈ K such that every maximal
solution pair (x, u) to H satisfies:

|x(t, j)|A ≤ β(|x(0, 0)|A, t + j) + γ(|u|(t, j)), (2)

for all (t, j) ∈ dom(x) and all x(0, 0) ∈ Rn. If system (1) has
no inputs and the bound (2) holds (i.e., with γ ≡ 0), the set A
is said to be uniformly globally asymptotically stable (UGAS).
If additionally, β(r, s) = c1re−c2 s for some constants c1, c2 > 0,
the set A is said to be uniformly globally exponentially stable
(UGES). □

3. Problem Formulation

We consider a decentralized learning problem in a multi-
agent system (MAS), where a group of N ∈ Z≥2 agents
seeks to collaboratively estimate a common model character-
ized by a parameter θ⋆ ∈ Rn. The agents share informa-
tion with each other via a directed communication network
modeled by a strongly connected digraph G = {V,E}, where
V B {1, 2, . . . ,N} is the set of nodes, and E is the set of edges.
We assume that each agent i ∈ V has access to both real-time
and past recorded measurements of a signal of the form

ψ⋆i (t, di(t)) = ϕi(t)⊤θ⋆ + di(t), (3)

where di ∈ R represents an unknown and possibly time-varying
disturbance, and ϕi : R≥0 → Rn represents a regressor function
(or basis functions), which is assumed to be continuous, uni-
formly bounded, and known to the ith agent. These assumptions
are typical in parameter estimation problems in the context of
single-agent [9, 10, 3, 2] and distributed CL [7, 28].

3.1. Model Description and Key Assumptions
The main idea behind Concurrent Learning (CL) is to use

both real-time and past recorded measurements of ψ⋆i in (3)
to recursively estimate the unknown parameter θ⋆. This ap-
proach is particularly useful in situations where the regressors
t 7→ ϕi(t) are not persistently exciting [9], that is, when there are
no constants T,m > 0 such that

∫ t+T
t ϕi(s)ϕi(s)⊤ds ≥ mIn, for

all t > 0 and all i ∈ V. To address this limitation by leveraging
each agent i’s access to past recorded measurements of ψ⋆i , this
paper introduces a decentralized momentum-based concurrent
learning (DMCL) algorithm to estimate θ⋆. In this algorithm,
each agent i ∈ V maintains its own individual estimate of θ⋆i ,
denoted as θi ∈ Rn, which is updated according to the following
dynamics:

θ̇i(t) =
2
τi(t)

(pi(t) − θi(t)), τ̇i(t) ∈ [0, ω], ∀ i ∈ V, (4)

where τi is a dynamic, non-decreasing coefficient, with rate of
growth upper bounded by ω > 0, and which satisfies

τi(t) ∈ [T0,T ], ∀ t ∈ R≥0, T > T0 > 0,

where (T,T0) are tunable parameters. The auxiliary state pi ∈

Rn captures the incorporation of momentum, and it satisfies

ṗi(t) = −2τi(t)

Λi (θi(t), νi(t), t, υi) + kc

∑
j∈V

a ji

(
θi(t) − θ j(t)

) ,
(5)

where kc > 0 is a tunable gain, Λi is a suitable mapping de-
scribed below, and a ji is the jith entry of the adjacency matrix
of the graph G modeling the flow of information betwen agent i
and its neighbors. The key components of the DMCL dynamics
are explained below:

(a) In (5), the function Λi has the general form

Λi(θi, νi, t, υi) = ktΨi (θi, t, υi) + krΦi(θi, νi), (6)

where kr > 0 and kt ≥ 0 are tunable constants.

(b) In (6), the function Ψi is given by

Ψi(θi, t, υi(t)) := ϕi(t)
(
ψ̂i(θi, t) − ψ⋆i (t, υi(t))

)
, (7)

and it incorporates the real-time information available to
the ith agent, where ψ⋆i is given by (3), ψ̂i(θi, t) B ϕi(t)⊤θi,
and υi(t) := di(t) is the time-varying disturbance in (3).

(c) The function Φi in (6) is given by

Φi(θi, νi)B
k̄i∑

k=1

ϕi(ti,k)
(
ψ̂i(θi, ti,k)−ψ⋆i (ti,k, νi,k)

)
, (8)

and it incorporates past recorded measurements of the sig-
nal ψ⋆i in (3) and the regressor ϕi, obtained at a sequence
of times {ti,k}

k̄i
k=1, where k̄i ∈ Z≥1 is the number of mea-

surements recorded by agent i, and where νi,k := di(ti,k)
captures the persistent disturbances occurring during data
collection in (3), which are stored in the vector νi B

(νi,1, νi,2, . . . , νi,ki
) ∈ Rki .
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(d) The last term in the dynamics of pi captures the exchange of
information between agent i and its neighbors. Note that,
in general, we have ai j , a ji because the graph G can be
directed.

To study the DMCL dynamics, the data matrix associated to the
ith agent is defined as follows:

∆i B

k̄i∑
ki=1

ϕ(ti,k)ϕ(ti,k)⊤ ∈ Rn×n. (9)

Instead of assuming that every matrix ∆i is positive definite,
as in standard single-agent concurrent learning (CL) [9], we
will assume a weaker “cooperative” richness condition on the
overall data of the network [34, Def. 2].

Assumption 1. There exists a constant α > 0, such that

N∑
i=1

∆i ⪰ αIn. (10)

Moreover, the graph G is strongly connected. □

If (10) holds, the data {∆i}i∈V is said to be cooperatively suf-
ficiently rich (CSR).

Remark 1. Assumption 1 allows for some agents to have un-
informative data (e.g., ϕi(ti,k) = 0) provided other agent’s data
is sufficiently rich to satisfy (10), see also [35]. This is an im-
portant relaxation for large-scale MAS where, unlike standard
centraCL [9], it might be unreasonable to assume that every
agent’s data satisfies ∆i ≻ 0. Moreover, note that in the DMCL
dynamics, agents do not share their data with other agents in
the network. In fact, only the local estimates θi are shared with
the neighboring agents. This prevents the direct solution of the
estimation problem using “single-shot” techniques and instead
necessitates recursive algorithms that converge to θ⋆ while pre-
serving the privacy of individual data. □

3.2. Connections to Accelerated Gradient Flows
The form of the DMCL dynamics is closely related to the

accelerated gradient flows with momentum studied in [13, 36,
14, 24], which have the general form

ẋ1(t) =
2

τc(t)
(x2(t) − x1(t)), (11a)

ẋ2(t) = −2τc(t)∇ f (x1(t)), (11b)

and where f is a suitable convex cost function and τc : R≥0 →

R>0 is a time-varying coefficient. Indeed, using the vectors
θ := (θ1, θ2, . . . , θN), p := (p1, p2, . . . , pN), the parameter er-
ror coordinates θ̃ := θ − 1N ⊗ θ⋆, p̃ := p − 1N ⊗ θ⋆, and the
Laplacian matrix of the graph L, the DMCL dynamics with a
centralized coefficient τ = τ1 = . . . = τN can be written as the
following dynamical system:( ˙̃θ

˙̃p

)
= F̂(θ̃, p̃, τ, t), (12)

where F̂ is given by

F̂(θ̃, p̃, τ, t)=

 2
τ

( p̃ − θ̃)

−2τ (ktA(t)+kr∆+kcL) θ̃ + U(t)

 . (13)

In (13), L B L ⊗ In, A and ∆ are the block-diagonal matrices

A(t) B diag
({
ϕ1(t)ϕ1(t)⊤, . . . , ϕN(t)ϕN(t)⊤

})
,

∆ B diag




k̄1∑
k=1

ϕ1(t1,k)ϕ⊤1 (t1,k), . . . ,
k̄N∑

k=1

ϕN(tN,k)ϕ⊤N(tN,k)


 ,

and U is given by

U(t) :=


−2τktϕ1(t)υ1(t) + kc

∑k̄1
k=1 ϕ1(t1,k)ν1,k

...

−2τktϕN(t)υN(t) + kc
∑k̄N

k=1 ϕN(tN,k)νN,k

 . (14)

However, while similar decentralized algorithms have been
studied in [23, 24, 25], the DMCL dynamics do not describe a
standard gradient flow with momentum due to the lack of sym-
metry on L, i.e., the right-hand side of (13) cannot be expressed
as the gradient of a potential function, a property that usually
plays a crucial role in the stability properties of momentum-
based dynamics. The following example highlights some of
the challenges that can arise when momentum is used and the
multi-agent system (MAS) has a communication topology char-
acterized by a directed graph.

Example 1. Consider a multi-agent system with three agents,
i.e., V = {1, 2, 3}. We let kt = 0 and di = 0, and for
simplicity we assume that all agents use the same coefficient
τc = τ1 = τ2 = τ3, with τ(0) = T0, ω = 1/2, T0 = 0.1,
T = 200. We consider regressors ϕi(t) = (1, 10e−it, 100e−2it)
with collected data satisfying Assumption 1, and the parameter
θ⋆ = (1,−2, 1). The DMCL dynamics are implemented using
τ̇c = ω until τc = T, at which point τ̇c is set to zero. This
selection satisfies (4) and keeps τ bounded in the set [T0,T ].
The left plot of Figure 1 shows the evolution in time (in loga-
rithmic scale) of the estimation error θ̃ = θ − 1N ⊗ θ⋆ when
the graph G is fully connected. As observed, the estimation
error converges to zero, which is consistent with the stability
results of [13, Thm. 3] and the fact that in this case, the DMCL
dynamics describe an accelerated gradient system, similar to
(11). Now, suppose that the communication graph is a directed
cycle graph, as shown in the inset of the center plot of Fig-
ure 1. In this case, the same DMCL algorithm ceases to be
a momentum-based gradient flow and it exhibits the instability
shown in the plot. In particular, the asymmetric component of
L now induces instability when τ becomes “sufficiently large”,
at approximately t ≈ 25s, which corresponds to τ ≈ 12.5. The
right plot, however, reveals a promising solution to the instabil-
ity issue in asymmetric graphs. In particular, stability can be
restored by implementing a well-designed coordinated restart
mechanism that accounts for the graph’s asymmetry. The de-
tails of this mechanism will be elaborated upon in the following
sections. □
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Figure 1: Solutions to DMCL without restart can exhibit stability in symmetric graphs (left) and instability in asymmetric graphs (center) when τ is sufficiently
large. Stability in asymmetric graphs is recovered by employing a suitable coordinated restart mechanism (right).

