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It is well known that smooth autonomous dynamical systems modeled by ordinary differential
equations (ODEs) cannot robustly and globally stabilize a point on compact, boundaryless manifolds.
This obstruction, which is topological in nature, has significant implications for optimization problems,
rendering traditional continuous-time algorithms incapable of robustly solving global optimization
problems in such spaces. In turn, gradient-free optimization algorithms, which usually inherit their sta-
bility and convergence properties from their gradient-based counterparts, can also suffer from similar
topological obstructions. For instance, this is the case in zeroth-order methods and perturbation-based
techniques, where gradients and Hessian matrices are usually estimated in real-time via measurements
or evaluations of the cost function. To address this problem, in this paper we introduce a novel class of
hybrid gradient-free optimization dynamics that combine continuous-time and discrete-time feedback
to overcome the obstructions that emerge in traditional ODE-based optimization algorithms evolving
on smooth compact manifolds. The proposed hybrid dynamics switch between different gradient-free
feedback-laws obtained by applying suitable exploratory geodesic dithers to a family of synergistic
diffeomorphisms adapted to the cost function that defines the optimization problem. The use of
geodesic dithers enables a suitable exploration of the manifold while simultaneously preserving its
forward invariance, a property that is fundamental for many practical applications with physics-based
constraints. The hybrid dynamics exploit the information obtained from the geodesic dithers to achieve
robust global practical stability of the set of minimizers of the cost function. This stabilization is
achieved without having direct access to the gradients of the cost functions, but rather using only
real-time and continuous evaluations of the cost. Examples and numerical results are presented to

illustrate the main ideas and advantages of the method.
© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction various practical applications, spanning from aerospace engineer-
ing (Hauser, 2002) to power systems (Absil, Mahony, & Sepulchre,
2009) and quantum control (Grivopoulos & Bamieh, 2003). One of
the simplest and most successful algorithms for optimization is
the gradient-descent method, which has been studied in the con-
text of manifolds since at least the end of the last century (Gabay,

1982). Recently, these methods have gained considerable interest

This paper studies algorithms for the global solution of opti-
mization problems of the form

min ¢(z) subjectto ze M, (1)

where ¢ is a smooth cost function and (M, g) is an n-dimensional
Riemannian manifold to be formally defined in Section 2. The
mathematical form of ¢ and its derivatives is assumed to be
unknown. It is only assumed that ¢ is available through mea-
surements or evaluations on M. This class of problems arises in
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due to their potential applications in estimation, machine learn-
ing, and data science pipelines (Bottou, 2010). In the context of
dynamical systems described by ordinary differential equations
(ODEs), real-time optimization problems defined on a manifold
M are common in robotics, mechanical systems, and aerospace
control problems evolving under kinematic constraints. For ex-
ample, controlling unicycles (Sontag, 1999, Sec. 2.2) or navigating
in obstacle-occluded spaces (Poveda, Benosman, Teel, & Sanfelice,
2021). In such problems, the restriction to evolve on M limits
the feasible directions that any onboard algorithm can exploit in
real-time. For comprehensive introductions to ODE-based opti-
mization algorithms on manifolds, we refer the reader to Absil
et al. (2009), Helmke and Moore (2012).
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One of the primary challenges in solving optimization prob-
lems on smooth (boundaryless) compact manifolds stems from
the fact that in such spaces, a point cannot be robustly globally
asymptotically stabilized using continuous feedback in ordinary
differential equations (ODEs) (Bhat & Bernstein, 2000, Thm. 1).
This result extends to compact Lie groups and non-contractible
spaces in general, as shown in Sontag (2013, Thm. 21). This
well-known property implies that standard gradient flows or
Newton-like flows cannot achieve robust global convergence to
the minimizer of a continuously differentiable cost function for
every type of smooth compact manifold. The reason behind this
incompatibility lies in the fundamental mismatch between the
topological nature of the basin of attraction of a point under
continuous dynamics, and the topological properties of a com-
pact boundaryless manifold (Sontag, 2013, Thm. 21). Specifically,
the basin of attraction of a point under continuous feedback
is contractible, while a compact manifold is not. Many results
in the literature overcome this issue by focusing on asymptotic
stability properties that overlook measure-zero sets containing
the critical points of the cost function that are not solutions to the
optimization problem under study (Angeli, 2004; Efimov, 2012),
such as local maximizers and saddle points. However, algorithms
with almost global convergence certificates have been shown
to be susceptible to arbitrarily small (adversarial) disturbances.
Under such disturbances, the set of problematic initial conditions
from which convergence is not achieved is not of measure zero
anymore, but rather an open set. Examples illustrating this sus-
ceptibility can be found in Sontag (1999), Poveda et al. (2021, Ex.
1), and Mayhew and Teel (2011b).

Alternatively, other works have circumvented the obstruction
via time-varying (Coron, 1992), or discontinuous feedback (Mal-
isoff, Krichman, & Sontag, 2006), finding success in achieving
global convergence in certain applications. However, as shown
in Mayhew and Teel (2011a, Cor. 21), time-varying approaches
can only circumvent the issue when the optimization dynamics
operate in nominal conditions. In particular, when the system is
subject to (even arbitrarily) small disturbances, robust and global
stabilization of a point in compact boundaryless manifolds can-
not be achieved by merely using discontinuous or time-varying
feedback strategies. To address this issue, in Mayhew (2010)
the authors introduced a hybrid controller that synergistically
switches between different continuous vector fields, generated
from a family of potential functions, to globally stabilize a point.
Recent works have employed the synergistic framework to solve
attitude stabilization problems in SO(3) (Berkane, Abdessameud,
& Tayebi, 2017), stabilization by hybrid backstepping (Casau,
Sanfelice, & Silvestre, 2019), and for the robust stabilization of
trajectories in multi-rotor aerial vehicles (Casau, Mayhew, San-
felice, & Silvestre, 2019). However, since these works address
stabilization problems, where the point to be stabilized is known
a priori, in general, they cannot be directly used for the solution of
optimization problems where the set of optimizers is unknown,
or in cases where the potential functions are only accessible via
measurements or evaluations.

Optimization problems where the cost function is unknown
and only accessible through measurements or evaluations are
common across many applications. These problems have tradi-
tionally been studied using gradient-free methods, such as zeroth-
order optimization algorithms. While the literature of continuous-
time zeroth-order optimization dynamics, also known as ex-
tremum seeking, is quite rich (Diirr, Stankovi¢, Johansson, &
Ebenbauer, 2014; Krsti¢ & Wang, 2000; Poveda & Teel, 2017),
most of the algorithms applicable to smooth compact manifolds
are characterized by smooth gradient-free dynamical systems
that aim to emulate, via averaging or other “approximation”
technique, the behavior of a target gradient-flow on the man-
ifold (Diirr et al., 2014; Taringoo, Dower, Nesic, & Tan, 2018).
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In these settings, the stability properties of gradient-free dy-
namics are usually inherited from the stability properties of the
target system being approximated. Therefore, the challenges of
robust global optimization extend to the gradient-free counter-
parts whenever the target system is characterized by a smooth
ODE. Moreover, existing results that achieve global optimization
via switching algorithms (Strizic, Poveda, & Teel, 2017) do not
necessarily preserve the forward invariance of the manifold due
to the use of dither signals that do not evolve in the manifold’s
tangent space, a requirement that is relevant for practical appli-
cations where the evolution on manifolds is enforced by physical
constraints, or in problems where the cost function is defined
only on the manifold.

To address the above challenges and limitations of existing ap-
proaches, the main contribution of this paper is the introduction
of a novel class of gradient-free algorithms for the global solution
of optimization problems defined on compact boundaryless con-
nected Riemannian manifolds. The algorithms are characterized
by a family of hybrid gradient-free dynamics that switch between
different zeroth-order feedback laws that implement exploratory
geodesic dithers to extract suitable “descent directions” from
the cost function ¢. The switches in the algorithms are imple-
mented in both the exploration and the exploitation components
of the dynamics. In particular, to globally navigate and explore
manifolds that are not parallelizable (e.g., S?), the exploratory
geodesic dithers switch between different local frames using a
hysteresis-based mechanism. To achieve global convergence to (a
neighborhood of) the set of minimizers, the algorithms imple-
ment a class of switching diffeomorphisms adapted to the cost
function of interest. Such diffeomorphisms can be constructed
under mild qualitative assumptions on the cost functions and for
different types of manifolds. Our main result establishes robust
global practical asymptotic stability of the set of minimizers of
the cost function for the proposed hybrid gradient-free dynamics.
Compared to previous approaches for gradient-free optimiza-
tion on manifolds, e.g. Diirr et al. (2014), Taringoo et al. (2018)
and Suttner (2022), our convergence results are global rather
than local or almost global. Compared to existing switching al-
gorithms (Strizic et al., 2017), our gradient-free dynamics are
designed to evolve on the manifold and preserve its invariance
via geodesic dithering. The results presented in this paper are
also applicable to a larger class of manifolds and optimization
problems. Our results also provide an alternative approach to
the solution of gradient-free optimization and extremum seeking
problems with multiple critical points, typical in non-convex
settings, a problem that has also been recently studied in Suttner
and Krsti¢ (2023) using other techniques.

