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A B S T R A C T

We consider the problem of achieving prescribed-time stability (PT-S) in a class of hybrid dynamical systems
that incorporate switching nonlinear dynamics, exogenous inputs, and resets. By ‘‘prescribed-time stability’’,
we refer to the property of having the main state of the system converge to a particular compact set of interest
before a given time defined a priori by the user. We focus on hybrid systems that achieve this property via
time-varying gains. For continuous-time systems, this approach has received significant attention in recent
years, with various applications in control, optimization, and estimation problems. However, its extensions
beyond continuous-time systems have been limited. This gap motivates this paper, which introduces a novel
class of switching conditions for switching systems with resets that incorporate time-varying gains, ensuring
the PT-S property even in the presence of unstable modes. The analysis leverages tools from hybrid dynamical
system’s theory, and a contraction–dilation property that is established for the hybrid time domains of the
solutions of the system. We present the model and main results in a general framework, and subsequently
apply them to two different problems: (a) PT control of dynamic plants with uncertainty and intermittent
feedback; and (b) PT decision-making in non-cooperative switching games using algorithms that incorporate
momentum, resets, and dynamic gains. Numerical results are presented to illustrate all our results.
1. Introduction

Recent advances in nonlinear control analysis and design [1–4] have
reinvigorated the concept of Prescribed-Time Stability (PT-S), leading
to successful applications across various domains, including nonlinear
regulation [1,2], adaptive control [3], systems with delays [5], par-
ial differential equations [6], and stochastic systems [7]. In contrast
o asymptotic or exponential stability, the PT-S property guarantees
hat the system’s trajectories will converge to the desired compact
et within a predetermined time, regardless of the initial conditions.
s such, achieving this property requires either time-varying or non-
ipschitz vector fields in the dynamics of the system. Non-Lipschitz
utonomous systems that achieve convergence to the point (or set) of
nterest before a fixed time have been studied in [8–10]. The state
of the art of this property, usually called ‘‘fixed-time’’ (FxT) stability,
was recently reviewed in [11], with some recent applications in cer-
tain classes of hybrid systems under homogeneity conditions [12,13],
ontinuous-time systems in canonical forms with switching gains [14],
nd non-switching impulsive systems [15]. In contrast to this line of
esearch, this paper we study systems that achieve convergence to the
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target before a prescribed time using the ‘‘time-varying gain approach’’
introduced for ODEs in [1], usually refereed to as ‘‘prescribe-time
control’’. This method has a long history in optimal control and tactical
missile guidance systems [16], and it has recently gained renewed
attention due to breakthroughs in the design and analysis of nonlinear
and adaptive controllers in continuous-time systems with finite-time
convergence properties. For a recent survey, see [11] and recent works
on adaptive systems [1–4,17], PDEs [5,6,18,19], and systems with
delays [20,21]. Since this control approach uses ‘‘blow-up’’ gains over
bounded time domains, the solutions of these systems are also defined
only over finite-time intervals. For comprehensive discussions on prac-
tical applications, strategies to extend the solution domains, and the
advantages and limitations of PT control, we refer the reader to recent
works [1,2,11,17,22].

While the study of Prescribed-Time stability properties in conti-
nuous-time systems modeled as ordinary differential equations (ODEs)
has seen significant progress, PT-S tools for hybrid dynamical systems
(HDS) have remained mostly unexplored. For example, switching sys-
tems with time-varying gains were studied in [23] using a common
ttps://doi.org/10.1016/j.sysconle.2024.105910
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Lyapunov function. Similarly, stable controllers that deactivate, or
‘‘clip’’, the high gains before the prescribed time is reached were also
discussed in [24]. However, such results consider only one vector field
during the convergence phase, and the switching rules can lead to
HDS that are not well-posed in the sense of [25]. To the best of our
knowledge, general results on PT-S for switching and HDS, similar to
those existing for asymptotic or exponential stabilization [26], are still
absent in the literature. Since switching and hybrid controllers have
been shown to provide powerful solutions to complex control [27,28],
optimization [29,30], and learning problems [31], there is a clear need
for the development of PT-S tools that enable the analysis and design
of new algorithms able to simultaneously leverage the advantages of
both PT-S and hybrid control.

In this paper, we address this problem by showing that the PT-
S property can be naturally incorporated into a class of HDS that
model nonlinear switching systems with resets, allowing the switching
signals to incorporate the dynamic effects of time-varying gains, while
preserving the structure of the hybrid arcs associated to the solutions
of the system. Specifically, the main contributions of this paper are as
follows:

(a) First, we introduce a class of switching signals that preserve
the PT-S property in systems switching between a finite number of
PT-S vector fields with exogenous inputs and state resets. To derive
these conditions, we reformulate the overall switching system as a
HDS with dynamic gains that induce appropriate time dilation and
contraction in the hybrid time domains of its solutions. By leveraging
Lyapunov-based constructions for a suitably normalized HDS evolving
on a hybrid dilated time-scale, we show that the original system is
PT-Stable, provided the switching signal satisfies a novel ‘‘blow-up’’
average dwell-time (BU-ADT) condition. This condition allows (but
does not impose) a non-linear increase in the number of jumps and
switches as the total flow time in the system approaches the prescribed
convergence time. To study the effect of exogenous inputs and/or
disturbances in the system, we establish results via ISS-like bounds
‘‘with the convergence property’’, paralleling those in the literature
on PT-S for ODEs [1, Def. 2]. However, unlike the existing results for
ODEs, our convergence bounds, presented in Theorem 1, are written in
‘‘hybrid time’’ and highlight the potentially (asymptotically) stabilizing
effect of the resets, as well as the order of the dynamics generating the
‘‘blow-up’’ gains. To our knowledge, this is the first result connecting
the existing tools on Prescribed-Time Stability for ODEs [1] with the
setting of HDS [25].

(b) Next, we incorporate unstable modes into the switching systems,
and we characterize a novel ‘‘blow-up’’ average-activation-time (BU-
AAT) condition on the amount of time that the system can spend on
the unstable modes while preserving the PT-S property. In our model,
the unstable modes are also allowed to have ‘‘blow-up’’ time-varying
gains with finite-escape times, as well as exogenous inputs and/or
disturbances. To study this setting, we construct a HDS with time-
ratio monitors, similar in spirit to those considered in [26,31,32], but
incorporating the blow-up gains into their dynamics, enabling faster
switching between the stable and unstable modes as the total amount
of flow time in the system approaches the prescribed time. A Lyapunov-
based construction on a dilated-time scale, and a contraction argument
on the hybrid time domains, are used to establish in Theorem 2 a
T-ISS-like result for switched systems with stable and unstable modes.
(c) To illustrate the applicability of our model and results, we syn-

hesize two different PT-Stable algorithms for the solution of different
ontrol and decision-making problems with prescribed-time conver-
ence requirements. First, in Proposition 3 we consider the problem
f PT regulation of input-affine systems under intermittent feedback,
nd we propose a new feedback law that extends the results of [1] to
lants modeled as switching systems. Finally, we consider the problem
f prescribed-time Nash equilibrium seeking in games with switching
ayoffs via hybrid algorithms with resets. We show in Proposition 4
2 
hat such algorithms fit into our model and can be studied using the
nalytical tools presented in the paper.
The rest of this paper is organized as follows: Section 2 introduces

ome preliminaries on dynamical systems. Sections 3 and 4 present the
ain analytical results and the proofs. Section 5 presents three different
pplications, and Section 6 ends with the conclusions.

. Preliminaries

.1. Notation

Given a closed set  ⊂ R𝑛 and a vector 𝑧 ∈ R𝑛, we use |𝑧| ∶=
nf 𝑠∈ ‖𝑧− 𝑠‖2, where ‖ ⋅ ‖2 represents the standard Euclidean norm. A
et-valued mapping 𝑀 ∶ R𝑝 ⇉ R𝑛 is outer semicontinuous (OSC) at 𝑧
f for each sequence {𝑧𝑖, 𝑠𝑖} → (𝑧, 𝑠) ∈ R𝑝 × R𝑛 satisfying 𝑠𝑖 ∈ 𝑀(𝑧𝑖) for
ll 𝑖 ∈ Z≥0, we have 𝑠 ∈𝑀(𝑧). A mapping𝑀 is locally bounded (LB) at
if there exists an open neighborhood 𝑁𝑧 ⊂ R𝑝 of 𝑧 such that 𝑀(𝑁𝑧)
s bounded. The mapping 𝑀 is OSC and LB relative to a set 𝐾 ⊂ R𝑝
f the mapping from R𝑝 to R𝑛 defined by 𝑀(𝑧) for 𝑧 ∈ 𝐾, and ∅ for
∉ 𝐾, is OSC and LB at each 𝑧 ∈ 𝐾. A function 𝛾 ∶ R≥0 → R≥0 is of
lass  if it is continuous, strictly increasing, and satisfies 𝛾(0) = 0. A
unction 𝛽 ∶ R≥0 ×R≥0 → R≥0 is of class  if it is nondecreasing in its
irst argument, nonincreasing in its second argument, lim𝑟→0+ 𝛽(𝑟, 𝑠) = 0
or each 𝑠 ∈ R≥0, and lim𝑠→∞ 𝛽(𝑟, 𝑠) = 0 for each 𝑟 ∈ R≥0. A function
̃ ∶ R≥0 × R≥0 × R≥0 → R≥0 belongs to class  if for every 𝑠 ∈ R≥0,
̃(⋅, 𝑠, ⋅) and 𝛽(⋅, ⋅, 𝑠) belong to class  [33]. Throughout the paper,
or two (or more) vectors 𝑢, 𝑣 ∈ R𝑛, we write (𝑢, 𝑣) = [𝑢⊤, 𝑣⊤]⊤ to
enote their concatenation. We use diag

(

{𝐵𝑗}𝐽𝑗=1
)

to denote the block-
iagonal matrix obtained from the set of matrices {𝐵𝑗}𝐽𝑗=1. Given a set
⊂ R𝑛, we use I(⋅) to denote the indicator function that satisfies

(𝑥) = 1 if 𝑥 ∈ , and I(𝑥) = 0 if 𝑥 ∉ .