3.3. DMCL with Coordinated Restart

To address the instability observed in Example 1, while si-
multaneously inducing suitable convergence rates achieved via
momentum, we incorporate restart mechanisms into the algo-
rithm (4)-(5). These mechanisms persistently reset the momen-
tum θ̇i and the dynamic coefficients τi whenever they exceed
a carefully selected upper bound T . The resets are performed
according to the following discrete-time updates:

θ+i = θi, p+i = pi + ηi(θi − pi), τ+i = T0, ∀ i ∈ V, (15)

where ηi ∈ {0, 1} is a pre-defined parameter indicating the
restart policy of agent i. Similar resets have been shown to re-
duce oscillations in single-agent momentum-based algorithms
[13, 17] and enhance their stability properties in the presence
of persistent disturbances [19]. Note that the policy ηi = 1 im-
plies p+i = θi, which in turn implies θ̇+i = 0 in (4), that is, the
momentum state of agent i is reset to zero. On the other hand,
the choice ηi = 0 only resets the coefficients τ while keeping
the momentum states constant during resets, thus emulating a
heavy-ball system with a “persistently exciting” damping coef-
ficient [16]. For multi-agent systems with undirected graphs,
similar restart mechanisms of the form (15) have been studied
in [25, 24]. However, the effectiveness of restarting in the con-
text of multi-agent systems with directed graphs has remained
largely unexplored, and, as suggested by Example 1, the exten-
sion is non-trivial.

Remark 2. The behavior observed in the center plot of Figure
1 clearly shows that a “slow” restart frequency (i.e., allowing
T to be arbitrarily large) does not achieve stable parameter es-
timation, as the trajectories of the system initially approach the
true parameter, but eventually diverge around t ≈ 25s. Con-
versely, a very “fast” restart frequency might reduce the ef-
fectiveness of using momentum with dynamic damping, as it
would keep T and pi approximately constant. Alternatively,
the right plot of Figure 1 demonstrates the emerging behav-
ior of the DMCL algorithm when restarts are implemented by
each node of the network under a “suitable” frequency and in
a coordinated manner. In this case, the dynamics exhibit fast
linear convergence to the true parameter, with a convergence
rate tunable via the parameter T . While similar phenomena
have been recently observed in game-theoretic problems [24],
the use of momentum and restart in decentralized CL problems,

and its dependence on the system’s data, graph topology, and
perturbed models (3), have remained largely unexplored.

The previous observations motivate the main research prob-
lem that we study in this paper:

Problem 1. Characterize the restart mechanisms that: a) ro-
bustly stabilize the DMCL algorithm in directed networks; b)
achieve ISS with respect to the disturbances di in (3); c) induce
network-wide acceleration properties in the MAS. □

In the next section we provide an answer to Problem 1 using
tools from hybrid dynamical systems and graph theory.

4. Main Results

To tackle Problem 1, we first consider a centralized restart
mechanism that makes use of a common state τc ∈ R>0 that
satisfies τ̇c ∈ [0, ω]. This “centralized” restarting state will ini-
tially simplify the analysis, and it will be removed in the sub-
sequent subsections to encompass decentralized implementa-
tions. For the purpose of analysis, we also use an auxiliary state
s ∈ R≥0 with dynamics ṡ = 1 to model any explicit dependence
on time t.

4.1. Centralized Restart: Hybrid Systems Model

When using a common coefficient τc ∈ R>0 to coordinate the
restart of the DMCL algorithm, the resulting dynamical system
can be modeled by the following differential inclusion, in vec-
torial form, with overall state yc B (θ, p, τc, s):

ẏc ∈Fc(yc, u) B


2
τc

(p − θ)

−2τcΛ(θ, s, u)
[0, ω]

1

 . (16)

In (16), the state yc evolves in the flow set Cc ×R≥0, with input
u B (υ, ν) ∈ RN+k̄, where the vectors υ and ν are defined as

υ B (υ1, υ2, . . . , υN) ∈ RN , ν B (ν1, ν2, . . . , νN) ∈ Rk̄,

where k̄ :=
∑

i∈V ki. The function Λ is given by

Λ(θ, s, u) B ktΨ(θ, s, υ) + krΦ(θ, ν) + kcLθ, (17)
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and the functions Ψ and Φ are defined as

Ψ(θ, s, υ) B (Ψ1(θ1, s, υ1), . . . ,ΨN(θN , s, υN)) (18a)
Φ(θ, ν) B (Φ1(θ1, ν1), . . . ,ΦN(θN , νN)), (18b)

where the functions Φi,Ψi were defined in (7)-(8) for all i ∈ V.
Since the vectors θ and p are both allowed to evolve in RnN ,
while τc ∈ [T0,T ], the set Cc is defined as:

Cc B RnN × RnN × [T0,T ], (19)

Therefore, the overall flows of the system have the form (1a),
and are given by

(yc, u) ∈ (Cc × R≥0) × RN+k̄, ẏc ∈ Fc(yc, u).

To incorporate the restarts (15) into the DMCL algorithm, each
time the condition τc = T is satisfied, the state τc is allowed
to be reset to T0, while the states (θi, pi) are updated as in (15).
Therefore, using

Rη B diag(η) ⊗ In, (20)

with η = (η1, η2, . . . , ηN), the discrete-time updates of the state
yc of the hybrid system can be written in vectorial form as

y+c = (θ+, p+, τ+c , s
+) = Ĝc(yc) = (θ, p + Rη(θ−p),T0, s) (21)

which are executed whenever (θ, p, τc, s) ∈ Dc × R≥0, where

Dc B RnN × RnN × {T }. (22)

Therefore, the overall discrete-time dynamics of the system
(which do not depend on the input u) with state yc, have the
form (1b), and are given by

(yc, u) ∈ (Dc × R≥0) × RN+k̄, y+c = Gc(yc) B Ĝc(yc)×{s}. (23)

By combining (16) and (23), the DMCL algorithm with cen-
tralized restart can be viewed as a HDS of the form (1), with
data

Hc B (Cc × R≥0,Fc,Dc × R≥0,Gc, u). (24)

Note that in this centralized HDS the jump set (22) only im-
poses conditions on the state τc. Namely, a restart is enabled
whenever τc = T . If, at this time, a restart is not executed,
solutions can only continue evolving by flowing using τ̇c = 0,
i.e., keeping τc = T constant for all time until a reset is ex-
ecuted. If τ̇(t) = constant ∈ (0, ω] for all time, then the
HDS would model a DMCL algorithm with scheduled peri-
odic restart, where the time between two consecutive restarts
is (T − T0)(constant)−1. However, the differential inclusion in
(16) also allows us to consider scenarios where τ̇ is not con-
stant but rather is any absolutely continuous function (between
restarts) satisfying τ̇ ∈ [0, ω], which includes functions that re-
main constant for arbitrarily long periods of time.

Before presenting our first main result, we introduce two
technical propositions that play important roles in our results.
All the proofs are presented in Section 6.

Proposition 1. Suppose that Assumption 1 holds. Then, there
exists a unit vector q ∈ RN such that:

σ2
Ω = 0.18 σ2

Ω = 0.11 σ2
Ω = 0.24 σ2

Ω = 0.0

Figure 2: Parameter σ2
Ω for strongly connected graphs with binary adjacency

matrices and varying degrees of symmetry.

(a) The entries qi of q satisfy:

σQ B max
i∈V

qi ≥ min
i∈V

qi := σQ > 0. (25)

(b) q⊤L = 0 and QL +L⊤Q ⪰ 0 with Q B diag(q).

(c) The function Λ in (17) with kt = 0 and ν = 0 can be decom-
posed as follows:

krΦ(θ, 0) + kcLθ = Q−1 (Σ +Ω) θ̃, (26)

where Q B Q ⊗ In, θ̃ := θ − 1N ⊗ θ⋆,

Σ := krQ∆+
kc

2

(
QL+L⊤Q

)
(27a)

Ω :=
kc

2

(
QL−L⊤Q

)
, (27b)

and ∆ B diag ({∆1,∆2, . . . ,∆N}), where ∆i is given by (9).

(d) There exists a class-K∞ function χ(·) such that[
Ω + ktÃ(t)

][
Ω + ktÃ(t)

]⊤
⪯ (σ2

Ω + χ(kt)2)INn, (28)

∀ t ≥ 0, where Ã(t) B QA(t) and σΩ is the largest singular
value of Ω. □

Remark 3. By construction, if the Laplacian L is symmetric,
then σ2

Ω = 0. However, if L is asymmetric, then in general we
have σ2

Ω , 0. For the purpose of illustration, Figure 2 presents
four examples of different graphs G and their corresponding
numerical values of σ2

Ω. □

Proposition 2. Suppose that Assumption 1 holds; then, there
exist σΣ ≥ σ

Σ
> 0 such that

σΣINn ⪰ Σ ⪰ σ
Σ

INn, (29)

where Σ is given by (27a). □

4.2. Input-to-State Stability of Hc

With Propositions 1-2 at hand, we are now ready to present
the first main result of this paper, which provides conditions to
stabilize the DMCL algorithm using a coordinating centralized
state τc. In particular, we study the stability properties of Hc

with respect to the closed set Ac B Aθp × [T0,T ]×R≥0, where

Aθp B {1N ⊗ θ⋆} × {1N ⊗ θ⋆}, (30)

which precisely describes the situation where all agent’s esti-
mates θi are equal to the true parameter θ∗.

6



Theorem 1. Suppose that Assumption 1 holds, and let the con-
stants (σQ, σQ, σ2

Ω, σ
Σ

) be given by Proposition 1. If the restart
parameters (ω,T0,T ) satisfy ω ∈ (0, 1) and(

1
2
σQ

σ
Σ

+T 2
0

) 1
2

C T < T < T B
σQ(1 −ω)σ

Σ

σ2
Ω + χ(kt)2

 1
2

, (31)

then the following hold:

(a) For any restart policy η ∈ {0, 1}N the HDS Hc renders the
set Ac ISS with respect to the input u.

