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a b s t r a c t

It is well known that smooth autonomous dynamical systems modeled by ordinary differential
equations (ODEs) cannot robustly and globally stabilize a point on compact, boundaryless manifolds.
This obstruction, which is topological in nature, has significant implications for optimization problems,
rendering traditional continuous-time algorithms incapable of robustly solving global optimization
problems in such spaces. In turn, gradient-free optimization algorithms, which usually inherit their sta-
bility and convergence properties from their gradient-based counterparts, can also suffer from similar
topological obstructions. For instance, this is the case in zeroth-order methods and perturbation-based
techniques, where gradients and Hessian matrices are usually estimated in real-time via measurements
or evaluations of the cost function. To address this problem, in this paper we introduce a novel class of
hybrid gradient-free optimization dynamics that combine continuous-time and discrete-time feedback
to overcome the obstructions that emerge in traditional ODE-based optimization algorithms evolving
on smooth compact manifolds. The proposed hybrid dynamics switch between different gradient-free
feedback-laws obtained by applying suitable exploratory geodesic dithers to a family of synergistic
diffeomorphisms adapted to the cost function that defines the optimization problem. The use of
geodesic dithers enables a suitable exploration of the manifold while simultaneously preserving its
forward invariance, a property that is fundamental for many practical applications with physics-based
constraints. The hybrid dynamics exploit the information obtained from the geodesic dithers to achieve
robust global practical stability of the set of minimizers of the cost function. This stabilization is
achieved without having direct access to the gradients of the cost functions, but rather using only
real-time and continuous evaluations of the cost. Examples and numerical results are presented to
illustrate the main ideas and advantages of the method.

© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

This paper studies algorithms for the global solution of opti-
ization problems of the form

in φ(z) subject to z ∈ M, (1)

where φ is a smooth cost function and (M, g) is an n-dimensional
iemannian manifold to be formally defined in Section 2. The
athematical form of φ and its derivatives is assumed to be
nknown. It is only assumed that φ is available through mea-
urements or evaluations on M . This class of problems arises in
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arious practical applications, spanning from aerospace engineer-
ng (Hauser, 2002) to power systems (Absil, Mahony, & Sepulchre,
009) and quantum control (Grivopoulos & Bamieh, 2003). One of
he simplest and most successful algorithms for optimization is
he gradient-descent method, which has been studied in the con-
ext of manifolds since at least the end of the last century (Gabay,
982). Recently, these methods have gained considerable interest
ue to their potential applications in estimation, machine learn-
ng, and data science pipelines (Bottou, 2010). In the context of
ynamical systems described by ordinary differential equations
ODEs), real-time optimization problems defined on a manifold

are common in robotics, mechanical systems, and aerospace
ontrol problems evolving under kinematic constraints. For ex-
mple, controlling unicycles (Sontag, 1999, Sec. 2.2) or navigating
n obstacle-occluded spaces (Poveda, Benosman, Teel, & Sanfelice,
021). In such problems, the restriction to evolve on M limits
he feasible directions that any onboard algorithm can exploit in
eal-time. For comprehensive introductions to ODE-based opti-
ization algorithms on manifolds, we refer the reader to Absil
t al. (2009), Helmke and Moore (2012).
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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One of the primary challenges in solving optimization prob-
lems on smooth (boundaryless) compact manifolds stems from
the fact that in such spaces, a point cannot be robustly globally
asymptotically stabilized using continuous feedback in ordinary
differential equations (ODEs) (Bhat & Bernstein, 2000, Thm. 1).
This result extends to compact Lie groups and non-contractible
spaces in general, as shown in Sontag (2013, Thm. 21). This
ell-known property implies that standard gradient flows or
ewton-like flows cannot achieve robust global convergence to
he minimizer of a continuously differentiable cost function for
very type of smooth compact manifold. The reason behind this
ncompatibility lies in the fundamental mismatch between the
opological nature of the basin of attraction of a point under
ontinuous dynamics, and the topological properties of a com-
act boundaryless manifold (Sontag, 2013, Thm. 21). Specifically,
he basin of attraction of a point under continuous feedback
s contractible, while a compact manifold is not. Many results
n the literature overcome this issue by focusing on asymptotic
tability properties that overlook measure-zero sets containing
he critical points of the cost function that are not solutions to the
ptimization problem under study (Angeli, 2004; Efimov, 2012),
uch as local maximizers and saddle points. However, algorithms
ith almost global convergence certificates have been shown
o be susceptible to arbitrarily small (adversarial) disturbances.
nder such disturbances, the set of problematic initial conditions
rom which convergence is not achieved is not of measure zero
nymore, but rather an open set. Examples illustrating this sus-
eptibility can be found in Sontag (1999), Poveda et al. (2021, Ex.
), and Mayhew and Teel (2011b).
Alternatively, other works have circumvented the obstruction

ia time-varying (Coron, 1992), or discontinuous feedback (Mal-
soff, Krichman, & Sontag, 2006), finding success in achieving
lobal convergence in certain applications. However, as shown
n Mayhew and Teel (2011a, Cor. 21), time-varying approaches
an only circumvent the issue when the optimization dynamics
perate in nominal conditions. In particular, when the system is
ubject to (even arbitrarily) small disturbances, robust and global
tabilization of a point in compact boundaryless manifolds can-
ot be achieved by merely using discontinuous or time-varying
eedback strategies. To address this issue, in Mayhew (2010)
he authors introduced a hybrid controller that synergistically
witches between different continuous vector fields, generated
rom a family of potential functions, to globally stabilize a point.
ecent works have employed the synergistic framework to solve
ttitude stabilization problems in SO(3) (Berkane, Abdessameud,
Tayebi, 2017), stabilization by hybrid backstepping (Casau,

anfelice, & Silvestre, 2019), and for the robust stabilization of
rajectories in multi-rotor aerial vehicles (Casau, Mayhew, San-
elice, & Silvestre, 2019). However, since these works address
tabilization problems, where the point to be stabilized is known
priori, in general, they cannot be directly used for the solution of
ptimization problems where the set of optimizers is unknown,
r in cases where the potential functions are only accessible via
easurements or evaluations.
Optimization problems where the cost function is unknown

nd only accessible through measurements or evaluations are
ommon across many applications. These problems have tradi-
ionally been studied using gradient-free methods, such as zeroth-
rder optimization algorithms. While the literature of continuous-
ime zeroth-order optimization dynamics, also known as ex-
remum seeking, is quite rich (Dürr, Stanković, Johansson, &
benbauer, 2014; Krstić & Wang, 2000; Poveda & Teel, 2017),
ost of the algorithms applicable to smooth compact manifolds
re characterized by smooth gradient-free dynamical systems
hat aim to emulate, via averaging or other ‘‘approximation’’
echnique, the behavior of a target gradient-flow on the man-
fold (Dürr et al., 2014; Taringoo, Dower, Nesic, & Tan, 2018).
2

n these settings, the stability properties of gradient-free dy-
amics are usually inherited from the stability properties of the
arget system being approximated. Therefore, the challenges of
obust global optimization extend to the gradient-free counter-
arts whenever the target system is characterized by a smooth
DE. Moreover, existing results that achieve global optimization
ia switching algorithms (Strizic, Poveda, & Teel, 2017) do not
ecessarily preserve the forward invariance of the manifold due
o the use of dither signals that do not evolve in the manifold’s
angent space, a requirement that is relevant for practical appli-
ations where the evolution on manifolds is enforced by physical
onstraints, or in problems where the cost function is defined
nly on the manifold.
To address the above challenges and limitations of existing ap-

roaches, the main contribution of this paper is the introduction
f a novel class of gradient-free algorithms for the global solution
f optimization problems defined on compact boundaryless con-
ected Riemannian manifolds. The algorithms are characterized
y a family of hybrid gradient-free dynamics that switch between
ifferent zeroth-order feedback laws that implement exploratory
eodesic dithers to extract suitable ‘‘descent directions’’ from
he cost function φ. The switches in the algorithms are imple-
ented in both the exploration and the exploitation components
f the dynamics. In particular, to globally navigate and explore
anifolds that are not parallelizable (e.g., S2), the exploratory
eodesic dithers switch between different local frames using a
ysteresis-based mechanism. To achieve global convergence to (a
eighborhood of) the set of minimizers, the algorithms imple-
ent a class of switching diffeomorphisms adapted to the cost

unction of interest. Such diffeomorphisms can be constructed
nder mild qualitative assumptions on the cost functions and for
ifferent types of manifolds. Our main result establishes robust
lobal practical asymptotic stability of the set of minimizers of
he cost function for the proposed hybrid gradient-free dynamics.
ompared to previous approaches for gradient-free optimiza-
ion on manifolds, e.g. Dürr et al. (2014), Taringoo et al. (2018)
nd Suttner (2022), our convergence results are global rather
han local or almost global. Compared to existing switching al-
orithms (Strizic et al., 2017), our gradient-free dynamics are
esigned to evolve on the manifold and preserve its invariance
ia geodesic dithering. The results presented in this paper are
lso applicable to a larger class of manifolds and optimization
roblems. Our results also provide an alternative approach to
he solution of gradient-free optimization and extremum seeking
roblems with multiple critical points, typical in non-convex
ettings, a problem that has also been recently studied in Suttner
nd Krstić (2023) using other techniques.
The rest of this paper is organized as follows. Section 2 presents

he preliminaries. Section 3 presents the main results, including
he general hybrid gradient-free optimization dynamics and three
pecific examples of algorithms synthesized for different applica-
ions. Section 4 presents the proofs, and Section 5 ends with the
onclusions.

. Preliminaries

In this section, we introduce the notation used in the paper,
s well as some mathematical preliminaries.