.2. Switching systems

In this paper, we consider switching systems with inputs, with the
eneral form 𝑥̇ = 𝑓𝜎(𝑡)(𝑥, 𝑢, 𝑡), where 𝑥0 ∈ R𝑛 is the initial condition,
∈ R𝑛 is the main state, 𝑢 ∶ R≥0 → R𝑚 is an exogenous input

ssumed to be continuous and bounded, and 𝜎 ∶ R≥0 →  is a right-
ontinuous, piecewise constant, signal that maps the current time 𝑡 to
finite set of modes  = {1, 2,… , 𝑞}, where 𝑞 ∈ Z≥1. For each 𝑞 ∈ ,
𝑞̃ ∶ R𝑛 × R𝑚 × R≥0 → R𝑛 is assumed to be continuous with respect
o all arguments. Following the notation of [26], we use  to denote
the set of all right-continuous, piecewise constant, signals from R≥0 to
, with a locally finite number of discontinuities. Such functions are
referred to as switching signals. For each signal 𝜎 ∈ , we also define
the collection of switching instants (𝜎) ∶= {𝑡 ≥ 0 ∶ 𝜎(𝑡) ≠ 𝜎(𝑡−)}. In
this way, the switching system of interest evolves according to

̇ = 𝑓𝜎(𝑡)(𝑥, 𝑢, 𝑡), ∀ 𝑡 ∉ (𝜎), (1)

where the solutions 𝑥 to (1) are understood in the Caratheodory sense
over any interval [𝑡𝑎, 𝑡𝑏) where 𝜎 is constant. During switching times
𝑡 ∈ (𝜎), we allow ‘‘jumps’’ in the state 𝑥 via mode-dependent reset
maps of the form

𝑥(𝑡) = 𝑅𝜎(𝑡−)(𝑥(𝑡−)), ∀ 𝑡 ∈ (𝜎), (2)

where the function 𝑅𝑞 ∶ R𝑛 → R𝑛 is assumed to be continuous for each
𝑞 ∈ . Throughout the paper, we will refer to switching systems of the
form (1)–(2) as R-Switching systems.

Remark 1. By taking 𝑅𝑞 equal to the identity map, system (1)–(2)
recovers a standard switching system [28]. However, other choices
of reset maps open the door to study PT-S results in reset control
systems [34] (such as impulsive systems by taking  = {1}) as well
as more general switched reset controllers (when || > 1), see [26]. It
is also possible to consider discontinuous functions 𝑓𝑞 , 𝑅𝑞 by working
with their corresponding Krasovskii regularizations [25, Def. 4.13].
However, for the sake of clarity, we focus on 𝑅-switching systems with

̃
continuous maps 𝑓𝑞 and 𝑅𝑞 . □
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2.3. Hybrid dynamical systems with inputs

Since R-Switching systems incorporate continuous-time and discr-
ete-time dynamics, for the purpose of analysis they are usually modeled
as hybrid dynamical systems (HDS) [25,26]. Such systems can be
modeled as

(𝑧, 𝑢) ∈ 𝐶̃ ∶= 𝐶 × R𝑚, 𝑧̇ ∈ 𝐹 (𝑧, 𝑢), (3a)

𝑧, 𝑢) ∈ 𝐷̃ ∶= 𝐷 × R𝑚, 𝑧+ ∈ 𝐺(𝑧), (3b)

here 𝑧 ∈ R𝑛 is the state, 𝑢 ∈ R𝑚 is an input, 𝐹 ∶ R𝑛 × R𝑚 ⇉ R𝑛
s the flow map, 𝐺 ∶ R𝑛 ⇉ R𝑛 is the jump map, 𝐶̃ ⊂ R𝑛 × R𝑚 is
the flow set, and 𝐷̃ ⊂ R𝑛 × R𝑚 is the jump set. We use (𝐶̃, 𝐹 , 𝐷̃, 𝐺) to
denote the data of the HDS. HDS of the form (3) are a generalization
f continuous-time systems (𝐷̃ = ∅) and discrete-time systems (𝐶̃ = ∅).
ime-varying systems can also be represented as (3) via an auxiliary
tate 𝜏 ∈ R with dynamics 𝜏̇ ≥ 0 and 𝜏+ = 𝜏. Solutions to system (3)
re parameterized by a continuous-time index 𝑡 ∈ R≥0, which increases
ontinuously during flows, and a discrete-time index 𝑗 ∈ Z≥0, which
ncreases by one during jumps. Therefore, solutions to (3) are defined
n hybrid time domains (HTDs) [25, Ch. 2]. A set 𝐸 ⊂ R≥0 × Z≥0 is
alled a compact HTD if 𝐸 = ∪𝐽−1𝑗=0 ([𝑡𝑗 , 𝑡𝑗+1], 𝑗) for some finite sequence
f times 0 = 𝑡0 ≤ 𝑡1 … ≤ 𝑡𝐽 . The set 𝐸 is a HTD if for all (𝑇 , 𝐽 ) ∈ 𝐸,
∩ ([0, 𝑇 ] × {0,… , 𝐽}) is a compact HTD. Given a HTD 𝐸, we use

sup𝑡𝐸 ∶= sup
{

𝑡 ∈ R≥0 ∶ ∃ 𝑗 ∈ Z≥0, such that (𝑡, 𝑗) ∈ 𝐸
}

up𝑗𝐸 ∶= sup
{

𝑗 ∈ Z≥0 ∶ ∃ 𝑡 ∈ R≥0, such that (𝑡, 𝑗) ∈ 𝐸
}

.

lso, we let sup 𝐸 ∶= (sup𝑡𝐸, sup𝑗𝐸), and length(𝐸) ∶= sup𝑡𝐸 + sup𝑗𝐸.
he following definition is borrowed from [33].

efinition 1. A hybrid signal is a function defined on a HTD. A hybrid
ignal 𝑢 ∶ dom(𝑢) → R𝑚 is called a hybrid input if 𝑢(⋅, 𝑗) is Lebesgue
easurable and locally essentially bounded for each 𝑗. A hybrid signal
∶ dom(𝑧) → R𝑛 is called a hybrid arc if 𝑧(⋅, 𝑗) is locally absolutely
ontinuous for each 𝑗 such that the interval 𝐼𝑗 ∶= {𝑡 ∶ (𝑡, 𝑗) ∈ dom(𝑧)}
as nonempty interior. A hybrid arc 𝑧 ∶ dom(𝑧) → R𝑛 and a hybrid
nput 𝑢 ∶ dom(𝑢) → R𝑚 form a solution pair (𝑧, 𝑢) to (3) if dom(𝑧) =
dom(𝑢), (𝑧(0, 0), 𝑢(0, 0)) ∈ 𝐶̃ ∪ 𝐷̃, and:

1. For all 𝑗 ∈ Z≥0 such that 𝐼𝑗 has nonempty interior, and for almost
all 𝑡 ∈ 𝐼𝑗 , (𝑧(𝑡, 𝑗), 𝑢(𝑡, 𝑗)) ∈ 𝐶̃ and 𝑧̇(𝑡, 𝑗) ∈ 𝐹 (𝑧(𝑡, 𝑗), 𝑢(𝑡, 𝑗)).

2. For all (𝑡, 𝑗) ∈ dom(𝑧) such that (𝑡, 𝑗+1) ∈ dom(𝑧), (𝑧(𝑡, 𝑗), 𝑢(𝑡, 𝑗)) ∈
𝐷̃ and 𝑧(𝑡, 𝑗 + 1) ∈ 𝐺(𝑧(𝑡, 𝑗)). □

Remark 2. By Definition 1, solutions to (3) are required to satisfy
dom(𝑧) = dom(𝑢). To establish this correspondence, we obtain the input
𝑢 in (3) from 𝑢 in (1) using (with some abuse of notation) 𝑢(𝑡, 𝑗) = 𝑢(𝑡)
during flows for each fixed 𝑗, and by keeping 𝑢 constant during the
jumps (3b). □

A hybrid solution pair (𝑧, 𝑢) is said to be maximal if it cannot be
further extended. A hybrid solution pair (𝑧, 𝑢) is said to be complete if
ength dom(𝑧) = ∞. This does not necessarily imply that sup𝑡dom(𝑧) =
∞, or that sup𝑗dom(𝑧) = ∞, although at least one of these two
conditions should hold when 𝑧 is complete. To simplify notation, in this
paper we use |𝑢|(𝑡,𝑗) = sup (0,0)≤(𝑡,𝑗)≤(𝑡,𝑗)

(𝑡,𝑗)∈dom(𝑧)

|

|

𝑢(𝑡, 𝑗)|
|

, and we use |𝑢|∞ to denote
|𝑢|(𝑡,𝑗) when 𝑡 + 𝑗 → ∞.

3. PT-ISS in hybrid dynamical systems

Motivated by the PT-S property studied for ODEs [1–5], and before
specializing our results to R-switching systems of the form (1)–(2), in
this section we introduce PT-S properties for general HDS of the form
(3). In particular, we consider systems with state 𝑧 = (𝜓, 𝜇𝑘) ∈ R𝑛×R≥1,
set 𝐶 given by:
𝐶 ∶= 𝛹𝐶 × R≥1, (4a)

3 
and flow-map defined as:

𝑧̇ =
(

𝜓̇
𝜇̇𝑘

)

∈ 𝐹 (𝑧, 𝑢) ∶=
⎛

⎜

⎜

⎝

𝜇𝑘 ⋅ 𝐹𝛹 (𝜓, 𝜇𝑘, 𝑢)
𝑘
𝑇
𝜇
1+ 1

𝑘
𝑘

⎞

⎟

⎟

⎠

, (4b)

where 𝑇 > 0 and 𝑘 ≥ 1 are tunable parameters, and 𝐹𝛹 ∶ R𝑛×R≥1×R𝑚 ⇉
R𝑛 is a set-valued mapping that we will specify below. The set 𝐷 is
iven by

= 𝛹𝐷 × R≥1, (4c)

and the jump map is given by:

𝑧+ =
(

𝜓+

𝜇+𝑘

)

∈ 𝐺(𝑧) ∶=
(

𝐺𝛹 (𝜓)
𝜇𝑘

)

, (4d)

where 𝐺𝛹 ∶ R𝑛 ⇉ R𝑛 is also to be specified. We denote the HDS (3)
with data given by (4) as . It is assumed that this system satisfies the
following standard hybrid basic conditions [25, Assumption 6.5]. These
conditions are standard in the hybrid dynamical systems literature [33],
and they will be satisfied by construction later when we specialize the
results of this section to R-Switching systems with unstable and stable
modes.