(b) If ηi = 1 for all i ∈ V, and τ̇c B ω, then, for every initial
condition y0 := yc(0, 0) ∈ (Cc ∪ Dc) × R≥0, every solution-
input pair (yc, u) of Hc, and every (t j, j) ∈ dom(yc) with
t j B min{t : (t, j) ∈ dom(yc)}, the sampled sequence of
estimates θ(t j, j) satisfies

|θ(t j, j) − 1N ⊗ θ⋆|2 ≤ k1 · µ
j|y0|

2
Ac
+ k2|u|2(t j, j), (32)

where k1, k2 > 0, and µ(T ) B (T/T )2 ∈ (0, 1). □

The main result of Theorem 1 reveals the impact of the asym-
metry of G on the resetting parameter T . In particular, the fol-
lowing observations are in order:
(1) When L is symmetric (i.e., σ2

Ω = 0) and the DMCL dy-
namics do not use real-time data (i.e., kt = 0), condition (31)
reduces to T < T < ∞, which can always be satisfied using any
positive constant T , recovering the results of [19, Thm. 2] in
the context of standard optimization.
(2) In general, the more “informative” is the collective data in
the overall system (i.e., the larger is α in (10)), the larger the
parameterσ

Σ
will be, thus providing more flexibility to increase

the upper bound T .
(3) The ISS result implies that the trajectories of the algorithm
will converge to a neighborhood of the true parameter θ⋆, where
the size of the neighborhood shrinks as the disturbances di

shrink in (3). When di = 0, the result establishes asymptotic
convergence to the true parameter.
(4) In item (b), the assignment τ̇c := ω induces periodic re-
sets in the system, where the time between consecutive resets
is (T − T0)ω−1. Moreover, the policy choice ηi = 1 implies
that all agents reset their momentum. In this case, the rate of
convergence between reset times is explicitly characterized by a
contraction coefficient µ(T ), which can be tuned to improve per-
formance and reduce oscillations. In particular, following sim-
ilar steps as in the centralized case [19], the “optimal” value of
T that minimizes the contraction coefficient µ(T ) over a given

window of time can be computed as T ∗ = e
(
σQ
2σ
Σ

+ T 2
0

) 1
2
.

(5) Lastly, when u ≡ 0, the convergence bound (32) character-
izes the “accelerated” convergence properties of Hc towards the
true model θ⋆.

Remark 4. The upper bound in (31) reveals an interesting
trade-off between the choice of T and ω. Specifically, larger
values of ω in (16) (indicating a more aggressive decreasing
damping during flows) leads to more conservative values of T
(indicating more frequent resets) to maintain stability. □

Next, the following corollary leverages the expression of T ∗

to obtain convergence bounds that parallel those obtained for
centralized single-agent systems [19].

Corollary 1. Suppose that all the assumptions of Theorem 1
hold with T = T ∗, τ̇c = ω and u ≡ 0; then, (32) holds with
k2 = 0, and for each ε > 0 we have |θ(t j, j) − 1N ⊗ θ⋆|2 ≤ ε for
all t j > t∗j , where t∗j B

1
2ω (T ∗ − T0) log

(
1
ε

c
c |y0|

2
A

)
. □

The bound in Corollary 1 implies that, as T0→0+, the conver-

gence of θi towards θ∗ is of order O
(
e−

√
σ
Σ
/σQ

)
, for all i ∈ V.

We complete this section with a corollary for the case η = 0,
which guarantees the ISS properties of Hc, but not convergence
bounds of the form (32).

Corollary 2. Suppose that Assumption 1 holds, ηi = 0 for all
i ∈ V, ω ∈ (0, 1), and T0 < T < T, with T as defined in (31).
Then, the HDS Hc renders the set Ac ISS. □

The resetting bounds of Theorem 1 and Corollary 2 only pro-
vide sufficient conditions for ISS (with exponential conver-
gence rates). It remains an open question how to obtain tight
bounds on (T0,T ) that are also necessary for stability. We do
not further pursue these questions in this paper.

4.3. Decentralized Restart: Synchronization

Since a central coordinator with state τc might not exist
in large-scale networks, in this section, we study decentral-
ized restart strategies based on each agent i ∈ V implement-
ing an individual dynamic coefficient τi with initial conditions
τi(0, 0) ∈ [T0,T ], which might not be synchronized a priori,
namely, τi(0, 0) , τ j(0, 0), for some i, j ∈ V. To simplify our
discussion, we assume that ηi = 1 and τ̇i = ω ∈ (0, 1) for all
i ∈ V, and that kt = 0, which allows us to remove the auxiliary
state variable s and its associated dynamics. However, all our
results can be extended to the case when time-varying regres-
sors are included.

When each agent implements its own coefficient τi, the
continuous-time DMCL dynamics (16) become

(x, u) ∈ C × RN+k̄, ẋ = F(x, u) B

 2T −1(p − θ)
−2T (krΦ(θ, u) + kcLθ)

ω1N

 ,
(33)

where the main state is now x = (θ, p, τ) ∈ RNn × RNn × RN ,
T B diag(τ⊗1n), τ = (τ1, τ2, . . . , τN),Φ is given by (18b), and
the flow set is now given by

C B RN × RN × [T0,T ]N . (34)

In this case, restarts of the form (15) with ηi = 1 occur whenever
at least one of the agents satisfies the condition τi = T . This
behavior can be modeled by the following jump set:

D =
{
x ∈ C : max

i∈V
τi = T

}
. (35)
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However, note that this approach would lead to uncoordinated
restarts of the individual dynamics of the agents across the sys-
tem. For example, for any time window [T0,T ], one can se-
lect N equidistant initial conditions τi(0, 0) ∈ [T0,T ], where
i ∈ {1, 2, . . . ,N}, which result in solutions experiencing N
restarts during this time window, each restart separated by in-
tervals of flow of length T−T0

N . Therefore, as N → ∞, asyn-
chronous restarts would occur more often, hindering the advan-
tages of incorporating momentum into the flows of the algo-
rithm to accelerate the overall system.

To address this issue, and inspired by the synchronization
algorithms of [37], we integrate the restart dynamics (15) of
each agent with a decentralized coordination mechanism for the
states τi. Specifically, each agent i ∈ V performs individual
restarts of the form (15) when τi = T . However, the agents
also implement the following additional discrete-time updates
whenever their neighbors j ∈ Ni satisfy the condition τ j = T :

τ+i ∈ Ri(τi) B


T0 if τi ∈ [T0, ri)

{T0,T } if τi = ri

T if τi ∈ (ri,T ]
, (36)

where ri > 0 is a tunable parameter that partitions the interval
[T0,T ] of each agent. Note that in (36), the update rule is set-
valued whenever τi = ri, and in this case, the parameter τi can
be updated either as τ+i = T0 or τ+i = T . By studying this
set-valued rule, we can establish suitable robustness properties
concerning potential disturbances that might slightly perturb τi

near the point ri ∈ [T0,T ]. This ensures that such perturbations
will not significantly alter the system’s behavior.

To incorporate the additional discrete-time updates (36) into
the overall jump map of the system, we consider the following
set-valued mapping:

Gd(x) B
{
(θ̂, p̂, τ̂) ∈ R(2n+1)N : θ̂ = θ, p̂i = pi, τ̂i = T0,

τ j ∈ R j(τ j), p̂ j = p j, ∀ j ∈ Ni,

p̂k = pk, τ̂k = τk ∀k , i , j
}
,

which is defined to be non-empty if and only if τi = T and
τ j ∈ [0,T ). In words, the mapping Gd(x) captures the resets of
the individual states (θi, pi, τi) ∈ R2n+1 of agent i via (15), and
also the updates of its neighbors j ∈ Ni via (36). The overall
jump-map of the multi-agent hybrid system can then be defined
using the outer-semicontinuous hull of Gd

1, which is denoted
as Gd, leading to the overall discrete-time dynamics

(x, u) ∈ D × RN+k̄, x+ ∈ G(x) B Gd(x). (37)

Note that system (37) preserves the sparsity property of the
graph G.

The decentralized continuous-time dynamics (33) and the de-
centralized discrete-time dynamics (37) comprise the overall
DMCL algorithm with restarts studied in this paper. This al-
gorithm is fully modeled by the HDS

H B (C,F,D,G, u). (38)

1The outer-semicontinuous hull of a set-valued mapping G : Rn ⇒ Rn is the
unique set-valued mapping Ḡ : Rn ⇒ Rn satisfying graph(Ḡ) = cl(graph(G)),
where cl(·) stands for the closure.

The following theorem provides a decentralized version of The-
orem 1. In this case, stability of τ is studied with respect to the
“synchronized” set Async B ([T0,T ] · 1N) ∪ {T0,T }N , and the
stability properties of the overall state x are studied with respect
to the compact set

A B Aθp ×Async. (39)

For simplicity, we state the result for the case u = 0, but we also
comment on the robustness properties of the dynamics.

Theorem 2. Consider the HDS H given by (38), and suppose
that Assumption 1 holds and that:

(a) The parameters (T0,T ) satisfy (31).