The rest of this paper is organized as follows. Section 2 presents
the preliminaries. Section 3 presents the main results, including
the general hybrid gradient-free optimization dynamics and three
specific examples of algorithms synthesized for different applica-
tions. Section 4 presents the proofs, and Section 5 ends with the
conclusions.

2. Preliminaries

In this section, we introduce the notation used in the paper,
as well as some mathematical preliminaries.

2.1. Notation

Given a compact set A C N in a metric space N, with metric
d : NxN — Ry and an element z € N, we use |z|4 =
minge 4 d(z, s) to denote the minimum distance of z to A. We
use S" = {z € R™' : Y™MIz2 — 1} to denote the nth

dimensional sphere, with S' representing the unit circle in R?.



D.E. Ochoa and J.I. Poveda

We use T" = S! x - - - x S! to denote the nth Cartesian product of
S'. We also use rB to denote a closed ball in the Euclidean space,
of radius r > 0 and centered at the origin. We use I, € R™"
for the identity matrix, and 1, for the indicator function of the
set A. A function B : Rsg X Rsg — Rsg is of class KL if
it is non-decreasing in its first argument, non-increasing in its
second argument, lim, o+ B(r,s) = 0 for each s € R, and
lims_, o B(r,s) = 0 for eachr € R>o. Weuse 74 : AX B — A
to denote the natural projection from A x B to A, and gph | to
denote the graph of a mapping J. The Kronecker delta is denoted
as gj.

2.2. Riemannian manifolds

We introduce the main differential geometric concepts used
in the paper. For more details, we refer the reader to Lee (2013,
2018). The concept of smooth manifold will play an important
role in this paper:

Smooth manifolds: An n-dimensional manifold is a second-
countable Hausdorff topological space that is locally Euclidean
of dimension n. A coordinate chart for M is a pair (U, ¢) where
U C Misanopensetand ¢ : U — U C R"is a home-
omorphism. Two coordinate charts (U, ¢) and (V, ¢) are said
to be smoothly compatible if the transitions maps ¥ o ¢~ ! and
@ o ¥~ are diffeomorphisms. A smooth structure on M is a
maximal collection of coordinate charts for which any two charts
are smoothly compatible; a smooth coordinate chart is any chart
that belongs to a smooth structure. Then, a smooth manifold is a
manifold endowed with a particular smooth structure. Given a
smooth manifold M, the set of all smooth real-valued functions
f :M — R is denoted by C*°(M).

Tangent space and Vector Fields: Dynamical systems evolv-
ing on smooth manifolds are defined by vector fields that lie
within their tangent spaces. For each z € M, a tangent vector
at z is a linear map v : C*°(M) — R that satisfies v(fh) = f(z) -
v(h) + h(z) - v(f), for f, h € C*°(M). The set of all tangent vectors
at z is denoted by T,M and is called the tangent space of M at z.
The tangent bundle TM is defined to be the disjoint union of the
tangent spaces at all points in the manifold, i.e., TM = | |,,, .M.
A smooth vector field is a smooth map X : M — TM satisfying
X(z) € T,M for all z € M. We use X(M) to denote the set of all
smooth vector fields on M.

The differential of a function f € C°°(M), denoted by df :
TM — R, is a map defined pointwise by:

df;(v) = v(f), Vv eTM. (2)

Using the differential, we define the sets of critical points and
critical values of f € C*°(M) as follows:

Critf :={zeM : df, =0}, (3)
Valf :={aeR : a=f(z), z € Crit f}. (4)

A local frame for M is defined as a tuple of vector fields
(X1,...,X,) defined on an open set U C M, that is linearly
independent and spans T,M at each z € M. If this frame is defined
in the entire manifold (U = M), it is called a global frame. When
M admits a global frame, the manifold is said to be parallelizable.
Parallelizability will play an important role in our algorithms.

Riemannian Manifolds: In this paper, we will focus on Rie-
mannian manifolds. An n-dimensional Riemannian manifold is a
pair (M, g), where M is an n-dimensional smooth manifold, and
g is a Riemannian metric whose value at each point z € M is an
inner product defined on T,M. The Riemannian metric g enables
the definition of the gradient of f, grad f : M — TM, as the
continuous map satisfying:

df,(v) =g (grad f|,,v), forallze M,v e T,M, (5)
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where grad f|, € T,M denotes the value of the gradient of f at z.
To guarantee a suitable exploration of M, while preserving
its invariance, we will work with algorithms that implement
geodesic dithers:
Geodesics: Geodesics are defined as curves y : [a, b] - M on
a Riemannian manifold, satisfying

Vo (t) =0, (6)

where V : X(M) x X(M) — X(M) is the Levi-Civita connec-
tion (Lee, 2018, Ch. 5). To generate the dither signals used by the
gradient-free optimization algorithms considered in this paper,
we use the restricted exponential map exp, : T,M — M, defined
by exp,(v) = y,(1), where y, is the unique maximal geodesic
satisfying y,(0) = z and y,(0) = v.

Throughout the paper, we make use of the following standing
assumption.

Standing Assumption 2.1. The Riemannian manifold (M, g) is
compact, boundaryless, and connected. O

In particular, Assumption 2.1 guarantees the existence of a
path between any two points in M (Lee, 2018, Prop 2.50), which
facilitates the definition of a notion of distance.

Riemannian Distance: The Riemannian distance, denoted by
dg(z1, 2,) is defined to be the infimum of the lengths of all admis-
sible curves between a pair of points in the manifold (Lee, 2013,
Ch 2.). Formally, the Riemannian distance d; : M x M — Rxq is
defined by dg(z1,2;) = infyeA(ZMz)ff]z /g (p(6), p(6))dt, where
A(z1, o) represents the set of all admissible curves connecting z;
and z,, and tq, t; € R are such that y(t;) = z; and y(t;) = z; for
y € A(zq, 22).

2.3. Hybrid dynamical systems and stability notions

In this paper, we consider algorithms modeled as hybrid dy-
namical systems (HDS) (Goebel, Sanfelice, & Teel, 2012) of the
form:

X =F(x) (7a)
xt e G(x), (7b)

where x € M C RP is the state, F : M — TM is called the
flow map, and G : M = M is a set-valued map called the
jump map. The sets C and D, called the flow set and the jump
set, respectively, characterize the points in M where the system
can flow or jump via Egs. (7a) or (7b), respectively. Then, the
HDS # is defined as the tuple # := {C, F, D, G}. Systems of the
form (7) generalize purely continuous-time systems and purely
discrete-time systems. Namely, continuous-time dynamical sys-
tems (e.g., ODEs) can be seen as a HDS of the form (7) with D = @,
while discrete-time dynamical systems (e.g. recursions) corre-
spond to the case when C = ¢. Solutions to HDS of the form (7)
are defined on hybrid time domains, i.e., they are parameterized
by both a continuous-time index t € Rso, and a discrete-time
index j € Zso. Consequently, the notation x in (7a) represents
the derivative of x with respect to time t, i.e., d"gt'”; and x*
in (7b) represents the value of x after an instantaneous jump,
i.e., x(t,j + 1). For a precise definition of hybrid time domains
and solutions to HDS of the form (7) we refer the reader to Goebel
et al. (2012, Ch.2). A HDS # is said to be well-posed if C and D are
closed sets, C C dom(F) and D C dom(G), F is continuous in C,
and G is outer-semicontinuous (Goebel et al., 2012, Def. 5.9) and
locally bounded (Goebel et al., 2012, Def. 5.14) relative to D.

Stability notions: By endowing the manifold with the distance
function dg, M constitutes a metric space (Lee, 2018, Thm 2.55).
Accordingly, we can use stability notions analogous to those
studied in the Euclidean space.

xeC,
xeD,
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(a) Block diagram of the Zeroth-Order Hybrid Dynamics Ho.

/Hybrid Dither Generator 2 ( ) 1
Ea
11X X
s m X A B q
) 7 o) q=0
i—ﬂ {XiEi,p(Z)}?:l > Z “) ey E gt = h(2)
d A i=1 d1o()
i ] il
B(w) p=0 < z |1
pt=3—p €a exp, (+) S
i I
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(b) Example of a trajectory z and its average z*.

Fig. 1. Left: Block diagram of the proposed hybrid zeroth-order dynamics with geodesic dithering. Right: Cartoon of the trajectories of the system evolving on a

manifold M.