Assumption 1. The sets 𝛹𝐶 , 𝛹𝐷 ⊂ R𝑛 are closed. The set-valued maps
𝐹𝛹 and 𝐺𝛹 are OSC and LB with respect to 𝛹𝐶 , and 𝛹𝐷, respectively;
and 𝐹𝛹 is convex for all (𝜓, 𝜇𝑘, 𝑢) ∈ 𝛹𝐶 × R≥1 × R𝑚. □

Since in (4b) the dynamics of 𝜇𝑘 are independent of 𝜓 , system (4)
as a cascade structure. However, for system (4) the dynamics of 𝜓
ill mostly determine the structure of the HTDs of the solutions 𝑧,
.g., purely continuous, purely discrete, eventually continuous, etc. To
tudy PT-S properties, in this paper we consider signals 𝜇𝑘 generated
y (4b), exhibiting finite escape times that are ‘‘controlled’’ by the
arameters (𝑇 , 𝑘) and by 𝜇𝑘(0). This property can be established for
he dynamics of 𝜇𝑘 in (4b) by direct integration, and it is formalized
n Lemma 1. The proof is presented in the Appendix.

emma 1. Let 𝑘 ≥ 1, and consider the ‘‘blow-up’’ (BU)-ODE 𝜇̇𝑘 =
𝑘
𝑇 𝜇

1+ 1
𝑘

𝑘
ith 𝜇𝑘(0) = 𝜇0 ∈ R≥1. Then, its unique solution satisfies:

𝑘(𝑡) =
𝑇 𝑘

(

𝛶𝑇 ,𝑘 − 𝑡
)𝑘 ≥ 1, ∀ 𝑡 ∈ [0, 𝛶𝑇 ,𝑘), (5)

where 𝛶𝑇 ,𝑘 ∶= 𝑇𝜇
− 1
𝑘

0 . □

For each 𝑘 ≥ 1, 𝜇𝑘(⋅) is continuous in its domain, strictly increasing,
nd satisfies lim𝑡→𝛶𝑇 ,𝑘 𝜇𝑘(𝑡) = ∞. Hence, the next lemma follows directly
y the definition of solutions to HDS.

emma 2 (Bounded Flow-Time). Let 𝑧 be a maximal solution to . Then,
he HTD of 𝑧 satisfies sup𝑡(dom(𝑧)) ≤ 𝛶𝑇 ,𝑘. □

Lemma 2 states that the total amount of flow-time of every solution
f  will be upper bounded by 𝛶𝑇 ,𝑘. We will refer to this quantity
s the prescribed time (PT), and we emphasize its dependency on the
nitial value 𝜇0 and the constants (𝑇 , 𝑘). In the literature on PT-S in
ontinuous-time, 𝜇0 is usually equal to one. However, we will consider
ny 𝜇0 ∈ R≥1.
A useful property of the BU-ODE studied in Lemma 1, is that,

hen normalized by 𝜇𝑘, the resulting ODE has solutions that are
omplete and lower bounded by 1. The following Lemma is also proved
n Appendix.

emma 3. Let 𝑘 ≥ 1, and consider the normalized-by-𝜇𝑘 BU-ODE
𝑑𝜇̂𝑘
𝑑𝑠 = 𝑘

𝑇 𝜇̂
1
𝑘
𝑘 with 𝜇̂𝑘(0) = 𝜇0 ∈ R≥1, evolving in the 𝑠-time scale. Then,

its unique solution satisfies: (a) For 𝑘 = 1: 𝜇̂𝑘(𝑠) = 𝜇0𝑒
𝑠
𝑇 ≥ 1 for all 𝑠 ≥ 0;

b) For 𝑘 > 1: 𝜇̂𝑘(𝑠) =
(

(𝑘−1) 𝑠 + 𝜇
𝑘−1
𝑘

)

𝑘
𝑘−1

≥ 1, for all 𝑠 ≥ 0. □
𝑇 0
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3.1. Time-scaling of hybrid time domains

The signals 𝜇𝑘 generated by the dynamics (4b) will be used to define
suitable dilation and contraction on the HTD of the solutions to .
o do this, for each (𝑇 , 𝑘) ∈ R>0 × R≥1, and 1 ≤ 𝑎 ≤ 𝑏, let the function
𝑘 ∶ R≥1 × R≥1 → R≥0 be defined as

𝑘(𝑏, 𝑎) ∶=
𝑇
𝑘

(

𝑏𝜌(𝑘) − 𝑎𝜌(𝑘)
𝜌(𝑘)

)

, ∀ 𝑘 > 1, (6)

nd 𝜔1(𝑏, 𝑎) ∶= lim𝑘→1+ 𝜔𝑘(𝑏, 𝑎), where 𝜌(𝑘) ∶= 𝑘−1
𝑘 . The following

proposition states some important properties of 𝜔𝑘(⋅, ⋅) when evaluated
along 𝜇𝑘. The proof is presented in the Appendix.

Proposition 1. Let (𝑇 , 𝑘) ∈ R>0 × R≥1, 𝜇𝑘 be given by (5), and let
𝑘 ∶ [0, 𝛶𝑇 ,𝑘) → R≥0 be the function

𝑘(𝑡) ∶= 𝜔𝑘(𝜇𝑘(𝑡), 𝜇𝑘(0)), ∀ 𝑡 ∈ [0, 𝛶𝑇 ,𝑘). (7)

hen, 𝑘(⋅) satisfies the following properties:

(P1) lim𝑡→𝛶𝑇 ,𝑘 𝑘(𝑡) = ∞.
(P2) For any pair 𝑡2, 𝑡1 ∈ [0, 𝛶𝑇 ,𝑘) such that 𝑡2 ≥ 𝑡1:

𝑘(𝑡2) − 𝑘(𝑡1) = 𝜔𝑘(𝜇𝑘(𝑡2), 𝜇𝑘(𝑡1)).

(P3) For all 𝑡 ∈ [0, 𝛶𝑇 ,𝑘), we have

𝑑𝑘(𝑡)
𝑑𝑡

= 𝜇𝑘(𝑡), 𝑘(0) = 0. (8)

(P4) For all 𝑡 ∈ [0, 𝛶𝑇 ,𝑘), 𝑘 has a well-defined inverse  −1
𝑘 ∶ R≥0 → R≥0,

which is given by

 −1
𝑘 (𝑠)=𝛶𝑇 ,𝑘

⎛

⎜

⎜

⎝

1−
(

1+
(𝑘 − 1)𝑠
𝛶𝑇 ,𝑘𝜇0

)
1

1−𝑘 ⎞
⎟

⎟

⎠

, 𝑘 > 1, (9)

and by  −1
1 (𝑠) = lim𝑘→1+  −1

𝑘 (𝑠).
(P5) For all 𝑠 ∈ R≥0,  −1

𝑘 satisfies

𝑑
𝑑𝑠

 −1
𝑘 (𝑠) = 1

𝜇𝑘
(

 −1
𝑘 (𝑠)

) ,  −1
𝑘 (0) = 0. (10)

(P6) lim𝑇→∞ 𝑘(𝑡) = 𝜇
𝑘−1
𝑘2
0 𝑡 for 𝑘 > 1, and lim𝑇→∞ 1(𝑡) = 𝜇0𝑡 for all

𝑡 ≥ 0. □

Remark 3. To contextualize Proposition 1, consider the special case
𝑘 = 1, which is commonly used in the literature on PT-control of
ODEs [1,2]. In this case, Proposition 1 yields the following ‘‘standard’’
mappings:

 −1
1 (𝑠) = 𝛶𝑇 ,1

(

1 − 𝑒−
1
𝑇 𝑠
)

, ∀ 𝑠 ∈ R≥0, (11a)

1(𝑡) = 𝑇
(

ln
(

𝜇1(𝑡)
𝜇1(0)

))

, ∀ 𝑡 ∈ [0, 𝛶𝑇 ,1). (11b)

ndeed, note that (9) can be written as:  −1
𝑘 (𝑠) = 𝛶𝑇 ,1 (1−

(

1 + 𝑠
𝑛(𝑘)𝑇

)−𝑛(𝑘)
)

, with 𝑛(𝑘) = 1
𝑘−1 . Using 𝑒

𝑠
𝑇 = lim𝑛→∞

(

1 + 𝑠
𝑛𝑇

)𝑛
and

he fact that 𝑛 → ∞ when 𝑘 → 1+, we obtain (11a). Similarly, using
lim𝜌→0

𝜇𝜌1−1
𝜌 = ln(𝜇1), and the fact that 𝜌(𝑘) → 0 if and only if 𝑘 → 1,

11b) follows directly from (6) and the definition of 𝜔1 by applying the
product law for limits. □

The properties established in Proposition 1 are used to derive the
following result, which provides a suitable dilation/contraction of the
HTDs of  with data defined by (4) when analyzed in a different hybrid
time scale (𝑠, 𝑗) induced by the transformation 𝑠 = 𝑘(𝑡), see Fig. 1. Note
that, since 𝜇𝑘 does not change during the jumps (4d), when evaluating
(7) along (hybrid) solutions of 𝜇𝑘 generated by (4c) we can omit the
dependence of  on 𝑗.
𝑘

4 
Proposition 2 (Dilation and Contraction of HTD). Let (𝑇 , 𝜇0, 𝑘) ∈ R>0 ×
R≥1 ×R≥1, and 𝑘 be given by (7). Consider the following HDS, denoted by
̂, evolving on the (𝑠, 𝑗)-hybrid time scale, with state 𝑧̂ = (𝜓̂ , 𝜇̂𝑘) and input
𝑢̂:

(𝑧̂, 𝑢̂) ∈ 𝐶̃ = 𝐶 × R𝑚, ̇̂𝑧𝑠 ∈
1
𝜇̂𝑘
𝐹 (𝑧̂, 𝑢̂). (12a)

𝑧̂, 𝑢̂) ∈ 𝐷̃ = 𝐷 × R𝑚, 𝑧̂+ ∈ 𝐺(𝑧̂). (12b)

where (𝐶̃, 𝐹 , 𝐷̃, 𝐺) in (12) are the same as in (4), and where ̇̂𝑧𝑠 ∶= d
ds 𝑧̂.