(b) The constants {ri}i∈V satisfy T0 < ri < T0 +
(T−T0)

N−1

Then, the set A B Aθp ×Async is UGES for H , and there exists
a time t∗ ∈

[
0, 2 T−T0

ω

)
such that for every solution x of H and

every (t, j) ∈ dom(y) such that t + j ≥ t∗ + 2N, the bound (32)
holds. □

Remark 5 (Nominal Robustness). Since the hybrid system
H is nominally well-posed in the sense of [30, Ch. 6], the
UGES properties of the DMCL algorithm are preserved, in a
semi-global practical sense, under arbitrarily small additive per-
turbations on states and dynamics. This property is crucial for
the use of H in practical applications where dynamic distur-
bances are unavoidable, such as those in (3). □

Remark 6 (Strong Robustness via ISS). The techniques em-
ployed to proof Theorem 2 can be further utilized to obtain ISS
of H provided that u originates from a dynamical system evolv-
ing in a compact set. We omit this extension due to space con-
straints. □

Remark 7. Since system H has no finite-escape times due to
the global Lipschitz property of F in C, it follows that the sta-
bility results of Corollary 2 also extend to H with ηi = 0 for
all i, recovering the convergence result of Theorem 1 after an
initial finite synchronization phase. □

To the best of the author’s knowledge, Theorems 1-2 and
the respective corollaries, are the first stability results for
momentum-based CL algorithms implemented in multi-agent
systems with general directed graphs. We note that in the lit-
erature of centralized CL, other accelerated algorithms have
been studied using finite-time and fixed-time stability tools in
[3, 38, 39]. However, as shown in the comparison presented
in [3], when the “level of richness” of the data (i.e., α in As-
sumption 1) is “low”, momentum-based methods can achieve
competitive transient performance compared to other first-order
non-smooth techniques. For decentralized problems defined
over networks, we are not aware of finite-time or fixed-time
CL algorithms that are stable under Assumption 1. A natural
progression for future research involves developing such algo-
rithms and comparing them with the DMCL algorithms pro-
posed in this paper.
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Figure 3: Left: Trajectories of H when G is fully connected. Right: Trajectories of H when G is a cycle. Here, θ̃ = θ − 1N ⊗ θ⋆

5. Applications in Estimation, Control, and Model-free
Feedback Optimization

In this section, we apply the DMCL algorithm with restart in
three different applications.

5.1. Hybrid Cooperative Identification Over Digraphs

First, we validate Theorem 2 in an cooperative estimation
problem defined in a multi-agent system with N = 5, n = 3, and
ψi(s) = (10e−is−1)2, for all i ∈ V. To implement the DMCL al-
gorithm with coordinated restarts, we parameterize ψi(·) using
the regressor ϕi(s) B (1, 10e−is, 100e−2is) and θ⋆ = (1,−2, 1).
To satisfy Assumption 1 with α = 5.5, each agent records five
measurements of ψi. We implement the hybrid system H and
plot the resulting trajectories of the estimation error in the left
plot of Figure 3, using kr = 80, kc = 0.08, and a fully connected
graph. We also show with dashed lines the trajectory obtained
when using the first-order decentralized CL dynamics of [7].
Since the graph is symmetric, in this case T can be selected ar-
bitrarily large to tune the convergence rate of the dynamics (see
inequality (31)). The simulations start from a non-synchronized
initial condition τ(0, 0) , τ015 and rapidly achieve synchro-
nization. Trajectories related to different choices of T are also
shown to illustrate the impact of the restart period on the con-
vergence rate. Next, we let G be a cycle digraph, for which
σ2
Ω = 0.18. The resetting parameter T is selected to satisfy

inequality (31), and the resulting trajectories are shown in the
right plot of Figure 3. In this case, the best transient perfor-
mance is obtained as T approaches the upper bound T.

5.2. Data-Enabled Hybrid Cooperative MRAC

A key advantage of the robust stability results presented in
Theorems 1 and 2, is that the DMCL dynamics can be intercon-
nected with other systems for the solution of feedback control
problems. To illustrate this application, we consider a multi-
agent dynamical system, where each agent has individual dy-
namics of the form:

χ̇i = Aiχi + Biui + Biψ̃i(θ⋆, χi), χi ∈ Rn, ui ∈ Rm, (40)

where ψ̃i(θ⋆, χ) = ϕi (χ)⊤ θ⋆ models structured uncertainty pa-
rameterized by a common vector θ⋆, and an individual regressor
ϕi that is known by each agent i. The agent’s goal is to be able
to asymptotically track a common bounded reference r despite
the uncertainty in their model.

5.2.1. Two-Time Scale Hybrid Dynamics
To solve the tracking problem we use a two-time scale ap-

proach. First, we introduce a reference model χ̇r = Arχr + Brr,
where Ar is assumed to be Hurwitz. Following the ideas of
[9], each agent implements a model-reference adaptive control
(MRAC) law that incorporates three elements: (1) an adaptive
component uai (θi, χi) = ϕi(χi)⊤θi, where θi is the individual
estimate of θ⋆; (2) a state-feedback component usi (χi, χr) =
−K(χi − χr); and (3) a feed-forward term u fi designed such that
Biu fi (χr) = (Ar − Ai)χr + Brr; see Figure 4 for an illustration
of the control law. Using ui(θi, χi, χr) = usi (χi, χr) + u fi (χr) −
uai (θi, χi), and the error coordinates ei = χi − χr, the error dy-
namics for agent i become:

ėi = Ami ei + Bi

(
ψ̃i(θ⋆, ei + χr) − uai (θi, ei + χr)

)
, (41)

where Ami B Ai − BiK, for all i. We make the assumption that
system (41) has no finite escape times from all initial condi-
tions, and that Assumption 1 holds. To cooperatively estimate
θ, we interconnect (41) with the DMCL algorith with restart
given by (38), with flow map

x ∈ C, ẋ = kaF(x, 0), (42)

where the pair (C,F) is given by (33), and where ka > 0 is a
tunable parameter.

To study the stability of the interconnected system, we first
assume the existence of a centralized timer τc that coordinates
the resets, with dynamics τ̇c = ω ∈ (0, 1). We interpret the
closed-loop system as a two-time scale hybrid dynamical sys-
tem with the DMCL algorithm having continuous-time dynam-
ics operating in a faster time scale compared to (41). Since
Am is Hurwitz, for each Q ≻ 0 there exists P ≻ 0 such that
A⊤

mP + PAm = −Q, i.e., system (41) is UGES when θi = θ.
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Similarly, by Theorem 1, the momentum-based hybrid dynam-
ics Hc render the set Ac UGES via a Lyapunov function V . We
can then study the interconnection of both systems using the
Lyapunov function V1 = 0.5Ṽ(e) + 0.5V(x), with Ṽ(e) = e⊤Pe,
and V constructed as in Section 6.3. Indeed, from the proof of
Theorem 1 in Section 6.3, the change of V1 after a jump satis-
fies ∆V1 := V1(e+, x+) − V1(e, x) = ∆V(x) ≤ 0 because e+ = e.
On the other hand, during flows of the closed-loop system, the
time derivative of V1 satisfies

V̇1 = −e⊤Qe − 0.5kV(yc) + e⊤Qϕ(χ(t))⊤θ

≤ −λmin(Q)|e|2 − ka|yc|
2
Ac
+ kϕ|e||y|A,

where we used the quadratic lower bounds of V , and the bound-
edness of the regressors to obtain kϕ > 0. From here, the result
follows by completing squares and taking ka sufficiently large
such that V̇ < 0 using standard arguments for two-time scale
systems [40, Ch. 11.5]. Since ∆V ≤ 0, the jumps are periodic,
and V1 has quadratic upper and lower bounds, we obtain UGES
of the set A1 = {0} ×Ac, where Ac is defined right before (30).
The stability properties for the decentralized case follow now
by leveraging the absence of finite escape times, and by using
the reduction principle as in the proof of Theorem 2.

5.2.2. Numerical Example
To illustrate the previous result, we consider a multi-agent

system with N = 5 agents, where the communication graph G

is a directed cycle graph, see the inset in Figure 4. We con-
sider open-loop unstable individual dynamics characterized by
matrices Ai = E12 ∈ R2×2, Bi =

(
0, 2i−1

2i

)
, and the param-

eterized uncertainty ψ̃i(χi) = ϕi(χi)⊤θ, with θ = (−1, 1, 0.5)
and ϕi(χi) =

(
sin

(
χ1,i

)
, |χ2,i|χ2,i, eχ2,iχ1,i

)
, for all i ∈ V. For

the MRAC controllers, we consider a second order reference
model with natural frequency and damping ratio equal to 1,
a state-feedback gain K = (1, 1), and a feed-forward term
u fi (χr) = − 2i

2i−1

(
1⊤

2 χr − r
)
, for all i ∈ V. Each agent records

two measurements of ψ̃i and χi at times ti,k ∈ {0, 1.5}. The
corresponding data matrices ∆i are not individually rich, which
precludes the direct application of standard CL techniques [9]

or “one-shot” methods. However, the collective data satisfies
the CSR condition in Assumption 1 with α = 0.9. To regulate
the state χi to zero, we choose r = 0, kr = 1, kt = 0, kc = 0.1,
ka = 3, T0 = 0.1, and T = 5. We let each agent implement
an MRAC controller interconnected with the hybrid dynam-
ics H and show the resulting trajectories in Figure 4. As ob-
served, the DMCL algorithm with restart yields better transient
performance compared to traditional first-order cooperative ap-
proaches without momentum [7]. Note that these results are
obtained using decentralized recorded (i.e., batch) data, as op-
posed to real-time PE data. The latter might require potentially
extreme transient excursions of some states whenever the pa-
rameter estimation is accelerated, which is a well-known chal-
lenge in real-time adaptive control, see [41].

5.3. Data-Enabled Hybrid Cooperative Feedback Optimiza-
tion

Consider a multi-agent system with dynamics

χ̇i = Pi(χi, ui), yi = hi(χi, ui), (43)

where χi ∈ Rn is the state, ui ∈ Ui ⊂ R is the input, and
yi ∈ R is the output. The set Ui is assumed to be compact
and convex for all i ∈ V. We consider the setting where agents
seek to cooperatively find, in real-time and in a model-free man-
ner, an optimal input u∗ that maximizes their individual outputs
at steady state. This scenario describes a classic data-enabled
model-free feedback optimization or extremum-seeking prob-
lem [7]. To guarantee that this problem is well-posed, the func-
tion P B P1×P2× . . .×PN is assumed to be globally Lipschitz
in both arguments, and we also assume there exists a smooth
function u 7→ m(u) = m1(u1)×m2(u2)× . . .×mN(uN), such that
for each fixed u ∈ U B U1 × U2 × . . . × UN ⊂ RN , the system
χ̇ = P(χ, u) renders the equilibrium point χ⋆ = m(u) UGES,
uniformly on u. Since the function m(·) describes the steady-
state input-to-state mapping of (43), the optimization problem
that each agent i seeks to solve can be written as

max
ui∈Ui

Ji(ui) B hi(mi(ui), ui), (44)

10



Figure 5: Left: Scheme of the ith agent’s dynamics in the data-enabled hybrid cooperative feedback optimization dynamics. Right: Trajectories of the vehicles. The
arrows represent the edges of G. The final positions of the vehicles are represented by stars.

where the response maps Ji are assumed to be unknown, contin-
uously differentiable, strongly concave, common across the net-
work; and parametrizable as Ji(ui) = ϕi(ui)⊤θ⋆, for all ui ∈ Ui,
where ϕi is a known continuous and bounded regressor. Func-
tions that satisfy these conditions are common in source seek-
ing problems, where a group of mobile robots seeks to coop-
eratively find the maximizer of a common potential field using
intensity measurements, see [7]. In the more general case, we
note that, by the universal approximation property of smooth
functions, the above assumption on J always holds on com-
pact sets, modulo a small residual error that is also bounded on
compact sets. In this case (i.e., non-zero approximation error),
our result still holds but now in a “semi-global practical” sense,
provided that the bound on the residual approximation error is
sufficiently small, a property that can always be achieved by in-
creasing the complexity (i.e., number of basis functions, etc) of
the approximator.

