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ARTICLE INFO ABSTRACT

Keywords: We consider the problem of achieving prescribed-time stability (PT-S) in a class of hybrid dynamical systems
Prescribed-time stability that incorporate switching nonlinear dynamics, exogenous inputs, and resets. By “prescribed-time stability”,
Hybrid systems we refer to the property of having the main state of the system converge to a particular compact set of interest
Switching systems before a given time defined a priori by the user. We focus on hybrid systems that achieve this property via
time-varying gains. For continuous-time systems, this approach has received significant attention in recent
years, with various applications in control, optimization, and estimation problems. However, its extensions
beyond continuous-time systems have been limited. This gap motivates this paper, which introduces a novel
class of switching conditions for switching systems with resets that incorporate time-varying gains, ensuring
the PT-S property even in the presence of unstable modes. The analysis leverages tools from hybrid dynamical
system’s theory, and a contraction—dilation property that is established for the hybrid time domains of the
solutions of the system. We present the model and main results in a general framework, and subsequently
apply them to two different problems: (a) PT control of dynamic plants with uncertainty and intermittent
feedback; and (b) PT decision-making in non-cooperative switching games using algorithms that incorporate

momentum, resets, and dynamic gains. Numerical results are presented to illustrate all our results.
1. Introduction target before a prescribed time using the “time-varying gain approach”
introduced for ODEs in [1], usually refereed to as “prescribe-time
Recent advances in nonlinear control analysis and design [1-4] have control”. This method has a long history in optimal control and tactical
reinvigorated the concept of Prescribed-Time Stability (PT-S), leading missile guidance systems [16], and it has recently gained renewed
to successful applications across various domains, including nonlinear attention due to breakthroughs in the design and analysis of nonlinear
regulation [1,2], adaptive control [3], systems with delays [5], par- and adaptive controllers in continuous-time systems with finite-time
tial differential equations [6], and stochastic systems [7]. In contrast convergence properties. For a recent survey, see [11] and recent works

to asymptotic or exponential stability, the PT-S property guarantees on adaptive systems [1-4,17], PDEs [5,6,18,19], and systems with
that the system’s trajectories will converge to the desired compact

set within a predetermined time, regardless of the initial conditions.
As such, achieving this property requires either time-varying or non-
Lipschitz vector fields in the dynamics of the system. Non-Lipschitz
autonomous systems that achieve convergence to the point (or set) of
interest before a fixed time have been studied in [8-10]. The state
of the art of this property, usually called “fixed-time” (FxT) stability,
was recently reviewed in [11], with some recent applications in cer-
tain classes of hybrid systems under homogeneity conditions [12,13],
continuous-time systems in canonical forms with switching gains [14],
and non-switching impulsive systems [15]. In contrast to this line of
research, this paper we study systems that achieve convergence to the tems with time-varying gains were studied in [23] using a common

delays [20,21]. Since this control approach uses “blow-up” gains over
bounded time domains, the solutions of these systems are also defined
only over finite-time intervals. For comprehensive discussions on prac-
tical applications, strategies to extend the solution domains, and the
advantages and limitations of PT control, we refer the reader to recent
works [1,2,11,17,22].

While the study of Prescribed-Time stability properties in conti-
nuous-time systems modeled as ordinary differential equations (ODEs)
has seen significant progress, PT-S tools for hybrid dynamical systems
(HDS) have remained mostly unexplored. For example, switching sys-
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Lyapunov function. Similarly, stable controllers that deactivate, or
“clip”, the high gains before the prescribed time is reached were also
discussed in [24]. However, such results consider only one vector field
during the convergence phase, and the switching rules can lead to
HDS that are not well-posed in the sense of [25]. To the best of our
knowledge, general results on PT-S for switching and HDS, similar to
those existing for asymptotic or exponential stabilization [26], are still
absent in the literature. Since switching and hybrid controllers have
been shown to provide powerful solutions to complex control [27,28],
optimization [29,30], and learning problems [31], there is a clear need
for the development of PT-S tools that enable the analysis and design
of new algorithms able to simultaneously leverage the advantages of
both PT-S and hybrid control.

In this paper, we address this problem by showing that the PT-
S property can be naturally incorporated into a class of HDS that
model nonlinear switching systems with resets, allowing the switching
signals to incorporate the dynamic effects of time-varying gains, while
preserving the structure of the hybrid arcs associated to the solutions
of the system. Specifically, the main contributions of this paper are as
follows:

(a) First, we introduce a class of switching signals that preserve
the PT-S property in systems switching between a finite number of
PT-S vector fields with exogenous inputs and state resets. To derive
these conditions, we reformulate the overall switching system as a
HDS with dynamic gains that induce appropriate time dilation and
contraction in the hybrid time domains of its solutions. By leveraging
Lyapunov-based constructions for a suitably normalized HDS evolving
on a hybrid dilated time-scale, we show that the original system is
PT-Stable, provided the switching signal satisfies a novel “blow-up”
average dwell-time (BU-ADT) condition. This condition allows (but
does not impose) a non-linear increase in the number of jumps and
switches as the total flow time in the system approaches the prescribed
convergence time. To study the effect of exogenous inputs and/or
disturbances in the system, we establish results via ISS-like bounds
“with the convergence property”, paralleling those in the literature
on PT-S for ODEs [1, Def. 2]. However, unlike the existing results for
ODEs, our convergence bounds, presented in Theorem 1, are written in
“hybrid time” and highlight the potentially (asymptotically) stabilizing
effect of the resets, as well as the order of the dynamics generating the
“blow-up” gains. To our knowledge, this is the first result connecting
the existing tools on Prescribed-Time Stability for ODEs [1] with the
setting of HDS [25].

(b) Next, we incorporate unstable modes into the switching systems,
and we characterize a novel “blow-up” average-activation-time (BU-
AAT) condition on the amount of time that the system can spend on
the unstable modes while preserving the PT-S property. In our model,
the unstable modes are also allowed to have “blow-up” time-varying
gains with finite-escape times, as well as exogenous inputs and/or
disturbances. To study this setting, we construct a HDS with time-
ratio monitors, similar in spirit to those considered in [26,31,32], but
incorporating the blow-up gains into their dynamics, enabling faster
switching between the stable and unstable modes as the total amount
of flow time in the system approaches the prescribed time. A Lyapunov-
based construction on a dilated-time scale, and a contraction argument
on the hybrid time domains, are used to establish in Theorem 2 a
PT-1SS-like result for switched systems with stable and unstable modes.

(c) To illustrate the applicability of our model and results, we syn-
thesize two different PT-Stable algorithms for the solution of different
control and decision-making problems with prescribed-time conver-
gence requirements. First, in Proposition 3 we consider the problem
of PT regulation of input-affine systems under intermittent feedback,
and we propose a new feedback law that extends the results of [1] to
plants modeled as switching systems. Finally, we consider the problem
of prescribed-time Nash equilibrium seeking in games with switching
payoffs via hybrid algorithms with resets. We show in Proposition 4
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that such algorithms fit into our model and can be studied using the
analytical tools presented in the paper.

The rest of this paper is organized as follows: Section 2 introduces
some preliminaries on dynamical systems. Sections 3 and 4 present the
main analytical results and the proofs. Section 5 presents three different
applications, and Section 6 ends with the conclusions.

2. Preliminaries
2.1. Notation

Given a closed set A C R” and a vector z € R”, we use |z]|4 :=
inf,c 4 ||z — sll,, where || - ||, represents the standard Euclidean norm. A
set-valued mapping M : R? =3 R” is outer semicontinuous (OSC) at z
if for each sequence {z;,s;} — (z,s5) € R? x R” satisfying s; € M(z;) for
all i € Zy,, we have s € M(z). A mapping M is locally bounded (LB) at
z if there exists an open neighborhood N, c R? of z such that M(N,)
is bounded. The mapping M is OSC and LB relative to a set K c R?
if the mapping from R? to R”" defined by M(z) for z € K, and @ for
z ¢ K, is OSC and LB at each z € K. A function y : Ryy — Ry is of
class K if it is continuous, strictly increasing, and satisfies y(0) = 0. A
function g : RyoXRyy = Ry is of class KL if it is nondecreasing in its
first argument, nonincreasing in its second argument, lim,_ o+ f(r,s) = 0
for each s € Ry, and lim,_,, f(r.s) = 0 for each r € Ry,. A function
B : Ryg x Ryg x Ryy — Ry belongs to class KLL if for every s € Ry,
f(-,s,-) and f(-,-,s) belong to class KL [33]. Throughout the paper,
for two (or more) vectors u,v € R”, we write (u,v) = [u",0"]" to
denote their concatenation. We use diag <{B ) {z ) ) to denote the block-

diagonal matrix obtained from the set of matrices {B; }!:1. Given a set
O c R", we use [y(-) to denote the indicator function that satisfies
Io(x)=1if x € O, and [y(x) =0 if x ¢ O.

2.2. Switching systems

In this paper, we consider switching systems with inputs, with the
general form x = fa(,)(x,u, 1), where x, € R” is the initial condition,
x € R" is the main state, u R,y — R™ is an exogenous input
assumed to be continuous and bounded, and ¢ : Ry, — Q is a right-
continuous, piecewise constant, signal that maps the current time 7 to
a finite set of modes Q = {1,2,....q}, where g € Z,. For each q € Q,
fy i R"XR"™ xRy, — R" is assumed to be continuous with respect
to all arguments. Following the notation of [26], we use S to denote
the set of all right-continuous, piecewise constant, signals from R to
0, with a locally finite number of discontinuities. Such functions are
referred to as switching signals. For each signal ¢ € S, we also define
the collection of switching instants W(s) := {t > 0 : 6(t) # 6(t7)}. In
this way, the switching system of interest evolves according to

%= fonxuwn, Yié&Wo), @

where the solutions x to (1) are understood in the Caratheodory sense
over any interval [7,,7,) where ¢ is constant. During switching times
t € W(o), we allow “jumps” in the state x via mode-dependent reset
maps of the form

x(t) = Ry (x(17)),

where the function R, : R” — R" is assumed to be continuous for each
g € Q. Throughout the paper, we will refer to switching systems of the
form (1)-(2) as R-Switching systems.

vVt e W(o), 2

Remark 1. By taking R, equal to the identity map, system (1)-(2)
recovers a standard switching system [28]. However, other choices
of reset maps open the door to study PT-S results in reset control
systems [34] (such as impulsive systems by taking Q = {1}) as well
as more general switched reset controllers (when |Q| > 1), see [26]. It
is also possible to consider discontinuous functions f,, R, by working
with their corresponding Krasovskii regularizations [25, Def. 4.13].
However, for the sake of clarity, we focus on R-switching systems with
continuous maps fq and R, 0O
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2.3. Hybrid dynamical systems with inputs

Since R-Switching systems incorporate continuous-time and discr-
ete-time dynamics, for the purpose of analysis they are usually modeled
as hybrid dynamical systems (HDS) [25,26]. Such systems can be
modeled as

(z,u) e € := CxR™, z € F(z,u), (3a)

(zuye D :=DxR"™, z¥ e G(z), (3b)

where z € R” is the state, u € R™ is an input, F : R" x R" = R”"
is the flow map, G : R" = R” is the jump map, C c R" x R" is
the flow set, and D c R” x R" is the jump set. We use (C, F, D,G) to
denote the data of the HDS. HDS of the form (3) are a generalization
of continuous-time systems (D = @) and discrete-time systems (C = ).
Time-varying systems can also be represented as (3) via an auxiliary
state 7 € R with dynamics + > 0 and z* = 7. Solutions to system (3)
are parameterized by a continuous-time index ¢ € R, which increases
continuously during flows, and a discrete-time index j € Zs,, which
increases by one during jumps. Therefore, solutions to (3) are defined
on hybrid time domains (HTDs) [25, Ch. 2]. A set E C Ry X Zy is
called a compact HTD if E = U{:‘Ol([t i»tj4+1],j) for some finite sequence
of times 0 = t) < t;... < t;. The set E is a HTD if for all (T,J) € E,
En(0,T]%x{0,...,J}) is a compact HTD. Given a HTD E, we use

sup,E :=sup {t € Ry : 3 j € Zy,, such that (1, ) € E}
sup; E :=sup {j € Zy, : 31 € Ry, such that (+,j) € E}.

Also, we let sup E := (sup,E,sup; E), and length(E) := sup,E + sup, E.
The following definition is borrowed from [33].

Definition 1. A hybrid signal is a function defined on a HTD. A hybrid
signal u : dom(u) - R™ is called a hybrid input if u(-, j) is Lebesgue
measurable and locally essentially bounded for each j. A hybrid signal
z : dom(z) — R” is called a hybrid arc if z(-,j) is locally absolutely
continuous for each j such that the interval I; := {t : (1. ) € dom(z)}
has nonempty interior. A hybrid arc z : dom(z) — R” and a hybrid
input u : dom(u) —» R™ form a solution pair (z,u) to (3) if dom(z) =
dom(u), (z(0,0),u(0,0)) € C U D, and:

1. Forall j € Zy, such that I; has nonempty interior, and for almost
allr e Iy, (21, j),u(t, j)) € C and z(t, j) € F(z(t, j), u(t, j)).