Then, the following holds:

(a) If (𝑧̂, 𝑢̂) is a maximal solution pair of ̂ from the initial condition
𝑧0, then the pair of hybrid signals defined as (𝑧(𝑡, 𝑗), 𝑢(𝑡, 𝑗)) ∶=
(𝑧̂(𝑠, 𝑗), 𝑢̂(𝑠, 𝑗)), for all (𝑠, 𝑗) ∈ dom(𝑧̂), is also a maximal solution
pair of  from the initial condition 𝑧0 via the time dilation 𝑠 = 𝑘(𝑡).

(b) If (𝑧, 𝑢) is a maximal solution pair of  from the initial condition
𝑧0, then the pair of hybrid signals defined as (𝑧̂(𝑠, 𝑗), 𝑢̂(𝑠, 𝑗)) ∶=
(𝑧(𝑡, 𝑗), 𝑢(𝑡, 𝑗)) for all (𝑡, 𝑗) ∈ dom(𝑧), is also a maximal solution pair
of ̂ from the initial condition 𝑧0 via the time contraction 𝑡 =  −1

𝑘 (𝑠).

□

roof. We prove each item separately:
(a) Let (𝑧̂, 𝑢̂) be a maximal solution pair of ̂ from 𝑧0. Then, for

ach 𝑗 ∈ Z≥0 such that the interior of 𝐼𝑗 ∶= {𝑠 ≥ 0 ∶ (𝑠, 𝑗) ∈ dom(𝑧̂)} is
onempty, 𝑧̂ satisfies:
d
d𝑠 𝑧̂(𝑠, 𝑗) ∈

1
𝜇̂𝑘(𝑠, 𝑗)

𝐹 (𝑧̂(𝑠, 𝑗), 𝑢̂(𝑠, 𝑗)), (13)

or almost all 𝑠 ∈ 𝐼𝑗 . Using the chain rule, 𝑧 satisfies:

d
d𝑡 𝑧(𝑡, 𝑗) =

d
d𝑡 𝑧̂(𝑘(𝑡), 𝑗) =

d
d𝑠 𝑧̂(𝑠, 𝑗) ⋅ ̇𝑘(𝑡),

and since ̇𝑘(𝑡) = 𝜇𝑘(𝑡, 𝑗) for all 𝑡 ∈ [0, 𝛶𝑇 ,𝑘) due to (8), and given that
𝜇𝑘 does not change during the jumps (4d), by using (13) we obtain:

d
d𝑡 𝑧(𝑡, 𝑗) = 𝜇𝑘(𝑡, 𝑗)

d
d𝑠 𝑧̂(𝑠, 𝑗) ∈

𝜇𝑘(𝑡, 𝑗)
𝜇̂𝑘(𝑠, 𝑗)

𝐹 (𝑧̂(𝑠, 𝑗), 𝑢̂(𝑠, 𝑗)).

y construction, 𝜇𝑘(𝑡, 𝑗) = 𝜇̂𝑘(𝑠, 𝑗), 𝑢(𝑡, 𝑗) = 𝑢̂(𝑠, 𝑗) and 𝑧(𝑡, 𝑗) = 𝑧̂(𝑠, 𝑗)
via the time dilation 𝑠 = 𝑘(𝑡). Therefore, substituting in the above
inclusion we obtain that 𝑧̇(𝑡, 𝑗) satisfies (4b) for almost all 𝑡 ∈ 𝐼𝑗 ∶=
{𝑡 ≥ 0 ∶ (𝑡, 𝑗) ∈ dom(𝑧)}. Moreover, note that 𝑘(𝑡𝑗 ) = 𝑠𝑗 and 𝑘(𝑡𝑗 ) = 𝑠𝑗
where 𝑡𝑗 ∶= min 𝐼𝑗 , 𝑡𝑗 = sup 𝐼𝑗 , 𝑠𝑗 ∶= min 𝐼𝑗 , 𝑠𝑗 = sup 𝐼𝑗 . Similarly,
or every (𝑠, 𝑗) ∈ dom(𝑧̂) such that (𝑠, 𝑗 + 1) ∈ dom(𝑧̂), we have that
̂(𝑠, 𝑗 + 1) ∈ 𝐺(𝑧̂(𝑠, 𝑗)), and therefore 𝑧(𝑡, 𝑗 + 1) ∈ 𝐺(𝑧(𝑡, 𝑗)). Thus (𝑧, 𝑢) is
maximal solution to .
(b) Let (𝑧, 𝑢) be a maximal solution pair of  from 𝑧0. Using again

he chain rule, and the definition of 𝑧̂, we obtain that for each 𝑗 for
hich the interior of 𝐼𝑗 ∶= {𝑡 ≥ 0 ∶ (𝑡, 𝑗) ∈ dom(𝑧)} is nonempty, the
ignal 𝑧̂ satisfies:

d
d𝑠 𝑧̂(𝑠, 𝑗) =

d𝑧
d −1

𝑘

d −1
𝑘
d𝑠 =

𝑧̇(𝑡, 𝑗)
𝜇𝑘(𝑡, 𝑗)

∈
𝐹 (𝑧(𝑡, 𝑗), 𝑢(𝑡, 𝑗))

𝜇𝑘(𝑡, 𝑗)
,

where we used (10) and (4b). Note that by construction 𝑧̂(𝑠, 𝑗) = 𝑧(𝑡, 𝑗),
̂𝑘(𝑠, 𝑗) = 𝜇𝑘(𝑡, 𝑗), and 𝑢̂(𝑠, 𝑗) = 𝑢(𝑡, 𝑗) via the time contraction 𝑡 =  −1

𝑘 (𝑠).
Then, by substituting in the above expression we obtain that 𝑧̂ satisfies
̇̂
𝑠 ∈ 1

𝜇̂𝑘
𝐹 (𝑧̂, 𝑢̂𝑘) for almost all 𝑠 ∈ 𝐼𝑗 = {𝑠 ≥ 0 ∶ (𝑠, 𝑗) ∈ dom(𝑧̂)}.

Moreover, note that  −1
𝑘 (𝑠𝑗 ) = 𝑡𝑗 and  −1

𝑘 (𝑠𝑗 ) = 𝑡𝑗 where 𝑡𝑗 ∶= min 𝐼𝑗 ,
𝑡𝑗 = sup 𝐼𝑗 , 𝑠𝑗 ∶= min 𝐼𝑗 , 𝑠𝑗 = sup 𝐼𝑗 . Since for every (𝑡, 𝑗) ∈ dom(𝑧) such
that (𝑡, 𝑗+1) ∈ dom(𝑧), we have that 𝑧(𝑡, 𝑗+1) ∈ 𝐺(𝑧(𝑡, 𝑗)), and therefore
̂(𝑠, 𝑗 + 1) ∈ 𝐺(𝑧̂(𝑠, 𝑗)), it follows that (𝑧̂, 𝑢̂) is a maximal solution pair to
̂. ■

Remark 4. Proposition 2 establishes a relationship between the solu-
tions of the HDS  in the (𝑡, 𝑗) time scale, and the solutions of ̂ in
the (𝑠, 𝑗) time scale via the family of 𝑘-parameterized dilations 𝑠 = 𝑘(𝑡)

−1
and contractions 𝑘 (𝑠). In particular, the function 𝑘 ∶ [0, 𝛶𝑇 ,𝑘) → R≥0
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Fig. 1. Dilation and contraction of hybrid time domains and hybrid arcs. The structure of the hybrid time domain 𝐸 in the (𝑡, 𝑗)-time scale is preserved under the diffeomorphism
𝑘 × id in the (𝑠, 𝑗)-time scale.
𝛹

s
H

will define a diffeomorphism that preserves the structure of the HTD of
he hybrid arcs of ̂. This observation is central to our analysis, as it
nables us to conduct the stability analysis of the original HDS  by
irst studying the qualitative behavior of the solutions of system ̂. In
articular, note that ̂ has a flow map that is normalized by 𝜇̂𝑘, which
emoves the finite escape times in 𝜇̂𝑘 (c.f., Lemma 3). This normalized
DS can be viewed as a ‘‘target’’ system that can be first designed and
tudied using the extensive set of tools available in the literature on
DS [25,27]. □

emark 5. Using (5) with 𝑘 > 1, 𝑘 can be written as

𝑘(𝑡) =
𝑇𝜇

𝑘−1
𝑘

0
𝑘 − 1

⎛

⎜

⎜

⎜

⎜

⎝

𝑇 𝑘−1
(

𝑇 − 𝑡𝜇
1
𝑘
0

)𝑘−1
− 1

⎞

⎟

⎟

⎟

⎟

⎠

, ∀ 𝑡 ∈ [0, 𝛶𝑇 ,𝑘), (14)

which recovers the common dilation used for ODEs when 𝜇0 = 1,
see [1]. Other types of transformations are presented in [4] for the
study of finite-time control of ODEs. Proposition 2 provides an exten-
sion of these results to hybrid systems. □

Remark 6. Analyses of HDS based on the time scaling of the flow map
are not new, and they have been extensively explored in the context of
singular perturbations [35,36] and averaging theory [31,37]. However,
in contrast to (14), the time scaling in those scenarios is usually
linear. □

3.2. PT-S via flows in HDS

Since solutions to system , whose data is described by (4), can
only flow for a total amount of time upper bounded by 𝛶𝑇 ,𝑘, in this
paper we are interested in regulating the state 𝑧 to a general closed set
, as 𝑡→ 𝛶𝑇 ,𝑘 (or before 𝛶𝑇 ,𝑘), where

 = 𝜓 × R≥1, (15)

and where 𝜓 is an application-dependent compact set. For systems
with inputs, the following definition aims to capture this property,
which makes use of the transformation 𝑘 defined in (7), and which
extends [1, Def. 1] from ODEs to HDS.