Definition 2.1. The compact set A C CUD is said to be uniformly
globally asymptotically stable (UGAS) for (7) if 3 8 € K£ such that
for all solutions x:

[X(t, l.a < B(Ix(0, 0)] 4, t +J), (8)
V (t,j) € dom(x), where |z| 4 = minse 4 dg(z, ). O
We also consider e-parameterized HDS #, of the form

xeC, x=F(x), and xeD,, x" e Gy(x),

where ¢ > 0. For these systems, we will study global practical
stability properties as ¢ — 07,

Definition 2.2. The compact set A C C U D is said to be Globally
Practically Asymptotically Stable (GP-AS) as ¢ — 07 for system (7)
if 3 B € KL such that for each v > 0 there exists ¢* > 0 such that
for all ¢ € (0, ¢*) and x(0, 0) € M, every solution of #, satisfies

|X(t7])|A Sﬂ('x(oa O)|A5t+.’)+v7 (9)
V (t,j) € dom(x). O

The notion of GP-AS can be extended to systems that depend
on two parameters € = (&1, &2). In this case, we say that A is
GP-AS as (&, £1) — 0" where the parameters are tuned in order
starting from e&;.

3. Main results

Approaches for optimization in Euclidean spaces with global
convergence certificates usually rely on convexity properties of
¢. For Riemannian manifolds, convexity is characterized along
geodesics. However, under Assumption 2.1 geodesic convexity
has little utility since in compact Riemannian manifolds geodesi-
cally convex functions are necessarily constant (Udriste, 2013,
Cor. 2.5). Given the limitations imposed by convexity in compact
Riemannian manifolds, in this paper we alternatively rely on the
following regularity assumption on ¢, which is closely related to
the decomposability of invariant sets introduced in Angeli and
Efimov (2015, Assumption 1).

Standing Assumption 3.1. The cost function ¢ has a finite amount
of critical values, ie., there exists | € N such that Val ¢ =
{1, 2, ...}, where ¢ == ¢1 < ¢ < ¢ < ¢ =: ¢, and
¢ < ¢(z) < ¢ for all z € M. Moreover, the critical points of ¢
are isolated, and ¢ has a unique minimizer. O

Let A:= {z € Crit ¢ : ¢(z) = ¢} represent the minimizer of
¢ and define B := Crit ¢ \ \A. Since M is compact, the set A is also
compact. Note that Assumption 3.1 does not rule out functions ¢
with multiple critical points. Indeed, in our problem setup, B is
not empty since, by Morse theory, there exist at least two critical

points for scalar-valued functions on compact boundaryless man-
ifolds. Such critical points correspond to equilibria in traditional
gradient flows, rendering them highly susceptible to even small
(potentially adversarial) disturbances. This robustness issue, thor-
oughly discussed in Sontag (1999), Poveda et al. (2021, Ex. 1),
and Mayhew and Teel (2011b), and illustrated later in Section 3.4
via numerical examples, is one of the main motivations for the
development of robust hybrid algorithms. In our case, we design
the hybrid algorithms to be gradient-free by leveraging tools from
averaging theory for hybrid dynamical systems.

Remark 3.1. For the case when ¢ is a Morse function (Milnor,
2015, Definition 2.3), Assumption 3.1 is automatically satisfied.
Moreover, since the set of Morse functions is an open dense set in
the space of differentiable functions (Milnor, 2015, Theorem 2.7),
we can dispense with Standing Assumption 3.1 by considering
a surrogate approximate optimization problem to (1), whose
solution is the minimizer of a Morse function sufficiently close
to ¢. O

Remark 3.2. When the set of minimizers A forms a submanifold
rather than a singleton in M, the basin of attraction is diffeomor-
phic to a tubular neighborhood of A in M (Mayhew & Teel, 2011a,
Cor. 21). This neighborhood may or may not be contractible.
In this case, to assess the applicability of our approach, further
assumptions regarding the topological characteristics of A and its
tubular neighborhood are required. To simplify our presentation,
we defer this problem to future research. a

3.1. Description of the proposed algorithms

To solve problem (1), the left plot of Fig. 1 shows a block
diagram of the proposed dynamics. Before analyzing the math-
ematical properties of this system, we first briefly describe the
main ideas behind the algorithms:

(a) A set of dynamic oscillators, with state y and frequency
proportional to 1/e4, where g4 > 0 is a small tunable parameter,
is employed to generate exploratory signals defined in T". The
signals are then suitably combined with a local orthonormal
frame {E;,}! ;, p € P C Zs1, to obtain a dithering vector field
D, that drives dithering geodesics along the manifold M. These
geodesic dithers will be used for the purpose of local (real-time)
exploration.

(b) To ensure a well-defined local exploration around every
point z € M for all time, we introduce a logic state p. This
state selects an orthonormal frame {E; ,} ; that locally spans the
tangent space at a given point z. This logic state is updated using
a hybrid exploration supervisor that hysterically switches between
local frames. When the manifold is parallelizable, we can dispense
with this logic state and its associated hybrid dynamics.
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(c) The geodesic dithers, together with measurements or eval-
uations of the cost ¢, are used to generate families of vector fields

{fq.p(~, X)lgeo, P € P, given by
R 2 .
fap @ %) = ;d’q (exp, (€4Dp(2))) Dp(2), (10)

where ¢, > 0 is a tunable gain and Q C Z. These vector fields,
explained below, are used for the purpose of exploitation in the
optimization dynamics. R

(d) To define the vector fields {f; p(-, x)}qe0, We use a set of
diffeomorphisms and generate a family of surrogate warped cost
functions {¢q}qeo. The chosen diffeomorphisms shift the points
that are not in a neighborhood of the minimizers of ¢. In this
manner, by appropriately partitioning the manifold M, for each
q € Q we can implement the vector field f;, (-, x) in a “safe
zone” where its average dynamics have no critical points other
than A. A hybrid exploitation supervisor is then used to switch the
logic state q to globally steer the state z to .A. These partitions can
be constructed under mild qualitative assumptions on the cost
function.

(f) As we increase the frequency of the dithers (i.e., g4 — 07),
the trajectories induced by the switching vector fields (10) will
approximate the trajectories of a class of hybrid gradient flows
that will be shown to achieve robust global asymptotic stability
of A on M.

The above ideas suggest that the proposed algorithms are sim-
ilar in spirit to synergistic hybrid controllers studied in the con-
text of robust global stabilization problems Mayhew (2010), (San-
felice, 2020, Ch. 7). However, the algorithms studied in this paper
do not exactly fit the setting of synergistic hybrid control, since
the family {f; (-, x)}qeo does not describe gradients of syner-
gistic Lyapunov functions. In fact, unlike standard stabilization
problems tackled via hybrid control, the main challenges in prob-
lem (1) are that the set A and the function ¢ are unknown.
Therefore, to implement the gradient-free hybrid dynamics we
need to characterize the family of cost functions ¢ and smooth
manifolds (M, g) that admit suitable partitions and deformations
to generate feasible adaptive switching rules that induce global
stability of 4, in a gradient-free way.

3.2. Stability, convergence, and robustness results for parallelizable
manifolds

To solve problem (1), we first focus on manifolds M that are
parallelizable, which enables the use of a global orthonormal
frame {E;}]_;. This facilitates the definition of a single dithering
vector field D : M — TM as D(z) := Y i, XiEi(z), where %
corresponds to the vector that stacks the odd components of x.
This single vector field will drive the dithering geodesics, ensuring
global exploration of M without the need of using additional
logic states (i.e., with p = 1). The study of the non-parallelizable
scenario is postponed to Section 3.6.

The closed-loop system describing the gradient-free hybrid
dynamics, shown in Fig. 1(a), has three main states: (z, q, x) €
M x Q x T", where z is an internal auxiliary state, ¢ € Q =
{1,2,...,N}, N € Z>,, is a logic decision variable, and x is the
state of the oscillator. The data of this hybrid system is denoted
as:

Ho = {Co, Fo, Do, Go}. (11)
In this way, the continuous-time dynamics of Hg, with state
y = (z, q, x) are given by
~fa @ )
y="Fy) = 0 . (12)
Zw (o)

y € G,
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where fq :M x T" — TM is defined via (10) by omitting the state
p, and ¥ : R* — R?™?" js given by

2(wy1) 0 0
0 2(wy) .. 0 0 o
¥(w) = ) . . , 2(a) = (—a O) ,
0 0 . QW

where o > 0. Here, w; is a positive rational number, and ¢4 € R-¢
and ¢, € R.o are tunable gains. For every q € Q, the vector
field fy(z, x) is obtained by geodesically dithering the correspond-
ing warped cost function <Z>q (defined below in Definition 3.1)
around the current point z. In particular, the dither is obtained
along a geodesic y, originating from z with an initial velocity
parameterized by the dithering amplitudes, denoted by .

To model the switches between different vector fields, the
discrete-time dynamics Gy of #Ho are given by the following
constrained difference inclusion

y €Dy, y'eGoly) ={z} x h(z) x {x}, (13)
where the set-valued map h : M = 9, is defined as
h(z)={qe Q : ¢qz) =m(2)}, (14)
and m : M — R is defined as:

‘= min ¢g(2). 15
m(z) = min gy(2) (15)

Namely, m(z) is the minimum value among all the warped
cost functions ¢, at a given point z. To compute m(z), the algo-
rithm only needs measurements or evaluations of <}q(z), which
preserves the gradient-free nature of the hybrid dynamics. More-
over, the minimum in (15) is well-defined since Q is finite, and
obtaining the value of m is not computationally expensive, since
the complexity scales linearly with the cardinality of Q.