2. For all (¢, j) € dom(z) such that (7, j+1) € dom(z), (z(t, j), u(t, j)) €
D and z(t,j + 1) € G(z(1, j)). O

Remark 2. By Definition 1, solutions to (3) are required to satisfy
dom(z) = dom(u). To establish this correspondence, we obtain the input
u in (3) from u in (1) using (with some abuse of notation) u(z, j) = u(r)
during flows for each fixed j, and by keeping u constant during the
jumps (3b). [0

A hybrid solution pair (z,u) is said to be maximal if it cannot be
further extended. A hybrid solution pair (z,u) is said to be complete if
length dom(z) = . This does not necessarily imply that sup,dom(z) =
oo, or that sup;dom(z) = oo, although at least one of these two
conditions should hold when z is complete. To simplify notation, in this

paper we use |ul, ;, = Sup oos<ipsep |4 )|, and we use |u|, to denote
X (1,j)edom(z)
|ul¢ ;) when 7+ j — co.

3. PT-ISS in hybrid dynamical systems

Motivated by the PT-S property studied for ODEs [1-5], and before
specializing our results to R-switching systems of the form (1)-(2), in
this section we introduce PT-S properties for general HDS of the form
(3). In particular, we consider systems with state z = (v, i) € R"XR,
set C given by:

C :=¥:-xRyy, (4a)
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and flow-map defined as:

' W Hi - Fy(w, e, w)

z:< ! >GF(z,u): k 1+% s (4b)
Hi T Hk

where T > 0 and k > 1 are tunable parameters, and Fy : R"XR, | xR" =

R" is a set-valued mapping that we will specify below. The set D is

given by

D=¥, xRy, (40)

and the jump map is given by:

= < v > €G() = < Gr ) ) (4d)
Hy Hi

where Gy : R" =3 R” is also to be specified. We denote the HDS (3)
with data given by (4) as H. It is assumed that this system satisfies the
following standard hybrid basic conditions [25, Assumption 6.5]. These
conditions are standard in the hybrid dynamical systems literature [33],
and they will be satisfied by construction later when we specialize the
results of this section to R-Switching systems with unstable and stable
modes.

Assumption 1. The sets ¥, ¥, C R” are closed. The set-valued maps
Fyp and Gy are OSC and LB with respect to ¥, and ¥, respectively;
and Fp is convex for all (v, ;. u) € ¥c xRy XR”. [

Since in (4b) the dynamics of y, are independent of y, system (4)
has a cascade structure. However, for system (4) the dynamics of y
will mostly determine the structure of the HTDs of the solutions z,
e.g., purely continuous, purely discrete, eventually continuous, etc. To
study PT-S properties, in this paper we consider signals y, generated
by (4b), exhibiting finite escape times that are “controlled” by the
parameters (T, k) and by 4, (0). This property can be established for
the dynamics of y, in (4b) by direct integration, and it is formalized
in Lemma 1. The proof is presented in the Appendix.

1

Lemma 1. Let k > 1, and consider the “blow-up” (BU)-ODE i = %;4;
with 1, (0) = uy € R, Then, its unique solution satisfies:
Tk
m(®) = ———— 21,
(Yrx—1)

where Y7, = Ty(;

V1 €10,Yr ) )

Eal b

O

For each k > 1, u,(-) is continuous in its domain, strictly increasing,
and satisfies lim,_y, , 4 (?) = co. Hence, the next lemma follows directly
by the definition of solutions to HDS.

Lemma 2 (Bounded Flow-Time). Let z be a maximal solution to H. Then,
the HTD of z satisfies sup,(dom(z)) < Y7 . O

Lemma 2 states that the total amount of flow-time of every solution
of H will be upper bounded by Y7 ,. We will refer to this quantity
as the prescribed time (PT), and we emphasize its dependency on the
initial value y, and the constants (T, k). In the literature on PT-S in
continuous-time, y, is usually equal to one. However, we will consider
any uy € R,;.

A useful property of the BU-ODE studied in Lemma 1, is that,
when normalized by y;, the resulting ODE has solutions that are
complete and lower bounded by 1. The following Lemma is also proved
in Appendix.

Lemma 3. Let k > 1, and consider the normalized-by-u, BU-ODE
. 1
ddis" = %ﬁkk with (3,(0) = uy € Ry, evolving in the s-time scale. Then,

its unique solution satisfies: (a) For k = 1: i (s) = /406% >1forals>0;
k
-1

k=1 N\ %=1
(b) For k> 1: p(s) = <@s+y0k ) > 1, for all s > 0. O
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3.1. Time-scaling of hybrid time domains

The signals y, generated by the dynamics (4b) will be used to define
a suitable dilation and contraction on the HTD of the solutions to .
To do this, for each (T, k) € R,y xRy, and 1 < a < b, let the function
oy : Ry XRy | = Ry be defined as

T [ pPK) — go(k) )
ba):=—|———), Vk>1I, (6)
@b, = 3 ( oK)
and w;(b,a) := limy_+ w,(b,a), where p(k) := % The following

proposition states some important properties of w, (-, -) when evaluated
along u,. The proof is presented in the Appendix.

Proposition 1. Let (T,k) € R,y x Ry, py be given by (5), and let
T; : [0,Y7 ) = Ry be the function

Ti@® 1= o, (O, 1 (0)), V1 €10,Y7). @)
Then, T,(-) satisfies the following properties:
(P1) lim T () = .
(P2) For any pair t,,t, € [0,Yy ) such that t, > t;:
Ti(ty) = T(t)) = @ (uy (1), pic ().
(P3) For dll t € [0,Y7 ), we have

dT (D)
dt

t"YT,k

=, T (0)=0. ®

(P4) Forallt €[0,Y7,), T; has a well-defined inverse Tk“ IRy = Ry,
which is given by
1

T )= 1—<1+("‘1)S>1"‘ k> L, ©
Y7 kHo

and by 7,7 (s) = limy_, 1+ 7,7 (s).
(P5) For dll s € Ry, Tk’l satisfies
1t
i (THs))

k=1
(P6) limy_ o, T(t) = u)” t for k > 1, and limy_  7,(t) = uyt for all

t>0. O

L1t = 1O =0. (10)

Remark 3. To contextualize Proposition 1, consider the special case
k = 1, which is commonly used in the literature on PT-control of
ODEs [1,2]. In this case, Proposition 1 yields the following “standard”
mappings:

T;l(s)=yT,l(1—e*%S), V s € Ry, (11a)

Tl(t)=T<ln<M1—(I)>>, Viel0,Yy)). (11b)
11 (0) ’

Indeed, note that (9) can be written as: Tk"(s) = Yy, (-

) . o s s \"
(1 + n(k)T> , with n(k) = . Using eT = lim,_, (1 + ﬁ) and

the factpthat n — oo when k — 17, we obtain (11a). Similarly, using
0 Bl In(y,), and the fact that p(k) — 0 if and only if k — 1,
(11b) follows directly from (6) and the definition of w, by applying the

product law for limits. O

lim

The properties established in Proposition 1 are used to derive the
following result, which provides a suitable dilation/contraction of the
HTDs of H with data defined by (4) when analyzed in a different hybrid
time scale (s, j) induced by the transformation s = 7, (¢), see Fig. 1. Note
that, since y, does not change during the jumps (4d), when evaluating
(7) along (hybrid) solutions of u, generated by (4c) we can omit the
dependence of 7, on j.
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Proposition 2 (Dilation and Contraction of HTD). Let (T, uy, k) € Ry X
R, xRy, and T, be given by (7). Consider the following HDS, denoted by
, evolving on the (s, j)-hybrid time scale, with state 2 = (, fi;) and input

u:

zaelC=CxR", % e %F(z, @). (12a)
Hi

(2,0) e D= DxR™, 2" € G(2). (12b)

where (C, F, D,G) in (12) are the same as in (4), and where 2, := %2.

Then, the following holds:

(@) If (2,4) is a maximal solution pair of H from the initial condition
zq, then the pair of hybrid signals defined as (z(t,j),u(t,j)) :=
(2(s, j), a(s, j)), for dll (s,j) € dom(%), is also a maximal solution
pair of H from the initial condition z,, via the time dilation s = 7;(?).

(b) If (z,u) is a maximal solution pair of H from the initial condition
z, then the pair of hybrid signals defined as (2(s,j),a(s,j)) :=
(z(t, j),u(t, j)) for all (¢, j) € dom(z), is also a maximal solution pair
of H from the initial condition z via the time contraction t = Tk" (s).

O

Proof. We prove each item separately:

(a) Let (2,2) be a maximal solution pair of # from zy. Then, for
each j € Z, such that the interior of fj ={s>0: (s,j) € dom(2)} is
nonempty, 2 satisfies:

o5,y € —— F3(s, ). s, ), 13)
ds G D)

for almost all s € I;. Using the chain rule, z satisfies:
d L_d, oAy s
3200 = G200, )) = -2, ) - Ti(o),

and since 7"k(t) = p;(t,j) for all t € [0,Y7 ) due to (8), and given that
u; does not change during the jumps (4d), by using (13) we obtain:

i, J)

A (s, )

By construction, u(t,j) = Ai(s,j), u(t,j) = a(s,j) and z(t,j) = 2(s,))
via the time dilation s = 7,(r). Therefore, substituting in the above
inclusion we obtain that z(z, j) satisfies (4b) for almost all t € I ;=
{t >0 : (t,j) € dom(z)}. Moreover, note that Tk(gj) =s; and 7;(t;) =5,
where ¢, := minl;, t; = supl;, s, = minfj, 5; = supfj. Similarly,
for every (s,j) € dom(2) such that (s,j + 1) € dom(2), we have that
2(s,j + 1) € G(2(s, j)), and therefore z(z,j + 1) € G(z(t, j)). Thus (z,u) is
a maximal solution to H.

(b) Let (z,u) be a maximal solution pair of H from z,. Using again
the chain rule, and the definition of 2z, we obtain that for each j for
which the interior of I ;=20 @))€ dom(z)} is nonempty, the
signal 2 satisfies:

dz 4 z0p)
artds )

L2, = it S 26.) € F(2(s.)). (s, J)).

F(z(1, j),u, j))
M, J)

Lxs= ,
where we used (10) and (4b). Note that by construction 2(s, j) = z(t, j),
A (s, ) = pe(t, j), and a(s, j) = u(t, j) via the time contraction 7 = Tk"(s).
Then, by substituting in the above expression we obtain that % satisfies
i e l;—kF(f, i) for almost all s € fj ={s >0 : (s,j) € dom(2)}.
Moreover, note that T{l(gj) =1, and 7.7'(s;) = 1; where 1, = minl,
f;=supl;, s; :=min I;,5; = sup ;. Since for every (1, /) € dom(z) such
that (7, j+ 1) € dom(z), we have that z(z, j + 1) € G(z(1, j)), and therefore
2A(s,j +1) € G(2(s, j)), it follows that (2, 4) is a maximal solution pair to
H. |

s

Remark 4. Proposition 2 establishes a relationship between the solu-
tions of the HDS H in the (7, j) time scale, and the solutions of # in
the (s, j) time scale via the family of k-parameterized dilations s = 7, (¢)
and contractions 7,”'(s). In particular, the function 7, : [0,Y7,) — Ry,
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Fig. 1. Dilation and contraction of hybrid time domains and hybrid arcs. The structure of the hybrid time domain E in the (¢, j)-time scale is preserved under the diffeomorphism

T, xid in the (s, j)-time scale.

will define a diffeomorphism that preserves the structure of the HTD of
the hybrid arcs of 7. This observation is central to our analysis, as it
enables us to conduct the stability analysis of the original HDS H by
first studying the qualitative behavior of the solutions of system 7. In
particular, note that H has a flow map that is normalized by /i, which
removes the finite escape times in f, (c.f., Lemma 3). This normalized
HDS can be viewed as a “target” system that can be first designed and
studied using the extensive set of tools available in the literature on
HDS [25,27]. |

Remark 5. Using (5) with k> 1, 7, can be written as

k=1
T}lok Tk—l
T (@) = — NE —1|, Vt€[0,Yry), (14)
()
which recovers the common dilation used for ODEs when y, = 1,

see [1]. Other types of transformations are presented in [4] for the
study of finite-time control of ODEs. Proposition 2 provides an exten-
sion of these results to hybrid systems. O

Remark 6. Analyses of HDS based on the time scaling of the flow map
are not new, and they have been extensively explored in the context of
singular perturbations [35,36] and averaging theory [31,37]. However,
in contrast to (14), the time scaling in those scenarios is usually
linear. O

3.2. PT-S via flows in HDS

Since solutions to system H, whose data is described by (4), can
only flow for a total amount of time upper bounded by Y7, in this
paper we are interested in regulating the state z to a general closed set
A, as t = Yr, (or before Y7 ,), where

A=A, xRy, 15

and where A, is an application-dependent compact set. For systems
with inputs, the following definition aims to capture this property,
which makes use of the transformation 7, defined in (7), and which
extends [1, Def. 1] from ODEs to HDS.