Definition 2. Let  be given by (15), where 𝜓 ⊂ R𝑛 is compact.
The set  is said to be Prescribed-Time Input-to-State Stable via Flows
(PT-ISSF) for the HDS  if there exists 𝛽 ∈  and 𝛾 ∈  such that
for every 𝑧(0, 0) ∈ 𝐶 ∪𝐷, all solutions 𝑧 satisfy:

|𝑧(𝑡, 𝑗)| ≤ 𝛽
(

|𝑧(0, 0)|, 𝑘(𝑡), 𝑗
)

+ 𝛾
(

|𝑢|(𝑡,𝑗)
)

, (16)

for all (𝑡, 𝑗) ∈ dom(𝑧). If (16) holds with 𝑢 ≡ 0, the set  is said to be
Prescribed-Time Stable via Flows (PT-SF). □

In some cases, it might be possible to completely suppress the
esidual effect of the input 𝑢 in the bound (16) via PT feedback. This
property, termed PT-ISS with Convergence in [1, Def. 1], can also be

obtained in hybrid systems:

5 
Definition 3. Let  be given by (15), where 𝜓 ⊂ R𝑛 is compact. The
set  is said to be Prescribed-Time Input-to-State Stable with Convergence
via Flows (PT-ISS-CF) for the HDS  if there exists 𝛽 ∈ , 𝛾 ∈ ,
and 𝛽𝑐 ∈  such that for every 𝑧(0, 0) ∈ 𝐶 ∪𝐷, all solutions 𝑧 satisfy:

|𝑧(𝑡, 𝑗)| ≤ 𝛽𝑐
(

𝛽
(

|𝑧(0, 0)|, 𝑘(𝑡), 𝑗
)

+ 𝛾
(

|𝑢|(𝑡,𝑗)
)

, 𝑘(𝑡)
)

, (17)

for all (𝑡, 𝑗) ∈ dom(𝑧). □

Remark 7 (On the Use of  Functions). The use of  functions
in Definitions 2 and 3 enable us to differentiate convergence behaviors
in the continuous-time domain from those in the discrete-time domain.
This type of comparison function is common in the analysis of HDS with
inputs [33]. Additionally, since by construction |𝑧(𝑡, 𝑗)| = |𝜓(𝑡, 𝑗)|𝜓
for all (𝑡, 𝑗) ∈ dom(𝑧) (because |𝜇𝑘(𝑡, 𝑗)|R≥1

= 0), we can equivalently
express the bounds (16)–(17) with 𝑧 replaced by 𝜓 , and  replaced by
𝜓 . □

Remark 8 (On the Lack of Uniformity with Respect to 𝜇0). Definitions 2
and 3 extend Prescribed-Time Stability (PT-S) notions, studied in the
literature of ODEs, [1, Def. 1] to hybrid systems. The  function 𝛽
and the  function 𝛽𝑐 in the bounds (16) and (17) are independent
of the initial conditions on 𝑧 = (𝜓, 𝜇). However, as defined in (7), the
diffeomorphism 𝑘 clearly depends on the initial value of 𝜇𝑘 via (7),
which parameterizes the prescribed time 𝛶𝑇 ,𝑘. Yet, the bounds (16) and
(17) are uniform across the initial conditions of 𝜓 , which is the main
state of interest in the system. □

The following example, which follows as a particular case of the
main results in the next section, illustrates the previous discussions:

Example 1. Consider the HDS  with 𝑘 = 1, 𝑇 = 1, 𝜓 = (𝑥, 𝜏),
𝐹𝛹 = {−𝑥+ 𝑢} × {1}, 𝐺𝛹 = { 1

2𝑥} × {0}, 𝛹𝐶 = R𝑛 × [0, 1], 𝛹𝐷 = R𝑛 × {1},
and 𝑢 is continuous and bounded. Then, every solution 𝑧 = (𝑥, 𝜏, 𝜇1)
satisfies the following bound (see proof of Theorem 1):

|𝜓(𝑡, 𝑗)|𝜓
≤ 𝑘1𝑒

−𝑘21(𝑡)
(

𝑒−𝑘3(1(𝑡)+𝑗)|𝜓(0, 0)|𝜓
+ 𝑘4|𝑢|(𝑡,𝑗)

)

,

where 𝑘𝑖 > 0 and 𝜓 = {0} × [0, 1], for all (𝑡, 𝑗) ∈ dom(𝑧). Moreover,
using (11b), the above bound can be written as:

|𝜓(𝑡, 𝑗)|𝜓
≤
𝜇1(0, 0)𝛼1
𝜇1(𝑡, 𝑗)𝛼2

(

𝑒−𝑞𝑗

𝜇1(𝑡, 𝑗)𝛼3
|𝜓(0, 0)|𝜓

+ 𝛼4 ⋅ |𝑢|(𝑡,𝑗)

)

,

where 𝛼𝑖 > 0, 𝜇1(0, 0) = 𝜇0 ≥ 1, and for all (𝑡, 𝑗) ∈ dom(𝑧). It follows
that lim(𝑡,𝑗)∈dom(𝑧),𝑡→𝛶1,1 𝜓(𝑡, 𝑗) = 0. □

It is important to note that, unlike ODEs, for HDS the existence of
bounds of the form (16)–(17) does not necessarily guarantee that the
internal state 𝜓 will converge to 𝜓 as 𝑡→ 𝛶𝑇 ,𝑘, for any 𝛶𝑇 ,𝑘 > 0, even
if 𝑢 ≡ 0 and 𝑧 is complete. The following scalar example illustrates this
scenario.

Example 2. Consider the HDS  with 𝑘 = 1, main state 𝜓 ∈ R, 𝑢 ≡ 0,
functions 𝐹𝛹 = {−𝜓}, 𝐺𝛹 = 1

2𝜓 , and sets 𝛹𝐶 = (−∞,−1] ∪ [1,∞), and
𝐷 = [−1, 1]. For this system, we can study stability of 𝜓 with respect
to the set 𝜓 = {0}. For any initial condition to , 𝑧(0, 0) = (𝜓0, 𝜇0),
atisfying |𝜓0| > 1 and 𝜇0 = 1, the unique maximal solution to the
DS satisfies 𝜓(𝑡, 0) = 𝜓

(

𝑇−𝑡
)𝑇
, for all (𝑡, 𝑗) ∈ [0, 𝑡′] × {0}, where 𝑡′ =
0 𝑇
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𝑇 (1− |𝜓0|
− 1
𝑇 ), and 𝜓(𝑡, 𝑗) =

(

1
2

)𝑗
𝜓(𝑡′, 0), for all (𝑡, 𝑗) ∈ ⋃

𝑗∈Z≥1
{𝑡′}×{𝑗}.

It follows that 𝜓(𝑡, 𝑗) → 𝜓 only as 𝑗 → ∞. Yet, every maximal
solution 𝑧 of the HDS satisfies (16) with 𝑢 = 0. This follows by a direct
application of item (a) of Proposition 2, the result of [38, Thm. 1], and
item (b) of Proposition 2, in that order. □

The previous example shows that bounds of the form (16) or (17)
only guarantee PT-S-like behaviors via the flows of the HDS. Therefore,
to emulate the existing PT-S bounds obtained for ODEs [1,2], the
‘‘target’’ HDS ̂ in (12) must generate maximal solutions with hybrid
time domains 𝐸 satisfying sup𝑡𝐸 = ∞, such as those in Example 1.
In general, this is not possible whenever 𝐶 = ∅, or whenever ̂ has
eventually discrete, Zeno, or purely discrete solutions. However, as
shown in the next section, for R-Switching systems, discrete solutions
can be ruled out by designing appropriate switching signals generated
by hybrid automatons that additionally exploit the ‘‘blow-up’’ nature of
the functions 𝜇𝑘.

4. PT-ISS in R-switching systems

In this section, we apply Proposition 2 to study a class of R-
switching systems (1)–(2) characterized by the following dynamics:

𝑥̇ = 𝜇𝑘(𝑡) ⋅ 𝑓𝜎(𝑡)(𝑥, 𝜇𝑘(𝑡), 𝑢, 𝜏), 𝑡 ∉ (𝜎), (18a)

𝑥(𝑡) = 𝑅𝜎(𝑡−) (𝑥(𝑡−)) , 𝑡 ∈ (𝜎). (18b)

For generality, in (18a) we allow 𝑓𝜎 to depend on 𝜇𝑘 and also on a
signal 𝜏 that is generated by the following hybrid dynamics

𝜏̇ ∈
[

0,
𝜇𝑘(𝑡)
𝜏𝑑

]

, 𝑡 ∉ (𝜎), (19a)

+ = 𝜏 − 1, 𝑡 ∈ (𝜎), (19b)

here 𝜇𝑘 is given by (5) and 𝜏𝑑 > 0. To contextualize this model, some
emarks are in order.

emark 9. When 𝜇𝑘 ≡ 1, 𝑅𝜎 = id(⋅), and 𝑓𝜎 does not depend on 𝜏
nd 𝑢, Eq. (18) coincides with the conventional nonlinear switching
ystems examined in [39,40]. On the other hand, when 𝑓𝜎 depends on
, (18a) captures nonlinear switching systems with inputs, similar to
hose studied [26,41]. □

Remark 10. When 𝜇𝑘 ≡ 1 and 𝑓𝜎 depends on 𝜏, system (18) describes
class of 𝜏-parameterized nonlinear switching systems. In this class, 𝜏
s not necessarily constant throughout time, and the function 𝑡 ↦ 𝜏(𝑡)
ay not be differentiable or even continuous. Such models emerge in,
or example, a class of time-triggered reset systems [42,43] suitable for
ptimization and learning problems; see also Section 5.2 for a specific
pplication. □

emark 11. In many applications, the system of interest might not
atch the exact form of (18). This is often the case in PT-regulation
nd feedback control of affine dynamical systems with non-zero drift,
here multiplying the entire vector fields by the gain 𝜇𝑘 is not feasible.
owever, as shown later in Section 5, appropriate feedback design or
ariable transformation can reformulate these systems into the form
18). □