.1. Notation

Given a compact set A ⊂ N in a metric space N , with metric
: N × N → R≥0, and an element z ∈ N , we use |z|A :=

ins∈A d(z, s) to denote the minimum distance of z to A. We
se Sn

:= {z ∈ Rn+1
:
∑n+1

i=1 z2i = 1} to denote the nth
imensional sphere, with S1 representing the unit circle in R2.
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e use Tn
= S1

×· · ·×S1 to denote the nth Cartesian product of
1. We also use rB to denote a closed ball in the Euclidean space,
f radius r > 0 and centered at the origin. We use In ∈ Rn×n

for the identity matrix, and 1A for the indicator function of the
set A. A function β : R≥0 × R≥0 → R≥0 is of class KL if
it is non-decreasing in its first argument, non-increasing in its
second argument, limr→0+ β(r, s) = 0 for each s ∈ R≥0, and
lims→∞ β(r, s) = 0 for each r ∈ R≥0. We use πA : A × B → A
to denote the natural projection from A × B to A, and gph J to
denote the graph of a mapping J . The Kronecker delta is denoted
as δij.

2.2. Riemannian manifolds

We introduce the main differential geometric concepts used
in the paper. For more details, we refer the reader to Lee (2013,
2018). The concept of smooth manifold will play an important
role in this paper:

Smooth manifolds: An n-dimensional manifold is a second-
countable Hausdorff topological space that is locally Euclidean
of dimension n. A coordinate chart for M is a pair (U, ϕ) where
U ⊂ M is an open set and ϕ : U → Û ⊂ Rn is a home-
omorphism. Two coordinate charts (U, ϕ) and (V , ψ) are said
to be smoothly compatible if the transitions maps ψ ◦ ϕ−1 and
ϕ ◦ ψ−1 are diffeomorphisms. A smooth structure on M is a
maximal collection of coordinate charts for which any two charts
are smoothly compatible; a smooth coordinate chart is any chart
that belongs to a smooth structure. Then, a smooth manifold is a
manifold endowed with a particular smooth structure. Given a
smooth manifold M , the set of all smooth real-valued functions
f : M → R is denoted by C∞(M).

Tangent space and Vector Fields: Dynamical systems evolv-
ing on smooth manifolds are defined by vector fields that lie
within their tangent spaces. For each z ∈ M , a tangent vector
at z is a linear map v : C∞(M) → R that satisfies v(fh) = f (z) ·
v(h)+ h(z) · v(f ), for f , h ∈ C∞(M). The set of all tangent vectors
at z is denoted by TzM and is called the tangent space of M at z.
The tangent bundle TM is defined to be the disjoint union of the
tangent spaces at all points in the manifold, i.e., TM :=

⨆
z∈M TzM .

A smooth vector field is a smooth map X : M → TM satisfying
X(z) ∈ TzM for all z ∈ M . We use X(M) to denote the set of all
smooth vector fields on M .

The differential of a function f ∈ C∞(M), denoted by df :

TM → R, is a map defined pointwise by:

dfz(v) = v(f ), ∀ v ∈ TzM. (2)

Using the differential, we define the sets of critical points and
critical values of f ∈ C∞(M) as follows:

Crit f := {z ∈ M : dfz = 0} , (3)

Val f := {a ∈ R : a = f (z), z ∈ Crit f } . (4)

A local frame for M is defined as a tuple of vector fields
(X1, . . . , Xn) defined on an open set U ⊂ M , that is linearly
independent and spans TzM at each z ∈ M . If this frame is defined
in the entire manifold (U = M), it is called a global frame. When
M admits a global frame, the manifold is said to be parallelizable.
Parallelizability will play an important role in our algorithms.

Riemannian Manifolds: In this paper, we will focus on Rie-
mannian manifolds. An n-dimensional Riemannian manifold is a
pair (M, g), where M is an n-dimensional smooth manifold, and
g is a Riemannian metric whose value at each point z ∈ M is an
inner product defined on TzM . The Riemannian metric g enables
the definition of the gradient of f , grad f : M → TM , as the
continuous map satisfying:

df (v) = g grad f | , v , for all z ∈ M, v ∈ T M, (5)
z ( z ) z

3

where grad f |z ∈ TzM denotes the value of the gradient of f at z.
To guarantee a suitable exploration of M , while preserving

its invariance, we will work with algorithms that implement
geodesic dithers:

Geodesics: Geodesics are defined as curves γ : [a, b] → M on
a Riemannian manifold, satisfying

∇γ̇ (t)γ̇ (t) = 0, (6)

where ∇ : X(M) × X(M) → X(M) is the Levi-Civita connec-
tion (Lee, 2018, Ch. 5). To generate the dither signals used by the
gradient-free optimization algorithms considered in this paper,
we use the restricted exponential map expz : TzM → M , defined
by expz(v) = γv(1), where γv is the unique maximal geodesic
satisfying γv(0) = z and γ̇v(0) = v.

Throughout the paper, we make use of the following standing
assumption.

Standing Assumption 2.1. The Riemannian manifold (M, g) is
compact, boundaryless, and connected. □

In particular, Assumption 2.1 guarantees the existence of a
path between any two points in M (Lee, 2018, Prop 2.50), which
facilitates the definition of a notion of distance.

Riemannian Distance: The Riemannian distance, denoted by
dg (z1, z2) is defined to be the infimum of the lengths of all admis-
sible curves between a pair of points in the manifold (Lee, 2013,
Ch 2.). Formally, the Riemannian distance dg : M × M → R≥0 is
defined by dg (z1, z2) := infγ∈A(z1,z2)

∫ t2
t1

√
g (γ̇ (t), γ̇ (t))dt , where

A(z1, z2) represents the set of all admissible curves connecting z1
and z2, and t1, t2 ∈ R are such that γ (t1) = z1 and γ (t2) = z2 for
γ ∈ A(z1, z2).

2.3. Hybrid dynamical systems and stability notions

In this paper, we consider algorithms modeled as hybrid dy-
namical systems (HDS) (Goebel, Sanfelice, & Teel, 2012) of the
form:

x ∈ C, ẋ = F (x) (7a)

x ∈ D, x+ ∈ G(x), (7b)

where x ∈ M ⊂ Rp is the state, F : M → TM is called the
flow map, and G : M ⇒ M is a set-valued map called the
jump map. The sets C and D, called the flow set and the jump
set, respectively, characterize the points in M where the system
can flow or jump via Eqs. (7a) or (7b), respectively. Then, the
HDS H is defined as the tuple H := {C, F ,D,G}. Systems of the
form (7) generalize purely continuous-time systems and purely
discrete-time systems. Namely, continuous-time dynamical sys-
tems (e.g., ODEs) can be seen as a HDS of the form (7) with D = ∅,
while discrete-time dynamical systems (e.g. recursions) corre-
spond to the case when C = ∅. Solutions to HDS of the form (7)
are defined on hybrid time domains, i.e., they are parameterized
by both a continuous-time index t ∈ R≥0, and a discrete-time
index j ∈ Z≥0. Consequently, the notation ẋ in (7a) represents
the derivative of x with respect to time t , i.e., dx(t,j)

dt ; and x+
in (7b) represents the value of x after an instantaneous jump,
i.e., x(t, j + 1). For a precise definition of hybrid time domains
and solutions to HDS of the form (7) we refer the reader to Goebel
et al. (2012, Ch.2). A HDS H is said to be well-posed if C and D are
losed sets, C ⊂ dom(F ) and D ⊂ dom(G), F is continuous in C ,
nd G is outer-semicontinuous (Goebel et al., 2012, Def. 5.9) and
ocally bounded (Goebel et al., 2012, Def. 5.14) relative to D.

Stability notions: By endowing the manifold with the distance
unction dg , M constitutes a metric space (Lee, 2018, Thm 2.55).
ccordingly, we can use stability notions analogous to those
tudied in the Euclidean space.
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Fig. 1. Left: Block diagram of the proposed hybrid zeroth-order dynamics with geodesic dithering. Right: Cartoon of the trajectories of the system evolving on a
manifold M.
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Definition 2.1. The compact set A ⊂ C∪D is said to be uniformly
lobally asymptotically stable (UGAS) for (7) if ∃ β ∈ KL such that
or all solutions x:

x(t, j)|A ≤ β(|x(0, 0)|A, t + j), (8)

(t, j) ∈ dom(x), where |z|A = mins∈A dg (z, s). □

We also consider ε-parameterized HDS Hε of the form

∈ Cε, ẋ = Fε(x), and x ∈ Dε, x+ ∈ Gε(x),

here ε > 0. For these systems, we will study global practical
tability properties as ε → 0+.

efinition 2.2. The compact set A ⊂ C ∪ D is said to be Globally
ractically Asymptotically Stable (GP-AS) as ε → 0+ for system (7)
f ∃ β ∈ KL such that for each ν > 0 there exists ε∗ > 0 such that
or all ε ∈ (0, ε∗) and x(0, 0) ∈ M , every solution of Hε satisfies

x(t, j)|A ≤ β(|x(0, 0)|A, t + j)+ ν, (9)

(t, j) ∈ dom(x). □

The notion of GP-AS can be extended to systems that depend
n two parameters ε = (ε1, ε2). In this case, we say that A is
P-AS as (ε2, ε1) → 0+ where the parameters are tuned in order
tarting from ε1.