Definition 2. Let A be given by (15), where A, C R" is compact.
The set A is said to be Prescribed-Time Input-to-State Stable via Flows
(PT-ISSg) for the HDS H if there exists f € KLL and y € K such that
for every z(0,0) € C U D, all solutions z satisfy:

12(t. )4 < B(120,0)] 4. T (). ) + 7 (lul ) - 16)
for all (¢, j) € dom(z). If (16) holds with u = 0, the set A is said to be
Prescribed-Time Stable via Flows (PT-Sg). O

In some cases, it might be possible to completely suppress the
residual effect of the input « in the bound (16) via PT feedback. This
property, termed PT-ISS with Convergence in [1, Def. 1], can also be
obtained in hybrid systems:

Definition 3. Let A be given by (15), where A, C R" is compact. The
set A is said to be Prescribed-Time Input-to-State Stable with Convergence
via Flows (PT-ISS-Cg) for the HDS H if there exists f € KLL, y € K,
and f. € KL such that for every z(0,0) € C u D, all solutions z satisfy:

1z, D < B (B (1200,0)] 4. T, J) +7 (luljy) » Te(®) 17)
for all (¢, j) € dom(z). O

Remark 7 (On the Use of KLL Functions). The use of K£LL functions
in Definitions 2 and 3 enable us to differentiate convergence behaviors
in the continuous-time domain from those in the discrete-time domain.
This type of comparison function is common in the analysis of HDS with
inputs [33]. Additionally, since by construction |z(t, /)| 4 = lw(t, )| A,
for all (¢, j) € dom(z) (because |u,(t, J‘)lRZl = 0), we can equivalently
express the bounds (16)-(17) with z replaced by y, and A replaced by
A, O

Remark 8 (On the Lack of Uniformity with Respect to ). Definitions 2
and 3 extend Prescribed-Time Stability (PT-S) notions, studied in the
literature of ODEs, [1, Def. 1] to hybrid systems. The XKLL function g
and the KL function g, in the bounds (16) and (17) are independent
of the initial conditions on z = (v, 4). However, as defined in (7), the
diffeomorphism 7, clearly depends on the initial value of y, via (7),
which parameterizes the prescribed time Y7 ;. Yet, the bounds (16) and
(17) are uniform across the initial conditions of y, which is the main
state of interest in the system. O

The following example, which follows as a particular case of the
main results in the next section, illustrates the previous discussions:

Example 1. Consider the HDS H with k = I, T = 1, y = (x,7),
Fy = {~x+u}x {1}, Gy = (3x} x {0}, ¢ = R"x[0,1], ¥, = R" x {1},
and u is continuous and bounded. Then, every solution z = (x, 7, y;)
satisfies the following bound (see proof of Theorem 1):

|‘/’(t’j)|Ay, < k]e—szl(t) <e_k3(71(’)+j)|l//(0, O)lAw + k4lul(fyj)> ,

where k; > 0 and A, = {0} x[0,1], for all (+, /) € dom(z). Moreover,
using (11b), the above bound can be written as:

. < #1(0,0)% ™9 0.0
lw . Dla, < NG WW/( O, + s fulg ) s
where a; > 0, 4#;(0,0) = gy > 1, and for all (t, /) € dom(z). It follows
that lim(r,j)edom(z),x—»Y,y, w(t,j)=0. O

It is important to note that, unlike ODEs, for HDS the existence of
bounds of the form (16)—(17) does not necessarily guarantee that the
internal state y will converge to A,, ast — Y, for any Y7, > 0, even
if u =0 and z is complete. The following scalar example illustrates this
scenario.

Example 2. Consider the HDS H with k = 1, main state y € R, u =0,
functions Fyp = {-y}, Gy = %y/, and sets ¥ = (—o0,—1] U [1, ), and
¥, = [—1,1]. For this system, we can study stability of y with respect
to the set A, = {0}. For any initial condition to H, z(0,0) = (y, o),
satisfying |y,| > 1 and y, = 1, the unique maximal solution to the

T
HDS satisfies w(z,0) = y (%) , for all (¢, j) € [0,#'] x {0}, where ¢/ =
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T =l 7, and w(t, ) = (3) w0, forall ¢,)) € Ujes, (V1% ().
It follows that w(#,j) — A, only as j — oco. Yet, every maximal
solution z of the HDS satisfies (16) with u = 0. This follows by a direct
application of item (a) of Proposition 2, the result of [38, Thm. 1], and
item (b) of Proposition 2, in that order. O

The previous example shows that bounds of the form (16) or (17)
only guarantee PT-S-like behaviors via the flows of the HDS. Therefore,
to emulate the existing PT-S bounds obtained for ODEs [1,2], the
“target” HDS A in (12) must generate maximal solutions with hybrid
time domains E satisfying sup,E = oo, such as those in Example 1.
In general, this is not possible whenever C = #, or whenever # has
eventually discrete, Zeno, or purely discrete solutions. However, as
shown in the next section, for R-Switching systems, discrete solutions
can be ruled out by designing appropriate switching signals generated
by hybrid automatons that additionally exploit the “blow-up” nature of
the functions .

4. PT-ISS in R-switching systems

In this section, we apply Proposition 2 to study a class of R-
switching systems (1)—(2) characterized by the following dynamics:

1 & W(o),
t € W(o).

(18a)
(18b)

%= py0) - foq (X, (D), u,7),
x(1) = Ry (x(17))

For generality, in (18a) we allow f, to depend on yu, and also on a
signal 7 that is generated by the following hybrid dynamics

fe[O,Mk—U)],

Td

t & W(o), (19a)

t=r-1,

t € W(o), (19b)

where y, is given by (5) and 7, > 0. To contextualize this model, some
remarks are in order.

Remark 9. When y, = 1, R, = id(-), and f, does not depend on
and u, Eq. (18) coincides with the conventional nonlinear switching
systems examined in [39,40]. On the other hand, when f, depends on
u, (18a) captures nonlinear switching systems with inputs, similar to
those studied [26,41]. O

Remark 10. When yu; =1 and f, depends on z, system (18) describes
a class of r-parameterized nonlinear switching systems. In this class, =
is not necessarily constant throughout time, and the function ¢ — z(r)
may not be differentiable or even continuous. Such models emerge in,
for example, a class of time-triggered reset systems [42,43] suitable for
optimization and learning problems; see also Section 5.2 for a specific
application. O

Remark 11. In many applications, the system of interest might not
match the exact form of (18). This is often the case in PT-regulation
and feedback control of affine dynamical systems with non-zero drift,
where multiplying the entire vector fields by the gain 4, is not feasible.
However, as shown later in Section 5, appropriate feedback design or
variable transformation can reformulate these systems into the form
(18). O

To have a well-posed system, we make the following regularity
assumption on system (18a):

Assumption 2. For each g € Q, f, : R" X Ry X R" xR, — R" is
locally Lipschitz, R, : R" — R" is continuous, and u : Ry, — R" is
continuous and bounded. O
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We consider R-switching systems (18) with a mix of stable and
unstable modes. We denote the set of stable modes as Q; and the set
of unstable modes as Q,, such that 9, UQ, = Q and 9, N 9, = @.
To leverage this partition and derive prescribed-time stability results,
we proceed to introduce specific stability assumptions for our “target”
HDS 74 defined in (12). Central to these assumptions is the role of a
function A(4,,) that characterizes the effect of the time-varying gain /i,
on the input u in (18). In our subsequent analysis, we focus on three
specific cases: A(j1,) =0, A(g,) = 1, and A(f) = ﬁ;f with Z > 0.

Assumption 3. There exist 7, € R,(, Ny € R, smooth functions V; :
R" x Ry = Ry, where § € Q, and constants i > 0,1 €{1,2,3,4,5},
p > 0, such that:

(a) For all (%,%,4) € R" x [0, Ny] X Q:

1|37 S Vy(3.8) < gl 1P (20a)
(b) For all (%,1%,4, fiy,n) € R"X[0, Ny]x Q; xR, X0, r;l] and for all
u € R™, we have:

<VV4<fc, #). (f i Mot )>> < —¢4a V(5 ) + g AGlul?.

(20b)

(c) For all (%,%,4, fi;,n) € R"X[0, Ng]x Q, xR, X[0, r;l] and for all
u € R™, we have:

<vv4<x, ?), <fq<fc, lz]k’u’ f>>> < ¢45Va(%,8) + cqu A lul”. (200)

(d) For all (%,%) € R" x[1, Nyl and 6,4 € Q such that § # é:

Vi(Ry(%), 2 = 1) < yVa(X, %), (20d)

where y > 0. O

Remark 12. Inequalities (20a)-(20b) are common in the context of
exponential stability in continuous-time and hybrid systems. For the
case when the vector field f, in (18a) does not depend on 7z, the
function V; can also be taken to be independent of #. This is the most
common situation in switching systems and systems with resets. An
example where f, does depend on 7 will be studied in Section 5.2. []

Remark 13. Inequality (20b) in item (b) gives a standard decrease
condition on the Lyapunov functions V;, for each stable mode ¢ € Q,,
and up to a neighborhood of the origin, whose size is parameterized by
A(f)|ul?. When A(j,) = 0, and by [38, Thm. 1], conditions (20a)-(20b)
imply that each mode § € Q; renders the origin exponentially stable in
the dilated time scale s = 7;(¢) (see Proposition 2). When 4(4,) = 1, and
by [33, Prop. 1], conditions (20a)-(20b) imply that each mode § € Q;
renders the origin ISS with exponential decay in the dilated time scale.
The case A(j1,) = ﬁ;/ , with # > 0, will emerge in the context of PT-
regulation where convergence bounds of the form (17) are sought-after.
An example in this direction is presented in Section 5. O

Remark 14. Inequality (20c) in item (c) rules out finite escape times
for the unstable modes 4§ € Q,. Similar assumptions are considered
in the context of asymptotic/exponential stability in switching sys-
tems [31,41]. When Q, = @ (i.e., there are no unstable modes), item
(c) holds vacuously. O

Remark 15. Inequality (20d) in item (d) considers the effect of the
resets on the Lyapunov functions related to each of the modes. Usually
(e.g., in standard switching systems) R; = id(-) and V} is independent
of #, and in this case, inequality (20d) holds trivially with y = 1.
When V; is independent of 7 but R; # id(-), item (d) recovers the main
assumptions of [26]. O
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Fig. 2. BU,-ADT condition (22) for k € {1,2,3,4}. Left: When y, = 1, T = 10, and ¢, = 0, there exists a single common terminal time T = Y7, for all k. Right: When yu, =2, T = 10,
and 1, =0, the dependence of Y, on yu, (see Lemma 1) leads to the emergence of three distinct terminal times.

4.1. Blow-up average dwell-time conditions

To achieve asymptotic stability in systems that switch between a
finite number of stable modes, it is common to assume that for all times
t, > t; > 0, the switching signal o satisfies an average dwell-time (ADT)
condition of the form:

N(fz,tl)ﬁé(lz—fl)"'No’ @n
where N(t,,1,) is the number of switches of ¢ in the interval (7,,1,],
7, > 0 is called the dwell-time, and N, > 1 is the chatter bound,
see [39,40], [25, Ch. 2.4]. However, unlike asymptotic convergence
results, PT-S properties are defined only over the finite interval [0, Y7 ;).
Therefore, we consider switching signals defined on similar intervals,
which are additionally allowed to have a switching frequency that
becomes unbounded as ¢t — Y7 .

Definition 4. Let 4, be given by (5). A switching signal ¢ : [0,Y7 ) —
Q is said to satisfy the blow-up average dwell-time condition of order k
(BU,-ADT) if there exist N, > 1 and 7, > 0 such that for all 1,,¢; €
dom(o):

1
N(tp,1)) < T—U)k (Mk(lz), ﬂk(tl)) + Ny, (22)
d
where o, (-, ) is given by (6). We use Zgy, _apr(74: No, T, Ho) to denote
the family of such signals. O

Fig. 2 illustrates the BU,-ADT condition by comparing various
bounds derived from (22) (plotted on a logarithmic scale) as functions
of 4 = t, —t, with ¢, = 0, and for different values of k € Z,, with
uy = 1 (left plot) and u, = 2 (right plot). The standard ADT bound
(21) is also shown in color purple. Unlike the ADT bound, the BU,-ADT
bound grows to infinity as 4 — Y7, allowing an increasing number of
switches as t — Y7 ,. However, in any compact sub-interval of [0, Y7 )
the allowable number of switches is bounded. The following lemma
shows that switching signals satisfying the ADT condition (21) also
satisfy the BU,-ADT condition (22) when their domain is appropriately
restricted. The implication follows directly because the right-hand side
of (21) can be upper-bounded by the right-hand side of (22). The proof
is presented in the Appendix.