The final elements needed for the characterization of the hy-
brid system #, are the flow and jump sets Cy and Dy, respectively.
To define these sets, and since the warping induced by the diffeo-
morphisms is only useful if it modifies the points that are not
in a neighborhood of the minimizers, we will use a threshold
parameter y € R characterized by the following assumption:

Standing Assumption 3.2. There exists a known threshold number

1S (?7 ¢2) |

Remark 3.3. Knowledge of y does not necessarily imply a precise
knowledge of the minimizer or the exact mathematical form of ¢.
Instead, Assumption 3.2 requires only a mild qualitative under-
standing of the values of ¢ near its minimum. Such a qualitative
characterization is often available in practical scenarios where
the range of ¢ is known to lie within certain broad bounds. An
example of this can be found in Lauand and Meyn (2023, pp. 131),
where a known lower bound on the cost function is employed to
design the gain of an exploratory signal for extremum seeking
control. In the particular case when ¢ = 0, the assumption holds
for any sufficiently small y > 0.

Using y, we can characterize a synergistic family of diffeomor-
phisms for the solution of problem (1).

Definition 3.1. Let M be a smooth manifold, and suppose ¢ €
C*®(M) satisfies Assumption 3.1. A family of functions S =
{Sq}qeg is said to be a §-gap synergistic family of diffemorphisms
adapted to ¢ if it satisfies:

(Aq) Foreveryq € Q,Sq : M — M is a diffeomorphism.
(Ay) Forevery qe Q, ¢(z) <y = Sq¢(2)=z.
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(A3) There exists § € (0, u(S)), where

p(s)= min (@(z)—r;gg&p(z)),

zeCrit gg\.A

and the warped cost ibq : M — R is given by q7>q =
¢oSy, Vqgeo. O

The family of functions S satisfying the above properties en-
sures there are enough ways to distort the manifold (M, g), allow-
ing for the distinction of critical points other than the minimizers
of ¢ using only cost measurements or evaluations. For each distor-
tion of (M, g), a warped cost ¢, can be defined, leading to a family
of N different vector fields in (12). Using Definition 3.1, we state
our last main standing assumption

Standing Assumption 3.3. There exists a 5-gap synergistic family
of diffeomorphisms adapted to ¢ with finite index set Q. O

Remark 3.4. Verifying conditions (A1)-(A3) is clearly application-
dependent, and different manifolds typically result in different
warped costs. However, we stress that the constructions needed
to implement the hybrid dynamics do not require explicit math-
ematical knowledge of the cost function ¢, but only knowledge
of qualitative properties that could be verified a priori via sim-
ple tests or experiments. Particular examples of pairs (¢, (M, g))
that satisfy Standing Assumptions 3.1-3.3 will be presented in
Section 3.5. O

The flow sets and jump sets of the zeroth-order hybrid dynam-
ics Ho, given by (11), are given by

Co={(z.q,x) €M x Qx T": (¢g — m) (2) < 6}
DO::{(z,q,X)eMxQx’]l‘”:(q~5q—m)(2)25}«

Based on the structure of the sets (Cop, Do), switches of q (i.e.,
jumps) are allowed whenever the difference ¢4(z) — m(z) ex-
ceeds a §-threshold. Flows following the vector field (12) are
allowed when this difference is less than or equal to §. When
the difference is exactly equal to §, flows and jumps are both
allowed. This immediately indicates that solutions of #, are not
unique. However, the structure of the warped cost functions
¢q and the jump map will prevent the occurrence of infinite
consecutive jumps by inducing a hysteresis-like behavior. In this
manner, whenever a solution approaches a critical point of ¢
outside the set of minimizers A, the dynamics will transition to
a different vector field generated from a warped cost function ¢,
with a lower value. The existence of such a warped cost function
is guaranteed by the following technical Lemma. All proofs are
presented in Section 4.

Lemma 3.1. Suppose that ¢ satisfies Assumption 3.1, and let
S = {Sq}qEQ be a family of functions satisfying (A1) and (A,) in
Definition 3.1. If S satisfies (As), then, for all ¢ € Q and every
z € Crit ¢¢ \ A, there exists p € Q such that:

$p(2) + 8 < Py(2). (16)

Conversely, if for all ¢ € Q and every z € Crit (}q \ A, there exists
p € Q such that (16) holds, then S satisfies (As), making it a §-gap
synergistic family of diffeomorphisms adapted to ¢. a

We can now state the first main result of the paper.

Theorem 3.2. Assume that the manifold M is parallelizable, and
consider the hybrid zeroth-order dynamics Hy with data (11). Let
the frequencies w; in (12) satisfy:

wj # wj, i 75 2a)j, (O] 7& 3(1)j, fOT all i 75_] (17)

Then, the set A x Q x T" is GP-AS as (&4, &) — 0", and M x Q x T"
is strongly forward invariant. O
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The result of Theorem 3.2 establishes global convergence of
the trajectories z of #, to an arbitrarily small neighborhood of
the set of minimizers .4, while simultaneously evolving on (and
exploring) the manifold M. This behavior is illustrated in Fig. 1(b).
To our best knowledge, Theorem 3.2 is the first result in the
literature that achieves global bounds of the form (9) in smooth
boundaryless compact Riemannian manifolds via deterministic
continuous-time zeroth-order optimization algorithms.

3.3. Approximation via 1st-order hybrid dynamics

The result of Theorem 3.2 relies on using averaging theory
and perturbation theory (for hybrid systems) to show that, as
(g4, &¢) — 0T, the trajectories of %o will approximate (on com-
pact time domains) a solution of a first-order hybrid algorithm
H1, with state x = (z, q), continuous-time dynamics given by

xeC, x=F(kx)= <_ ZL] Vg.qbq(z)E,-(z)> (18)
discrete-time dynamics given by

xeDy, xteGix)={z} x h(2), (19)
and flow set and jump set given by

Ci={z9eMxQ : ($ —m)z) <8} (20a)
Di:={(z,q) e M x Q : (¢q —m)(2) = §}. (20Db)

Since system (18)-(20) makes use of first-order information of
the warped costs &)q via Vgiéqu(z), we will refer to this system
as the first-order hybrid dynamics H; := {Cy, Fy, D1, G1}. In this
system, for every q € Q, the dynamics z in (18) represents a
scaled version of grad 65,1. Similar dynamics have been studied
in the literature (Taringoo et al., 2018). They differ from the
coordinate representation of grad <;>q:

grad §y(z) = Y £9(2) Vi dy(2)E{(2), (21)

i,j=1

by excluding the values z¥(z) € R that represent the Riemannian
metric g at a point z € M, in terms of the basis {Ej(z)}l;.
However, as shown in Lemma 3.3, such dynamics do not modify
the set of critical points of the warped cost functions.

Lemma 3.3. For all g € © we have that grad (quz = 0 if and only
ifz:'q:1 VEi¢q(Z)Ei(Z) =0. O

The following theorem provides a first-order version of The-
orem 3.2 for the case when the vector field (18) can be explic-
itly computed or measured in real time, and all the standing
assumptions hold.

Theorem 3.4. The first-order hybrid dynamics Hq render the set
A x Q UGAS, and the set M x Q is strongly forward invariant. 0O

Similar to Theorem 3.2, the main novelty of Theorem 3.4 is
the ability to overcome topological obstructions to global opti-
mization on smooth compact manifolds that emerge in ODEs.
In particular, the asymptotic stability result is global rather than
almost global, semi-global, or local. This result, combined with the
well-posedness of the dynamics, will allow us to establish im-
portant robustness properties with respect to small (potentially
adversarial) disturbances, which could also act on the hybrid
zeroth-order dynamics #o.
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Fig. 2. Top: Trajectory of a gradient flow under a disturbance d(t)E(z). Bottom:
Evolution in time of the main state of #; under the same perturbation applied
to the z-component of the dynamics. See Example 3.6.

3.4. Robustness corollaries: Stability under adversarial disturbances

Crucially, the hybrid dynamics #o and #; satisfy the Basic
Assumptions of Goebel et al. (2012, Ch. 6). Consequently, their
stability properties are not drastically affected by small (poten-
tially adversarial) additive disturbances acting on the states and
data of the hybrid systems (Goebel et al., 2012, Thm. 7.20). This
property is formalized in the following corollary:

Corollary 3.5. Consider the perturbed first-order hybrid dynamics
(22a)
(22b)
where {Cy, Fi, D1, G1} is the data of H,, and the signals d;

dom(x) — C1UDy, forallj € {1, 2, 4,5, 6}, and d3 : dom(x) — TCj,
are measurable functions satisfying sup jyedomex) |di(t,J)| < d*,

where d* > 0, for all k € {1, 2, ..., 6}. Then, system (22) renders
the set A x Q GP-AS as d* — 0. O

x+di€C, x=F(x+dy)+ds
X+d4€D1, X+ €G1(X+d5)+d6

Robustness results, such as Corollary 3.5, are relevant for prac-
tical applications where measurement noise or numerical approx-
imations induce unavoidable disturbances during implementa-
tions. They also hold with respect to adversarial perturbations
designed to destabilize the set A, or to stabilize spurious equi-
libria.