. Main results

Approaches for optimization in Euclidean spaces with global
onvergence certificates usually rely on convexity properties of
. For Riemannian manifolds, convexity is characterized along
eodesics. However, under Assumption 2.1 geodesic convexity
as little utility since in compact Riemannian manifolds geodesi-
ally convex functions are necessarily constant (Udriste, 2013,
or. 2.5). Given the limitations imposed by convexity in compact
iemannian manifolds, in this paper we alternatively rely on the
ollowing regularity assumption on φ, which is closely related to
he decomposability of invariant sets introduced in Angeli and
fimov (2015, Assumption 1).

tanding Assumption 3.1. The cost function φ has a finite amount
f critical values, i.e., there exists l ∈ N such that Val φ =

φ1, φ2, . . . , φl}, where φ := φ1 < φ2 ≤ φi ≤ φl =: φ, and
≤ φ(z) ≤ φ for all z ∈ M. Moreover, the critical points of φ

are isolated, and φ has a unique minimizer. □

Let A :=
{
z ∈ Crit φ : φ(z) = φ

}
represent the minimizer of

and define B := Crit φ \A. Since M is compact, the set A is also
ompact. Note that Assumption 3.1 does not rule out functions φ
ith multiple critical points. Indeed, in our problem setup, B is
ot empty since, by Morse theory, there exist at least two critical
 w

4

points for scalar-valued functions on compact boundaryless man-
ifolds. Such critical points correspond to equilibria in traditional
gradient flows, rendering them highly susceptible to even small
(potentially adversarial) disturbances. This robustness issue, thor-
oughly discussed in Sontag (1999), Poveda et al. (2021, Ex. 1),
and Mayhew and Teel (2011b), and illustrated later in Section 3.4
via numerical examples, is one of the main motivations for the
development of robust hybrid algorithms. In our case, we design
the hybrid algorithms to be gradient-free by leveraging tools from
averaging theory for hybrid dynamical systems.

Remark 3.1. For the case when φ is a Morse function (Milnor,
2015, Definition 2.3), Assumption 3.1 is automatically satisfied.
Moreover, since the set of Morse functions is an open dense set in
the space of differentiable functions (Milnor, 2015, Theorem 2.7),
we can dispense with Standing Assumption 3.1 by considering

surrogate approximate optimization problem to (1), whose
olution is the minimizer of a Morse function sufficiently close
o φ. □

emark 3.2. When the set of minimizers A forms a submanifold
ather than a singleton in M , the basin of attraction is diffeomor-
hic to a tubular neighborhood of A in M (Mayhew & Teel, 2011a,
or. 21). This neighborhood may or may not be contractible.
n this case, to assess the applicability of our approach, further
ssumptions regarding the topological characteristics of A and its
ubular neighborhood are required. To simplify our presentation,
e defer this problem to future research. □

.1. Description of the proposed algorithms

To solve problem (1), the left plot of Fig. 1 shows a block
iagram of the proposed dynamics. Before analyzing the math-
matical properties of this system, we first briefly describe the
ain ideas behind the algorithms:
(a) A set of dynamic oscillators, with state χ and frequency

roportional to 1/εd, where εd > 0 is a small tunable parameter,
s employed to generate exploratory signals defined in Tn. The
ignals are then suitably combined with a local orthonormal
rame {Ei,p}ni=1, p ∈ P ⊂ Z≥1, to obtain a dithering vector field
p that drives dithering geodesics along the manifold M . These
eodesic dithers will be used for the purpose of local (real-time)
xploration.
(b) To ensure a well-defined local exploration around every

oint z ∈ M for all time, we introduce a logic state p. This
tate selects an orthonormal frame {Ei,p}ni=1 that locally spans the
angent space at a given point z. This logic state is updated using
hybrid exploration supervisor that hysterically switches between

ocal frames. When the manifold is parallelizable, we can dispense
ith this logic state and its associated hybrid dynamics.
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(c) The geodesic dithers, together with measurements or eval-
uations of the cost φ, are used to generate families of vector fields
{f̂q,p(·, χ )}q∈Q, p ∈ P , given by

f̂q,p (z, χ) :=
2
εa
φ̃q

(
expz

(
εaDp(z)

))
Dp(z), (10)

here εa > 0 is a tunable gain and Q ⊂ Z≥1. These vector fields,
xplained below, are used for the purpose of exploitation in the
ptimization dynamics.
(d) To define the vector fields {f̂q,p(·, χ )}q∈Q, we use a set of

diffeomorphisms and generate a family of surrogate warped cost
functions {φ̃q}q∈Q. The chosen diffeomorphisms shift the points
that are not in a neighborhood of the minimizers of φ. In this
manner, by appropriately partitioning the manifold M , for each
q ∈ Q we can implement the vector field f̂q,p (·, χ) in a ‘‘safe
one’’ where its average dynamics have no critical points other
han A. A hybrid exploitation supervisor is then used to switch the
ogic state q to globally steer the state z to A. These partitions can
e constructed under mild qualitative assumptions on the cost
unction.

(f) As we increase the frequency of the dithers (i.e., εd → 0+),
he trajectories induced by the switching vector fields (10) will
pproximate the trajectories of a class of hybrid gradient flows
hat will be shown to achieve robust global asymptotic stability
f A on M .
The above ideas suggest that the proposed algorithms are sim-

ilar in spirit to synergistic hybrid controllers studied in the con-
text of robust global stabilization problems Mayhew (2010), (San-
elice, 2020, Ch. 7). However, the algorithms studied in this paper
o not exactly fit the setting of synergistic hybrid control, since
he family {f̂q,p(·, χ )}q∈Q does not describe gradients of syner-
istic Lyapunov functions. In fact, unlike standard stabilization
roblems tackled via hybrid control, the main challenges in prob-
em (1) are that the set A and the function φ are unknown.
Therefore, to implement the gradient-free hybrid dynamics we
need to characterize the family of cost functions φ and smooth
manifolds (M, g) that admit suitable partitions and deformations
to generate feasible adaptive switching rules that induce global
stability of A, in a gradient-free way.

3.2. Stability, convergence, and robustness results for parallelizable
manifolds

To solve problem (1), we first focus on manifolds M that are
arallelizable, which enables the use of a global orthonormal
rame {Ei}ni=1. This facilitates the definition of a single dithering
ector field D : M → TM as D(z) :=

∑n
i=1 χ̂iEi(z), where χ̂

orresponds to the vector that stacks the odd components of χ .
his single vector field will drive the dithering geodesics, ensuring
lobal exploration of M without the need of using additional
ogic states (i.e., with p ≡ 1). The study of the non-parallelizable
cenario is postponed to Section 3.6.
The closed-loop system describing the gradient-free hybrid

ynamics, shown in Fig. 1(a), has three main states: (z, q, χ ) ∈
× Q × Tn, where z is an internal auxiliary state, q ∈ Q :=

1, 2, . . . ,N}, N ∈ Z≥2, is a logic decision variable, and χ is the
tate of the oscillator. The data of this hybrid system is denoted
s:

0 = {C0, F0, D0, G0}. (11)

In this way, the continuous-time dynamics of H0, with state
:= (z, q, χ ) are given by

∈ C0, ẏ = F0(y) :=

⎛⎜⎝−f̂q (z, χ)
0

2π

⎞⎟⎠ , (12)
εd
Ψ (ω)χ

5

where f̂q : M×Tn
→ TM is defined via (10) by omitting the state

p, and Ψ : Rn
→ R2n×2n is given by

Ψ (ω) :=

⎛⎜⎜⎝
Ω(ω1) 0 ... 0

0 Ω(ω2) ... 0

...
...
...

...
0 0 ... Ω(ωn)

⎞⎟⎟⎠ , Ω(α) :=
(

0 α

−α 0

)
,

where α > 0. Here, ωi is a positive rational number, and εd ∈ R>0
and εa ∈ R>0 are tunable gains. For every q ∈ Q, the vector
field f̂q(z, χ ) is obtained by geodesically dithering the correspond-
ing warped cost function φ̃q (defined below in Definition 3.1)
around the current point z. In particular, the dither is obtained
along a geodesic γ , originating from z with an initial velocity
parameterized by the dithering amplitudes, denoted by χ .

To model the switches between different vector fields, the
discrete-time dynamics G0 of H0 are given by the following
constrained difference inclusion

y ∈ D0, y+ ∈ G0(y) := {z} × h(z)× {χ}, (13)

where the set-valued map h : M ⇒ Q, is defined as

h(z) :=
{
q ∈ Q : φ̃q(z) = m(z)

}
, (14)

and m : M → R is defined as:

m(z) := min
q∈Q

φ̃q(z). (15)

Namely, m(z) is the minimum value among all the warped
cost functions φ̃q at a given point z. To compute m(z), the algo-
rithm only needs measurements or evaluations of φ̃q(z), which
preserves the gradient-free nature of the hybrid dynamics. More-
over, the minimum in (15) is well-defined since Q is finite, and
obtaining the value of m is not computationally expensive, since
the complexity scales linearly with the cardinality of Q.

The final elements needed for the characterization of the hy-
brid systemH0 are the flow and jump sets C0 and D0, respectively.
To define these sets, and since the warping induced by the diffeo-
morphisms is only useful if it modifies the points that are not
in a neighborhood of the minimizers, we will use a threshold
parameter γ ∈ R characterized by the following assumption:

Standing Assumption 3.2. There exists a known threshold number
γ ∈ (φ, φ2). □

Remark 3.3. Knowledge of γ does not necessarily imply a precise
knowledge of the minimizer or the exact mathematical form of φ.
nstead, Assumption 3.2 requires only a mild qualitative under-
tanding of the values of φ near its minimum. Such a qualitative
haracterization is often available in practical scenarios where
he range of φ is known to lie within certain broad bounds. An
xample of this can be found in Lauand and Meyn (2023, pp. 131),
here a known lower bound on the cost function is employed to
esign the gain of an exploratory signal for extremum seeking
ontrol. In the particular case when φ = 0, the assumption holds
for any sufficiently small γ > 0.

Using γ , we can characterize a synergistic family of diffeomor-
phisms for the solution of problem (1).