Lemma 4. LetT > 0, yy > 1, and o be a switching signal satisfying
the ADT condition (21) with t; > 0 and N, > 1. Then, o(t) satisfies the
BU,-ADT condition (22) for all k € Zy, and all 0 < t; < t, < Yq,, with
the same 7, Nj,. O

Next, we present a lemma that provides an equivalent formula-
tion of the BU,-ADT condition, as well as its limiting behavior when
the prescribed-time Y7, goes to infinity. The proof is presented in
the Appendix.

Lemma 5. The following holds:

(a) If k = 1, then (22) is equivalent to

T Yri—t
N(ty,t})) < —In| ——— ) + N,. 23
G2 11) Tdn<YT,l_t2> 0 @3
(b) If k € Z,, then (22) is equivalent to
k-1
V(5 12) .
N(ty, 1)) < 222 <(12—11) + ) G (- tf)) + Ny,
Td =2
5. £41 Dty o1 _ _ (k=D
where Cok = (—1) + mYka B bk.l = m and
2 k=1
V(1) 1= p it
KU1:12) 1= Ho .
(Yre—1) (Yrx—11)
(c) Forall k € Zy; and all t) > t; > 0 the bound (22) satisfies
. 1 Ho
lim — 1), u(t1)) + Ny = —(t, — t;) + Ny,
TT;O wak (”k(z) llk(l)) 0 Td(z V) 0
thus recovering the ADT condition (21) when u, = 1. O

4.2. PT-ISS in R-switching systems with stable modes

When all the modes f, are stable, i.e., 9, = @ and Q = Q9
we can study PT-S properties of (18) by considering switching signals
that satisfy the BU;-ADT bound. In this case, the R-Switching system
(18) can be analyzed by considering the HDS H with data (4), state
v = (x,7,q) € R"2, and

Fyp(w, i, w) = {F(x, e, u, 0} X [0, TL] x {0}, (24a)

d
Gy (y,w) 1= {R,(0)} x {r - 1} x 9\ {q}, (24b)
Po =R"% [0, Ng]x Q,, ¥p=R"x[1,Ny]xQ,. (240)

As established in the next lemma, there is a close connection between
the HTDs of the solutions of system H with data (24), and the signals
o that satisfy the BU,-ADT condition.

Lemma 6. Let (Fyp,Gy,%¥c,¥p) be given by (24a)—(24c), and consider
the HDS H under Assumptions 2 and 3. Then, Assumption 1 holds, and:

(a) For every maximal solution z and for any pair (t,j)),(t3,j,) €
dom(z), with t, > t,, inequality (22) holds with N(t,,t,) = j, — j;.

(b) For every HTD satisfying property (a), there exists a solution z of
the HDS H having the said HTD. O

Proof. The HDS H given by (4) has state z =
w = (x,7,q) € R"?2, and dynamics

(v, ) € R™3 with

z€ C :=R"X[0, Ng] X Q; xR, (25a)
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B [ q(xs pyo u, T)
x o
;= * |eF@uw:= K , (25b)
q 0
My k 1+1
T
z€D :=R"X[1,Ng] xQ; xRy, (25¢)
xt R, (%)
. T+ r—1
zt = € G(z) := (25d)
qt 9\{q}
M;r Hi

Since the function y, generated by (25) is precisely (5), any solution
z : dom(z) » R"3 to (25) will necessarily satisfy length,(dom(z)) <
Y7 . By Proposition 2, the corresponding HDS (12) in the (s, j)-time
scale is given by:

. [4(& A7)
X 1
# [0’ =
5 A $ s oA Tq
z2eC, z,=| . |e Fpia:= N (26a)
gy 0
i, k ot
kg ?/4,:
z2eD, 2t e G(2), (26b)

where C, D, and G were defined in (25). Since Assumption 3 ensures
that the state £ does not exhibit finite escape times, by noting that the
dynamics of (£, §) are decoupled from £, and since /i, remains constant
during jumps, we can directly obtain (s, ) for kany (s,j) € dom(2)

k-1 F=1
@s+ﬁ(§j,j)7>k " for k > 1, and

(s, ) = ﬁk(gj,j)e%, for k = 1, where 5, = min{s > 0 : (s,j) €
dom(%)}. By [25, Ex. 2.15] it follows that every solution % of (26) has
a HTD that satisfies the ADT bound in the (s, j)-time scale:

using Lemma 3: fi;(s,j) = (

. . 1
i1 £ T_(S2_31)+N0’ (27)
d

for all (sy, ), (s,,j,) € dom(2), with s, > s; > 0. Additionally, by [25,
Ex. 2.15], for every hybrid time domain satisfying (27), there exists
a solution to the HDS (26) having said hybrid time domain. Thus, it
remains to show that (27) is equivalent to (22) in the original (7, j)-time
scale. Using the time scaling function 7, given by (7), for any solution
z of (25) and all (¢, j;), (15, j,) € dom(z) with 0 <t, < t,, we have that
(s1,J1)s (82, jo) € dom(Z), where s, = T;(1)), s, = Ti(t), and 0 < s, < s5.
Substituting in (27):

. , 1
J—J1 £ T—(Tk(’z) =T (1)) + No.
d
The result follows now by using (P2) in Proposition 1. [ ]

One of the main consequences of the equivalence established in
Lemma 6 is that analyzing the stability properties of the R-switching
system (18) under the family of switching signals Xy apr(74, No, T, Hp)
is equivalent to examining the stability properties of the HDS H with
(Fy, Gy, P, ¥p) defined by (24a)-(24c). In this case, we can study the
stability properties of this HDS with respect to the set A given by (15),
where A, is the following compact set

A, = {0} [0, Ng] x Q. (28)

The following Theorem is the first main result of this paper.

Theorem 1. Let Ny > 1, Q, # ¥, Q, = @, and consider the HDS H

with (Fy, Gy, ¥, ¥p) given by (24a)-(24c¢). Suppose that Assumptions 2—3

hold, and
In(r)

_ 29
mianQ 43 @9
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where r := max{1, ¥}, and y > 0 is given in Assumption 3. For each
(T. k) € R,y X Ry, the following holds:

(@) If A(uy) = 0, then the set A is PT-Sg for H.
(b) If A(uy) = 1, then the set A is PT-ISSg for H.
(©) If A(yy) = y;f, then for any ¢ > 0 the set A is PT-ISS-Cy. for H.

O

Proof. The proof has three main steps.

Step 1: Stability of the “target” HDS H in the (s, Jj)-Hybrid Time Scale:
The overall HDS is given by (25), which in the (s, j)-time scale is given
by (26).

To study the stability properties of system (26), we consider the Lya-
punov function W(2) := V(%,#)e™"?. By Assumption 3, this function
satisfies c|2|’, < W(2) < ¢|z2l’, V 2 € CuD, with ¢ := min,egcy,,
¢ := "N, and ¢, := max,eg ¢y ,- When £ € C, for all 5 € [0,1/7,],
we have:

(VW (), Fr(2,2)) = <VV§($¢, £), ( fﬁ(’%’;ﬁ’ D >>el“<’>f

+ (In(r)Vy(%, £)e" O 2,)

In(r _

514%-(vw®+qWMM%WW
C37y

where ¢, = min,gc,3, €4 1= MaxX,egc,4, and where we used item

(b) in Assumption 3. On the other hand, when 2 € D we can use

Assumption 3-(d) to obtain

W(EY) = Ve GF, #5)0F = V0 (Ry(R), % — 1) eMED
< 2Vy& B = Ly,

Thus, using the definition of r, during jumps we obtain W(2%) —
W) < - (1—m) W(2) < 0. Using Lemma 10 in the Appendix,
we conclude that every solution 2 of system (26) satisfies:

12(s, D 4 < 51726 [2(0,0)] 4 + x5 - sup |AQ)], (30)
0<¢<s

A Td
for all (s, j) € dom(2), where k; = (E/g)l/pezl’ Trrg N0 Ky = Aty /(2p(1 +
_ 1 A N N
74), kK3 = (2c4rN0/[/1£]) /p, A=cy— In(r)/7,, and A(s) 1= A(fi(s))a(s).
Moreover, when A4(j,) = ﬁ,:f , via Lemma 11 in the Appendix, there
exists f, € KL such that every solution 2 of system (26) satisfies:

1265, )l < B (F1120.00Lee 20 4 Byl 5. &)

for all (s, j) € dom(2), with ¥, := k|, &, := %, K3 1= 2k;3.

Step 2: PT-ISSp of the HDS in the (t,j) - Time Scale: We now use
the properties of the solutions 2 of system (26) to establish properties
for the solutions z of system (25). First, we use Proposition 2 and
let s = T;(t), which yields e™20+) = e=2Tc®+), and |2(T;(t), j)l 4 =
|z (7,71 (T@), J) |, = |22, /)| 1 Then, by substituting in (30) and noting
that 7,(0) = 7,7'(0) = 0, it follows that when 4 = 0 or 4 = 1, every
solution z = (y, u;) of the HDS (25) with 4,(0,0) = u, > 1 satisfies the
bound:

|2(t, )] 4 < K17 2TKOD|2(0,0)] 4 + K3 4]ul, ). (32)

for all (1, j) € dom(y), which implies that A is PT-ISS . Similarly, when
A(py) = %, (31) leads to:

120014 < B (F1120, 012000 £ Rl ), 1)), 33)

for all (z, j) € dom(z). Inequality (33) implies that .A is PT-ISS-Cp.
Step 3: Length of solutions in the (1, j) - Time Scale: Finally, we show
that sup,(dom(z)) = Y7, for all solutions z of (25). First, note that by
the definition of 7, and Proposition 2, we have sup,(dom(z)) = Y7,
if and only if sup(dom(2)) = . Furthermore, based on the bound
(27), we obtain hat j < Lo+ N, for any (s,j) € dom(2). Since

every complete solution 2 (;% (26) satisfies length(dom(2)) = oo, and
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noting that length(dom(2)) = sup,(dom(2)) + sup;(dom(2)), we can infer
that if j — oo, then s — oo. Consequently, every complete solution
of (26) must satisfy sup,(dom(2)) = oo, which in turn implies that
sup,(dom(z)) = Yr for such solutions. [

The following Corollary covers the case k = 1, which is the most
common in the literature of PT-S [1,24].

Corollary 1. Suppose that all the assumptions of Theorem 1 hold, and that
k = 1. Then, for every solution z = (x, 7, q, ;) to H, and all (¢, j) € dom(z),
the state x satisfies the following properties:

1. If (20Db) holds with A(u;) = 0 or A(u;) = 1, then

KT

. Hy T e
'x(””'s'“<m<2j)> ¢ 27 1x(0,0)| + x34lul g, (34

where k; > 0 for i € {1,2,3}.
2. If (20b) holds with A(u,) = yl‘f, then:

[x(@, ) < [x(0,0)] + a6|u|(t,j)> , (35)

L)) .

) fhy < e~
(6, )%\ py (8, §)%
where a; > 0 for i € {1,2,...,6}. O

Proof. Using (11b) and the bounds obtained in Step 2 of the proof of
Theorem 1, it follows that e *27x®+/) = e_am( ”‘l‘é’) )e—m’ = 4”_(()0

where a = «,T. Since, by definition, |z| , = |x| for evegf solution,
inequality (32) becomes (34). Similarly, inequality (33) becomes (35)
with a; =k, @ 1= (kK3 + )T, a3 1= k3T, a4 =Ky, a5 := k,T, and
o 1=Ky [ |

a

—%;
e 17,

4.3. PT-ISS in R-switching systems with unstable modes

We now consider the scenario where some of the modes f, in (18)
are unstable, ie., Q, # # and Q@ = 9, U Q,. To study this case, we
introduce a blow-up average activation-time (BU,-AAT) condition on the
amount of time that the unstable modes can remain active in any
sub-interval of [0, Y7 ).

Definition 5. A switching signal ¢ : [0,Y7,) — Q is said to satisfy the
blow-up average activation-time condition of order k (BU,-AAT) if there
exist T, > 0 and 7, > 1 such that for each pair of times 7,,7; € dom(c):

4]
/ () - ng(ﬁ(t))df < Tka (llk(fz)y ﬂk(tl)) + Ty, (36)
1 a

where y, is given by (5). We denote the family of such signals as
ZBU,(—AAT(QM’TH’TO’T'”O)' O

Remark 16. For asymptotic and exponential stability results in switch-
ing systems with both stable and unstable modes [26,31,41], it is com-
mon to restrict the family of admissible switching signals to those that
satisfy the ADT condition (27) and the following average activation-
time (AAT) condition:

5]
/ I, (6(1)dt < Ti(t2 1) +T,, 37
1 a

where 7, > 1, and T, > 0. This bound can be recovered from (36) by
taking the limit as T — oo in both sides of (36) and using u, = 1. Also,
note that for k = 1, the BU,-AAT condition reduces to:

n g (6(1) T-t
/ 2 i<t <—”’°> +T.
0 Yr,—t T, T —typg
Similar bounds can be obtained for k € Z, using (5). |

Fig. 3 compares the BU,-AAT bounds and the traditional AAT bound
(37). The left plot shows the left-hand side of (36) for different values
of k, under a particular switching signal ¢ that switches between one
stable mode and one unstable mode. The classic AAT bound is shown
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in purple color. The right plot shows (36) for k = 1 and different values
of 7,.