5.3.1. Three-Time Scale Hybrid Dynamics
To solve the model-free feedback optimization problem us-

ing recorded data that is distributed among the agents, we use a
three-time scale approach. Let u⋆ = (u⋆1 , u

⋆
2 , . . . , u

⋆
N) be the

vector whose entries are the solutions to the N optimization
problems defined in (44). To steer u towards u∗, we consider
the following feedback optimization dynamics for each agent i:

u̇i = −εuui + εuPUi

(
ui + Dϕi(ui)⊤θi

)
, ∀ i ∈ V, (45)

where Dϕi(ui) is the Jacobian matrix of ϕi(ui), the function
PUi (·) is the Euclidean projection on the set Ui, εu > 0 is a tun-
able parameter, and θi is the individual estimate of θ⋆, which
will be recursively updated using the DMCL algorithm with
restart, modeled by the hybrid system H ; refer to Figure 5 for
an illustration of the overall control scheme.

To study the stability properties of the closed-loop system,
we modeled the overall dynamics as a three-time scale system,
where the plant dynamics (43) operate at a faster time scale, the
DMCL dynamics with restart operate in a medium time scale,
and the optimization dynamics (45) operate at the slowest time
scale. Such time scale separation can be induced by an appro-
priate tuning of the gains εu in (45) and ka in (42). By the
stability assumptions on the plant dynamics (43), and by using
a standard converse Lyapunov theorem [40, Thm. 4.14], there
exists a Lyapunov function V1 : RnN → R, and constants ci > 0,

for i ∈ {1, 2, 3, 4}, such that c1|χ−m(u)|2 ≤ V1(χ) ≤ c2|χ−m(u)|2,
⟨∇V1(χ), P(χ, u)⟩ ≤ −c3V1(χ), and |∇V1(χ)| ≤ c4|χ − m(u)| for
all χ ∈ Rn and u ∈ U. Similarly, by the proof of Theorem
1, and since the HDS H satisfies the hybrid basic conditions
[32, Ch.6], there exists a quadratic Lyapunov function V that
decreases exponentially fast during flows and jumps of H , pro-
vided that the data matrices {∆i}i∈V are CSR. Additionally, since
the static-map (44) is strongly concave, the optimization dy-
namics (45) with θi = θ

⋆ reduced to a projected gradient flow
that renders UGES the point u⋆i via the quadratic Lyapunov
function V2 =

1
2 |ui − u∗i |

2, which satisfies V̇2 ≤ −γ2V2 [42,
Thm. 3]. Using these individual quadratic-type Lyapunov func-
tions, and the global Lipschitz properties of the vector fields
(43), (42), and (45), we can now use the Lyapunov function
V̂ = V +V1 +V2 to establish exponential stability of the closed-
loop system by following, recursively, the exact same steps of
[40, Ch. 11.5], and using sufficiently small gains εu and ka.

5.3.2. Numerical Example
Consider a multi-vehicle system with N = 5 vehicles, seek-

ing to collaboratively locate the source of a potential field that
is only accessible via intensity measurements. The vehicles
share information via a communication graph G characterized
again by a cycle. We assume the plant dynamics (43) have the
form Pi = Aiχi + Biui with matrices Ai = −iI2, Bi = iI2, and
quadratic output yi = χ

⊤
i Qiχi +w⊤

i χi + di where Qi = −I2, wi =

(−8.1,−5.88), and di = −25 for all i ∈ V. The sets Ui are
given by Ui = ξi + 2B where ξi = R(2πi/N)(1, 0), with R(α)
being the standard 2 × 2 matrix that rotates a vector by an an-
gle α. In this case, the steady-state input-to-output map (44)
reduces to Ji(ui) = −|ui|

2 + w⊤
i ui + di, and each agent uses the

vector of basis functions ϕi(ui) =
(
u2

i,1, ui,1, u2
i,2, ui,2, ui,1ui,2, 1

)
,

where the parameter θ⋆ = (−1,−8.09,−1,−5.88, 0,−25) is as-
sumed to be unknown. To implement the DMCL dynamics
with restart, each agent has access to only two points of data
{ui,k, yi,k}

2
k=1. In this way, while the individual data is not persis-

tently exciting for each agent, the collective data satisfies As-
sumption 1 with α = 0.75. Using these data and the parameters
kr = 1, kt = 0, kc = 0.1, ka = 0.1, εu = 0.01, T0 = 0.1, and
T = 5, we simulate the closed-loop system comprised of the
plant dynamics, the optimization dynamics in (45), and the hy-
brid dynamics H . Figure 5 shows the resulting trajectories of
the vehicles, converging to the maximizers of Ji in Ui. Figure

11
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Figure 6: Evolution in time of parameter (top) and control (bottom) errors.

6 shows the evolution in time of the parameter estimation error
and the control signals. It can be observed that, given the low
richness of the collected data (small α), the proposed decentral-
ized concurrent learning algorithm with momentum achieves
faster convergence compared to the first-order cooperative esti-
mation approach of [7].

6. Proofs

In this section, we present the proofs and analyses of our
main results.

6.1. Proof of Proposition 1
For the purpose of clarity, we divide the proof of Proposition

1 into multiple lemmas.

Lemma 1. Suppose that Assumption 1 holds; then, there exists
a unit vector q ∈ RN such that items (a), (b), and (c) of Propo-
sition 1 hold. □

Proof: Items (a)-(b) follow directly by [43, Prop. 1]. To
show item (c), we use the expressions in (26) and (27), and by
direct substitution we obtain:

Σ +Ω = krQ∆+
kc

2

(
QL+L⊤Q

)
+

kc

2

(
QL−L⊤Q

)
= krQ∆ + kcQL.

Applying a left-multiplication by Q−1 and a right-multiplication
by θ̃ leads to

Q−1 (Σ +Ω) θ̃ = kr∆θ̃ + kcLθ̃, (46)

and since θ̃ = θ − 1N ⊗ θ⋆, and L(1N ⊗ θ⋆) = 0, we obtain:

Q−1 (Σ +Ω) θ̃ = kr∆θ̃ + kcLθ.

Finally, we show that Φ(θ, 0) = ∆θ̃. Indeed, since Φ(θ, 0) =
(Φ1(θ1, 0), . . . ,ΦN(θN , 0)) andΦi(θ1, 0) is given by (8), we have:

Φi(θi, 0) =
k̄i∑

k=1

ϕi(ti,k)
(
ϕi(ti,k)⊤θi − ϕi(ti,k)⊤θ⋆

)
=

k̄i∑
k=1

ϕi(ti,k)ϕi(ti,k)⊤
(
θi − θ

⋆
)
= ∆iθ̃i, ∀ i ∈ V,

which implies Φ(θ, 0) = diag({∆1, . . . ,∆N})θ̃ = ∆θ̃. ■

Lemma 2. There exists χ ∈ K∞ such that (28) holds. □

Proof: Consider the following matrix:

W(t) B
[
Ω + ktQA(t)

][
Ω + ktQA(t)

]⊤
, (47)

and recall that for any symmetric matrix A ∈ Rn×n we have
A ⪯ λmax(A)In [44, Cor. 10.4.2] and λmax(A) ≤ σmax(A) = ∥A∥
[44, Fact 7.12.9], where λmax(A) and σmax(A) are the maximum
eigenvalue and the maximum singular value of A, respectively.
By using these facts, together with the sub-multiplicativity of
the matrix norm, we obtain that:

W(t) = ΩΩ⊤ + kt

(
ΩA(t)⊤Q +QA(t)Ω⊤

)
+ k2

t QA(t)QA(t)⊤

⪯
(
σ2
Ω + 2σΩσQ∥A(t)∥kt + σ

2
Q∥A(t)∥2k2

t
)
INn. (48)

Since ϕi(·) is uniformly bounded, there exists ϕ > 0 such that
ϕi(t) < ϕ for all i ∈ V and all t ∈ R. Combining this fact with
the diagonal structure of A(t) leads to ∥A(t)∥ ≤ (ϕ)2. By using
this bound in (48) we obtain:

W(t) ⪯
(
σ2
Ω + 2σΩσQϕ

2
kt + σ

2
Qϕ

4
k2

t

)
INn.

The result follows using χ(kt) B
√

2σΩσQϕ
2
kt + σ

2
Qϕ

4
k2

t ,
which is clearly a class-K∞ function. ■

6.2. Proof of Proposition 2

We divide the proof into two lemmas:

Lemma 3. Under Assumption 1, item (d) of Proposition 1
holds, i.e., Σ is positive definite. □

Proof: We present the proof step-by-step.

(a) First, note that Q∆ = ∆Q since Q = Q ⊗ In =

diag ({q1In, . . . , qN In}), ∆ = diag ({∆1, . . . ,∆N}), with ∆i B∑ki
k=1 ϕ(ti,k)ϕ(ti,k)⊤ ∈ Rn×n, and qiIn∆i = ∆iqiIn trivially. Then,

since Q ≻ 0 and ∆ ⪰ 0 it follows that Q∆ ⪰ 0.