Definition 3.1. Let M be a smooth manifold, and suppose φ ∈

C∞(M) satisfies Assumption 3.1. A family of functions S ={
Sq
}
q∈Q is said to be a δ-gap synergistic family of diffemorphisms

adapted to φ if it satisfies:

(A1) For every q ∈ Q, Sq : M → M is a diffeomorphism.
(A ) For every q ∈ Q, φ(z) < γ H⇒ S (z)=z.
2 q
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(A3) There exists δ ∈ (0, µ(S)), where

µ (S) := min
q∈Q

z∈Crit φ̃q\A

(
φ̃q(z)−min

p∈Q
φ̃p(z)

)
,

and the warped cost φ̃q : M → R is given by φ̃q :=

φ ◦ Sq, ∀ q ∈ Q. □

The family of functions S satisfying the above properties en-
ures there are enough ways to distort the manifold (M, g), allow-
ng for the distinction of critical points other than the minimizers
f φ using only cost measurements or evaluations. For each distor-
ion of (M, g), a warped cost φ̃q can be defined, leading to a family
of N different vector fields in (12). Using Definition 3.1, we state
ur last main standing assumption

tanding Assumption 3.3. There exists a δ-gap synergistic family
f diffeomorphisms adapted to φ with finite index set Q. □

emark 3.4. Verifying conditions (A1)-(A3) is clearly application-
ependent, and different manifolds typically result in different
arped costs. However, we stress that the constructions needed
o implement the hybrid dynamics do not require explicit math-
matical knowledge of the cost function φ, but only knowledge
f qualitative properties that could be verified a priori via sim-
le tests or experiments. Particular examples of pairs (φ, (M, g))
hat satisfy Standing Assumptions 3.1–3.3 will be presented in
ection 3.5. □

The flow sets and jump sets of the zeroth-order hybrid dynam-
cs H0, given by (11), are given by

C0 :=
{
(z, q, χ ) ∈ M × Q× Tn

:
(
φ̃q −m

)
(z) ≤ δ

}
0 := {(z, q, χ ) ∈ M × Q× Tn

:
(
φ̃q −m

)
(z) ≥ δ}.

ased on the structure of the sets (C0,D0), switches of q (i.e.,
umps) are allowed whenever the difference φ̃q(z) − m(z) ex-
eeds a δ-threshold. Flows following the vector field (12) are
llowed when this difference is less than or equal to δ. When
he difference is exactly equal to δ, flows and jumps are both
llowed. This immediately indicates that solutions of H0 are not
nique. However, the structure of the warped cost functions
˜q and the jump map will prevent the occurrence of infinite
onsecutive jumps by inducing a hysteresis-like behavior. In this
anner, whenever a solution approaches a critical point of φ̃q
utside the set of minimizers A, the dynamics will transition to
different vector field generated from a warped cost function φ̃p
ith a lower value. The existence of such a warped cost function

s guaranteed by the following technical Lemma. All proofs are
resented in Section 4.

emma 3.1. Suppose that φ satisfies Assumption 3.1, and let
=

{
Sq
}
q∈Q be a family of functions satisfying (A1) and (A2) in

efinition 3.1. If S satisfies (A3), then, for all q ∈ Q and every
∈ Crit φ̃q \ A, there exists p ∈ Q such that:

˜p(z)+ δ < φ̃q(z). (16)

onversely, if for all q ∈ Q and every z ∈ Crit φ̃q \ A, there exists
∈ Q such that (16) holds, then S satisfies (A3), making it a δ-gap
ynergistic family of diffeomorphisms adapted to φ. □

We can now state the first main result of the paper.

heorem 3.2. Assume that the manifold M is parallelizable, and
onsider the hybrid zeroth-order dynamics H0 with data (11). Let
he frequencies ωi in (12) satisfy:

i ̸= ωj, ωi ̸= 2ωj, ωi ̸= 3ωj, for all i ̸= j. (17)

hen, the set A×Q×Tn is GP-AS as (εd, εa) → 0+, and M×Q×Tn

s strongly forward invariant. □
6

The result of Theorem 3.2 establishes global convergence of
he trajectories z of H0 to an arbitrarily small neighborhood of
he set of minimizers A, while simultaneously evolving on (and
xploring) the manifold M . This behavior is illustrated in Fig. 1(b).
o our best knowledge, Theorem 3.2 is the first result in the
iterature that achieves global bounds of the form (9) in smooth
oundaryless compact Riemannian manifolds via deterministic
ontinuous-time zeroth-order optimization algorithms.

.3. Approximation via 1st-order hybrid dynamics

The result of Theorem 3.2 relies on using averaging theory
nd perturbation theory (for hybrid systems) to show that, as
εd, εa) → 0+, the trajectories of H0 will approximate (on com-
act time domains) a solution of a first-order hybrid algorithm
1, with state x = (z, q), continuous-time dynamics given by

∈ C1, ẋ = F1(x) :=
(
−
∑n

i=1 ∇Ei φ̃q(z)Ei(z)
0

)
(18)

iscrete-time dynamics given by

∈ D1, x+ ∈ G1(x) = {z} × h(z), (19)

nd flow set and jump set given by

1 := {(z, q) ∈ M × Q : (φ̃q −m)(z) ≤ δ} (20a)

1 := {(z, q) ∈ M × Q : (φ̃q −m)(z) ≥ δ}. (20b)

ince system (18)–(20) makes use of first-order information of
he warped costs φ̃q via ∇Ei φ̃qEi(z), we will refer to this system
s the first-order hybrid dynamics H1 := {C1, F1,D1,G1}. In this
ystem, for every q ∈ Q, the dynamics ż in (18) represents a
caled version of grad φ̃q. Similar dynamics have been studied
n the literature (Taringoo et al., 2018). They differ from the
oordinate representation of grad φ̃q:

rad φ̃q(z) =
n∑

i,j=1

ζ ij(z)∇Ei φ̃q(z)Ej(z), (21)

y excluding the values ζ ij(z) ∈ R that represent the Riemannian
etric g at a point z ∈ M , in terms of the basis {Ei(z)}ni=1.
owever, as shown in Lemma 3.3, such dynamics do not modify
he set of critical points of the warped cost functions.

emma 3.3. For all q ∈ Q we have that grad φ̃q|z = 0 if and only
f
∑n

i=1 ∇Ei φ̃q(z)Ei(z) = 0. □

The following theorem provides a first-order version of The-
rem 3.2 for the case when the vector field (18) can be explic-
tly computed or measured in real time, and all the standing
ssumptions hold.

heorem 3.4. The first-order hybrid dynamics H1 render the set
× Q UGAS, and the set M × Q is strongly forward invariant. □

Similar to Theorem 3.2, the main novelty of Theorem 3.4 is
he ability to overcome topological obstructions to global opti-
ization on smooth compact manifolds that emerge in ODEs.

n particular, the asymptotic stability result is global rather than
lmost global, semi-global, or local. This result, combined with the
ell-posedness of the dynamics, will allow us to establish im-
ortant robustness properties with respect to small (potentially
dversarial) disturbances, which could also act on the hybrid
eroth-order dynamics H .
0



D.E. Ochoa and J.I. Poveda Automatica 171 (2025) 111916

E
t

3

A
s
t
d
p

C

x

x

w
d

z
r
p
p
θ
t

z

w
E
c
s
v

Fig. 2. Top: Trajectory of a gradient flow under a disturbance d(t)E(z). Bottom:
volution in time of the main state of H1 under the same perturbation applied
o the z-component of the dynamics. See Example 3.6.

.4. Robustness corollaries: Stability under adversarial disturbances

Crucially, the hybrid dynamics H0 and H1 satisfy the Basic
ssumptions of Goebel et al. (2012, Ch. 6). Consequently, their
tability properties are not drastically affected by small (poten-
ially adversarial) additive disturbances acting on the states and
ata of the hybrid systems (Goebel et al., 2012, Thm. 7.20). This
roperty is formalized in the following corollary:

orollary 3.5. Consider the perturbed first-order hybrid dynamics

+ d1 ∈ C1, ẋ = F1(x+ d2)+ d3 (22a)

+ d4 ∈ D1, x+ ∈ G1(x+ d5)+ d6 (22b)

here {C1, F1,D1,G1} is the data of H1, and the signals dj :

om(x) → C1∪D1, for all j ∈ {1, 2, 4, 5, 6}, and d3 : dom(x) → TC1,
are measurable functions satisfying sup(t,j)∈dom(x) |dk(t, j)| ≤ d∗,
where d∗ > 0, for all k ∈ {1, 2, . . . , 6}. Then, system (22) renders
the set A× Q GP-AS as d∗ → 0+. □

Robustness results, such as Corollary 3.5, are relevant for prac-
tical applications where measurement noise or numerical approx-
imations induce unavoidable disturbances during implementa-
tions. They also hold with respect to adversarial perturbations
designed to destabilize the set A, or to stabilize spurious equi-
libria.