To study the PT-S properties of the R-Switching system (18) when
Q contains unstable modes, we now consider the HDS H with state
v =(x,7, p,q) € R"3 set-valued mappings:

Fy = {f,00 o, DX [0, %] x ([0 H —ng<q>> x {0, (38a)
Gy = {R,(0)} x { =1} x {p} x Q\{q}, (38b)
and sets:

Yo = R" x [0, No] % [0, Ty] X Q. (380)
W, =R x [1, Nyl x [0,T,] X Q. (38d)

There is a close connection between the hybrid time domains of the
solutions generated by the HDS H with data (38), and the switching
signals that simultaneously satisfy (22) and (36).

Lemma 7. Let (Fy,Gy,¥c,¥p) be given by (38a)-(38c), and consider
the HDS H given by (4), under Assumption 2-3. Then, Assumption 1 holds,
and:

(a) For every maximal solution z to H and for any pair (t,, j,), (t5, j,) €
dom(z), with t, > t,, inequality (22) holds with N(t,,t,) = j, — j;»
and inequality (36) holds with o(t) = q(t,j(t)), where j(t) :=
min{j € Zsg : (t,)) € dom(z)}. N N

(b) For every HTD satisfying property (a), there exists a solution z of H
having the said HTD. O

Proof. The overall HDS has state z = (y,u,) € R™* with v =
(x,7,p,q,), and the following dynamics:

z€ C:=R"X[0,Ng] x[0,TH] x Q@ xRy, (39a)
M [ o (%, py> U, T)
Hy
. 0,2~
),C r Tq
T Ilk
z=| p |€F(izu = [0, T—] -l (@ |, (39b)
q “ 0
Ay
k 1+
T
z€ D :=R"x[1,Nyg]x[0,T)] x Q X Ry, (39¢)
" Ry
o+ -1
zt =|pt | € Gz,u) = p (39d)
+
7 9\ {q}
Hy
Hy

This system has a finite escape time at ¢ = Y7, induced by y,. Note
that, by construction, the states (z, p, ¢) are confined to the compact sets
[0, Ny, [0,T;], and Q respectively. Using the time variable s = 7,(r)
defined in (7), and Proposition 2, we obtain the following HDS in the
(s, j)-time scale:

SoGs Ay, 0, 9)
b
Td
2€C, &, = (X,4,h4,fy,) € F(2,0) := [0, T—] Iy @], (40a)
a
0
k Al
T
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Fig. 3. Functions appearing in the BU,-AAT condition (36) using the switching signal o(-) (see inset), T = 10, and y, = 1.
zeD, 7t e G(2), (40b) (o) If A(yy) e y;f, ¢ > 0, then the set A is PT-ISS-Cp. O

where the subscript s in (40a) indicates that the time derivative is taken
with respect to s. Since (40) incorporates an ADT automaton 7 and a
time-ratio monitor j, by [31, Lemma 7] every solution 2 of (40) has a
hybrid time domain such that for any pair (s, j,), (s5, j,) € dom(2) the
bound (27) is satisfied, as well as the following bound:

)
(s, 5,):= / I, @G- J6Ds < (5, = 5) + T, 41
51 a

where j(s) = min{j €Zyy : (s,j) € dom(g)}. Moreover, by [31,
Lemma 7] every hybrid arc satisfying (41) can be generated by the
HDS (40). Using s = T,(1), the left-hand side of (41) can be expressed
in the t-variable as:

2 0T (1)

AR AD /

I

o, <q(rk<t>,f(7k(r>))>dt

5]
/ 1) - Tg, (q(t, j(o)dt, (42)

n

where we used Proposition 1-(P3), together with the equality
0.3 (T0) = a (77 Ty, (17 (R0)) ) = . 0.

Using (41)-(42), together with Proposition 1-(P2), the AAT condition
in the (7, j)-time scale becomes

b}
/ (@) - Ig (q(t, j@)dt < Tiwk (M), (1)) + T,
f a

which is precisely (36). The fact that inequality (22) holds follows by
Lemma 6. [ ]

Similar to Lemma 6, the result of Lemma 7 enables the study of
the stability properties of the R-Switching system (18), under switching
signals o satisfying (22) and (36), by studying the stability properties of
the HDS (39). In this case, we consider the set A given by (15), where
A,, is now given by

A, =1{0} X [0, Ny] X [0,T] X Q. (43)

W

The next theorem is the second main result of this paper.

Theorem 2. Let Ny > 1, T, > 0, Q, # ¥, O, # @, and consider the HDS
H given by (4) with (Fy, Gy, ¥, %)) given by (38a)-(38c). Suppose that
Assumptions 2-3 hold, and that

(+2):
€3

where r = max{1, y}, y > 0 is given in Assumption 3, ¢, = min,eg ¢, 3, and
Cs = Mmax,eg ¢, 5. For each (T, k) € R,y x Ry the following holds:

1> L In(r) + L
£3Td Tq

(44)

(@) If A(uy) 2 0, then the set A is PT-Sp.
(b) If A(uy) 2 1, then the set A is PT-ISSp.

10

Proof. The proof follows the same three steps as in the proof of
Theorem 1. We start by using the time dilation Tk‘1 and Proposition 2.
Hence, we consider the HDS (40) in the (s, j)-time scale, with state 2 =

In(r)2+(c;+cs)p, and consider the Lyapunov function W,(2) = V&, i-)e‘f s
which, by Assumption 3-(a), satisfies the inequalities ¢|2|§t <Wh(2) <
21214, with ¢ :=min,cg c,; and @ :=max g c,,e™ "N+ +es 0, When
2 € C, the time derivative of £ with respect to s satisfies:

& = In(r#, + (c; +¢5)h; € [0,8] = (5 +¢5)lg, (@),

where § := Ti In(r) + %(53 + ¢5). Using the above expression together
with Assumption 3, we evaluate the change of W, during the flows of
stable and unstable modes. In particular, when 2 € C and § € Q,, we
have

(VW5(2), 2,) = & (VV (5, ), 4,) + V(5 DIE,

Chn 1o
S =g~ W) + ZBAGal, (45)
2
where A(s) 1= A(f;(s)i(s), T = max,eq ¢;, and ¢4 = Max,eq ¢y ,, and
where ¢; — 8 > 0 since (44) is satisfied by assumption. On the other
hand, when 2e C and § € Q,:

(VWA(0).4,) < (EsVyx.8) + Eadolil) ¢ + V(5. 9%,
< (8- ¢y) Wa(®) + C4d(s)lalet
S—(e5=8) Wa(d) + ;iaﬁ(s)w,
2

which is the same bound as (45).
During jumps, it follows that &+ = In(r)#* + (¢, +¢,)p* = &—In(r) for
all 2 € D. Then, using Assumption 3, the Lyapunov function satisfies:

Wa(2h) = Ve (3%, 85T = Vo (Ry(),2 — 1) 5700
X

< yVi(&, £)ef 0 =
< xVi&, De max( 1 7]

Wy(2) < W)(%).

It follows that W,(2*)—W,(2) < 0 for all 2 € D. Using Lemma 10 in the
Appendix, we conclude that every solution 2 satisfies the bound

12(s, )4 < 51120,0)] g™ 2H) 4 i A(s)] )

_ 1/p if—”NO
for all (s, j) € dom(Z2), where x; = (p/f) e a7 e, = Aty /2p(1+

_ 1/p . . N
7)), K3 = 2c4(p/[c2)»2] > A = ¢3 =6, and A(s) A(f1 ())a(s).
From here, the bounds (16)-(17) are obtained following the exact same

arguments used in Steps 2 and 3 of the proof of Theorem 1. [ |

Remark 17 (Switching with Non-PT Unstable Modes). 1t is reasonable to
consider a situation where the unstable modes in (18a) do not have
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time-varying gains, i.e., 4, = 1 when ¢ € Q,. In particular, consider a
system switching between the following two families of systems:

X = fy(x), g€Q, and x=f,(x), peQ,

where the modes in Q; satisfy (20b), and the modes in Q,, satisfy (20c)
with u = 0. Following the same approach of Theorem 2, and operating
in the s-time scale for the flows, we now obtain the following two type
of modes:

4= f,®, q€Q, and % = ﬁif,](x), reQ,
k

For this system, the same Lyapunov-based analysis can be applied as in
the proof of Theorem 2 to obtain the bound (45) for all ¢ € Q,. On the
other hand, for ¢ € Q,,, we now obtain (VW,(2), £,) < — (¢, — 6) Wa(8)—
t) Wi(2). Note that 1 - -

This implies that (VW5(2), £,) < — (¢, — 8) W5(2). From here, the proofs
follow the same steps as in the proof of Theorem 2. O

cs (1 - > 0 since f;, > 1 by Lemma 3.

Remark 18. While all our results assumed that the resets (18b)
were stabilizing, or at least, not destabilizing, it is possible to extend
Theorems 1-2 to cases where the resets are destabilizing, provided the
flows of the HDS are “sufficiently” frequent compared to the jumps. In
this case, stability can be established by a simple modification of the
Lyapunov functions used to study the target systems H as in [25, Prop.
3.29]. O

We conclude this section by noting that, with some additional effort,
the stability results of Theorems 1-2 could be extended to systems for
which Lyapunov functions with monomial bounds do not exist. While
this represents an interesting research direction, such characterizations
are beyond the scope of this paper and could be more appropriately
studied in the future within the context of integral-ISS, as described
in [26]. For our applications of interest, discussed in the next section,
as well as others not detailed here due to space constraints (e.g., con-
current learning [44], extremum seeking [17], feedback-optimization),
Assumption 3 is typically satisfied.

5. Applications to PT-control and PT-decision making

This section presents two applications that illustrate our main re-
sults. Throughout this section, the state ¢ and the blow-up gain y, are
assumed to follow the hybrid dynamics H defined in (4), with data
given by (24) or (38). Since practical implementations of PT-Stable
algorithms typically involve early terminations to avoid numerical
instabilities, as well as techniques such as clipping and saturation [2,
11,171, for all our numerical simulations we employ a fourth-order
Runge-Kutta method with fixed time step 6 = 10™° and we saturate
the blow-up gain y, at 1 x 10,

5.1. PT-regulation with intermittent feedback

Consider a switched input-affine system with intermittent feedback,
of the form:

% = dy(x) + g, (4) by(X)uy(x. ). (46)

where x e R", ¢ € Q = Q,UQ, is a logic state and Q, # §J. The blow-up
gain y is as defined in (5), d,(x) € R" and b,(x) € R™" denote mode-
dependent drift and input vector fields, respectively, u, : R"XRy; — R”"
is the control input, and Iy (@), is an indicator function representing
the intermittent nature of the feedback. Such input-affine switching sys-
tems model diverse phenomena, ranging from gene regulatory networks
in biology [45] to hybrid locomotion in robotics [46]. Incorporating
intermittent feedback enhances the practical relevance of these models
by addressing challenges such as limited sensor availability, and adver-
sarial operating environments. The implementation of prescribed time
controllers proves crucial in scenarios demanding strict time constraints

11
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thereby extending the applicability of these models to time-sensitive
applications.

We assume that b,(-) and d,(-) are unknown locally Lipschitz func-
tions, which satisfy the following properties:

|d,(x)| < d,(x), VgeQ, xeR",
b(xX)+by(x) = el,, VgeQ,, xR,

where ¢ > 0, and Eq(x) > 0 is a known scalar-valued function assumed
to be continuous for all x € R” and all ¢ € 9. We also assume that
Eq(x) is #,-globally Lipschitz for all ¢ € Q,. To regulate the state x to
the origin in a prescribed time, we consider the following switching
feedback-law:

U (X, Hy) = —Hy, (r]q + 5q3q(x)2) X, (47)

with §, > 0 and 5, > 0 and k > 2. The closed-loop system has the form
of the HDS H with data (38) and continuous-time dynamics of x given
by:

%= 1 (0 f 50X 1) (48)

where, for every ¢ € Q, f, : R" xR, — R is given by

e ) = =T, @) (1, + 8,7, b, + -y ().
k

The following proposition extends the results of [1, Sec. 3] to the sce-
nario where the system switches between multiple stable and unstable
modes:

Proposition 3. There exists t; > 0 and 7z, > 0 such that the set
A, X Ry, is PT-ISS-Cy for the closed-loop system, where A, is as given
in (43). Additionally, the switching feedback-law u, is bounded over the
continuous-time interval [0, Y7 ;) and converges to 0 as t — Y7 ;. O

Proof. We show that under Assumption 4 a suitable Lyapunov function
can be used to show that Assumption 3 is satisfied. Let V(%) = % Eik

for every 4 € Q,. By employing Young’s inequality, we obtain

1 1
VV,(R), f3(R ) < 20,1,V + — ; (49)
< q q k > 241474 ﬁl% 4£§ 54
for all § € Q,. Similarly, for all § € Q, let V(%) = % Using this
function, we obtain
L &
(VV(5), £ 1)) < V(%) + = - (50)
k

for all § € Q,. Using ¢;; = ¢;, = 1/26,, ¢35 = 20,155 44 = 1/422&,
when § € Q, and ¢5y = ¢jo = 1/2, ¢55 =1, ¢44 = d"q%/z when § € Q,,
together with the set of smooth functions {V;};co, Assumption 3 is
satisfied. Thus, we can always pick 7z, > 1 and 7, > 0 large enough
to satisfy the stability condition (44). Additionally, Assumption 2 is
satisfied by the Lipschitz properties of both d,(-) and b,(-). Assumption 1
is met by the same Lipschitz property and the construction of the
HDS H with data (38). It follow that Ay X Ry is PT-ISS-Cj. for the
closed-loop system via Theorem 2-(c).