(b) Let the eigenvalues of the matrix L⊤Q + QL be organized
as 0=λ1<λ2≤ · · · ≤λN , and let vi ∈ RN be the eigenvector that
corresponds to the eigenvalue λi and satisfies |vi| = 1. It follows
that v1 =

1
√

N
1N .

(c) Let M := L⊤Q +QL, and let

EB
1
√

N
[1N ⊗ e1, · · · , 1N ⊗ en]

U B [v2 ⊗ e1, · · · , v2 ⊗ en, · · · , vN ⊗ e1, · · · , vN ⊗ en]

where the vectors ei denote the standard basis in Rn. Note that
the matrices E ∈ RNn×n and U ∈ RNn×(N−1)n characterize the
null space and the range space of M, respectively.
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(d) Let x̂ ∈ RNn be a unit vector, which we can write as

x̂ = Eb + Uc (49)

where b ∈ Rn and c ∈ R(N−1)n satisfy |b|2 + |c|2 = 1.
(e) Since E can be written as E = 1

√
N

1N ⊗ In, and Q∆ =
diag ({q1∆1, . . . , qN∆N}), we have that

Q∆E =
1
√

N


q1∆1
...

qN∆N

 ,
which leads to

E⊤Q∆E =
1
N

N∑
i=1

qi∆i. (50)

Using (49) and (50), we obtain

x̂⊤Q∆x̂ ≥ b⊤E⊤∆Eb + 2b⊤E⊤Q∆Uc

≥ σQᾱ|b|
2 + 2b⊤E⊤Q∆Uc,

where ᾱ := α/N, α is given by Assumption 1, σQ and
σQ are defined in (25), and σ∆ B |∆|. Moreover, since
|2b⊤E⊤Q∆Uc| ≤ 2|b||c|σQσ∆, and using |c| =

√
1 − |b|2, we

obtain:

x̂⊤Q∆x̂ ≥ σQᾱ|b|
2 − 2σQσ∆|b|

√
1 − |b|2 =: ξ1(b). (51)

(f) On the other hand, we have that

x̂⊤Mx̂ ≥ λ2|c|2 = λ2(1 − |b|2) =: ξ2(b). (52)

Since by the construction of Σ in (27) we have x̂⊤Σx̂ =
krx̂⊤Q∆x̂ + kc

2 x̂⊤Mx̂, the above bounds imply that Σ ⪰ σ
Σ

INn,
where

σ
Σ

≥ min
0≤ν≤1

max
{

krξ1(ν),
kc

2
ξ2(ν)

}
, (53)

with ξ1 given by (51) and ξ2 given by (52).
(g) Next, we study (53) and we show that this lower bound is
indeed positive. Since, by item (a), Q∆ ⪰ 0, without loss of
generality we can assume that the first term in the brackets in
(53) is non-negative. Indeed, suppose by contradiction that such
term is negative. Then, since Q∆ ⪰ 0, we can take ξ(b) as a
non-negative lower bound for x̂⊤Σx̂, and since ξ(b) = 0 only if
b = 1, we obtain that for such b the first term in the brackets is
indeed positive.
(h) To get a closed form of the expression in (53), let ν =
sin(θ), θ ∈ [0, π/2]. In the θ variable, (53) becomes:

min
0≤θ≤ π

2

max
{
k1(1− cos(2θ))−k2 sin(2θ), k3(1 + cos(2θ))

}
,

where the constants k1, k2, k3 > 0 are given by k1 B
krσQᾱ

2 , k2 B krσ∆σQ, k3 B
kc
4 λ2. Further simplifying, we ob-

tain

min
0≤θ≤ π

2

max
{

k1 −

√
k2

1 + k2
2 sin

(
2θ + tan−1

(
k1

k2

))
,

k3 + k3 cos(2θ))
}

B min
0≤θ≤ π

2

max
{
g1(θ), g2(θ)

}
. (54)

Figure 7: Illustration of step (i) in the proof of Proposition 3.

We argue that the intersection point θ∗ ∈ [0, π2 ] of the trigono-
metric curves g1(θ), g2(θ) solves the min-max problem (54).

(i) To establish the existence of such θ∗ ∈ [0, π2 ], we use the fol-
lowing facts: (i) k1, k2, k3 > 0, (ii) g1(0) = 0, g1( π2 ) = 2k1 > 0,
dg1(θ)

dθ = −2
√

k2
1 + k2

2 cos(2θ + tan−1( k1
k2

)), (ii) g2(0) = 2k3 > 0,

g2( π2 ) = 0, dg2(θ)
dθ = −2k3 sin(2θ). Since g1 and g2 are continuous

functions, the previous conditions imply the existence of a point
θ∗ such that g1(θ∗) = g2(θ∗). Moreover, since g2 is decreasing
on [0, π2 ] with g2(0) > 0, g2( π2 ) = 0, g1(0) = 0, g1( π2 ) > 0,

and dg1(θ)
dθ = −2

√
k2

1 + k2
2 cos(2θ + tan−1( k1

k2
)), it follows that the

intersection point θ∗ is in fact the minimum of the point-wise
maximum of g1(θ) and g2(θ). See Figure 7 for an illustration of
this step.
(j) By computing the intersection point θ∗, we obtain

θ∗ =
1
2

cos−1

 k1 − k3√
(k1 + k3)2 + k2

2

 + tan−1
(

k2

k1 + k3

) .
Substituting the values of k1, k2 and k3, establishes the exis-

tence of a positive lower bound on the constant σ
Σ

that satisfies
Σ ⪰ σ

Σ
INn, given by

σ
Σ
≥

kcλ2

4
[
1 + cos(θ∗)

]
, (55)

where θ∗ = θ∗1 + θ
∗
2, with

θ∗1 = cos−1

 2krσQα − kcλ2√
(2krσQα + kcλ2)2 + 16k2

rσ
2
∆σ

2
Q


and θ∗2 = tan−1

(
4σ∆krσQ

2σQkrα+kcλ2

)
. Note that cos(θ∗) ∈ [0, 1] since

θ∗ ∈ [0, π/2], which implies that σ
Σ
> 0. ■

Lemma 4. Let λN be the largest eigenvalue of L⊤Q + QL.
Then, under Assumption 1, the matrix Σ satisfies

Σ ⪯

(
krσQσ∆ +

kc

2
λN

)
INn. (56)

13



Proof: By the definition of ∆ and σ∆, the term Q∆ satisfies:
Q∆ ⪯ σQσ∆INn. By the definition of λN and the fact that QL =
QL ⊗ In by the properties of the Kronecker product, it follows
that L⊤Q + QL ⪯ λN INn. Note that λN > 0 since, as stated in
the proof of Lemma 1, QL + L⊤Q is a nonzero and symmetric
M-matrix. Combining these arguments we obtain (56).

6.3. Proof of Theorem 1

We follow a (hybrid) Lyapunov-based approach to study the
HDS Hc with input u, in the error coordinates

ỹc = (x̃c, s) B ((θ̃, p̃, τc), s),

where θ̃ = θ − 1N ⊗ θ⋆, x̃c = (θ̃, p̃, τc), and p̃ = p − 1N ⊗ θ⋆. In
these new coordinates, the HDS with input u becomes

H̃c = (Cc × R≥0, F̃c,Dc × R≥0,Gc),

where F̃c(ỹc, u) B F̂c(ỹc, u)× [0, ω]×{1}, with F̂c given by (13).
For this system, we will study stability properties with respec
to the set Ãc × R≥0, where

Ãc B {0} × {0} × [T0,T ]. (57)

6.3.1. Proof of Theorem 1-(a)
We establish item (a) of Theorem 1 via a sequence of lem-

mas. The following lemma follows directly from the uniform
boundedness assumption on the regressors ϕ and the definition
of U in (14).

Lemma 5. There exist ϕ > 0 such that |U(s)| ≤ ϕ|u| for all
s ≥ 0. □

Next, we consider the Lyapunov function

V(ỹc) B
| p̃ − θ̃|2Q

4
+
| p̃|2Q

4
+ τ2

c
|θ̃|2
Σ

2
. (58)

and we study its behavior during flows and jumps of H̃c. and
present a lemma and two auxiliary propositions.

Lemma 6. There exist constants c > c > 0 such that

c|ỹc|
2
Ãc×R≥0

≤ V(ỹc) ≤ c|ỹc|
2
Ãc×R≥0

,

for all ỹc ∈ (Cc ∪ Dc) × R≥0. □

Proof: Since, by the definition of H̃c, we always have s ∈

R≥0, we just need to study |x̃c|Ãc
. To establish the lower bound,

and using the definition of the norm | · |P, and since τc ≥ T0
for all x̃c ∈ Cc ∪ Dc, we directly obtain that |p̃|2Q ≥ σQ| p̃|

2

and τ2|θ̃|2
Σ

≥ σ
Σ

T 2
0 |θ̃|

2. Therefore, V(ỹc) ≥ c|x̃c|
2
Ãc

, where

c := 1
4 min

{
σQ, 2σ

Σ
T 2

0

}
. To establish the upper bound, we

use (25) together with the fact that τ ≤ T to obtain that V(ỹc) ≤
1
4 (2σQ|θ̃|

2+3σQ|p̃|2+2T 2|θ̃|2
Σ

), where we also used the fact that
| p̃ − θ̃|2 ≤ 2(|θ̃|2 + | p̃|2). Using Lemma 4, we obtain V(ỹc) ≤

c|x̃c|
2
Ã

, with c := 1
4 max

{
3σQ, T 2(2krσQσ∆ + kcλN) + 2σQ

}
. ■

Lemma 7. Suppose that T < T; then, there exists ϱ > 0 and
γ > 0 such that V satisfies V̇(ỹc) ≤ −ϱV(ỹc) + γ|u|2, for all
ỹc ∈ Cc × R≥0. □

Proof: By direct computation, we have:

V̇(ỹc) = −τc

(
( p̃ − θ̃)⊤ θ̃⊤

)
Vw(τc, s)

(
p̃ − θ̃
θ̃

)
+ τc(2 p̃ − θ̃)⊤QU(s), (59)

where

Vw(τc, s) B
 Q

τ2
c

Ω̂(s)
Ω̂(s)⊤ (1 − w)Σ + ktQA(s)