Example 3.6. let M = S! C R? be the unit circle, which
is a smooth, boundaryless compact parallelizable manifold. We
consider the cost function ¢ : S! — R, z — 1 — z;, where
z; € [—1, 1] represents the ith coordinate of z € S! expressed in
regular Cartesian coordinates. The cost function ¢ has two critical
points in S! corresponding to the global minimizer given by (in
polar coordinates) 6* = 2m, and a global maximizer, given by
0’ = . To find the unknown minimizer of ¢, we first implement
the first-order dynamics

ZEeM, z=—Viup(2)E(z)+ d(t)E(z), (23)

where E : ' ¢ R? — TS! is the vector field defined by
E(cos(6), sin(f)) = (—sin(#), cos(f)) and 6 denotes the polar
coordinate on the circle. By Lee (2013, Example 8.10.d)), E con-
stitutes a smooth global frame for S. In (23), d(t)E(z) is a time-
varying perturbation that preserves the invariance of M. The
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Fig. 3. Trajectories of #4, under a small adversarial disturbance generated by a
dynamical system. The insets show the amplitude of the injected disturbance,
as well as the evolution of the index state g in time. See Example 3.6.

amplitude of this perturbation d(t) was generated by intercon-
necting (23) with an adversarial hybrid system to stabilize the
maximizer 6’. As shown in Fig. 2, the adversarial perturbation is
always bounded and it succeeds in stabilizing #’. On the other
hand, when this same adversarial signal d(t)E(z) is added in
open loop to #4, as in (22), the hybrid dynamics achieve global
convergence to the minimizer 6*, as shown in the bottom plot
of Fig. 2. Finally, we show in Fig. 3 the performance of the
hybrid system #; when interconnected to the same adversarial
dynamical system used to destabilize 8* in (23). As observed, the
hybrid dynamics still achieve convergence to 6*. O

We note that smooth gradient-free versions of (23), obtained
via averaging theory, might encounter similar issues as those
illustrated in Example 3.6. Specifically, if a small adversarial dis-
turbance can locally stabilize the average dynamics of the system
to a point outside A4, and if this stabilizing effect of the dis-
turbance is preserved after averaging, then applying the same
disturbance to the original dynamics may cause the system to
locally converge to a neighborhood of that point, as predicted by
standard averaging results for ODEs (e.g., Khalil (2002, Ch. 10)).
An example of this behavior in obstacle avoidance problems was
presented in Poveda et al. (2021, Ex. 1). The question of system-
atically constructing such adversarial signals in other manifolds
remains application-dependent and is not further explored in this
paper.

The following corollary parallels the results of Corollary 3.5 for
the zeroth-order dynamics #,.

Corollary 3.7. Consider the perturbed zeroth-order hybrid dynam-
ics, given by

y+di e G, yo=Fy+d)+ds
y+ds €Do, y§ € Go(y+ds)+dg

(24a)
(24b)

where {Co, Fo, Do, Go} is the data of Hg in (11), and the signals
d; : dom(y) — CoUDy, forallj € {1, 2, 4,5, 6}, and d3 : dom(y) —
TCo, are measurable functions satisfying sup; jedomy) |dk(t, j)| < d*,
where d* > 0, for all k € {1, 2, ...,6}. Then, system (24) renders
the set A x Q x T" GP-AS as (d*, &5, 1) — 0. O

Remark 3.5. The class of problems for which smooth opti-
mization dynamics cannot achieve robust global certificates on
a compact boundaryless manifold M extends beyond the case
where the cost has a unique minimizer. Indeed, as briefly stated
in Remark 3.2, the basin of attraction of the set of minimiz-
ers A of a continuous cost ¢ under any outer-semicontinuous,
convex-valued and locally bounded optimization dynamics F, is
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Fig. 4. Top: Visualization of diffeomorphisms on the circle. Middle: Average
gradient-based vector fields derived from warped costs. Bottom: Original and
warped costs obtained by precomposing with diffeomorphisms.

diffeomorphic to an open tubular neighborhood of A. In gen-
eral, this neighborhood is not topologically compatible with M.
For instance, when the cost has a finite set of global isolated
minimizers A = Uie, {51-}, the basin of attraction Br (A) =
{xeM : dg(x, x;) < 3 miniy dg (x;, ;) } is not contractible. How-
ever, the results of Theorems 3.2 and 3.4 can be directly extended
to overcome this type of topological obstruction. We omit this
extension due to space limitations.

3.5. Applications: Synthesis of algorithms

In this section, we showcase the effectiveness of the pro-
posed zeroth-order hybrid dynamics #, for solving problems of
the form (1) on two distinct compact parallelizable Riemannian
manifolds. In particular, we show how to synthesize specific algo-
rithms by generating a §-gap family of diffeomorphisms adapted
to smooth cost functions defined in the unitary circle S!, and
in the special orthogonal group SO(3), and we use the hybrid
algorithms to achieve global gradient-free (practical) optimization
while preserving the forward invariance of the manifolds during
the real-time exploration.

3.5.1. Gradient-free feedback optimization on S!

Consider the unitary circle ' = {z € R?> : |z]*> = 1}. Given
k; € R, with g belonging to some index set O, we define the map
Sy : S' — s as follows:

S{N2):=11g0)212 + Vipi)>y) €900, (25a)

where ¥ = ee] —eje; € R*? anda : R — Risa
continuously differentiable function satisfying: (B;) «(0) = O;
(By) @’(0) = 0; (B3) &/(r) > —1, Vr > 0. The conditions
(B1)-(B3) ensure that Sf,]) is a continuously differentiable function
that constitutes a suitable candidate for a diffeomorphism. In
particular, by leveraging (Strizic et al., 2017, Thm 4.1), we have
that if

1

|kq| <
max {|o ($(z)—y) d-(¥2)|

tzeSs!, ¢pz) =y}
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Fig. 5. Gradient-free global optimization via #, on S' using Geodesic Dithering.

then Sf]l) is a diffeomorphism. Although the value of the bound on
kq might not be known (since we do not know the cost function
nor its differential) its existence is guaranteed by the continuity
of o/, ¢, and d¢, and the compactness of {z € S', () > y}.
Estimates of the bound could be obtained by, e.g., a Monte Carlo
method that uses measurements or evaluations of ¢ at different
points of z € S..

Given a cost ¢ : S' — R, and using gains {k,} co With
corresponding diffeomorphisms defined by (25), it is possible
to build a suitable §-gap synergistic family of diffeomorphisms
subordinate to ¢V. To illustrate this process, similarly to Exam-
ple 3.6, consider the cost function ¢(z) = 1 — z;. Assume
that only measurements or evaluations of ¢(!) are available for
feedback design, but that the intermediate value y = 1 € (0,2) =

(@m, qﬁg)) and the number of critical points of ¢! are known in

advance. Let a(r) = r?, and note that it satisfies conditions (B;)-
(B3). Then, by choosing any two gains satisfying the bound on |kg],
we can obtain a synergistic family of diffeomorphisms subordi-
nate to ¢, Indeed, with @ = {1,2}, |ky| < 1, g € Q. k1 # ko

the set s\ = {Sf]”} is a 8-gap family of diffeomorphisms
o

qe

adapted to ¢ with gap § < 1 (S). In Fig. 4 we present
a visualization of the diffeomorphisms in this family using the
choice k; = 1.k, = —1, and we show how these maps warp
the original cost function. We also plot the gradient-based vector
fields obtained from the warped cost functions which, as shown
in Section 4.2, correspond to O(g,)-perturbations of the flows of
H1 in (18). In turn, the trajectories of #y are shown in Fig. 5.
As observed, the zeroth-order hybrid dynamics with geodesic
dithering successfully converge (globally) to the minimizer of ¢V,
z* = (1, 0), while escaping the other critical point z’ = (—1, 0).

3.5.2. Gradient-free feedback optimization on SO(3)

As an additional application, we consider the special orthogo-
nal group SO(3), i.e., the group of 3 x 3 orthogonal matrices with
determinant equal to 1 and matrix multiplication as the group
operation. By Hall and Hall (2013, Cor. 3.45), SO(3) forms a 3-
dimensional compact Lie group. The tangent space at z is given
by T,S0(3) = {zX : X e R3>3, XT = —X}, see Hall and Hall
(2013, Def. 3.18)



D.E. Ochoa and J.I. Poveda

0.0 0.1 0.2
Time [s]

7 I 233(t) |1

0.0 0.1 0.2 -1t
Time [s] 0

Time [s] 270 Time[s] 270 Time[s] 27

Fig. 6. Synergistic Gradient-free Optimization Seeking on SO(3) via Geodesic
Dithering.