We now prove the boundedness and convergence to 0 of the switch-
ing feedback-law u, given in (47). By applying (33) from the proof
of Theorem 2-(c), for any (xp,4y) € R" x Ry, and any solution z =
(x,7,p,4, 4;) to the closed-loop system satisfying x(0,0) = x, and
1, (0,0) = py we obtain:

x(t, )| < i (&1 2TEOD (0, 0)] + K31, T (1)), (51)

. - - = - 1
for all (7, j) € dom(z), where k|,x,,x3 > 0, u := max {manEQA @,
=2

d - = .
maX,eq, 7" }, and g, (r,s) = r- maX{Kle_’“P,éj]:z ()} =: r-ag(s), with



D.E. Ochoa et al.

Systems & Control Letters 193 (2024) 105910

v v 3 === =77
10° Yo —l i - |
I 1 =9 e s
1 : S !
10~ — PR N} B S W Y 1
| | ! -
; s | L5 ]
— 107 1 = 1 = 1.0
t/ ] = 1 > L
=l Lol No Feedback E 5 E =05
_ 1
e W ] '
10-13 : 10-13 Exponential : =
I = Prescribed-Time ! <
l 1 0

0 0

Time [s]

Time [s] 10 Time [s] 10

Fig. 4. Comparison between controller with Exponential convergences and PT-Regulation with intermittent feedback. Left: Trajectory of system’s state norm plotted in logarithmic
scale. Center: Trajectories of the switching feedback law u,. Right: Trajectories of the switching signal o (top), the dwell-time state z (middle), and the monitor state p (bottom)

for the PT-Regulation mechanism with intermittent feedback.

_k_
& (s) = ("T;ls +1)*", is the same KL function obtained in Lemma 11.

Then, from (51) we obtain:
5. )] < (e 2O ]x(0,0) + Bt ) a (T (1),

for all (1, j) € dom(z). Hence, using Eq. (47) u, satisfies:

g e, 0, )] < 70, ) 18,2 0, )| Dt T 0,

for all (1, j) € dom(z) and all g € Q, where 7, (1, j) = (i ;e 2T+ |x(0, 0)|
+ Eﬁ). Since d,(-) is assumed to be continuous for all x € R”, it is

locally bounded. Then, 7,(z, j)

Ny + 5qEz(x(t,j))| is bounded as #(t, j) is

bounded by definition. Now, note that a,(s) = max{?le*?zs,élzz (5)} =
5,:2 (s) for s sufficiently large since the inverse exponential decays
faster than any proper rational function. Additionally, by leverag-
ing the result of Proposition 2 it follows that u,(t) = A, (T,()) =

(

k=1 e k-1 2 5 Ly
mOa @) = (o +u" )/ (Trk(n + 1) which im-
plies that u; (Na, (7,(t)) — 0. Using this fact, together with the inequality

k=1

(SN
%Tk(t)+/40k > for k > 2. Then, as t — Y7, we have that

—
above and the boundedness of 7(t, ) |11q +5qdq(x(t,j))‘, allows us to
|

To illustrate Proposition 3 with a numerical example, consider 9, =
{1,2}, 9, = {3}, and x € R. Let d,(x) = gtanh(x), b,(x) = 1, Vq €
Q, and consider the control-law u (x,1) = —pp (1 + qlx|*)x. Then,
all the conditions to apply Proposition 3 are satisfied. We numeri-
cally verify the PT-ISS-Cp property by using a switching signal ¢ €
Zpu-apt(Tas No» T Ho) N Zpyaat(Qus o> To. T pg) With 7, = 2, 75 = 1,
T =10, T, =2, and N, = 1.5. Fig. 4 displays the trajectories of the norm
of the state x plotted in logarithmic scale, the switching feedback-law
u,, the switching signal ¢, and the associated average dwell-time and
average activation time states r and p. As shown in the figure, the state
x and the switching feedback-law u, rapidly approach zero as t — Y7,
and converge faster than using a switching feedback with static gains
(for exponential convergence). The overshoot occur when the system is
in one of the modes without feedback.

conclude that u, — 0 as t — Yy ;.

5.2. PT-decision-making in switching games

Consider a non-cooperative game with n € Z, players [10], where
the cost functions defining the game are allowed to switch in time.
Specifically, for each i € V = {1,2,...,n}, the ith player has an as-
sociated mode-dependent and continuously differentiable cost function
qb; : R" - R, where g € Q. We refer to the gth game as the game

with the set of cost functions {q.'); } ' The action of the ith player is
. ie
denoted by x| € R, and the action profile of the game is given by the

vector x; := (x!,x2,...,x") € R". The goal of the players is to converge

12

to the unique common Nash equilibrium (NE) of the games [10,47],
defined as the vector X € R” that satisfies:

¢, (5, x7) = inf o, (x}
1

b

). Viev,

for all ¢ € Q, where xl‘i € R"! denotes the vector that contains all
actions except those of player i. To study this problem, let G, : R" — R"
denote the pseudo-gradient of the gth game, which is given by:

0Pl og? "
gq(xl) ::( q q q >

ox!” ox2 T oxy”
For all g € Q, we assume that there exists Kk, >0 and £,>0 such that
G, is a k,-strongly monotone and #,-globally Lipschitz mapping. These
properties are common in NE seeking problems and they guarantee
the existence and uniqueness of the NE % [10]. To efficiently achieve
convergence to the NE in a prescribed time, we introduce PT high-
order NE-seeking dynamics with momentum and resets (PT-NESmr). The
proposed algorithm is modeled as a HDS H with data (24) and maps
f, and R, defined as follows:

2 (x2=x1)

n(z) : >

X1
. Ry =
=27(2)G, (x,) *1

where x := (x},x,) € R*, and x, := (x},x2,...,x!) € R", and where

n [0, Nyl - (1, 71 is an affine bounded mapping defined as:

(7-)

Ny

fx0) = (52)

(53)

n) =« +n

with 77 > > 0 being tunable parameters. In the context of asymptotic
convergence, mappings of the form (52), which incorporate momentum
(via the state x,) and resets (via the update x;’ = x;), have been
recently shown to improve the transient performance of NE-seeking
dynamics in (stable) strongly monotone games [43]. To further make
the convergence time independent of both the initial conditions and of
the monotonicity properties of the game, we study convergence to the
NE in prescribed-time.

For every ¢ € Q, let o, > 0 be such that o,,, (I —0G,(x)) < o,
for all x € R, where G, denotes the Jacobian of the pseudogradient,
and where o, (-) denotes the maximum singular value of its argument.
Such ¢, always exists since the pseudo-gradient G, is assumed to be
globally Lipschitz for all ¢ € Q. We make the following assumption on
the parameters of the game and the selection of the tunable parameters
in (52)—(53).

Assumption 4 (Tuning Guidelines). There exist 0 < n< n, 8, > 0, and
84 > 0 satisfying 6, + 6, := 6 € (0, 1) and:

min ¢ N
P<s — 9% L_gd_ 0 ming,, (54)
" 7y n—naeQ
(max,eq 0, ) -
for some 7, > 0 and N, > 1, where ¢, := Kq/fg. O
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Fig. 5. Comparison between Pseudo-Gradient Flow (PSG) with exponential convergence and PT Nash-Equilibrium Seeking in a Switching Game. Left: Trajectory of the errors to
the NE generated by the PT-NESmr, the PT-PSG, and the Exponential PSG dynamics. Right: Trajectories of the switching signal () (top), the dwell-time state = (middle), and the

monitor state p(r) (bottom) for the PT-NESmr dynamics.

The stability properties of the states x,, x, are studied with respect
to the following set
A, =X} x {x} CcR"xR". (55)

The following proposition establishes PT-S; of the set A, under the
PT-NESmr dynamics.

Proposition 4. Suppose that Assumption 4 is satisfied. Then, the PT-
NESmr dynamics render the set A, X [0, Ny] X Q@ x R, PT-Sg, provided

max{3,2<é2 +ﬁz)}1n(r)

T, > s 56
d 4nv (56)
(-64-8,)5° — .
where v = W’ G = MaXeg Oy £ = min,o (¢, and r =
-2 5 -
7 nNg=1) 1
e { L e T Ty } =

Proof. We show that, under Assumption 4, a suitable Lyapunov func-
tion for the “target” system H can be used to show that Assumption 3
is satisfied. Indeed, for every 4 € Q consider the Lyapunov function

A n(#)?

R 1. 2ol o2
Vq(X,T)=2|X2—X| +Z|X2—x1| +

lGat| -

<

which in the flow set and jump set satisfies: Uq,1|f‘|f4¥ Vi%, %) <
0ialdl , with o5 = 025min {12627 |, and v, = 0.25max
{3, 242027 } Let
£y p Vil t) = <VV4<5<,f>,( fﬁ(ﬁ’f) >>
Since G;(-) is k;-strongly-monotone and #;—Lipschitz, we have that
(x1 =% Gy&)) 2 ¢
LimVe®®) = -
n(t)
= 20($) (Gy(%)). [T = 0G4(%))] (%7 — %))
—n(®) [(%) = x*, Gy(%))) — o (B)|G(3I)
< =n® (x5 Mey(51.57; )

(57)

2
gé(fcl)l , where ¢; = K;/fq. During flows:

. a2
|%y — %41

(58)

for all (%, %, p) € R¥ x [0, Ng] X [0, 7}, where y; 1= (%, — £,G;(%))) €
R?", and M,, is given by
1 s \T
L ) To
M (3,,8) = " %D )
K I-0G;(%)) (& —pn' (NI

13

Using Lemma 8 in the Appendix, we conclude that E(fé,p)Vé(fc, 7) <
—nle)(qlz for all (%;,%,,%) € R* x [0, Ny]. Hence, by noting that

V(2. 8) < imax {3,2 <§ +ﬁz> } | x;1* we obtain:
q

4nvy

LigmVa®t) < - = V;x. 1) (59)
max {3,2 (é +ﬁ2> }
q

Now, for all p, 4 € Q, let
AVﬁ‘i(fc, 2) 1=V, (Ry(R). 2 = 1) = V3(%.%), £ €[, Nl
During jumps:
Avﬁ‘f(fc,f)z Vi (R.%), 2 — 1) = Vj(x,9) (60)

1, 2 1, A 1 o
S—Z|x1—x*| _lel_x2|2+4_,(%|gﬁ(xl)|2

p

+

NI —

£?
<n<No -1
)
<-(1-71) 2.0,

R 2,7(N071)2f{27+1

- n(1>2> [Zen

. . o R
where 75 1= T The above inequality implies that V; (Rﬁ(x),
-1 < yZVﬁ(ﬁ,%). where ¢ = min@ig Cs K 1= maxseg kg, and
R . q . Z_ n(No=1)? 1=
K = minggg k;. Thus, noting that 5 S @R SEaE = 1 We
obtain:
Vi (Ry(2),2 = 1) <YV, %), (61)

for all = € [1, Nyl, p,q € Q. By the smoothness properties of G,0) and
the differentiability of #(-), we obtain that fq(x,7) is locally Lipschitz
and, thus, that Assumption 2 also holds. On the other hand, note that
via a simple change of coordinates, and without loss of generality, the
results of Theorem 1 hold for A as defined in (28) but with the set {0}
replaced by the set A, in (55). Therefore, the quadratic bounds on the
Lyapunov function, together with condition (56), (59), and (61), imply
PT-Sg of A, x [0, Nyl X Q X R via Theorem 1-(a). [ ]

Remark 19 (PT-NESmr with Non-Monotone G- Unlike [43], the results
of Proposition 4 can be directly extended to switching games where
some modes lack strong monotonicity in their pseudo-gradients. In this
case, we can use the HDS H with data (38) and leverage Theorem 2,
paralleling the approach followed in Section 5.A to study unstable
plants. In this case, we obtain conditions on z; and 7, in H, charac-
terizing admissible switching signals under which PT-NESmr dynamics
attain prescribed-time stability. This broadens PT-NESmr’s applicability
to switching games with temporary loss of strong monotonicity. O
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To illustrate the previous discussion, let Q = {1,2,3} and Gy(x)) =
9A (x — X), with ¥ = (1,1), A, = [6,-1.5;-1.5,6], A, = [8,-2;2,8],
Ay = [4,6;5;2], and 9 = 5x1072. The pseudo-gradient g,()is Kq-strongly
monotone only for ¢ € {1,2} =: Q, and #,-globally Lipschitz for all
g € Q. Using k =1, 7, =1, =25, Ny = 1.75, T, = 2 we simulate
the system using a switching signal ¢ € Zpyapr(74. No, T, o) with
T = 10. We compare our results with the continuous-time prescribed-
time pseudo-gradient-flows (PT-PSG), recently introduced in [48], and
given by x; = u ()G, (x)). The resulting trajectories are shown in
Fig. 5. As shown in the figure, under the PT-NESmr and the PT-PSG dy-
namics, the state x; rapidly approaches zero as t — Y7, and converges
faster than using the standard pseudo-gradient flows with exponential
convergence guarantees (Exponential-PSG). Also, note that the syner-
gistic incorporation of momentum, resets, and PT techniques leads to
an improvement compared to the continuous-time PT-PSG algorithm
under the same switching signal. The overshoots occur when the Nash-
equilibrium seeking algorithms operate with a pseudo-gradient that is
not k-strongly monotone, or equivalently when ¢ € 9, =9\ Q.