 ,
for all w ∈ [0, ω], where

Ω̂(s) B Ω + ktQA(s),

and where we used the fact that x⊤1Ωx1 = 0 and Proposition 1.
Using the definitions of σQ, σ

Σ
, and σΩ provided in Propo-

sitions 1-2, and Lemma 10 in the Appendix, it follows that
Vw(τc, s) ⪰ vINn, for all τc ∈ [T0,T ], all w ∈ [0, ω], and all
s ∈ R≥0, with

vB
(1 − ω)σ

Σ
σQ − T 2(σ2

Ω + χ(kt)2)

T 2(1 − ω)σ
Σ
+ σQ

> 0, (60)

and χ ∈ K∞. Using the Cauchy-Schwartz inequality to upper-
bound the last term in (59), and since T0 ≤ τc ≤ T and |x̃c|

2 ≤

3(|p̃ − θ̃|2 + |p̃|2) for all x̃c ∈ Cc ∪ Dc, we obtain:

V̇(ỹc) ≤ −T0v(|p̃−θ̃|2 + |θ̃|2) + 2T (|p̃| + |θ̃|)∥Q∥|U(s)|

≤ −
v
3

T0|x̃c|
2 + 2

√
2σQϕT |x̃c||u|

≤−

(v
3

T0−
1
ϵ

)
|x̃c|

2+2ϵ
(
σQϕT

)2
|u|2, (61)

for all ϵ > 0 and all w ∈ [0, ω], where the last inequality follows
from the fact that ab ≤ 1

4ϵ a2 + ϵb2 for all ϵ > 0. Setting ϵ :=
3(1+ε)

T0ν
for ε > 0 and using the lower bound of Lemma 6, the

expression in (61) yields:

V̇(ỹc) ≤−
ε

1+ε
νT0

3c
V(ỹc) + (1+ε)

6
νT0

(
σQϕT

)2
|u|2. (62)

The result follows by setting ϱ B νT0
3c

ε
1+ε and letting γ ∈ K∞ be

defined as γ(r) B (1 + ε) 6
νT0

(
σQϕT

)2
r. ■

Lemma 8. Suppose that T > T; then,

V(ỹ+c ) ≤ (µT )η V(ỹc), ∀ ỹc ∈ (Cc ∪ Dc) × R≥0,

where η := mini∈V ηi, and µT B (T/T )2. □

Proof: Using the definition of the jump map Gc, for all ỹc ∈

Dc × R≥0 we have:

4V(ỹ+c ) = |Rηθ̃+(INn−Rη) p̃−θ̃|2Q
+ |Rηθ̃ + (INn − Rη) p̃|2Q + 2T0|θ̃|

2
Σ, (63)
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where Rη := diag(η) ⊗ In. By Lemma 11 in the Appendix, the
change of V during jumps, given by ∆V(ỹc) B V(ỹ+c ) − V(ỹc),
satisfies:

4∆V(ỹc) = |θ̃|2RηQ − | p̃|2RηQ − |θ̃ − p̃|2RηQ + 2T 2
0 |θ̃c|

2
Σ − 2T 2|θ̃|2Σ

≤ −
(
|p̃|2RηQ + |θ̃ − p̃|2RηQ

)
+
σQ

σ
Σ

|θ̃|2Σ + 2T 2
0 |θ̃|

2
Σ − 2T 2|θ̃|2Σ

= −
(
| p̃|2RηQ + |θ̃ − p̃|2RηQ

)
− (1 − µT )2T 2|θ̃|2Σ

≤ −(1 − µT )
(
|p̃|2RηQ + |θ̃ − p̃|2RηQ + 2T 2|θ̃|2Σ

)
,

where we also used the fact that µT ∈ (0, 1) whenever T > T.
It then follows that ∆V(ỹc) ≤ 0 for all ỹc ∈ Dc × R≥0. When
η = 1, the previous inequality yields ∆V(ỹc) ≤ −(1 − µT )V(ỹc),
wich in turn implies that V(ỹc) ≤ µT V(ỹc). ■

By the construction of the dynamics of τc, every solution to
Hc is guaranteed to have intervals of flow with a duration of at
least (T − T0)/ω between any two consecutive jumps. Combin-
ing this fact with Lemmas 6, 7, and 8, it follows that H̃c renders
the set Ãc ISS with respect to the input u. The ISS property of
the HDS Hc with respect to | · |Ac × R≥0 follows directly by
employing the change of coordinates ỹc → yc.

6.3.2. Proof of Theorem 1-(b)
Let the initial condition satisfy ỹ0 :=

((θ̃(0, 0), p̃(0, 0), τc(0, 0)), s(0, 0)) ∈ (Cc × Dc) × R≥0, and
let (ỹc, u) be a maximal solution pair to H̃c from the initial
condition ỹ0, satisfying during flows τ̇c(t, j) = ω ∈ (0, 1) for all
(t, j) ∈ dom(ỹc). By Lemma 7, we have that V̇(ỹc) ≤ −

ϱ
2 V(ỹc)

for all ỹc ∈ (Cc ∪ Dc) × R≥0 such that V(ỹc) ≥ 2γ
ϱ
|u|2. Let

R B

{
ỹc ∈ R2nN+1 × R≥0 : V(ỹc) ≤

2γ
ϱ
|u|2∞

}
, (64)

and let T B sup{σ ∈ R≥0 : ỹc(t̃, j̃) < R, (t̃, j) ∈ dom(ỹc), 0 ≤

t̃ + j̃ ≤ σ}. Then, letting t j B min{t ∈ R≥0 : (t, j) ∈ dom(ỹc)}
for every j ∈ Z≥0, and via the comparison lemma, it follows that
V(ỹc(t, j)) ≤ e−ρ(t−t j)/2V(ỹc(t j, j)), for all (t, j) ∈ dom(ỹc) such
that t j + j ≤ t + j ≤ T. On the other hand, from Lemma 8, it
follows that V(ỹc(t j+1, j+1)) ≤ µT V(ỹc(t j+1, j)), which iterating
over j yields:

V(ỹc(t, j)) ≤ e−ϱt/2µ
j
T V(ỹ0), (65)

for all (t, j) ∈ dom(ỹc) such that t + j ≤ T and where we have
used that t0 = 0. Since V̇(ỹc(t, j)) ≤ 0 if ỹc(t, j) ∈ R and Propo-
sition 8 holds for all (t j, j) ∈ dom(ỹ), it follows that ỹc(t, j) ∈ R

for all t + j ≥ T , meaning that

V(ỹc(t, j)) ≤
2γ
ϱ
|u|∞, (66)

for all t + j ≥ T . The bounds (65) and (66), together
with Lemma 6 and the time-invariance of Hc, imply that
|ỹc(t, j))|2

Ãc
≤ c

cµ
j
T |ỹ0|

2
Ãc
+

2γ
ϱ
|u|(t, j) for all (t, j) ∈ dom(ỹc), where

we also used the fact that e−ϱt/2 ≤ 1 for all t ∈ R≥0. The bound
(32), is obtained by evaluating the above bound at the hybrid
times (t j, j), noting that |θ̃| ≤ |ỹc|Ac , and via the change of coor-
dinates ỹc 7→ yc.

6.4. Proof of Theorem 2
The proof uses the reduction principle for hybrid systems

[30, Corollary 7.24]. First, note that, by construction, H sat-
isfies the hybrid basic conditions [30, Assump. 6.5]. Since the
flow map F is globally Lipschitz in C, the HDS does not ex-
hibit finite escape times. To study the stability properties of the
system, we first intersect the flow set C, the jump set D, and
the values of the jump map G with a compact set K ⊂ R(2n+1)N .
Since τ already evolves in a compact set, we take K only to re-
strict the states (θ, p, s). The new restricted system is denoted
as HK = (C ∩ K,F,D ∩ K,G ∩ K). Since the dynamics of the
state τ are independent of (θ, p), we can directly use [37, Prop.
1-(a)] to conclude that, under condition (b) of Theorem 2: 1)
the set K ×Async is UGAS for the HDS HK , and 2) τ converges
to Async before the hybrid time (2t∗, 2N). It follows that, for
all solutions (y, s), and all times (t, j) ∈ dom((y, s)) such that
t ≥ 2t∗ and j ≥ 2N, the restricted synchronized HDS behaves
as having the centralized master timer τc of Section 4. Next, we
intersect the data of the HDS HK with the set K×Async. For this
restricted HDS, denoted HK,Async , Theorem 1 guarantees UGES
of the set A when u = 0. By invoking the reduction principle
of [30, Corollary 7.24], we conclude UGES of the set A for
the HDS HK . Since this system has bounded solutions, and K
was arbitrary large, for each compact set of initial conditions
K0 of system H , we can select K sufficiently large such that the
restriction in HK does not affect the solutions from K0, obtain-
ing UGES of A for the original hybrid system H . Now, since
the convergence of τ ∈ RN to Async occurs in finite time after
which the stability properties are characterized by Theorem 1,
we obtain that A is UGES for H . ■

6.5. Proof of Corollary 1
First, note that j ≥ t′

(T−T0)/ω for any (t′, j) ∈ dom(y). There-
fore, since µ(T ) ∈ (0, 1), the bound (32) implies the following
slightly looser bound when u ≡ 0:

|y j|
2
A ≤

c
c

(
µ

1
T−T0
T

)ωt′

|y0|
2
A. (67)

where c and c come from Lemma 6. Following similar ideas to
[17, 19], and using the definition of µ(T ), we solve the follow-
ing optimization problem to maximize the rate of contraction
over any window of time t′:

min
T∈R>0

ϕ(T ) B µ
1

T−T0
T .