To equip SO(3) with a Riemannian structure, we consider the
metric (X, Y), = tr(XTY) forall z € SO(3), and all X, Y € T,SO(3).
Using this choice, the Riemannian exponential map can be writ-
ten in terms of the matrix exponential e (Gallier & Quaintance,
2020, Prop. 21.20) as exp,(X) = ze” X forX e T,SO(3). Moreover,
since SO(3) is a Lie group, it is parallelizable (Lee, 2013, Cor. 8.39).
Indeed, fori € {1, 2, 3} let E; : SO(3) — TSO(3) be the vector field
defined as E;(z) = zb;, where

1 1
by = ﬁ(@e; — eze;), b, == ﬁ(ele; — egelT),
1
by := —(ese] —eqe) ).
\/i 1 152

It follows that for every z € SO(3), T,SO(3) = span {Ei(z)}?:]
and (Ej(z), Ef(z)); = &, which implies that {E;}7°, constitutes an
orthonormal global frame for SO(3). Using this global frame, we
can implement the dithering vector field D(z) = ZL xiEi(2)
everywhere to extract suitable information from a cost function
¢ at every point in SO(3).

Given a cost ¢ € C*>(SO(3)), to establish a suitable family of
diffeomorphisms consider the map S((IZ) : SO(3) — SO(3), defined
as

SPA2) = Vigy=y)Z + Vpia)sy) €907, (26)

where k; € R" and X € T;SO(3), X # 0 are tunable parameters,
and o : R — R satisfies the conditions (B;)-(B3) defined in Sec-
tion 3.5.1 to ensure continuous differentiability of the map. The
definition of the map Sf,z), results from modifying the function
introduced in Mayhew and Teel (2011b, Sec 3.4.3) for the angular
warping of the two-dimensional sphere by using the function «,
and letting the warping act only when ¢ exceeds the threshold
y. For this map we establish the following technical lemma:

Lemma 3.8. Let k, satisfy the bound |ky| < K with:

_ X1
e X , (27)
maXZ€50,¢(Z)ZV |0l’(¢(2)—)/)| ”grad ¢|z”F

and ||X||F = /tr(XTX). Then, Sf,z) is a global diffeomorphism. O

To illustrate the application of the zeroth-order hybrid dy-
namics o in SO(3), we consider the cost function ¢®(z) =
tr (I — z)A), where A = —>—diag(a), and a = (11,12, 13). It

=19
follows that Critg® = {I} U Ule{l + 2[e;]%}, where ¢; € R®
denotes the standard basis vector with a 1 in the ith position and
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zeros in the other entries, and where [u], : R? — R3*3 is defined
as

[ulx = \/Elhb] + \/ilbbz + \/5113[73. (28)

For this problem, we consider the threshold value y = 2 €
(9(2), q}gz)), we select the gains k; = 0.15 and k, = —0.15, let

X = [a/la|]lx, a(r) = % and consider the family of functions
@ = {8%}4eqr.2- With these choices, the value of the upper
bound k'~ in (27) is approximately 0.188, which means that
kgl < k®, and hence, via Lemma 3.8, that the set @ is a family
of diffeomorphisms adapted to ¢(. It can be computed that the
family is §-synergistic with gap § = 0.0796.

Using S and the global orthonormal frame {E;}} ;, we im-
plement the HDS H, and obtain the results shown in Fig. 6. The
figure shows the trajectories of the entries of the state z € SO(3)
converging (globally) to the optimal values z;, where z* = I.

3.6. Extensions to non-parallelizable manifolds: Gradient-free feed-
back optimization on S?

In this section, we extend our results to manifolds M that
are not parallelizable. In such cases, a unique global orthonormal
frame is unavailable to define dithering vectors that are valid
at every point on M. To address this issue, we employ local
orthonormal frames and we introduce a suitable switching mech-
anism between them to cover M. This mechanism ensures that
dithering vectors are always available for real-time exploration.
Since the constructions of the dynamics in non-parallelizable
manifolds are highly dependent on the manifold, we focus our
attention on the 2-dimensional sphere §? == {z e R? : z'z =
1}. However, we stress that the proposed methodology can be
extended to other compact non-parallelizable manifolds.

First, we introduce two local orthonormal frames {E; p}* . p €
P := {1, 2}, which will later be used to generate suitable dither-
ing vector fields. Specifically, inspired by Baradaran, Poveda, and
Teel (2019), we use local coordinate frames established through
the stereographic projection maps:

1
g1: U i=S"\{N} > R z+> n (z1,22) (29a)

—Z3

@i Uy =S"\{S} > R, z+> (z1,22), (29b)

1423
where N := (0,0,1) and S := (0,0, —1), denote the north
and south pole of S?, respectively. The stereographic projections
constitute homeomorphisms onto their images, and their inverse
functions are given by Gallier and Quaintance (2020, Ex. 4.1):
(2uq, 2uy, Jul* — 1)

o7 (U, up) = (30a)

T+ Jul?

o, (u, ) = (2uy, 2uz, 1 — [uf?). (30b)

1+ |ul?
Using (29)-(30), we let E;,(z) := d((pj’])wj(z)(e,-) for all z € U,
ie{1,2},and p € P := {1, 2}, where e; denotes the ith canonical
basis vector in R?. Unwrapping definitions, we obtain:

1—23— 2} 2125
Eiq(z) = 2123 cEa2)=|1-23-2],
(1—2z3)z (1—-2z3)z,
1423 — 22 —212;
Eq(2) = —2123 cEa@)=|1423—22
—z1(1+ z3) —2z3(1+ z3)
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Fig. 7. Left: Visualization of diffeomorphisms on S2. Right: Average vector fields derived from warped cost functions.

Next, for each local orthonormal frame {E,-,p},?:]. p € P, we define
a corresponding dithering vector field used for the purpose of
real-time exploration of M:

2
'Dp = Z )?,'E,',p.
i=1

Additionally, for each dithering vector field Dy, and given a §-gap
synergistic family of diffeomorphisms S = {S;}qco adapted to a
cost function ¢, we define a family of vector fields {fq,p(~, X)qeo
suitable for exploitation of the information of ¢ learned during
the exploration. Specifically, given g € Q and p € P, we let

(31)

~ 2 -
fq,p(z’ X) = ;‘ﬁq (Esz (SaDp(z))) Dp(2), (32)
a

where the vector of oscillating amplitudes x < T2, and the
warped cost function ¢ = ¢ o S are as defined in Section 3.2.
Finally, we modify the zeroth-order hybrid dynamics #, to in-
corporate the switching between frames. The new zeroth-order
hybrid system, termed %, incorporates an additional logic state
p € P and implements a hysteresis-based switching mechanism
dependent on z. The mechanism enables the robust transition
between the families of vector fields {f; ;(z, x)}qeo, and ensures
that the orthonormal frame associated with the selected family
satisfies the condition span ({E,;p}iz:l) = T,S? for the current value
of z. To the best of our knowledge, this approach has not been
studied before in the context of zeroth-order optimization and
extremum-seeking.

To define the hysteresis-based switching, we first let r > 1,
and define the open sets C, = (pp‘l (rB°). By using the defi-
nitions of ¢; and (p,.’], it follows that C; U C; S?, and that
span({Ei,p}f:]) =T,S§*forallz Cp and all p € P. Using these
sets, we characterize the new dynamics 7, which describe the
evolution of the state j := (z, q, x, p) € S? x @ x T? x P, and have
data Ho = {Co, Fo, Do, Go}, with continuous-time dynamics:

_fq,p(z» x)
- 0

2
()X
0

yeCo ¥ (33)

where ¥ (w) € R** and w € R? are as defined in Section 3.2. The
flow set is defined by Cy := Cp; U Cp ., where, for all p € P, we
let

Cop = {(z.q, x) € CoxQ x T : (¢pg—m) (2) < 8} x{p}.

The jump set Dy is constructed as the union of two sets: 1)
Do.q, which enables switching between the families of vector
fields {fq,p(-, X )}qeo, and 2) f)o,s, which enables the synergistic
switching between vector fields within the selected family, akin
to the methodology outlined in Section 3.2. Specifically, we let
Do := Dg,q U Dg 5, where Dg 4 := Upe{l,Z} D, 4, and

Dpa =(S*\G)x QxT*x {p}, VYpeP
Dos = {(z,q, x) € S* x Q x T?: (pg—m) (z) = 8} xP.
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The jump map describing the switches of p is given by 60,51(51) =
(z,q, x,3—p), V¥ € Do g4, which updates the current frame used
for the purpose of dithering. On the other hand, the jump map
describing the switches of g is given by Gos(y) = {z} x h(z) x
{(x,p)}, V¥ € Dy, where h is the set-valued map defined in (14).
Using these maps, the overall jump map of the HDS %, is given
by:

60.5(5/) vy € f)o,s \ ﬁo,d
Go.a(7) V§ € Do.g \ Dos
Go.s(7) U Ga(y) ¥y € Do.g N Do

GO(JN’) =

By leveraging our standing assumptions, the following theorem
extends the global results of Theorem 3.2 to the non-
parallelizable manifold S?.