6. Conclusions

The property of prescribed-time stability was studied and extended
for a class of hybrid dynamical systems incorporating switching nonlin-
ear vector fields with time-varying increasing gains, exogenous inputs,
and resets. Novel switching conditions that preserve the prescribed-
time stability properties of the system were derived using tools from
hybrid dynamical systems theory and under a suitable contraction/
dilation of the hybrid time domains. The switching conditions allow
the incorporation of unstable modes. The results were illustrated in
two applications in the context of control and decision-making. Fu-
ture applications will include prescribed-time concurrent learning and
prescribed-time switching extremum seeking. Future work will also
include studying the synergies between non-smooth and prescribed-
time tools, as well as consistent discretization mechanisms for HDS,
similar to [49].
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Appendix

We present detailed proofs of all the auxiliary lemmas and proposi-
tions used in the paper.
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A.1. Proofs of Section 3

The results below follow directly by computations and/or straight-
forward extensions or specializations of existing results in the literature.

Proof of Lemma 1. By direct integration, we have that:

wm® g t -1
/ ”kl :/ kdt = —ku "
I+4 0
Ho u k

k

Hi (1) _k

Ho

Thus, it follows that k (—Mk(t)_T] + yk(O)_Tl> = %t, and:

1
11 t — 1 (0) %
- LT T
My (D) * 1 (0)% T uy (0) %
from which we obtain the result. [ ]

Proof of Lemma 3. By direct integration, we have that:
a® dp ! =Lk

/ ’ukz/ﬁdt:—llﬁk- ":k

Ho I3 o T -7 Ho

I

»w

Therefore, we obtain % <

k
" k—1 ELN &
N=|—t¢ )
A () < Tt H

This obtains the result. [

_1
(1)—[40 ") = %t, and:

Proof of Proposition 1.

(P1) Follows by the monotonicity of w,(:,-) in its first argument,
combined with the limit lim,_y, 4 (®) = 0

(P2) For k > 1, the result follows by direct computation. For k = 1,
the result is obtained by the properties of the logarithm.

(P3) By definition, the equality 7;(0) = 0 holds for all k € Ry;. For
k = 1, by direct computation, we have: @ = (,)/41(1) = (1. For
k > 1, by the chain rule, we obtain: "

dT, (1) _ 0wy (b, 1y (0)) e = 1 (1)
di F N
(P4) For k = 1, we have that u,(r) = “T_ 1t then follows

T—ppt
-1
that s = (7 oTl‘l) (s) = Tln <M) Solving for Tl‘l(s) leads to
0

T‘l(s) =Yr, (1 - e_%). For k> 1, let y, := T‘1 By using (5), and the
inverse function theorem, we obtain that 22« M . Then, by direct
integration and using the fact that yk(O) = O we obtam the following

equality Yy, —y,(s) = ((ka”S

+ YTI’ k") " Solving for 7,7!(s), we obtain
1

that 7,7 (s) = Yy = Y (14 422 ‘;X =

(P5) Follows directly by the inverse functlon theorem.

(P6) For k = 1, using the equality In(1 — x) = Z[ . _ll L x| < 1, we
obtain that 7,(r) = uot + X0, %Mét’Tl", for all tpy < T. Letting T — oo,
the second term in this expression vanishes, and we obtain that the
equality limy_, , 77(r) = ot holds for all (z, 4y) € Ry X Ry;. For k > 1,
from Remark 5 it follows that

k=1 1 1=k
T tul

Tk(z)=T° -2 —1f (62)
k—1 T

Now, using the binomial theorem we have that
LIk 1y

g (k - 1):;40 g
- — -1= + ,
T Z 8k, T
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1 1
for all 1uf < T, and where g, = W Thus, for all 14} <
' u (k=1)!
T, equality (62) can be written as T,(f) = u © t + Zm L) 11;40 il
Letting T — oo, the second term in thlS expression Vamshes Thus,
k=1

it follows that the limit limy_ 7, (t) =
Ryg X Ry

4, 1 holds for all (1, 4y) €
|

A.2. Proofs of Section 4
In this section, we present the proofs of Section 4.

Proof of Lemma 4. Let 7; >0, Ny > 1, and o(t) € Z5pr(r,. Ny). Then,
it follows that

1
N(ty, 1)) < T—(z2 — 1)+ Ny, (63)
d

for all ¢, < t,. We prove that expression (63) can be upper bounded by
the right-hand side of (22).

Case k = 1: Assume that t,,#, € [0,Y7 ) and define X := ::T"‘_;' ,
i Tk—2
where Yr; = Tuj"' and g > 1 fixed. Then, X > 1 and:
1
b=t =0, -0 (1-5)-
2=t = = 1) X
Now, fix ¢, and define f(X) := In(X) - T~'(Yp, — 1)) (1 - %) Since

t; satisfies 1 < Y7, < T by assumption, it follows that there exists
5, €10,1] such that:

1
F(X) =1n(X) - 5, (1 - Y)‘

By noting that f(1) =0, and since X > 1, it follows that the derivative
of f satisfies:

(-3

for all 5, € [0,1]. Thus, f(X) > O forall X > [ and 1} < Y7 ,.

Equivalently, by using the definition of X, it follows that:

Yri—1
Thh{—— ) —-(t,—1t) >0,
n<YT,1—’2> G-z

0=

for all 0 < t; <t, < Y7, where we have used the definition of X. Using
this bound in (63) yields:

Y, —t
N(pt) < = 1n <L> + Ny,
T4 Yri-1n

for all 0 < 1, < t, < Yy, which implies that o(¢), when restricted to
[0,Y7 ), satisfies the bound (22) for k = 1.

_1
Case k > 1: Assume that 11,7, € [0,Y7y), with Y7, =Tpu,*, T >0
and y, > 1. Let 4 =t, — 1}, and define

f4)=

Then, by using the result of Proposition 1-(P3) the derivative of f
satisfies:

@)=

for all t;,4 € [0,Y7 ;). Since u,(t) > 1 for all + € Ry, the previous
equality implies that f’(4) > 0. This result, together with the fact that
f(0) = 0, implies that f(4) > 0 for all #;,4 € [0,Y7 ). Equivalently, by
using the definition of 4 we obtain:

Tt +4) =T (1)) — 4, A€[0,Y7 ).

Het +4) -1,

0 < Ti(t) = T (8) — (1) — 1)
= (t) — 1) < (1), ui(t))),

where the implication follows from the result of Proposition 1-(P2).
Using this bound in (63) yields:

1
N(t,t) < T—wk(llk(lz), Mi(t1)) + Ny,
d

for all 0 < #; < t, < Y, which implies that o(t), when restricted to
[0,Y7 ), satisfies the bound (22) for k € Zs,,. [ ]
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Proof of Lemma 5. The case k = 1 follows directly by the definition of
7, and Remark 3. For k > 1, consider expanding the right-hand side of
(22):

k-1
T llk(lz) " ﬂk(tl)T
N(t,, < — N,
(2. 1) k—1 =1 | T
k-1 k-1
(Yre—t1) = (Yrx—12)

T k-1 < ((YT,k _ t2) (YT.k _ ’1))k_] ) + N.

Taking the limit as k — 1, one obtains (23), see also Remark 3. On
the other hand, when k € Z.,, the Binomial theorem can be used
to write (Yy, — )¢ = ’;;z) bk‘,Y;f;l’f(—t[)f, for i € {1,2}, where

(k=D! _ are the so-called Binomial coefficients. Let

ber = oo

k—1 k-1
R DN At C D W A et G
£=0 £=0

k—1 k—1
k—1-¢ 4 k—1-¢ 4
= Z b"JYT,k (=) = Z bk,lYT,k (=1,)
=1

= b, Y} l)+2bk,Y" = ((=1)f = (=1)")

k (’2

k=1
= b Yt — 1)+ (=D b Y (15 1)
=2
Therefore, the BU,-ADT bound can be written as

Tk S
N(t, 1)) < < — >+N0
k=1 (O =127 p — ’1))k '

k—1
7e(t1,12) ~ ¢ v
= —-|(t, — 1)+ 1, —t + Ny,
- (1, =1y) z,ff,k(z 1) 0

=2

where

1 b
g = (_1)f+lkaYTlf;€l—f (kaY#;{z) = (—1)f+! bkl yl-¢

Tk *
and
by TFY K2 1 k-1
wni =~ (o)
T* Yy !
- m [(YT,k —1y) (Yru— ’1)]

[ Y72"k :|k—1
= Uy 2
(YT,k - ’2) (YTA,k - ’1)

where we have used the fact that b, ; =k — 1.

A.3. Auxiliary results of Section 5

The following Lemma is instrumental in studying the stability prop-
erties of the HDS with data (52).

Lemma 8. Consider the matrix

o _ T
M (.0 ::< P 6Qq(x1)>

64
1-0G,(x)) (&, —pn' (DI

where g € Q, 7 € [0, Nol, n(x) € [n.7, p € [0,1/7,), and n'(z) := (),
G,(), and ¢, are as introduced in Section 5.2. Suppose that Assumption 4
is satisfied. Then,

M{:q(xl,r)vaI, V7 e[0,Nygl, x;, eR" (65)
L U=54-6)7" . N _
where v, := m, with { :=mingeg {, and o := max e 0, O
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Proof.
First we show that matrix-valued function ng(~, -) is positive-
definite uniformly over p € [0, r;l], x; € R", and 7= € [0, Ny]. To this

end, we decompose the matrix M(:q (x;,7) as follows:

M, (x1,7) = Uy(x, W, (7, x)U, (xy. 7, (66a)
I
W,(z,x,) 1= 107 0 (66b)
! 0 0, —* @) Z(x) Z,(x )"
0,(0) =8, —pn' (@), Z,(x1) :i=1-0G,(x)), (66¢)
_ I 0
Uy(xy.7) = <n2(f)2q(xl) 1> : (66d)
By the fact that 5(r) € [Q,:ﬂ for all = € [0, N] it follows that
1 1
I>—1. (67)
n(@? 3t
Also, by Assumptions 4, we have that
0,1 = (0P Z,(x) Z,(00) = (0,8 =707 ) 1
ﬁ_g —2 2
= <Cq— N, -7 o-q)]
>4, (68)

where § := (1 - 0)¢, with ¢ = min,eq ¢, Therefore, via [50, Theorem
7.7.7], the matrix ng(xl,r) is positive definite for all x; € R" and
7 € [0, Ny]. Now, we establish the matrix inequality (65). To do so, we
use (67) and (68) in (66a) to obtain that

1
M, (xy,7) =2 U,(x{,7) ﬁ_zl 0 T(x T)
[ e A Y 0 5r g X1

> Z,(x),0)Z,(x.7)", (69)

where Z,(x;,7)" is the upper block triangular matrix

1 (o)
i1 %zq(xl,r)T)

Z (x;, o) =7
o <o VeI

By applying [51, Lemma 9], and using (69) together with the fact that
Z,(xy,7) has full column rank for all x;, € R” and 7 € [0, Ny] and
thus that 6,,;,(Z,(x;. 1 Z,(x1,0)7) 2 6in(Z, 0%, D)omin(Z,(x, D)) =
o2, (Z,(x;,7)"), we obtain

M, (xq,7) > 1 1
[¥he] - =
7 (14 Z1z,0020 ) +
—
1-6,-6,)0
 (-5,-0)

T 8,(1-8) +5

Sl —

where in the last two steps we used Assumption 4. This completes the
proof. |

A.4. Lyapunov conditions for exponential-ISS of hybrid dynamical systems

The following lemma is a specialization of [33, Prop. 2.7] for the
case when the system is exponentially ISS. We present the complete
proof here only for the purpose of completeness.