To have a well-posed system, we make the following regularity
ssumption on system (18a):

ssumption 2. For each 𝑞 ∈ , 𝑓𝑞 ∶ R𝑛 × R≥1 × R𝑚 × R≥0 → R𝑛 is
ocally Lipschitz, 𝑅𝑞 ∶ R𝑛 → R𝑛 is continuous, and 𝑢 ∶ R≥0 → R𝑚 is
ontinuous and bounded. □
6 
We consider R-switching systems (18) with a mix of stable and
nstable modes. We denote the set of stable modes as 𝑠 and the set
f unstable modes as 𝑢, such that 𝑠 ∪ 𝑢 =  and 𝑢 ∩ 𝑠 = ∅.
o leverage this partition and derive prescribed-time stability results,
e proceed to introduce specific stability assumptions for our ‘‘target’’
DS ̂ defined in (12). Central to these assumptions is the role of a
unction 𝛥(𝜇̂𝑘) that characterizes the effect of the time-varying gain 𝜇̂𝑘
n the input 𝑢 in (18). In our subsequent analysis, we focus on three
pecific cases: 𝛥(𝜇̂𝑘) = 0, 𝛥(𝜇̂𝑘) = 1, and 𝛥(𝜇̂𝑘) = 𝜇̂−𝓁𝑘 with 𝓁 > 0.

ssumption 3. There exist 𝜏𝑑 ∈ R>0, 𝑁0 ∈ R≥1, smooth functions 𝑉𝑞 ∶
𝑛 × R≥0 → R≥0, where 𝑞 ∈ , and constants 𝑐𝑞,𝑖 > 0, 𝑖 ∈ {1, 2, 3, 4, 5},
> 0, such that:

(a) For all (𝑥̂, 𝜏, 𝑞) ∈ R𝑛 × [0, 𝑁0] ×:

𝑐𝑞,1|𝑥̂|
𝑝 ≤ 𝑉𝑞(𝑥̂, 𝜏) ≤ 𝑐𝑞,2|𝑥̂|

𝑝. (20a)

(b) For all (𝑥̂, 𝜏, 𝑞, 𝜇̂𝑘, 𝜂) ∈ R𝑛 × [0, 𝑁0] ×𝑠 ×R≥1 × [0, 𝜏−1𝑑 ] and for all
𝑢 ∈ R𝑚, we have:
⟨

∇𝑉𝑞(𝑥̂, 𝜏),
(

𝑓𝑞(𝑥̂, 𝜇̂𝑘, 𝑢, 𝜏)
𝜂

)⟩

≤ −𝑐𝑞,3𝑉𝑞(𝑥̂, 𝜏) + 𝑐𝑞,4𝛥(𝜇̂𝑘)|𝑢|
𝑝.

(20b)

(c) For all (𝑥̂, 𝜏, 𝑞, 𝜇̂𝑘, 𝜂) ∈ R𝑛 × [0, 𝑁0] ×𝑢 ×R≥1 × [0, 𝜏−1𝑑 ] and for all
𝑢 ∈ R𝑚, we have:
⟨

∇𝑉𝑞(𝑥̂, 𝜏),
(

𝑓𝑞(𝑥̂, 𝜇̂𝑘, 𝑢, 𝜏)
𝜂

)⟩

≤ 𝑐𝑞,5𝑉𝑞(𝑥̂, 𝜏) + 𝑐𝑞,4𝛥(𝜇̂𝑘)|𝑢|
𝑝. (20c)

(d) For all (𝑥̂, 𝜏) ∈ R𝑛 × [1, 𝑁0] and 𝑜̂, 𝑞 ∈  such that 𝑞 ≠ 𝑜̂:

𝑉𝑞(𝑅𝑜̂(𝑥̂), 𝜏 − 1) ≤ 𝜒𝑉𝑜̂(𝑥̂, 𝜏), (20d)

where 𝜒 > 0. □

Remark 12. Inequalities (20a)–(20b) are common in the context of
exponential stability in continuous-time and hybrid systems. For the
case when the vector field 𝑓𝑞 in (18a) does not depend on 𝜏, the
function 𝑉𝑞 can also be taken to be independent of 𝜏. This is the most
common situation in switching systems and systems with resets. An
example where 𝑓𝑞 does depend on 𝜏 will be studied in Section 5.2. □

Remark 13. Inequality (20b) in item (b) gives a standard decrease
condition on the Lyapunov functions 𝑉𝑞 , for each stable mode 𝑞 ∈ 𝑠,
and up to a neighborhood of the origin, whose size is parameterized by
𝛥(𝜇̂𝑘)|𝑢|

𝑝. When 𝛥(𝜇̂𝑘) = 0, and by [38, Thm. 1], conditions (20a)–(20b)
imply that each mode 𝑞 ∈ 𝑠 renders the origin exponentially stable in
the dilated time scale 𝑠 = 𝑘(𝑡) (see Proposition 2). When 𝛥(𝜇̂𝑘) = 1, and
by [33, Prop. 1], conditions (20a)–(20b) imply that each mode 𝑞 ∈ 𝑠
renders the origin ISS with exponential decay in the dilated time scale.
The case 𝛥(𝜇̂𝑘) = 𝜇̂−𝓁𝑘 , with 𝓁 > 0, will emerge in the context of PT-
regulation where convergence bounds of the form (17) are sought-after.
An example in this direction is presented in Section 5. □

Remark 14. Inequality (20c) in item (c) rules out finite escape times
for the unstable modes 𝑞 ∈ 𝑢. Similar assumptions are considered
in the context of asymptotic/exponential stability in switching sys-
tems [31,41]. When 𝑢 = ∅ (i.e., there are no unstable modes), item
(c) holds vacuously. □

Remark 15. Inequality (20d) in item (d) considers the effect of the
resets on the Lyapunov functions related to each of the modes. Usually
(e.g., in standard switching systems) 𝑅𝑞 = id(⋅) and 𝑉𝑞 is independent
of 𝜏, and in this case, inequality (20d) holds trivially with 𝜒 = 1.
When 𝑉𝑞 is independent of 𝜏 but 𝑅𝑞 ≠ id(⋅), item (d) recovers the main
assumptions of [26]. □
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Fig. 2. BU𝑘-ADT condition (22) for 𝑘 ∈ {1, 2, 3, 4}. Left: When 𝜇0 = 1, 𝑇 = 10, and 𝑡1 = 0, there exists a single common terminal time 𝑇 = 𝛶𝑇 ,𝑘 for all 𝑘. Right: When 𝜇0 = 2, 𝑇 = 10,
and 𝑡1 = 0, the dependence of 𝛶𝑇 ,𝑘 on 𝜇0 (see Lemma 1) leads to the emergence of three distinct terminal times.
L

A
t
𝜎

L
t

P

4.1. Blow-up average dwell-time conditions

To achieve asymptotic stability in systems that switch between a
finite number of stable modes, it is common to assume that for all times
𝑡2 ≥ 𝑡1 ≥ 0, the switching signal 𝜎 satisfies an average dwell-time (ADT)
condition of the form:

𝑁(𝑡2, 𝑡1) ≤
1
𝜏𝑑

(𝑡2 − 𝑡1) +𝑁0, (21)

where 𝑁(𝑡2, 𝑡1) is the number of switches of 𝜎 in the interval (𝑡1, 𝑡2],
𝑑 > 0 is called the dwell-time, and 𝑁0 ≥ 1 is the chatter bound,
see [39,40], [25, Ch. 2.4]. However, unlike asymptotic convergence
results, PT-S properties are defined only over the finite interval [0, 𝛶𝑇 ,𝑘).
Therefore, we consider switching signals defined on similar intervals,
which are additionally allowed to have a switching frequency that
becomes unbounded as 𝑡 → 𝛶𝑇 ,𝑘.

Definition 4. Let 𝜇𝑘 be given by (5). A switching signal 𝜎 ∶ [0, 𝛶𝑇 ,𝑘) →
 is said to satisfy the blow-up average dwell-time condition of order 𝑘
(BU𝑘-ADT) if there exist 𝑁0 ≥ 1 and 𝜏𝑑 > 0 such that for all 𝑡2, 𝑡1 ∈
dom(𝜎):

𝑁(𝑡2, 𝑡1) ≤
1
𝜏𝑑
𝜔𝑘

(

𝜇𝑘(𝑡2), 𝜇𝑘(𝑡1)
)

+𝑁0, (22)

where 𝜔𝑘(⋅, ⋅) is given by (6). We use 𝛴BU𝑘−ADT(𝜏𝑑 , 𝑁0, 𝑇 , 𝜇0) to denote
the family of such signals. □

Fig. 2 illustrates the BU𝑘-ADT condition by comparing various
bounds derived from (22) (plotted on a logarithmic scale) as functions
of 𝛥 = 𝑡2 − 𝑡1, with 𝑡1 = 0, and for different values of 𝑘 ∈ Z≥1, with
𝜇0 = 1 (left plot) and 𝜇0 = 2 (right plot). The standard ADT bound
(21) is also shown in color purple. Unlike the ADT bound, the BU𝑘-ADT
bound grows to infinity as 𝛥→ 𝛶𝑇 ,𝑘, allowing an increasing number of
switches as 𝑡→ 𝛶𝑇 ,𝑘. However, in any compact sub-interval of [0, 𝛶𝑇 ,𝑘)
the allowable number of switches is bounded. The following lemma
shows that switching signals satisfying the ADT condition (21) also
satisfy the BU𝑘-ADT condition (22) when their domain is appropriately
restricted. The implication follows directly because the right-hand side
of (21) can be upper-bounded by the right-hand side of (22). The proof
s presented in the Appendix.

emma 4. Let 𝑇 > 0, 𝜇0 ≥ 1, and 𝜎 be a switching signal satisfying
he ADT condition (21) with 𝜏𝑑 > 0 and 𝑁0 ≥ 1. Then, 𝜎(𝑡) satisfies the
U𝑘-ADT condition (22) for all 𝑘 ∈ Z≥1 and all 0 ≤ 𝑡1 ≤ 𝑡2 < 𝛶𝑇 ,𝑘, with
he same 𝜏𝑑 , 𝑁0. □

Next, we present a lemma that provides an equivalent formula-
ion of the BU𝑘-ADT condition, as well as its limiting behavior when
he prescribed-time 𝛶𝑇 ,𝑘 goes to infinity. The proof is presented in

he Appendix.