Example 3.6. Let M = S1
⊂ R2 be the unit circle, which

is a smooth, boundaryless compact parallelizable manifold. We
consider the cost function φ : S1

→ R, z ↦→ 1 − z1, where
i ∈ [−1, 1] represents the ith coordinate of z ∈ S1 expressed in
egular Cartesian coordinates. The cost function φ has two critical
oints in S1 corresponding to the global minimizer given by (in
olar coordinates) θ∗ = 2π , and a global maximizer, given by
′
= π . To find the unknown minimizer of φ, we first implement

he first-order dynamics

∈ M, ż = −∇E(z)φ̃q(z)E(z)+ d(t)E(z), (23)

here E : S1
⊂ R2

→ TS1 is the vector field defined by
(cos(θ ), sin(θ )) = (− sin(θ ), cos(θ )) and θ denotes the polar
oordinate on the circle. By Lee (2013, Example 8.10.d)), E con-
titutes a smooth global frame for S1. In (23), d(t)E(z) is a time-

arying perturbation that preserves the invariance of M . The

7

Fig. 3. Trajectories of H1 , under a small adversarial disturbance generated by a
dynamical system. The insets show the amplitude of the injected disturbance,
as well as the evolution of the index state q in time. See Example 3.6.

amplitude of this perturbation d(t) was generated by intercon-
necting (23) with an adversarial hybrid system to stabilize the
maximizer θ ′. As shown in Fig. 2, the adversarial perturbation is
always bounded and it succeeds in stabilizing θ ′. On the other
hand, when this same adversarial signal d(t)E(z) is added in
open loop to H1, as in (22), the hybrid dynamics achieve global
convergence to the minimizer θ∗, as shown in the bottom plot
of Fig. 2. Finally, we show in Fig. 3 the performance of the
hybrid system H1 when interconnected to the same adversarial
dynamical system used to destabilize θ∗ in (23). As observed, the
hybrid dynamics still achieve convergence to θ∗. □

We note that smooth gradient-free versions of (23), obtained
via averaging theory, might encounter similar issues as those
illustrated in Example 3.6. Specifically, if a small adversarial dis-
turbance can locally stabilize the average dynamics of the system
to a point outside A, and if this stabilizing effect of the dis-
turbance is preserved after averaging, then applying the same
disturbance to the original dynamics may cause the system to
locally converge to a neighborhood of that point, as predicted by
standard averaging results for ODEs (e.g., Khalil (2002, Ch. 10)).
An example of this behavior in obstacle avoidance problems was
presented in Poveda et al. (2021, Ex. 1). The question of system-
atically constructing such adversarial signals in other manifolds
remains application-dependent and is not further explored in this
paper.

The following corollary parallels the results of Corollary 3.5 for
the zeroth-order dynamics H0.

Corollary 3.7. Consider the perturbed zeroth-order hybrid dynam-
ics, given by

y+ d1 ∈ C0, ẏ0 = F0(y+ d2)+ d3 (24a)

y+ d4 ∈ D0, y+0 ∈ G0(y+ d5)+ d6 (24b)

where {C0, F0,D0,G0} is the data of H0 in (11), and the signals
dj : dom(y) → C0∪D0, for all j ∈ {1, 2, 4, 5, 6}, and d3 : dom(y) →
TC0, are measurable functions satisfying sup(t,j)∈dom(y) |dk(t, j)| ≤ d∗,
where d∗ > 0, for all k ∈ {1, 2, . . . , 6}. Then, system (24) renders
the set A× Q× Tn GP-AS as (d∗, ε2, ε1) → 0+. □

Remark 3.5. The class of problems for which smooth opti-
mization dynamics cannot achieve robust global certificates on
a compact boundaryless manifold M extends beyond the case
where the cost has a unique minimizer. Indeed, as briefly stated
in Remark 3.2, the basin of attraction of the set of minimiz-
ers A of a continuous cost φ under any outer-semicontinuous,
convex-valued and locally bounded optimization dynamics F , is
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Fig. 4. Top: Visualization of diffeomorphisms on the circle. Middle: Average
gradient-based vector fields derived from warped costs. Bottom: Original and
warped costs obtained by precomposing with diffeomorphisms.

diffeomorphic to an open tubular neighborhood of A. In gen-
ral, this neighborhood is not topologically compatible with M .
or instance, when the cost has a finite set of global isolated
inimizers A =

⋃
i∈I

{
xi
}
, the basin of attraction BF (A) ={

x ∈ M : dg (x, xi) <
1
2 mini̸=j dg

(
xj, xi

)}
is not contractible. How-

ever, the results of Theorems 3.2 and 3.4 can be directly extended
to overcome this type of topological obstruction. We omit this
extension due to space limitations.

3.5. Applications: Synthesis of algorithms

In this section, we showcase the effectiveness of the pro-
posed zeroth-order hybrid dynamics H0 for solving problems of
the form (1) on two distinct compact parallelizable Riemannian
manifolds. In particular, we show how to synthesize specific algo-
rithms by generating a δ-gap family of diffeomorphisms adapted
to smooth cost functions defined in the unitary circle S1, and
n the special orthogonal group SO(3), and we use the hybrid
lgorithms to achieve global gradient-free (practical) optimization
hile preserving the forward invariance of the manifolds during
he real-time exploration.

.5.1. Gradient-free feedback optimization on S1

Consider the unitary circle S1
= {z ∈ R2

: |z|2 = 1}. Given
q ∈ R, with q belonging to some index set Q, we define the map
(1)
q : S1

→ S1 as follows:
(1)
q (z) :=1{φ(z)≤γ }z + 1{φ(z)>γ }ekqα(φ(z)−γ )Ψ z, (25a)

here Ψ := e2e⊤1 − e1e⊤2 ∈ R2×2, and α : R → R is a
ontinuously differentiable function satisfying: (B1) α(0) = 0;
B2) α′(0) = 0; (B3) α′(r) > −1, ∀r ≥ 0. The conditions
B1)-(B3) ensure that S(1)q is a continuously differentiable function
hat constitutes a suitable candidate for a diffeomorphism. In
articular, by leveraging (Strizic et al., 2017, Thm 4.1), we have
hat if

kq
⏐⏐< 1{

′ 1
} ,
max |α (φ(z)−γ ) dφz(Ψ z)| : z ∈ S , φ(z) ≥ γ

8

Fig. 5. Gradient-free global optimization via H0 on S1 using Geodesic Dithering.

then S(1)q is a diffeomorphism. Although the value of the bound on
kq might not be known (since we do not know the cost function
nor its differential) its existence is guaranteed by the continuity
of α′, φ, and dφ, and the compactness of

{
z ∈ S1, φ(z) ≥ γ

}
.

stimates of the bound could be obtained by, e.g., a Monte Carlo
ethod that uses measurements or evaluations of φ at different
oints of z ∈ S1.
Given a cost φ(1)

: S1
→ R, and using gains

{
kq
}
q∈Q with

corresponding diffeomorphisms defined by (25), it is possible
to build a suitable δ-gap synergistic family of diffeomorphisms
subordinate to φ(1). To illustrate this process, similarly to Exam-
ple 3.6, consider the cost function φ(1)(z) := 1 − z1. Assume
that only measurements or evaluations of φ(1) are available for
feedback design, but that the intermediate value γ = 1 ∈ (0, 2) =
φ(1), φ

(1)
2

)
and the number of critical points of φ(1) are known in

advance. Let α(r) = r2, and note that it satisfies conditions (B1)-
B3). Then, by choosing any two gains satisfying the bound on |kq|,
we can obtain a synergistic family of diffeomorphisms subordi-
nate to φ(1). Indeed, with Q = {1, 2} ,

⏐⏐kq⏐⏐ < 1, q ∈ Q, k1 ̸= k2
the set S(1)

=

{
S(1)q

}
q∈Q

is a δ-gap family of diffeomorphisms

adapted to φ(1) with gap δ < µ
(
S(1)

)
. In Fig. 4 we present

visualization of the diffeomorphisms in this family using the
hoice k1 =

1
2 , k2 = −

1
2 , and we show how these maps warp

the original cost function. We also plot the gradient-based vector
fields obtained from the warped cost functions which, as shown
in Section 4.2, correspond to O(εa)-perturbations of the flows of

1 in (18). In turn, the trajectories of H0 are shown in Fig. 5.
As observed, the zeroth-order hybrid dynamics with geodesic
dithering successfully converge (globally) to the minimizer of φ(1),
z∗ = (1, 0), while escaping the other critical point z ′ = (−1, 0).

3.5.2. Gradient-free feedback optimization on SO(3)
As an additional application, we consider the special orthogo-

nal group SO(3), i.e., the group of 3 × 3 orthogonal matrices with
determinant equal to 1 and matrix multiplication as the group
operation. By Hall and Hall (2013, Cor. 3.45), SO(3) forms a 3-
dimensional compact Lie group. The tangent space at z is given
by TzSO(3) = {zX : X ∈ R3×3, X⊤

= −X}, see Hall and Hall
(2013, Def. 3.18)
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To equip SO(3) with a Riemannian structure, we consider the
etric ⟨X, Y ⟩z = tr(X⊤Y ) for all z ∈ SO(3), and all X, Y ∈ TzSO(3).
sing this choice, the Riemannian exponential map can be writ-
en in terms of the matrix exponential e(·) (Gallier & Quaintance,
020, Prop. 21.20) as expz(X) = zez

−1X for X ∈ TzSO(3). Moreover,
ince SO(3) is a Lie group, it is parallelizable (Lee, 2013, Cor. 8.39).
ndeed, for i ∈ {1, 2, 3} let Ei : SO(3) → TSO(3) be the vector field
efined as Ei(z) = zbi, where

1 :=
1
√
2
(e3e⊤2 − e2e⊤3 ), b2 :=

1
√
2
(e1e⊤3 − e3e⊤1 ),

b3 :=
1
√
2
(e2e⊤1 − e1e⊤2 ).

t follows that for every z ∈ SO(3), TzSO(3) = span {Ei(z)}3i=1
and ⟨Ei(z), Ej(z)⟩z = δij, which implies that {Ei}∞i=1 constitutes an
orthonormal global frame for SO(3). Using this global frame, we
can implement the dithering vector field D(z) =

∑n
i=1 χ̂iEi(z)

everywhere to extract suitable information from a cost function
φ at every point in SO(3).