Lemma 9. Consider the HDS (3), and a closed set A C R™. Suppose
there exist constants a,a,p,p > 0, 2 € (0,1), and a smooth function
V : CuUD — Ry, such that the following inequalities hold:

alz|’ <V(z)<@lzl’, VzeCuDUGD),
(VV(2), F(z,u)) < —AV (2) + plul®, V (z,u) € C xR",
V(G(z) = V(z) £ =AV(2) + plul’, V (z,u) € DX R".

16
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Then, every solution of (3) satisfies

lz(s, N 4 < x1€7*26H12(0,0)| 4 + k3 sup |u(7)],

0<7<s

(70)

for all (s,j) € dom(z), and where k, = (E/g)p, ky = A/2p, and k3 =
25 \7/P
()" O

Proof. We follow similar ideas as in the proof of [33, Prop. 2.7], but
considering set-valued flow and jump maps. The proof has four main
steps:

Step 1: First, note that for all (z,u) € (C U D) x R™:

— V(@) + plul? < —%V(z), it V(2> 2. 71D

K
Therefore, whenever V(z) > 27”|u|” we have that

(VV(2), F(z,u)) < —AV(z), Y(z,u) € C X R™,
V(G(z)) - V(z) < —AV(2), ¥(z,u) € D X R™,

where 1 := 4/2.

Step 2: For any r > 0, define y, L8, ) = e~#s+) . We first show that
when V(z) > 2_; |u|?, the function V evaluated along the solutions of (3)
satisfies

V(z(s, /) < 7;(V(20,0)), 5,)), V (s,)) € dom(z). (72)

To establish this property, note that since V(z(-,-)) is not increasing
during flows and jumps, if there is (s', j') € dom(z) with 0 < 5"+’ < t+j
and such that V' (z(s', j/)) = 0, then we necessarily must have V (z(3, j)) =
0 for all (5, j) € dom(z) such that s’ + ;' < §+j < s+ j, and (72) would
hold for such times (3, j). Suppose there is no (s', ') € dom(z) with
0 < s’ +j" < t+j such that V(z(s',j')) = 0. For each (s,j) € dom(z),
we partition the hybrid time domain of z up to time (s, j) as dom(z) =
Uf,:()[sn,sn“] X {n}, with sy = 0 and 5, = s. For any n € {0,1,...,/},

V satisfies
Sn+l
‘rs—/ dr = —(5,41 — Sp)-
S,

/sn+l
5 n

n

—
V(z(z,n)
AV (z(z,n))

Using the new variable ¢ = V(z(z,n)), we obtain do = Vdr and the
above integral can be written as

V(@ su1m) g
4
/ = < _(er-l - sn)'
Vsm) A0
Similarly, note that
/V(z(sn+].n+l)) @ < /V(z(s,,+],n+l))
VEsum) A0 IV

<-1,

(73)

__do
AV (2(8,1151))

where the last inequality follows by the inequality V(z(s,j + 1)) —
V(z(s,j)) < —AV(z(s,j)). Combining the above two inequalities, we
obtain

/wz(s,j)) dp 2 /wz(wm) do
veooy A0 S Svee.m Ao

J /V(z(s,,“,nﬂ)) do
+ —-—
Vizsuprm) A0

n=1
J J

<- <Z(5n+l - Sn) + Z 1)
n=0 n=1

= (5,01 = S0 + ) = —(s + ). 74

Integrating the left-hand side, we obtain % In (%) < —(s+j), from
which we directly get '

V(2(s.)) < V(2(0,0))¢ 26 (75)
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Step 3: Let (z,u) be a maximal solution pair of (3). Define the set

Q:= {zeR":V(z)S z—flulf;}. (76)

For each z, € R”, let

T,

FATR

= sup{‘r ERy : 2(s.)) & Q. 2(0.0) = .,
V (s,)) € dom(z), O§s+j§'r}.

It follows that for all solutions of (3) with z(0,0) = z, and (s, j) € dom(z)
such that 0 < s+j < Tz, We have that V(z) > % |ul?_, which, by Step
2, implies that V satisfies (75). Using the quadratic upper and lower
bounds on V, we obtain:

1

Z\7 A
2(s, )| 4 < <g> 12(0,0)] g~ %,

77)
which holds for all (s, j) € dom(z) such that 0 < s+ j < Tz

Step 4: The last step is to prove forward invariance of 2. Suppose
there exist (s, j') € dom(z) such that z(s’,j’) € 2 and (s',j' + 1) €
dom(z). Since 1 < A, V satisfies

V(s j + 1) < (1= DV (s, i) + plul?,,
A\ 2p 2p
<(1-3) Ptz +plutz, = FLrul.

Moreover, if (s',j’ + 1) € dom(z), then z cannot leave Q2 via flows
because V < 0 if V(z) > %Iulé’o. It follows that for all (s, j) € dom(z)

such that s +j > T, the solution z satisfies:

2
alz(s, 1P, < V(z(s, ) < 7”|u|zo, (78)

1
that is, |z(s, j)l 4 < (%)” |ul, for all s+ j > T, . . Combining this

bound with (77) we obtain

1 1
=\ » Aol >
|2(s, /)| 4 < max <9> " 120,01 %, <2> "l b 79
a ia
for all (s, j) € dom(z). Since max{a, b} < a + b, we obtain
1265, )l 4 < 511200, 0)[e™ 26 4 s |, (80)

1

P = =(2
) ,Kz—zpal'ldl(:;—(/m)

above inequality by time-invariance and causality.

L
”. The result follows from the

with k| = (g

The following result relaxes the third condition in Lemma 9 under
a standard average dwell-time condition on the jumps.

Lemma 10. Consider the HDS (3), and suppose that: (a) every solution
satisfies the ADT constraint (21); (b) there exist constants a,a,p,p > 0,
A €(0,1), and a smooth function V' : CUD — Ry, such that the following
inequalities hold:

alz|’, <V(z) <alzl’,, VYzeCuUDUGD),
(VV(2), F(z,u)) < —AV(2) + plul’, ¥V (z,u) € C xXR",
V(G(z)-V(z) <0, VzeD.

Then, every solution of (3) satisfies

|2(s, )4 < Kk7€72012(0,0)] 4 + 3 sup |u(D)], 81
0<7<
for all (s, j) € dom(z), where k; > 0, for i € {1,2,3}. O

Proof. The proof follows similar steps as the proof of Lemma 9. In
particular, inequality (73) still holds. On the other hand, during jumps,
we now have

V(2(Spp1on+ 1) = V(2(5p41,m) < 0 (82)

17
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Dividing both sides by 1V (z(s,. . n)), we obtain

0> V(z(syyq,n+ 1) = V(z(s,41, 1)
- AV (2(s,41,1)

~ /V<z<s,,+1,n+1>) do
V) AV (Z(Spp1s 1)
It follows that inequality (74) now becomes /VV(ZE)SO/)))) %’ < —s, from
which we obtain after integration:
Ag
V (z(s, ) < V(2(0,0)e” 2" (83)

Finally, the ADT condition (27) guarantees that j < %s + N, for any
(s, j) € dom(2), which implies that s + j < (% + s + ]d\fo. In turn, this
inequality can be written as s > 1%‘,(5 +j) - Ii—"TdNO, so that (83) can
be upper-bounded as follows:

V(2(s, J)) < x7e 86DV (2(0,0)), (84)

A T
where i; = e2 ¥ N0 and Kg = %11—"1 From here the proof follows the
d
same Steps 3—4 from the proof of Lemma 9. In particular, the inequality
(80) now becomes

|z(s, 4 < %1 12(0,0)|e 26+ + &5 ]ul

1
—_ - A T4
QNP ,2p Tary No ATy
- e y Ko o= - >
a 2p 1+zy

with k| :=

andrc3=(2—">%. [ ]

Ax

Corollary 2. Consider the normalized-by-y,, BU-ODE of Lemma 3, % =
1
% A . Then, for any ¢ > 0 and any solution fi to the ODE satisfying

1 (0) = g > 1 the following bound holds:
H() < eT, Vs ERy,
when k = 1, and

k-1

_[%
y,;f(s)s( s+1) . VsERy,,

when k € Zs,. O

Proof. We divide the proof into two cases.
Case k = 1: From Lemma 3, for k =

normalized-by-u, BU-ODE is given by:

1, the solution to the

ﬁk(s) = Moe7-

It follows that y;f(s) = ,uaff% < ef% for all s > 0, where we have
used the fact that u; ? < 1 since puy > 1 and # > 0 by assumption.

Case k > 1: From Lemma 3, for k > 1, the solution to the
normalized-by-u, BU-ODE is given by:

. k ST
i (s) = ( s+ u, .

k
Using the fact that y, > 1 and that (-)%-T is monotonically increasing in

R, for any k > 1, and thus preserves the order in R, it follows that
= k = v
k=1

-1

A (s) > %s + l)m. Therefore, we obtain: /i’ (s) < (%s + 1>_
for all s > 0.

Lemma 11. Suppose that every solution pair (2, i) of the HDS (26) satisfies
the bound (30) for dll (s, j) € dom(2). Assume that A(j,) = ﬁ;f , where
¢ > 0. Then, (2,0) satisfies the inequality

1265 DLt < Bi(R120,0)Le ™0 + Ryl 05 ),

for dll (s, j) € dom(z2), where &, := k|, k, := K—zz, K3 := 2k3. Here f.(r,s) €
k

KL is defined as B (r, s) = r-max{x;e™2*, &7 (s)), &(s) = ("—;‘s " 1)m
for dl k> 1, and & (s) = et O



D.E. Ochoa et al.

Proof. Consider a complete solution pair (2, #) of the HDS (26) satisfy-
ing the bound (30). Then, we have that

1205, )4 < x17202(0,0)] 4 + x5 - sup A, (85)
0<¢{<s

for all (s, j) € dom(2), and where A(s) := A(u;” (s))i(s). Next, pick an

arbitrary time (5,j) € dom(2), and let $(r,k) := 2(r + 5,k + j), and

o(r, k) = y;" (3 + r). Since § is also a hybrid arc that is a solution to

(26), using the above bound and by time-invariance, it satisfies:

190, )14 < K190, 0072 1 i [al g 0]

= 1|25, e ™20 i fat] gy sup 4O+ 1)
0<r<

S
<t<r

< k112G, D120+ sl o 7 (5. (86)

Now, using (85) with s = § and j = j, we obtain:

25 1)l 4 < K112(0,0)] 42D 4 ksl 55, sup A77 (o). (87)
0<zr<r

Combining (86) and (87), and using Remark 2, we have

19 H0Lg < 3 (1120, O™+

+ x5 sup [a(o)] sup A’ (T))e_"Z(H'k)

0<z<r 0<z<r
~ el =
+ K3 sup |a(o)| " (3).
0<r<r

Evaluating the above bound at r =
dom(y), we obtain:

195G D < 1 (1120,0)] g™ 26+

5 and j € Zy, such that (5,)) €

+ k3 sup |a(z)| sup ﬁ;f(r)>e"(2(§+f )

0<7<5 0<7<5§
+13 sup ()| ()
0<7<5§
5K1<K1|2(0,0)| €20 e sup |ﬁ(r)|>e"“2(§+i)
0<7<s

+x3 sup |a(o)| g (5)
0<7<§

(x1120,0)] g4+

IN

+2k; sup |ﬁ(‘r)|> max {25, 47 )}
0<r<s

where we used the fact that e/ < 1, and supyg,; 477 (r) <y’ < 1

since y, > 1 and ¢ > 0. Using the result of Corollary 2 it then follows

that

195G Dl < (k1120,004e™ T +265 sup 18] )1e(5)
0<7<§

_k_
where n,(s) := max{k,e ™25, &7 ()}, &,(s) = (§s n 1) “T forall k > 1

and &,(s) = eT. Note that n, is continuous and satisfies #,(s) — 0 as
s — oo since kje™*2* — 0 and & (s) — 0 as s — oo. Now, using the
definition of y, and letting A :=25, i :=j +j:

A, s
124 i) 4 < (mz(o, )26+ 4 26,4 sup |ﬁ(r)|>nk(/l/2)
<r<§

Since the choice of (5,j) € dom(z) was arbitrary, z is complete,
and the previous inequality holds for all j € Z,, in particular we can
use s = 25, j = j, and j = 0 such that (s,j) € dom(z). Thus, from
the above inequality and using Remark 2, we obtain that there exists
Bi(r.s) :=r-n(s) € KL such that

1265, < B R 120,00 e ™20 + Rl 05),
with k| =k, kp = %, K3 1= 2k3.
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