7 
emma 5. The following holds:

(a) If 𝑘 = 1, then (22) is equivalent to

𝑁(𝑡2, 𝑡1) ≤
𝑇
𝜏𝑑

ln
(𝛶𝑇 ,1 − 𝑡1
𝛶𝑇 ,1 − 𝑡2

)

+𝑁0. (23)

(b) If 𝑘 ∈ Z>1, then (22) is equivalent to

𝑁(𝑡2, 𝑡1) ≤
𝛾𝑘(𝑡1, 𝑡2)
𝜏𝑑

(

(𝑡2−𝑡1) +
𝑘−1
∑

𝓁=2
𝑐𝓁,𝑘

(

𝑡𝓁2 − 𝑡𝓁1
)

)

+𝑁0,

where 𝑐𝓁,𝑘 ∶= (−1)𝓁+1 𝑏𝑘,𝑙𝑘−1𝛶
1−𝓁
𝑇 ,𝑘 , 𝑏𝑘,𝑙 =

(𝑘−1)!
𝓁!(𝑘−𝓁−1)! and

𝛾𝑘(𝑡1, 𝑡2) ∶= 𝜇0

(

𝛶 2
𝑇 ,𝑘

(

𝛶𝑇 ,𝑘 − 𝑡2
) (

𝛶𝑇 ,𝑘 − 𝑡1
)

)𝑘−1

.

(c) For all 𝑘 ∈ Z≥1 and all 𝑡2 ≥ 𝑡1 ≥ 0 the bound (22) satisfies

lim
𝑇→∞

1
𝜏𝑑
𝜔𝑘

(

𝜇𝑘(𝑡2), 𝜇𝑘(𝑡1)
)

+𝑁0 =
𝜇0
𝜏𝑑

(𝑡2 − 𝑡1) +𝑁0,

thus recovering the ADT condition (21) when 𝜇0 = 1. □

4.2. PT-ISS in R-switching systems with stable modes

When all the modes 𝑓𝑞 are stable, i.e., 𝑢 = ∅ and  = 𝑠,
we can study PT-S properties of (18) by considering switching signals
that satisfy the BU𝑘-ADT bound. In this case, the R-Switching system
(18) can be analyzed by considering the HDS  with data (4), state
𝜓 = (𝑥, 𝜏, 𝑞) ∈ R𝑛+2, and

𝐹𝛹 (𝜓, 𝜇𝑘, 𝑢) ∶= {𝑓𝑞(𝑥, 𝜇𝑘, 𝑢, 𝜏)} ×
[

0, 1
𝜏𝑑

]

× {0}, (24a)

𝐺𝛹 (𝜓, 𝑢) ∶= {𝑅𝑞(𝑥)} × {𝜏 − 1} ×𝑠∖{𝑞}, (24b)

𝛹𝐶 = R𝑛 × [0, 𝑁0] ×𝑠, 𝛹𝐷 = R𝑛 × [1, 𝑁0] ×𝑠. (24c)

s established in the next lemma, there is a close connection between
he HTDs of the solutions of system  with data (24), and the signals
that satisfy the BU𝑘-ADT condition.

emma 6. Let (𝐹𝛹 , 𝐺𝛹 , 𝛹𝐶 , 𝛹𝐷) be given by (24a)–(24c), and consider
he HDS  under Assumptions 2 and 3. Then, Assumption 1 holds, and:

(a) For every maximal solution 𝑧 and for any pair (𝑡1, 𝑗1), (𝑡2, 𝑗2) ∈
dom(𝑧), with 𝑡2 > 𝑡1, inequality (22) holds with 𝑁(𝑡2, 𝑡1) = 𝑗2 − 𝑗1.

(b) For every HTD satisfying property (a), there exists a solution 𝑧 of
the HDS  having the said HTD. □

roof. The HDS  given by (4) has state 𝑧 = (𝜓, 𝜇𝑘) ∈ R𝑛+3 with
𝜓 = (𝑥, 𝜏, 𝑞) ∈ R𝑛+2, and dynamics

𝑧 ∈ 𝐶 ∶= R𝑛 × [0, 𝑁 ] × × R (25a)
0 𝑠 ≥1
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̇ =

⎛

⎜

⎜

⎜

⎜

⎝

𝑥̇
𝜏̇
𝑞̇
𝜇̇𝑘

⎞

⎟

⎟

⎟

⎟

⎠

∈ 𝐹 (𝑧, 𝑢) ∶=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜇𝑘 ⋅ 𝑓𝑞(𝑥, 𝜇𝑘, 𝑢, 𝜏)
[

0,
𝜇𝑘
𝜏𝑑

]

0

𝑘
𝑇
𝜇
1+ 1

𝑘
𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (25b)

∈ 𝐷 ∶= R𝑛 × [1, 𝑁0] ×𝑠 × R≥1, (25c)

+ =

⎛

⎜

⎜

⎜

⎜

⎝

𝑥+

𝜏+

𝑞+

𝜇+𝑘

⎞

⎟

⎟

⎟

⎟

⎠

∈ 𝐺(𝑧) ∶=

⎛

⎜

⎜

⎜

⎜

⎝

𝑅𝑞(𝑥)
𝜏 − 1

𝑠∖{𝑞}

𝜇𝑘

⎞

⎟

⎟

⎟

⎟

⎠

. (25d)

Since the function 𝜇𝑘 generated by (25) is precisely (5), any solution
∶ dom(𝑧) → R𝑛+3 to (25) will necessarily satisfy length𝑡(dom(𝑧)) ≤
𝑇 ,𝑘. By Proposition 2, the corresponding HDS (12) in the (𝑠, 𝑗)-time
cale is given by:

𝑧̂ ∈ 𝐶, ̇̂𝑧𝑠 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

̇̂𝑥𝑠
̇̂𝜏𝑠
̇̂𝑞𝑠
̇̂𝜇𝑘𝑠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ 𝐹𝑇 (𝑧̂, 𝑢̂) ∶=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓𝑞(𝑥̂, 𝜇̂𝑘, 𝑢̂, 𝜏)
[

0, 1
𝜏𝑑

]

0

𝑘
𝑇
𝜇̂

1
𝑘
𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (26a)

𝑧̂ ∈ 𝐷, 𝑧̂+ ∈ 𝐺(𝑧̂), (26b)

here 𝐶, 𝐷, and 𝐺 were defined in (25). Since Assumption 3 ensures
hat the state 𝑥̂ does not exhibit finite escape times, by noting that the
ynamics of (𝜏, 𝑞) are decoupled from 𝜇̂𝑘, and since 𝜇̂𝑘 remains constant
during jumps, we can directly obtain 𝜇̂𝑘(𝑠, 𝑗) for any (𝑠, 𝑗) ∈ dom(𝑧̂)

using Lemma 3: 𝜇̂𝑘(𝑠, 𝑗) =
(

(𝑘−1)
𝑇 𝑠 + 𝜇̂(𝑠𝑗 , 𝑗)

𝑘−1
𝑘
)

𝑘
𝑘−1 , for 𝑘 > 1, and

̂𝑘(𝑠, 𝑗) = 𝜇̂𝑘(𝑠𝑗 , 𝑗)𝑒
𝑠
𝑇 , for 𝑘 = 1, where 𝑠𝑗 ∶= min{𝑠 ≥ 0 ∶ (𝑠, 𝑗) ∈

om(𝑧̂)}. By [25, Ex. 2.15] it follows that every solution 𝑧̂ of (26) has
HTD that satisfies the ADT bound in the (𝑠, 𝑗)-time scale:

2 − 𝑗1 ≤
1
𝜏𝑑

(𝑠2 − 𝑠1) +𝑁0, (27)

for all (𝑠1, 𝑗1), (𝑠2, 𝑗2) ∈ dom(𝑧̂), with 𝑠2 > 𝑠1 ≥ 0. Additionally, by [25,
Ex. 2.15], for every hybrid time domain satisfying (27), there exists
a solution to the HDS (26) having said hybrid time domain. Thus, it
remains to show that (27) is equivalent to (22) in the original (𝑡, 𝑗)-time
scale. Using the time scaling function 𝑘 given by (7), for any solution
𝑧 of (25) and all (𝑡1, 𝑗1), (𝑡2, 𝑗2) ∈ dom(𝑧) with 0 ≤ 𝑡1 < 𝑡2, we have that
(𝑠1, 𝑗1), (𝑠2, 𝑗2) ∈ dom(𝑧̂), where 𝑠1 = 𝑘(𝑡1), 𝑠2 = 𝑘(𝑡2), and 0 ≤ 𝑠1 < 𝑠2.
Substituting in (27):

𝑗2 − 𝑗1 ≤
1
𝜏𝑑

(𝑘(𝑡2) − 𝑘(𝑡1)) +𝑁0.

The result follows now by using (P2) in Proposition 1. ■

One of the main consequences of the equivalence established in
emma 6 is that analyzing the stability properties of the R-switching
ystem (18) under the family of switching signals 𝛴BU-ADT(𝜏𝑑 , 𝑁0, 𝑇 , 𝜇0)
is equivalent to examining the stability properties of the HDS  with
(𝐹𝛹 , 𝐺𝛹 , 𝛹𝐶 , 𝛹𝐷) defined by (24a)–(24c). In this case, we can study the
stability properties of this HDS with respect to the set  given by (15),
where 𝜓 is the following compact set

𝜓 = {0} × [0, 𝑁0] ×𝑠. (28)

The following Theorem is the first main result of this paper.