Theorem 3.9. Consider the zeroth-order hybrid dynamics #, and
let the vector of frequencies w in (33) satisfy condition (17). Then,
the set A x Q@ x T? x P is GP-AS as (&4, &4) — 07. O

To illustrate the performance of 7, in S?, we synthesize the
algorithms by using the parameterized transformation Sff')
S? — §? defined as:

SPA2) = Vpyzy12 + Vg(ay= ) €907 Mz, (34)

with k; € R, X € T;SO(3) and « as defined in Section 3.5.2. Note

that SqB) is identical to Séz), except for the fact that its domain

and codomain are now S? instead of SO(3). The following Lemma
extends the result of Lemma 3.8 to S2.

Lemma 3.10. Let k, satisfy |kq| < ﬁ3), where:
= !
max {|&’ (¢(2)~y) d¢; (X2)| : 2 € S, (2) = v |

Then, 5,53) is a diffeomorphism.

O

For numerical verification, we consider the cost function ¢(3) :
S?* — §? defined by ¢®(z) = 1 — z3. We choose the threshold
value y = 1, the gains k; = 1.k, = —1, the matrix X =
[ulx € SO(3), where u = (0, 1,0) € R? and [u] is as defined
in Section 3.5.2, and let a(r) = r?. With this data, we define
the family of transformations $® = {S{”}gc(1.2). Since |kg| <

= 1 for all q € Q = {1,2}, via Lemma 3.10, S® is a
family of diffeomorphisms. In fact, by Lemma 3.1, S® constitutes
a §-synergistic family of diffeomorphisms adapted to ¢ with gap
s < %. Fig. 7 shows a visualization of the diffeomorphisms in this
family with the choice k; = 1, k, = —3. The figure also shows
the vector fields obtained from the warped cost functions. We
stress that such diffeomorphisms can be constructed using only
mild qualitative knowledge of ¢, namely, under a suitable choice
of y, which can be seen as an additional tunable parameter of the
algorithm. In Fig. 8, we show the trajectory of the coordinates
of the state z and indicate when the local frame used for the
dithering switches by showing the moments when the state p
jumps. In Fig. 9 we show the trajectory evolving on the sphere.
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Fig. 8. Evolution of the coordinates of z under the Synergistic Gradient-Free
Optimization Seeking dynamics on S?.

As observed, the state z converges to the global minimizer z* =
(0, 0, 1), while escaping the critical point z’ = (0, 0, —1).

4. Analysis and proofs

In this section, we present the proofs of our main results. Since
the stability results of the zeroth-order hybrid dynamics H, in
Theorem 3.2 rely on the stability properties of the first-order
dynamics H1, we first present the proof of Theorem 3.4.

4.1. Proof of Theorem 3.4
We begin by presenting the proof of our auxiliary lemmas.

Proof of Lemma 3.1. Suppose that S is a §-gap synergistic family
of diffeomorphisms adapted to ¢. Then, we have that § < u(S),
meaning that § < (¢, — minyeg ¢p) (z2) Vg € Q, and all z €
Crit qu \ A. Then, it follows that forallqg € Q and z € Crit&&q \ A4,
there exists p € Q such that (16) is satisfied. B

Conversely, assume that for every q € Q and z € Critgg \ A,
there exists p € Q such that (16) is satisfied. In particular, for all
q € Q and z e Crityg \ A it follows that § < (¢q — minyeg ¢p)(2),
which implies that

§ < gg(%—%g%ml
zeCrit ¢g\.A
This concludes the proof. |

Lemma 4.1. The HDS #, is well-posed.

Proof. We prove that #; satisfies the hybrid-basic conditions
(Sanfelice, 2020, Def. 2.20). First, note that the flow map F;
is continuous, by the continuity of 2?21 Ve ¢q(-)Ei(-) in M for
all ¢ € Q, and the fact that Q is a discrete set. Second, de-
fine the function i M x @ — R by letting i(z, q)
(¢q — m)(z). Note that i is continuous by following similar
reasoning as in the continuity argument for F;. Then, gph h =
{(z,q) eM x Q : ze M, fi(z,q) =0} is closed since & is con-
tinuous. It follows that h and G, are outer-semicontinuous. Bound-
edness of G; follows by compactness of M x Q and outer-
semicontinuity of G;. The sets C; and D; are closed, since they
are sublevel and superlevel sets, respectively, of the continuous
function . The result follows via Goebel et al. (2012, Thm. 6.30).

|

Proof of Lemma 3.3. Let ¢ € C*°(M) be arbitrary. Assume that
grad ¢|, = 0 at some z € M. Then, by the representation of
grad ¢ in terms of the global orthonormal frame {E;}]_,, it follows

that: ZL‘:] {'j(z)VEiq)(z)Ej(z) = 0. Thus, since the matrix with
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"

Switch of
Frames

Fig. 9. Synergistic gradient-free optimization on S? via geodesic dithering. The
inset shows the moment when the system switches between one local frame
to another.

coefficients ¥(z) is nonsingular for all z € M, as it provides a local
representation of the Riemannian metric, and given that {E;}]_ is
a frame, we obtain:

Ved(z) =0, Vie{l,..., n}, (35)

which inmplies that Z?:] Ve @(2)Ei(z) = 0. Conversely, assume
thant 2%1 Ve ¢(2)Ei(z) = 0. Then, Eq. (35) holds, and thus 0 =
Zi,j:] ¢ (Z)VEi¢(Z)Ej(Z) = grad¢|z- u

Now, we consider the set of critical points of the warped cost
functions that are not minimizers of ¢:

g={z.q)eMxQ : zeCritd,\ A}.

The following lemma shows that £ is properly contained in Dy,
thus enforcing jumps whenever (z, q) € &£. This means that the
HDS #H; must jump at critical points that are not minimizers of
¢. In the following, we use A° to denote the topological interior
of a set A.

Lemma 4.2. Suppose that Assumption 3.3 is satisfied. Then £ C D}
and G1(&) ¢ C7.

Proof. First, the fact that § > 0 combined with the continuity and
positive semidefiniteness of (¢~>q — m)(-) ensures the existence of
open subsets of C; and D; where 0 < (q~5q —m)(z) < & and
(q?ﬁq — m)(z) > §, respectively, proving that C{ and Df are non-
empty. Second, consider (z,q) € £. Lemma 3.1 guarantees the
existence of p € Q such that ¢,(z) + § < ¢4(z). Given that
m(z) < (Z),,(z) for all p € Q, we deduce: m(z) + § < &q(z),
implying (z, q) € Dy. Thus, & C Dy. Now, consider (z, q) € D\ Dj,
which implies m(z) = ¢~>q(z) — §. Assume, for contradiction, that
(z,q) € €. By Lemma 3.1, there exists p € Q such that q7>p(z) <
bq(z) — 8 = m(z), contradicting m(z) < @,(z) for all ¢ € Q.
Hence, (z, q) ¢ &, proving that D; \ D] contains elements not in
£, and therefore that & C DJ. The fact that G;(£) € C7 follows by
construction, since after a jump we have that <Z>q+(z+) —m(zt) =

$q+(z) —m(z)=0<3d. ]

By leveraging the results of the previous lemmas we can now
prove the first main theorem of the paper.

Proof of Theorem 3.4. Consider the Lyapunov function:

V(x) = gy(2) — 9,

which is continuous due to similar arguments to the ones used
to prove the continuity of F; in Lemma 4.1. Since ¢ < ¢(z) for
all z ¢ A, together with (Az) in Definition 3.1, we have that
¢q(z) —¢ > 0 forall (z,q) € M x Q and ¢q(z) — ¢ = 0 if and

(36)
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only if (z, q) € A x Q. Therefore, it follows that V(x) > 0 for all
(z,q) e M x @ and V(x) = 0 if and only if z € A. Now, during the
flows of #4, the Lie-derivative of V satisfies

LRV ==Y Vido(2E(2) (B — ¢)
i=1

Y (E(2)gg) =: uclx), ¥x € G, (37)
i=1

where we used the fact that £xf(z) = Vxf(z) = (X(z))(f) for all
X € X(M)and f € C*°(M), and that v(c) = O for all v € T,M, every
constant function c, and all z € M, via Lee (2013, Lemma 3.4). On
the other hand, during the jumps of #4, using the definition of h
and m in (14) and (15), it follows that:

V (x") =V(x) = (nz) — ¢q) (2)
= (m — ¢g) (2) < =8 =: up(x),

for all x € D;. Since uc(x) < 0 for all z € C; and up(x) < O for all
x € D, it follows that A is stable under #; via Sanfelice (2020,
Thm. 3.19).