Given a cost φ ∈ C∞(SO(3)), to establish a suitable family of
diffeomorphisms consider the map S(2)q : SO(3) → SO(3), defined
as

S(2)
q (z) = 1{φ(z)≤γ }z + 1{φ(z)>γ }ekqα(φ(z)−γ )Xz, (26)

where kq ∈ Rn and X ∈ TISO(3), X ̸= 0 are tunable parameters,
and α : R → R satisfies the conditions (B1)-(B3) defined in Sec-
tion 3.5.1 to ensure continuous differentiability of the map. The
definition of the map S(2)

q , results from modifying the function
introduced in Mayhew and Teel (2011b, Sec 3.4.3) for the angular
warping of the two-dimensional sphere by using the function α,
and letting the warping act only when φ exceeds the threshold
γ . For this map we establish the following technical lemma:

Lemma 3.8. Let kq satisfy the bound |kq| < k
(2)
, with:

k
(2)
:=

∥X∥−1
F

maxz∈SO,φ(z)≥γ |α′(φ(z)−γ )| ∥grad φ|z∥F
, (27)

and ∥X∥F =
√
tr(X⊤X). Then, S(2)

q is a global diffeomorphism. □

To illustrate the application of the zeroth-order hybrid dy-
amics H0 in SO(3), we consider the cost function φ(2)(z) =

r ((I − z)A), where A =
3∑3
i=1 ai

diag (a), and a = (11, 12, 13). It

ollows that Critφ(2)
= {I} ∪

⋃3
i=1{I + 2[ei]2×}, where ei ∈ R3

enotes the standard basis vector with a 1 in the ith position and
9

zeros in the other entries, and where [u]× : R3
→ R3×3 is defined

as

[u]× :=
√
2u1b1 +

√
2u2b2 +

√
2u3b3. (28)

or this problem, we consider the threshold value γ = 2 ∈(
φ(2), φ

(2)
2

)
, we select the gains k1 = 0.15 and k2 = −0.15, let

X = [a/|a|]×, α(r) =
r2
2 , and consider the family of functions

S(2)
:= {S(2)

q }q∈{1,2}. With these choices, the value of the upper
ound k

(2)
in (27) is approximately 0.188, which means that

|kq| < k
(2)
, and hence, via Lemma 3.8, that the set S(2) is a family

of diffeomorphisms adapted to φ(2). It can be computed that the
family is δ-synergistic with gap δ = 0.0796.

Using S(2) and the global orthonormal frame {Ei}3i=1, we im-
plement the HDS H0 and obtain the results shown in Fig. 6. The
figure shows the trajectories of the entries of the state z ∈ SO(3)
converging (globally) to the optimal values z∗ij , where z∗ = I .

3.6. Extensions to non-parallelizable manifolds: Gradient-free feed-
back optimization on S2

In this section, we extend our results to manifolds M that
are not parallelizable. In such cases, a unique global orthonormal
frame is unavailable to define dithering vectors that are valid
at every point on M . To address this issue, we employ local
orthonormal frames and we introduce a suitable switching mech-
anism between them to cover M . This mechanism ensures that
dithering vectors are always available for real-time exploration.
Since the constructions of the dynamics in non-parallelizable
manifolds are highly dependent on the manifold, we focus our
attention on the 2-dimensional sphere S2

:= {z ∈ R3
: z⊤z =

1}. However, we stress that the proposed methodology can be
extended to other compact non-parallelizable manifolds.

First, we introduce two local orthonormal frames {Ei,p}2i=1, p ∈

P := {1, 2}, which will later be used to generate suitable dither-
ing vector fields. Specifically, inspired by Baradaran, Poveda, and
Teel (2019), we use local coordinate frames established through
the stereographic projection maps:

ϕ1 : U1 := S2
\ {N} → R2, z ↦→

1
1− z3

(z1, z2) , (29a)

ϕ2 : U2 := S2
\ {S} → R2, z ↦→

1
1+ z3

(z1, z2), (29b)

where N := (0, 0, 1) and S := (0, 0,−1), denote the north
and south pole of S2, respectively. The stereographic projections
constitute homeomorphisms onto their images, and their inverse
functions are given by Gallier and Quaintance (2020, Ex. 4.1):

ϕ−1
1 (u1, u2) =

1
1+ |u|2

(2u1, 2u2, |u|2 − 1) (30a)

ϕ−1
2 (u1, u2) =

1
1+ |u|2

(2u1, 2u2, 1− |u|2). (30b)

Using (29)–(30), we let Ei,p(z) := d(ϕ−1
j )ϕj(z)(ei) for all z ∈ Uj,

∈ {1, 2}, and p ∈ P := {1, 2}, where ei denotes the ith canonical
asis vector in R2. Unwrapping definitions, we obtain:

1,1(z) =

⎛⎝1− z3 − z21
z1z2

(1− z3)z1

⎞⎠ , E1,2(z) =

⎛⎝ z1z2
1− z3 − z22
(1− z3)z2

⎞⎠ ,
2,1(z) =

⎛⎝1+ z3 − z21
−z1z2

−z1(1+ z3)

⎞⎠ , E2,2(z) =

⎛⎝ −z1z2
1+ z3 − z22
−z2(1+ z3)

⎞⎠ .
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Fig. 7. Left: Visualization of diffeomorphisms on S2 . Right: Average vector fields derived from warped cost functions.
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ext, for each local orthonormal frame {Ei,p}2i=1, p ∈ P , we define
corresponding dithering vector field used for the purpose of

eal-time exploration of M:

p =

2∑
i=1

χ̂iEi,p. (31)

Additionally, for each dithering vector field Dp, and given a δ-gap
ynergistic family of diffeomorphisms S = {Sq}q∈Q adapted to a
ost function φ, we define a family of vector fields {f̂q,p(·, χ )}q∈Q
suitable for exploitation of the information of φ learned during
the exploration. Specifically, given q ∈ Q and p ∈ P , we let

f̂q,p(z, χ ) :=
2
εa
φ̃q

(
expz

(
εaDp(z)

))
Dp(z), (32)

here the vector of oscillating amplitudes χ ∈ T2, and the
arped cost function φ̃q = φ ◦ Sq are as defined in Section 3.2.
inally, we modify the zeroth-order hybrid dynamics H0 to in-
orporate the switching between frames. The new zeroth-order
ybrid system, termed H̃0, incorporates an additional logic state
∈ P and implements a hysteresis-based switching mechanism
ependent on z. The mechanism enables the robust transition
etween the families of vector fields {f̂q,p(z, χ )}q∈Q, and ensures
hat the orthonormal frame associated with the selected family
atisfies the condition span

(
{Ei,p}2i=1

)
= TzS2 for the current value

f z. To the best of our knowledge, this approach has not been
tudied before in the context of zeroth-order optimization and
xtremum-seeking.
To define the hysteresis-based switching, we first let r > 1,

nd define the open sets Cp := ϕ−1
p (rB◦). By using the defi-

itions of ϕi and ϕ−1
i , it follows that C1 ∪ C2 = S2, and that

pan({Ei,p}2i=1) = TzS2 for all z ∈ Cp and all p ∈ P . Using these
sets, we characterize the new dynamics H̃0, which describe the
evolution of the state ỹ := (z, q, χ, p) ∈ S2

×Q×T2
×P , and have

ata H̃0 = {C̃0, F̃0, D̃0, G̃0}, with continuous-time dynamics:

˜ ∈ C̃0, ̇̃y = F̃0(ỹ) :=

⎛⎜⎜⎜⎝
−f̂q,p(z, χ )

0
2π
εd
Ψ (ω)χ

0

⎞⎟⎟⎟⎠ , (33)

where Ψ (ω) ∈ R4×4 and ω ∈ R2 are as defined in Section 3.2. The
flow set is defined by C̃0 := C̃0,1 ∪ C̃0,2, where, for all p ∈ P , we
let

C̃0,p :=
{
(z, q, χ ) ∈ Cp×Q× T2

:
(
φ̃q−m

)
(z) ≤ δ

}
×{p}.

The jump set D̃0 is constructed as the union of two sets: 1)
D̃0,d, which enables switching between the families of vector
fields {f̂q,p(·, χ )}q∈Q, and 2) D̃0,s, which enables the synergistic
switching between vector fields within the selected family, akin
to the methodology outlined in Section 3.2. Specifically, we let
˜ 0 := D̃0,d ∪ D̃0,s, where D̃0,d :=

⋃
p∈{1,2} D̃p,d, and

˜ p,d := (S2
\ Cp)× Q× T2

× {p}, ∀p ∈ P
˜ 2 2 (

˜
)

D0,s := {(z, q, χ ) ∈ S × Q× T : φq−m (z) ≥ δ}×P.

10
he jump map describing the switches of p is given by G̃0,d(ỹ) :=
z, q, χ, 3− p), ∀ỹ ∈ D̃0,d, which updates the current frame used
or the purpose of dithering. On the other hand, the jump map
escribing the switches of q is given by G̃0,s(ỹ) := {z} × h(z) ×
(χ, p)}, ∀ỹ ∈ D̃0,s, where h is the set-valued map defined in (14).
sing these maps, the overall jump map of the HDS H̃0 is given
y:

˜ 0(ỹ) :=

⎧⎪⎨⎪⎩
G̃0,s(ỹ) ∀ỹ ∈ D̃0,s \ D̃0,d

G̃0,d(ỹ) ∀ỹ ∈ D̃0,d \ D̃0,s

G̃0,s(ỹ) ∪ G̃d(y) ∀ỹ ∈ D̃0,d ∩ D̃0,s.

y leveraging our standing assumptions, the following theorem
xtends the global results of Theorem 3.2 to the non-
arallelizable manifold S2.