Computing the derivative of ϕ with respect to T , and equating

to zero, we obtain: T ∗ = e
√

σQ
2σ
Σ

+ T 2
0 , which is the unique

minimizer of ϕ. By substituting T = T ∗ in (67), we obtain

|y j|
2
A ≤

c
c

e−
2ωt′

T ∗−T0 |y0|
2
A. (68)

Thus, to have |y j|
2
A
≤ ε for a given ε > 0, it suffices to have that

t′ ≥ 1
2ω (T ∗ − T0) log

(
1
ε

c
c |y0|

2
A

)
. Moreover, note that the right

hand side of (68) is of order O
(
e−

√
σ
Σ
/σQt′

)
. ■
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6.6. Proof of Corollary 2

The arguments are similar to those used in the proof of The-
orem 1 by using the fact that in Lemma 8 the expression in (63)
yields ∆V(ỹc) ≤ 0 whenever η = 0.

7. Conclusion

In this paper, we explored decentralized concurrent learning
dynamics with momentum and coordinated resetting for multi-
agent systems over directed graphs. The proposed approach
utilizes intermittent coordinated resets to enable collective con-
vergence to a common parameter estimate, even with asymmet-
ric information flow. Using Lyapunov theory for hybrid sys-
tems, we established input-to-state stability properties for the
momentum-based dynamics, subject to a cooperative richness
condition on the data matrices and a topology-dependent lower
bound on the resetting frequency. We demonstrated the effec-
tiveness of the proposed dynamics in cooperative adaptive con-
trol, showcasing their advantages in accelerated convergence
and enhanced transient behavior compared to first-order adap-
tation algorithms. Future research directions will investigate
state-dependent resets and stability results for multi-agent sys-
tems with cooperative persistently exciting regressors using av-
eraging theory for hybrid systems following the ideas of [45,
Ex. 6.3].
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Appendix A. Auxiliary Lemmas

Lemma 9. Consider the following block triangular matrix:

M B
(
A B
0 D

)
Suppose that M is non-singular. Then, the minimum singular
value of M, σmin(M), satisfies

σmin(M) ≥
1√

∥A−1∥2(1 + ∥BD−1∥2) + ∥D−1∥2
.

Proof. First, since the inverse of the block triangular matrix M
is given by

M−1 =

[
A−1 −A−1BD−1

0 D−1

]
,

we can upper-bound the 2-norm matrix of M−1:

∥M−1∥2 = max
|u|2+|v|2=1

∣∣∣∣∣∣
[
A−1 −A−1BD−1

0 D−1

] [
u
v

]∣∣∣∣∣∣2
= max

|u|2+|v|2=1

∣∣∣∣∣∣
[
A−1u − A−1BD−1v

D−1v

]∣∣∣∣∣∣2
= max

|u|2+|v|2=1

∣∣∣A−1u − A−1BD−1v
∣∣∣2 + ∣∣∣D−1v

∣∣∣2
≤ ∥A−1∥2(1 + ∥BD−1∥2) + ∥D−1∥2. (A.1)

Then, since the minimum singular value of a matrix is the in-
verse of the 2-norm of the inverse matrix, i.e., σmin(M) = 1

∥M−1∥
,

we can use (A.1) to obtain the result. ■

Lemma 10. For each τc ∈ [T0,T ] and s ∈ R≥0, consider the
following block matrix

Vw(τc, s) B

 1
τ2 Q Ω̂(s)
Ω̂(s) Σ̂(s)

 ,
where

Σ̂(s) B (1 − ω)Σ + ktQA(s) (A.2)

Ω̂(s) B Ω + ktQA(s) (A.3)

where w ∈ [0, ω], ω ∈ (0, 1), and the matrices Q, Ω, and Σ are
defined as in Proposition 1. Then, under Assumption 1, we have
that:

Vw(τc, s) ⪰ νINn, (A.4)

for all τc ∈ [T0,T ], all w ∈ [0, ω], and all s ∈ R≥0, where

ν :=
(1 − ω)σ

Σ
σQ − T 2(σ2

Ω + ktχ
2)

T 2((1 − ω)σ
Σ

) + σQ
> 0, (A.5)

with σQ, σ
Σ

, and σ2
Ω as defined in Proposition 1. □

Proof: First, we show that the matrix-valued function Vw(·, ·)
is positive-definite uniformly over τc ∈ [T0,T ], s ∈ R≥, and
w ∈ [0, ω]. To do this, we decompose Vw as follows:

Vw(τc, s) = U(τc, s)⊤D(τc, s)U(τc, s) (A.6)

where

D(τc, s) B
 Q
τ2

c
0

0 Σ̂(s) − τ2
cΩ̂(s)⊤Q−1Ω̂(s)

 ,
and

U(τc, s) B
(
I τ2Q−1Ω̂(s)
0 I

)
,

Using the definition of Q, and the fact that τc ≤ T for all ỹc ∈

Cc ∪ Dc, we obtain

Q
τ2 ⪰

(
σQ

T 2

)
INn. (A.7)

Also, it follows that

Σ̂(s) − τ2
cΩ̂(s)⊤Q−1Ω̂(s) ⪰ ζINn, (A.8)

for all s ∈ R≥0, where

ζ := (1 − ω)σ
Σ
−

T 2

σQ
(σ2
Ω + χ

2(kt)). (A.9)

Note that ζ > 0 since condition (31) holds by assumption.
Therefore, since

Q
τ2

c
≻ 0 and Σ̂(s)−τ2

cΩ̂
⊤(s)Q−1Ω̂(s) ≻ 0.
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it follows that the matrix Vw(τc, s) is positive definite uniformly
over τc ∈ [T0,T ], s ∈ R≥0, and w ∈ [0, ω] [46, Theorem 7.7.7].

Now, we establish the matrix inequality (A.4). To do so, we
use the bounds (A.7) and (A.8) for (A.6) to obtain that

Vw(τc, s) ⪰ U⊤(τc, s)
[σQ

T 2 INn 0
0 ζINn

]
U(τc, s)

= V(τc, s)⊤V(τc, s), (A.10)

where V(τc, s) is the upper block triangular matrix

V(τc, s) B


√

σQ
T 2 INn

√
τ4σQ

T 2 Q−1Ω̂(s)
0

√
ζINn

 .
By applying Lemma 9 on the matrix V(τc, s), and using (A.10)
together with the fact that V has full column rank and thus that
σmin(V⊤V) ≥ σmin(V⊤)σmin(V) = σ2

min(V), we obtain

Vw(τc, s) ⪰
1

T 2

σQ

(
1 +

τ4σQ
ζT 2 ∥Q−1Ω̂(s)∥2

)
+ 1

ζ

I2Nn

=
ζσ2

Q

T 2(ζσQ + T 2(σ2
Ω + χ

2(kt))) + σ2
Q

I2Nn

=
(1 − ω)σ

Σ
σQ − T 2(σ2

Ω + χ
2(kt))

T 2((1 − ω)σ
Σ

) + σQ
I2Nn

where we have used the fact that the induced 2-norm is sub-
multiplicative and that ∥Q−1∥ ≤ 1/σQ and ∥Ω∥2 ≤ σ2

Ω. This
completes the proof. ■

Lemma 11. Let η := (η1, η2, . . . , ηN) with ηi ∈ {0, 1} for all
i ∈ V = {1, 2, . . . ,N} and Rη = diag(η) ⊗ In. Then, for all
θ̃, p̃ ∈ RNn we have:

|Rηθ̃ +
(
INn − Rη

)
p̃ − θ̃|2Q + |Rηθ̃ +

(
INn − Rη

)
p̃|2Q

− | p̃|2Q − | p̃ − θ̃|2Q = |θ̃|2RηQ − | p̃|2RηQ − |θ̃ − p̃|2RηQ

where Q is defined in (25). □

Proof: By direct computation, we have:∣∣∣Rηθ̃ +
(
INn − Rη

)
p̃ − θ̃

∣∣∣2
Q =

∣∣∣Rη(θ̃ − p̃) − (θ̃ − p̃)
∣∣∣2
Q

= |
(
INn − Rη

)
(θ̃ − p̃)|2Q

= |Rc
η(θ̃ − p̃)|2Q

= |z|2Q,

where z B Rc
η(θ̃ − p̃), and Rc

η B INn − Rη. . Writing z =
(z1, . . . , zN), with zi = (ηi − 1)

(
θ̃i − p̃i

)
∈ Rn, ∀i ∈ V, it follows

that

|z|2Q =
N∑

i=1

qi|θ̃i − p̃i|
2(ηi − 1)2

=

N∑
i=1

qi|θ̃i − p̃i|
2 (1 − ηi) . (A.11)

Similarly,

|Rηθ̃ +
(
INn − Rη

)
p̃|2Q = |Rη(θ̃ − p̃) + p̃|2Q = |z̃|2Q,

where z̃ = Rη(θ̃ − p̃) + p̃. Writing z̃ B (z̃1, . . . , z̃N), with z̃i =

ηi

(
θ̃i − p̃i

)
+ p̃i ∈ Rn, ∀i ∈ V, we get:

|z̃|2Q =
N∑

i=1

qi|z̃i|
2

=

N∑
i=1

qi|ηi(θ̃i − p̃i) + p̃i|
2

=

N∑
i=1

qi

(
η2

i |θ̃i − p̃i|
2 + 2ηi(θ̃i − p̃i)⊤( p̃i) + | p̃i|

2
)

=

N∑
i=1

qi

(
ηi(θ̃i − p̃i)⊤(θ̃i + p̃i) + | p̃i|

2
)

=

N∑
i=1

qiηi|θ̃i|
2 +

N∑
i=1

qi| p̃i|
2(1 − ηi). (A.12)

Together (A.11) and (A.12) yield:

|Rηθ̃ +
(
INn−Rη

)
p̃ − θ̃|2Q + |Rηθ̃ +

(
INn−Rη

)
p̃|2Q

−|p̃|2Q − | p̃ − θ̃|2Q =

N∑
i=1

qiηi|θ̃i|
2

+

N∑
i=1

qi(1 − ηi)
(
| p̃i|

2 + |θ̃i − p̃i|
2
)

−

N∑
i=1

qi| p̃i|
2 −

N∑
i=1

qi|θ̃i − p̃i|
2

=

N∑
i=1

qiηi|θ̃i|
2

−

N∑
i=1

qiηi

(
| p̃i|

2 + |θ̃i − p̃i|
2
)

= |θ̃|2RηQ − | p̃|2RηQ − |θ̃ − p̃|2RηQ.

■
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