To show the attractivity of .A we employ the hybrid invariance
principle (Sanfelice, 2020, Thm. 3.23). Indeed, since uc(x) < 0 for
all x € C; and up(x) < O for all x € Dy, and using ugl(O) =0,
givenr € V(AU €) C [0, ¢ — ¢], solutions approach the largest
weakly invariant set in V=1(r)N((A U &) x Q). Let £ denote such
an invariant set and assume that r # 0. By the definition of
& and the synergistic family of diffeomorphisms, it follows that
£2 C €&. Additionally, by Lemma 4.2, we obtain that 2 C Df.
Since D] N C; = ¥ by construction, for 2 to be invariant under
‘H1, we would need to have that £2 = G(£2), but this would imply,
via Lemma 4.2, that £2 C (7, and thus that 2 C ¢} N D3
) = 2 = (. Therefore, we must have that r = 0, and thus
that V(z(0), g(0)) € M x Q solutions approach the largest weakly
invariant set in V"1(0)N((4A U €) x Q) = Ax Q, whichis Ax Q it
self. UGAS follows directly by the global attractivity and stability
of A. [ ]

(38)

4.2. Proof of Theorem 3.2

The proof uses tools recently developed for averaging on com-
pact Riemannian manifolds (Taringoo et al., 2018) together with
the framework for hybrid extremum seeking control introduced
in Poveda and Teel (2017).

First, since M is compact, we can select ¢, € R.g such
that exp, (e,D(z)) € (M), with (M) the injectivity radius of
M (Taringoo et al., 2018, Lemma 3.2). This makes possible a Taylor
expansion in normal coordinates along the geodesic dithers for
every ¢, such that the average dynamics of o can be computed
to be (see Poveda and Teel (2017)) Hy = {Ci, F, D1, G}, where
Ci1, Dy, Gy are defined in (20a), (19) and (20b) respectively, and
Fé‘ :M x @ — TM x N is the average flow map, given by:

FA(x):= (_ Y VEi(Zq(Z)Ei(T)) +3 5, O(SQ)E,-(Z)> .

Hence, on closed subsets of M we have that

F{\(x) € N Fy(x + ke,B, 0) + (kegB, 0) (39)

for some k > 0, where F; was defined in (18). Here, the convex
hull affects the state z only, and the Minkowski additions (z +
ke,B) are defined in a suitable ambient Euclidean space which
always exists due to the Whitney Embedding Theorem (Lee, 2013,
Thm 6.15). By (39), any solution of the average dynamics Hg‘ is
also a solution of an inflated HDS generated from #;. Hence, and
since H; is a well-posed HDS via Lemma 4.1, by Goebel et al.
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(2012, Thm. 7.21) we conclude that system 7—[’3 renders the set
A GP-AS in the ambient Euclidean space as ¢, — 07. Since HS
and # are nominally well-posed, all conditions to apply (Poveda
& Teel, 2017, Cor. 1) are satisfied. Therefore, together with the
compactness of M, #Ho renders the set A x T" GP-AS in the
ambient Euclidean space as (&4, ;) — 07. Note that any solution
Z to Hg is constrained to M since the dithering is performed
along geodesics on the manifold, and fy(z, x) € T,M for all
(z,q, x) € M x @ x T". Thus, we obtain GP-AS of A in the sense
of Definition 2.2. [ ]

4.3. Proof of Lemma 3.8

First, we compute the differential of Sff) and, whenever (27)
is satisfied, we show that it is full rank for all z € SO(3).
When ¢(z) < y, the differential is trivially full-rank since
d (Séz)) =I. When ¢(z) > y, we obtain: d (Séz)) =eka(@(2)—y X

[kqa/(qﬁ(zz)—y)(x -z) dp, +1]. Since the linear oi)erator v o>
ekae(@9(2)-v Xy is invertible, because e’ e SO(3) for all r € R and
X € T;SO(3), to prove that d (852)) is full-rank it suffices to show
that (¥, + 1) is invertible, where llzfz = ko' (p(z) — y) (X - 2) dp,.
To this end, letting || ¥, ||, denote the operator 2-norm induced by
the inner product in the Hilbert space V, := (T,SO(3), (-, -);), we
obtain that: ||, < kg || &'(¢(2) — ¥)lIIX|lrllgradel,|lr. Then,
whenever (27) is satisfied, it follows that ||¥;|, < 1, which
implies that (I + ¥;) is invertible, and hence that d Séz)

full rank for all z such that ¢(z) > y. By the inverse function
theorem (Lee, 2013, Thm. 4.5), it follows that Séz) is a local
diffeomorphism everywhere. Now, note that S,(f) is a proper map'
since it is continuous and SO(3) is a compact Hausdorff space. This
fact, together with the compactness of SO(3), implies that Sff) is
surjective via Ho (1975, Lemma. 1). Injectivity of 852) follows from
the arguments presented in Mayhew and Teel (2011b, Appendix,
Proof Thm. 8), which we omit here for conciseness. Since Sff) is
bijective, as well as a local diffeomorphism everywhere, it follows
that it is a global diffeomorphism. [ ]

is

4.4. Proof of Theorem 3.9

The proof employs the same concepts as the proof of Theo-
rem 3.2. We provide some details for completeness. Specifically,
we now consider the Taylor expansion of the flow-map Fy in
normal coordinates and we analyze the corresponding average
hybrid dynamics #3 = {Cy, F{, D1, G1}, describing the evolution
of the state X := (z,q,p) € S? x @ x P. In this case, the average
flow-map F/\(-) is given by

2
Fi®)= 1 Frop(2)+ Y Olea)Eip(z) t x {0} x {0},

i=1
where Fqqp(z) == — Z,.Zzl VELp(}q(z)E,-,p(z). The flow set C;, the
Jjump set Dy, and the jump map G, are the same as the sets Cj,
Dy, and them map Gy defined in Section 3.6, but disregarding

the state x € T? from the main state of the system. Using this
construction, (39) becomes

FA(X) € con, Fy(X 4 keyB, 0) 4 (kegB, 0) (40)

where k > 0, and I:"](%)::{I:'],qp(z)}x{O} x {0}. Fgrth~ern30re, let
7L; be the first-order HDS with data #; = {Ci, F1, D1, Gy}, and
consider the same Lyapunov function of (36). During the flows of

1A map f : A — B is proper if the preimage of each compact subset of B is
compact.
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H,4, it follows that Lg, Y(fc) = — 3" (Eip(2)pg)? for all % € Ci.
During the jumps of #4, the change of the Lyapunov function
AV(X) = V(x') — V(X) satisfies: AV(X) —5§ whenever X €
Dis = {(z.q) € S x Q (pg —m)(z) = 8} x P, and
AV (X) 0 whenever ¥ € D; \ Dy, In words, the Lyapunov
function decreases whenever there is a switch between warped
cost functions, denoted by a change in g, and does not increase
if the system only switches between families of vector fields,
i.e., only when the state p changes. Now, by the structure of
the flow and jump sets, after a jump that only changes p is
triggered, the system can either exhibit a change in g, after which
it necessarily flows, or directly flows. The converse is true if a
jump that only changes q is triggered first. Then, leveraging the
decrease of the Lyapunov function during flows and employing a
similar reasoning as in the proof of Theorem 3.4, it follows that
every solution of 7{; converges to the largest weakest invariant
set in V71(0) N (AUE) x @ x P), whichis 4 == A x Q x P
itself. It follows that 4 is UGAS under #; via the hybrid invariance
principle (Sanfelice, 2020, Thm. 3.23). The GP-AS of .4 under g
is obtained by using (22), the well-posedness of #; and #2,
and applying the same arguments at the end of the proof of
Theorem 3.2. u

4.5. Proof of Lemma 3.10

Using the fact that d (e"®)) = eM#(I + Azdn,) for A € R™"

and n : R" — R we get: det (d (Sﬁf)) ) = 14+kqo' (¢(z) — v) do,
z

(Xz), for all z such that ¢(z) > y. Thus, whenever |k;| < EG),

det(d(SEf))Z) # 0 for all z € S?. Note that Sff) is proper, being
both continuous and defined on the compact sgace S%. Then, by
the fact that S? is simply connected and det(deI )) # 0, it follows
that 553) is a diffeomorphism via Gordon (1972, Thm. B). [ ]
5. Conclusions and outlook

We introduced a novel class of zeroth-order hybrid algorithms
for the global solution of gradient-free optimization problems on
smooth, compact, and boundaryless manifolds. These algorithms
combine continuous-time dynamics and discrete-time dynamics
to achieve robust global practical stability of the optimizer of
a smooth cost function accessible only via measurements or
evaluations. The proposed approach overcomes topological ob-
structions that prevent the solution of this problem using algo-
rithms modeled by smooth ODEs. We characterized the stability
and robustness of the algorithms using tools from the theory of
hybrid dynamic inclusions. Future research will explore track-
ing problems in time-varying optimization settings, as well as
the incorporation of dynamic plants in the loop. A completely
coordinate-free formulation of the hybrid algorithms, and the de-
velopment of accelerated dynamics and single-point algorithms,
are also future research directions.
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