Theorem 3.9. Consider the zeroth-order hybrid dynamics H̃0 and
let the vector of frequencies ω in (33) satisfy condition (17). Then,
the set A× Q× T2

× P is GP-AS as (εd, εa) → 0+. □

To illustrate the performance of H̃0 in S2, we synthesize the
lgorithms by using the parameterized transformation S(3)

q :
2
→ S2 defined as:

(3)
q (z) = 1{φ(z)≤γ }z + 1{φ(z)>γ }ekqα(φ(z)−γ )[u]×z, (34)

ith kq ∈ R, X ∈ TISO(3) and α as defined in Section 3.5.2. Note
hat S(3)

q is identical to S(2)
q , except for the fact that its domain

nd codomain are now S2 instead of SO(3). The following Lemma
xtends the result of Lemma 3.8 to S2.

emma 3.10. Let kq satisfy |kq| < k
(3)
, where:

k
(3)

:=
1

max
{
|α′ (φ(z)−γ ) dφz (Xz)| : z ∈ S2, φ(z) ≥ γ

} .
hen, S(3)q is a diffeomorphism. □

For numerical verification, we consider the cost function φ(3)
:

2
→ S2 defined by φ(3)(z) = 1 − z3. We choose the threshold

alue γ = 1, the gains k1 =
1
2 , k2 = −

1
2 , the matrix X =

u]× ∈ SO(3), where u = (0, 1, 0) ∈ R3 and [u]× is as defined
n Section 3.5.2, and let α(r) = r2. With this data, we define
he family of transformations S(3)

:= {S(3)q }q∈{1,2}. Since
⏐⏐kq⏐⏐ <

k
(3)

= 1 for all q ∈ Q := {1, 2}, via Lemma 3.10, S(3) is a
amily of diffeomorphisms. In fact, by Lemma 3.1, S(3) constitutes
δ-synergistic family of diffeomorphisms adapted to φ with gap
< 1

4 . Fig. 7 shows a visualization of the diffeomorphisms in this
family with the choice k1 =

1
2 , k2 = −

1
2 . The figure also shows

the vector fields obtained from the warped cost functions. We
stress that such diffeomorphisms can be constructed using only
mild qualitative knowledge of φ, namely, under a suitable choice
of γ , which can be seen as an additional tunable parameter of the
algorithm. In Fig. 8, we show the trajectory of the coordinates
of the state z and indicate when the local frame used for the
dithering switches by showing the moments when the state p
jumps. In Fig. 9 we show the trajectory evolving on the sphere.
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Fig. 8. Evolution of the coordinates of z under the Synergistic Gradient-Free
ptimization Seeking dynamics on S2 .

As observed, the state z converges to the global minimizer z∗ =

0, 0, 1), while escaping the critical point z ′ = (0, 0,−1).

4. Analysis and proofs

In this section, we present the proofs of our main results. Since
the stability results of the zeroth-order hybrid dynamics H0 in
Theorem 3.2 rely on the stability properties of the first-order
dynamics H1, we first present the proof of Theorem 3.4.

4.1. Proof of Theorem 3.4

We begin by presenting the proof of our auxiliary lemmas.

Proof of Lemma 3.1. Suppose that S is a δ-gap synergistic family
of diffeomorphisms adapted to φ. Then, we have that δ < µ(S),
meaning that δ <

(
φ̃q −minp∈Q φ̃p

)
(z) ∀q ∈ Q, and all z ∈

Crit φ̃q \ A. Then, it follows that for all q ∈ Q and z ∈ Critφ̃q \ A,
here exists p ∈ Q such that (16) is satisfied.

Conversely, assume that for every q ∈ Q and z ∈ Critφ̃q \ A,
here exists p ∈ Q such that (16) is satisfied. In particular, for all
∈ Q and z ∈ Critφ̃q \A it follows that δ < (φ̃q −minp∈Q φ̃p)(z),
hich implies that

< min
q∈Q

z∈Crit φ̃q\A

(φ̃q −min
p∈Q

φ̃p)(z).

his concludes the proof. ■

emma 4.1. The HDS H1 is well-posed.

roof. We prove that H1 satisfies the hybrid-basic conditions
Sanfelice, 2020, Def. 2.20). First, note that the flow map F1
s continuous, by the continuity of

∑n
i=1 ∇Ei φ̃q(·)Ei(·) in M for

ll q ∈ Q, and the fact that Q is a discrete set. Second, de-
ine the function µ̃ : M × Q → R by letting µ̃(z, q) :=

(φ̃q − m)(z). Note that µ̃ is continuous by following similar
easoning as in the continuity argument for F1. Then, gph h =

(z, q) ∈ M × Q : z ∈ M, µ̃(z, q) = 0} is closed since µ̃ is con-
inuous. It follows that h and G1 are outer-semicontinuous. Bound-
dness of G1 follows by compactness of M × Q and outer-
emicontinuity of G1. The sets C1 and D1 are closed, since they
re sublevel and superlevel sets, respectively, of the continuous
unction µ̃. The result follows via Goebel et al. (2012, Thm. 6.30).

■

roof of Lemma 3.3. Let φ ∈ C∞(M) be arbitrary. Assume that
rad φ|z = 0 at some z ∈ M . Then, by the representation of
rad φ in terms of the global orthonormal frame {Ei}ni=1, it follows
hat:

∑n
ζ ij(z)∇ φ(z)E (z) = 0. Thus, since the matrix with
i,j=1 Ei j

11
Fig. 9. Synergistic gradient-free optimization on S2 via geodesic dithering. The
inset shows the moment when the system switches between one local frame
to another.

coefficients ζ ij(z) is nonsingular for all z ∈ M , as it provides a local
representation of the Riemannian metric, and given that {Ei}ni=1 is
a frame, we obtain:

∇Eiφ(z) = 0, ∀i ∈ {1, . . . , n} , (35)

hich implies that
∑n

i=1 ∇Eiφ(z)Ei(z) = 0. Conversely, assume
hat

∑n
i=1 ∇Eiφ(z)Ei(z) = 0. Then, Eq. (35) holds, and thus 0 =

n
i,j=1 ζ

ij(z)∇Eiφ(z)Ej(z) = gradφ|z . ■

Now, we consider the set of critical points of the warped cost
unctions that are not minimizers of φ:

:=
{
(z, q) ∈ M × Q : z ∈ Crit φ̃q \ A

}
.

he following lemma shows that E is properly contained in D1,
hus enforcing jumps whenever (z, q) ∈ E . This means that the
DS H1 must jump at critical points that are not minimizers of
. In the following, we use A◦ to denote the topological interior
f a set A.

emma 4.2. Suppose that Assumption 3.3 is satisfied. Then E ⊊ D◦

1
nd G1(E) ⊊ C◦

1 .

roof. First, the fact that δ>0 combined with the continuity and
ositive semidefiniteness of (φ̃q − m)(·) ensures the existence of
pen subsets of C1 and D1 where 0 < (φ̃q − m)(z) < δ and
φ̃q − m)(z) > δ, respectively, proving that C◦

1 and D◦

1 are non-
mpty. Second, consider (z, q) ∈ E . Lemma 3.1 guarantees the
xistence of p ∈ Q such that φ̃p(z) + δ < φ̃q(z). Given that
(z) ≤ φ̃q(z) for all p ∈ Q, we deduce: m(z) + δ < φ̃q(z),

mplying (z, q) ∈ D1. Thus, E ⊆ D1. Now, consider (z, q) ∈ D1 \D◦

1,
hich implies m(z) = φ̃q(z) − δ. Assume, for contradiction, that
z, q) ∈ E . By Lemma 3.1, there exists p ∈ Q such that φ̃p(z) <
˜q(z) − δ = m(z), contradicting m(z) ≤ φ̃q(z) for all q ∈ Q.
ence, (z, q) /∈ E , proving that D1 \ D◦

1 contains elements not in
, and therefore that E ⊊ D◦

1. The fact that G1(E) ⊊ C◦

1 follows by
onstruction, since after a jump we have that φ̃q+ (z+)−m(z+) =
˜q+ (z)−m(z) = 0 < δ. ■

By leveraging the results of the previous lemmas we can now
rove the first main theorem of the paper.

roof of Theorem 3.4. Consider the Lyapunov function:

(x) := φ̃q(z)− φ, (36)

which is continuous due to similar arguments to the ones used
to prove the continuity of F1 in Lemma 4.1. Since φ < φ(z) for
all z ̸∈ A, together with (A2) in Definition 3.1, we have that
φ̃ (z) − φ ≥ 0 for all (z, q) ∈ M × Q and φ̃ (z) − φ = 0 if and
q q
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nly if (z, q) ∈ A × Q. Therefore, it follows that V (x) ≥ 0 for all
z, q) ∈ M×Q and V (x) = 0 if and only if z ∈ A. Now, during the
lows of H1, the Lie-derivative of V satisfies

F1V (x) = −

n∑
i=1

∇Ei φ̃q(z)Ei(z)
(
φ̃q − φ

)
= −

n∑
i=1

(Ei(z)φ̃q)2 =: uC (x), ∀x ∈ C1, (37)

here we used the fact that LX f (z) = ∇X f (z) = (X(z))(f ) for all
∈ X(M) and f ∈ C∞(M), and that v(c) = 0 for all v ∈ TzM , every

onstant function c , and all z ∈ M , via Lee (2013, Lemma 3.4). On
the other hand, during the jumps of H1, using the definition of h
and m in (14) and (15), it follows that:

V
(
x+

)
−V (x) =

(
φ̃h(z) − φ̃q

)
(z)

=
(
m− φ̃q

)
(z) ≤ −δ =: uD(x), (38)

for all x ∈ D1. Since uC (x) ≤ 0 for all z ∈ C1 and uD(x) < 0 for all
x ∈ D1, it follows that A is stable under H1 via Sanfelice (2020,
Thm. 3.19).

To show the attractivity of A we employ the hybrid invariance
principle (Sanfelice, 2020, Thm. 3.23). Indeed, since uC (x) ≤ 0 for
all x ∈ C1 and uD(x) < 0 for all x ∈ D1, and using u−1

D (0) = ∅,
given r ∈ V (A ∪ E) ⊂ [0, φ − φ], solutions approach the largest
eakly invariant set in V−1(r)∩((A ∪ E)× Q). LetΩ denote such
n invariant set and assume that r ̸= 0. By the definition of
and the synergistic family of diffeomorphisms, it follows that
⊂ E . Additionally, by Lemma 4.2, we obtain that Ω ⊂ D◦

1.
ince D◦

1 ∩ C1 = ∅ by construction, for Ω to be invariant under
1, we would need to have thatΩ = G(Ω), but this would imply,
ia Lemma 4.2, that Ω ⊂ C◦

1 , and thus that Ω ⊂ C◦

1 ∩ D◦

1 =

H⇒ Ω = ∅. Therefore, we must have that r = 0, and thus
hat ∀(z(0), q(0)) ∈ M ×Q solutions approach the largest weakly
nvariant set in V−1(0)∩((A ∪ E)× Q) = A×Q, which is A×Q it
elf. UGAS follows directly by the global attractivity and stability
f A. ■

.2. Proof of Theorem 3.2

The proof uses tools recently developed for averaging on com-
act Riemannian manifolds (Taringoo et al., 2018) together with
he framework for hybrid extremum seeking control introduced
n Poveda and Teel (2017).

First, since M is compact, we can select εa ∈ R>0 such
hat expz (εaD(z)) ∈ ı(M), with ı(M) the injectivity radius of
(Taringoo et al., 2018, Lemma 3.2). This makes possible a Taylor

xpansion in normal coordinates along the geodesic dithers for
very φ̃q, such that the average dynamics of H0 can be computed
o be (see Poveda and Teel (2017)) HA

0 =
{
C1, FA

0 ,D1,G1
}
, where

1,D1,G1 are defined in (20a), (19) and (20b) respectively, and
A
0 : M × Q → TM × N is the average flow map, given by:

A
0 (x):=

(
−
∑n

i=1 ∇Ei φ̃q(z)Ei(z) +
∑n

i=1 O(εa)Ei(z)
0

)
.

ence, on closed subsets of M we have that
A
0 (x) ∈ conzF1(x+ kεaB, 0)+ (kεaB, 0) , (39)

or some k > 0, where F1 was defined in (18). Here, the convex
ull affects the state z only, and the Minkowski additions (z +

εaB) are defined in a suitable ambient Euclidean space which
lways exists due to the Whitney Embedding Theorem (Lee, 2013,

Thm 6.15). By (39), any solution of the average dynamics HA
0 is

also a solution of an inflated HDS generated from H1. Hence, and
since H is a well-posed HDS via Lemma 4.1, by Goebel et al.
1 c

12
(2012, Thm. 7.21) we conclude that system HA
0 renders the set

A GP-AS in the ambient Euclidean space as εa → 0+. Since HA
0

and H1 are nominally well-posed, all conditions to apply (Poveda
& Teel, 2017, Cor. 1) are satisfied. Therefore, together with the
compactness of M , H0 renders the set A × Tn GP-AS in the
ambient Euclidean space as (εd, εa) → 0+. Note that any solution
z to H0 is constrained to M since the dithering is performed
along geodesics on the manifold, and f̂q(z, χ ) ∈ TzM for all
(z, q, χ ) ∈ M ×Q× Tn. Thus, we obtain GP-AS of A in the sense
of Definition 2.2. ■

4.3. Proof of Lemma 3.8

First, we compute the differential of S(2)
q and, whenever (27)

is satisfied, we show that it is full rank for all z ∈ SO(3).
When φ(z) ≤ γ , the differential is trivially full-rank since
d
(
S(2)
q

)
z
= I . When φ(z) > γ , we obtain: d

(
S(2)
q

)
z
=ekqα(φ(z)−γ )X[

kqα′(φ(z)−γ ) (X · z) dφz + I
]
. Since the linear operator v ↦→

ekqα(φ(z)−γ )Xv is invertible, because erX ∈ SO(3) for all r ∈ R and
X ∈ TISO(3), to prove that d

(
S(2)
q

)
z
is full-rank it suffices to show

that (Ψz + I) is invertible, where Ψz := kqα′(φ(z)− γ ) (X · z) dφz .
To this end, letting ∥Ψz∥z denote the operator 2-norm induced by
the inner product in the Hilbert space Vz := (TzSO(3), ⟨·, ·⟩z), we
obtain that: ∥Ψz∥z ≤ |kq ∥ α′(φ(z)− γ )|∥X∥F∥gradφ|z∥F . Then,
whenever (27) is satisfied, it follows that ∥Ψz∥z < 1, which
implies that (I + Ψz) is invertible, and hence that d

(
S(2)
q

)
z
is

full rank for all z such that φ(z) > γ . By the inverse function
theorem (Lee, 2013, Thm. 4.5), it follows that S(2)

q is a local
diffeomorphism everywhere. Now, note that S(2)

q is a proper map1
since it is continuous and SO(3) is a compact Hausdorff space. This
fact, together with the compactness of SO(3), implies that S(2)

q is
surjective via Ho (1975, Lemma. 1). Injectivity of S(2)

q follows from
the arguments presented in Mayhew and Teel (2011b, Appendix,
Proof Thm. 8), which we omit here for conciseness. Since S(2)

q is
bijective, as well as a local diffeomorphism everywhere, it follows
that it is a global diffeomorphism. ■

4.4. Proof of Theorem 3.9

The proof employs the same concepts as the proof of Theo-
rem 3.2. We provide some details for completeness. Specifically,
we now consider the Taylor expansion of the flow-map F̃0 in
normal coordinates and we analyze the corresponding average
hybrid dynamics H̃A

0 = {C̃1, F̃A
0 , D̃1, G̃1}, describing the evolution

of the state x̃ := (z, q, p) ∈ S2
× Q × P . In this case, the average

flow-map F̃A
0 (·) is given by

F̃A
0 (x̃)=

{
F̃1,qp(z)+

2∑
i=1

O(εa)Ei,p(z)

}
× {0} × {0},

where F̃1,qp(z) := −
∑2

i=1 ∇Ei,p φ̃q(z)Ei,p(z). The flow set C̃1, the
jump set D̃1, and the jump map G̃1 are the same as the sets C̃0,
D̃0, and them map G̃0 defined in Section 3.6, but disregarding
the state χ ∈ T2 from the main state of the system. Using this
construction, (39) becomes

F̃A
0 (x̃) ∈ conz F̃1(x̃+ kεaB, 0)+ (kεaB, 0) , (40)

where k > 0, and F̃1(x̃):={F̃1,qp(z)}×{0} × {0}. Furthermore, let
˜ 1 be the first-order HDS with data H̃1 = {C̃1, F̃1, D̃1, G̃1}, and
onsider the same Lyapunov function of (36). During the flows of

1 A map f : A → B is proper if the preimage of each compact subset of B is
ompact.
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H̃1, it follows that LF̃1
V (x̃) = −

∑n
i=1(Ei,p(z)φ̃q)2 for all x̃ ∈ C̃1.

uring the jumps of H̃1, the change of the Lyapunov function
V (x̃) := V (x̃+) − V (x̃) satisfies: ∆V (x̃) = −δ whenever x̃ ∈

˜ 1,s := {(z, q) ∈ S2
× Q :

(
φ̃q −m

)
(z) ≥ δ} × P , and

∆V (x̃) = 0 whenever x̃ ∈ D̃1 \ D̃1,s. In words, the Lyapunov
unction decreases whenever there is a switch between warped
ost functions, denoted by a change in q, and does not increase
f the system only switches between families of vector fields,
.e., only when the state p changes. Now, by the structure of
the flow and jump sets, after a jump that only changes p is
triggered, the system can either exhibit a change in q, after which
it necessarily flows, or directly flows. The converse is true if a
jump that only changes q is triggered first. Then, leveraging the
decrease of the Lyapunov function during flows and employing a
similar reasoning as in the proof of Theorem 3.4, it follows that
every solution of H̃1 converges to the largest weakest invariant
set in V−1(0) ∩ ((A ∪ E)× Q× P), which is Ã := A × Q × P
tself. It follows that Ã is UGAS under H̃1 via the hybrid invariance
rinciple (Sanfelice, 2020, Thm. 3.23). The GP-AS of A under H̃0
s obtained by using (22), the well-posedness of H̃1 and H̃A

0 ,
and applying the same arguments at the end of the proof of
Theorem 3.2. ■

4.5. Proof of Lemma 3.10

Using the fact that d
(
eAη(z)

)
z = eAη(z)(I + Azdηz) for A ∈ Rn×n

and η : Rn
→ R we get: det

(
d
(
S(3)q

)
z

)
= 1+kqα′ (φ(z)− γ ) dφz

(Xz) , for all z such that φ(z) > γ . Thus, whenever |kq| < k
(3)
,

et(d(S(3)q )z) ̸= 0 for all z ∈ S2. Note that S(3)
q is proper, being

both continuous and defined on the compact space S2. Then, by
the fact that S2 is simply connected and det(dS(3)q ) ̸= 0, it follows
that S(3)q is a diffeomorphism via Gordon (1972, Thm. B). ■

5. Conclusions and outlook

We introduced a novel class of zeroth-order hybrid algorithms
for the global solution of gradient-free optimization problems on
smooth, compact, and boundaryless manifolds. These algorithms
combine continuous-time dynamics and discrete-time dynamics
to achieve robust global practical stability of the optimizer of
a smooth cost function accessible only via measurements or
evaluations. The proposed approach overcomes topological ob-
structions that prevent the solution of this problem using algo-
rithms modeled by smooth ODEs. We characterized the stability
and robustness of the algorithms using tools from the theory of
hybrid dynamic inclusions. Future research will explore track-
ing problems in time-varying optimization settings, as well as
the incorporation of dynamic plants in the loop. A completely
coordinate-free formulation of the hybrid algorithms, and the de-
velopment of accelerated dynamics and single-point algorithms,
are also future research directions.
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