Theorem 1. Let 𝑁0 ≥ 1, 𝑠 ≠ ∅, 𝑢 = ∅, and consider the HDS 
with (𝐹𝛹 , 𝐺𝛹 , 𝛹𝐶 , 𝛹𝐷) given by (24a)–(24c). Suppose that Assumptions 2–3
hold, and

𝜏𝑑 >
ln(𝑟)

, (29)

min𝑞∈ 𝑐𝑞,3

8 
where 𝑟 ∶= max{1, 𝜒}, and 𝜒 > 0 is given in Assumption 3. For each
(𝑇 , 𝑘) ∈ R>0 × R≥1, the following holds:

(a) If 𝛥(𝜇𝑘) = 0, then the set  is PT-SF for .
(b) If 𝛥(𝜇𝑘) = 1, then the set  is PT-ISSF for .
(c) If 𝛥(𝜇𝑘) = 𝜇−𝓁𝑘 , then for any 𝓁 > 0 the set  is PT-ISS-CF for .

□

Proof. The proof has three main steps.
Step 1: Stability of the ‘‘target’’ HDS ̂ in the (𝑠, 𝑗)-Hybrid Time Scale:

The overall HDS is given by (25), which in the (𝑠, 𝑗)-time scale is given
by (26).

To study the stability properties of system (26), we consider the Lya-
punov function 𝑊 (𝑧̂) ∶= 𝑉𝑞(𝑥̂, 𝜏)𝑒ln(𝑟)𝜏 . By Assumption 3, this function
satisfies 𝑐|𝑧̂|𝑝 ≤ 𝑊 (𝑧̂) ≤ 𝑐|𝑧̂|𝑝, ∀ 𝑧̂ ∈ 𝐶 ∪ 𝐷, with 𝑐 ∶= min𝑝∈ 𝑐1,𝑝,
𝑐 ∶= 𝑒ln(𝑟)𝑁0 𝑐2, and 𝑐2 ∶= max𝑝∈ 𝑐2,𝑝. When 𝑧̂ ∈ 𝐶, for all 𝜂 ∈ [0, 1∕𝜏𝑑 ],
we have:

⟨∇𝑊 (𝑧̂), 𝐹𝑇 (𝑧̂, 𝑢̂)⟩ =
⟨

∇𝑉𝑞(𝑥̂, 𝜏),
(

𝑓𝑞(𝑥̂, 𝑢̂, 𝜏)
𝜂

)⟩

𝑒ln(𝑟)𝜏

+ ⟨ln(𝑟)𝑉𝑞(𝑥̂, 𝜏)𝑒ln(𝑟)𝜏 , ̇̂𝜏𝑠⟩

≤ −𝑐3

(

1 −
ln(𝑟)
𝑐3𝜏𝑑

)

𝑊 (𝑧̂) + 𝑐4𝑒ln(𝑟)𝑁0𝛥(𝜇̂𝑘)|𝑢̂|
𝑝,

here 𝑐3 ∶= min𝑝∈ 𝑐𝑝,3, 𝑐4 ∶= max𝑝∈ 𝑐𝑝,4, and where we used item
(b) in Assumption 3. On the other hand, when 𝑧̂ ∈ 𝐷 we can use
Assumption 3-(d) to obtain

𝑊 (𝑧̂+) = 𝑉𝑞+ (𝑥̂+, 𝜏+)𝑒ln(𝑟)𝜏
+
= 𝑉𝑞+

(

𝑅𝑞(𝑥̂), 𝜏 − 1
)

𝑒ln(𝑟)(𝜏−1)

≤ 𝜒𝑉𝑞(𝑥̂, 𝜏)𝑒ln(𝑟)(𝜏−1) =
𝜒
𝑟
𝑊 (𝑧̂).

Thus, using the definition of 𝑟, during jumps we obtain 𝑊 (𝑧̂+) −
𝑊 (𝑧̂) ≤ −

(

1− 𝜒
max{1,𝜒}

)

𝑊 (𝑧̂) ≤ 0. Using Lemma 10 in the Appendix,
we conclude that every solution 𝑧̂ of system (26) satisfies:

|𝑧̂(𝑠, 𝑗)| ≤ 𝜅1𝑒
−𝜅2(𝑠+𝑗)

|𝑧̂(0, 0)| + 𝜅3 ⋅ sup
0≤𝜁≤𝑠

|𝛥(𝜁 )|, (30)

for all (𝑠, 𝑗) ∈ dom(𝑧̂), where 𝜅1 =
(

𝑐∕𝑐
)1∕𝑝 𝑒

𝜆
2𝑝

𝜏𝑑
1+𝜏𝑑

𝑁0 𝜅2 = 𝜆𝜏𝑑∕(2𝑝(1 +

𝑑 )), 𝜅3 =
(

2𝑐4𝑟𝑁0∕[𝜆𝑐]
)1∕𝑝, 𝜆 = 𝑐3 − ln(𝑟)∕𝜏𝑑 , and 𝛥(𝑠) ∶= 𝛥(𝜇̂𝑘(𝑠))𝑢̂(𝑠).

Moreover, when 𝛥(𝜇̂𝑘) = 𝜇̂−𝓁𝑘 , via Lemma 11 in the Appendix, there
exists 𝛽𝑘 ∈  such that every solution 𝑧̂ of system (26) satisfies:

|𝑧̂(𝑠, 𝑗)| ≤ 𝛽𝑘
(

𝜅1|𝑧̂(0, 0)|𝑒−𝜅2(𝑠+𝑗) + 𝜅3|𝑢̂|(𝑠,𝑗), 𝑠
)

, (31)

for all (𝑠, 𝑗) ∈ dom(𝑧̂), with 𝜅1 ∶= 𝜅1, 𝜅2 ∶=
𝜅2
2 , 𝜅3 ∶= 2𝜅3.

Step 2: PT-ISSF of the HDS in the (𝑡, 𝑗) - Time Scale: We now use
the properties of the solutions 𝑧̂ of system (26) to establish properties
for the solutions 𝑧 of system (25). First, we use Proposition 2 and
let 𝑠 = 𝑘(𝑡), which yields 𝑒−𝜅2(𝑠+𝑗) = 𝑒−𝜅2(𝑘(𝑡)+𝑗), and |𝑧̂(𝑘(𝑡), 𝑗)| =
|𝑧
(

 −1
𝑘 (𝑘(𝑡)), 𝑗

)

| = |𝑧(𝑡, 𝑗)|. Then, by substituting in (30) and noting
that 𝑘(0) =  −1

𝑘 (0) = 0, it follows that when 𝛥 = 0 or 𝛥 = 1, every
solution 𝑧 = (𝜓, 𝜇𝑘) of the HDS (25) with 𝜇𝑘(0, 0) = 𝜇0 ≥ 1 satisfies the
bound:

|𝑧(𝑡, 𝑗)| ≤ 𝜅1𝑒
−𝜅2(𝑘(𝑡)+𝑗)

|𝑧(0, 0)| + 𝜅3𝛥|𝑢|(𝑡,𝑗), (32)

for all (𝑡, 𝑗) ∈ dom(𝜓), which implies that  is PT-ISS𝐹 . Similarly, when
𝛥(𝜇̂𝑘) = 𝜇̂−𝓁𝑘 , (31) leads to:

|𝑧(𝑡, 𝑗)| ≤ 𝛽𝑘
(

𝜅1|𝑧(0, 0)|𝑒−𝜅2(𝑘(𝑡)+𝑗) + 𝜅3|𝑢|(𝑡,𝑗), 𝑘(𝑡)
)

, (33)

for all (𝑡, 𝑗) ∈ dom(𝑧). Inequality (33) implies that  is PT-ISS-C𝐹 .
Step 3: Length of solutions in the (𝑡, 𝑗) - Time Scale: Finally, we show

that sup𝑡(dom(𝑧)) = 𝛶𝑇 ,𝑘 for all solutions 𝑧 of (25). First, note that by
the definition of 𝑘 and Proposition 2, we have sup𝑡(dom(𝑧)) = 𝛶𝑇 ,𝑘
if and only if sup𝑠(dom(𝑧̂)) = ∞. Furthermore, based on the bound
(27), we obtain hat 𝑗 ≤ 1

𝜏𝑑
𝑠 + 𝑁0 for any (𝑠, 𝑗) ∈ dom(𝑧̂). Since

every complete solution 𝑧̂ of (26) satisfies length(dom(𝑧̂)) = ∞, and
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noting that length(dom(𝑧̂)) = sup𝑠(dom(𝑧̂)) + sup𝑗 (dom(𝑧̂)), we can infer
hat if 𝑗 → ∞, then 𝑠 → ∞. Consequently, every complete solution
f (26) must satisfy sup𝑠(dom(𝑧̂)) = ∞, which in turn implies that

sup𝑡(dom(𝑧)) = 𝛶𝑇 ,𝑘 for such solutions. ■

The following Corollary covers the case 𝑘 = 1, which is the most
common in the literature of PT-S [1,24].

Corollary 1. Suppose that all the assumptions of Theorem 1 hold, and that
𝑘 = 1. Then, for every solution 𝑧 = (𝑥, 𝜏, 𝑞, 𝜇𝑘) to , and all (𝑡, 𝑗) ∈ dom(𝑧),
the state 𝑥 satisfies the following properties:

1. If (20b) holds with 𝛥(𝜇1) = 0 or 𝛥(𝜇1) = 1, then

|𝑥(𝑡, 𝑗)| ≤ 𝜅1

(

𝜇0
𝜇1(𝑡, 𝑗)

)𝜅2𝑇
𝑒−𝜅2𝑗 |𝑥(0, 0)| + 𝜅3𝛥|𝑢|(𝑡,𝑗), (34)

where 𝜅𝑖 > 0 for 𝑖 ∈ {1, 2, 3}.
2. If (20b) holds with 𝛥(𝜇1) = 𝜇−𝓁1 , then:

|𝑥(𝑡, 𝑗)| ≤
𝛼1𝜇

𝛼2
0

𝜇1(𝑡, 𝑗)𝛼3

(

𝑒−𝛼4𝑗

𝜇1(𝑡, 𝑗)𝛼5
|𝑥(0, 0)| + 𝛼6|𝑢|(𝑡,𝑗)

)

, (35)

where 𝛼𝑖 > 0 for 𝑖 ∈ {1, 2,… , 6}. □

Proof. Using (11b) and the bounds obtained in Step 2 of the proof of

heorem 1, it follows that 𝑒−𝜅2(𝑘(𝑡)+𝑗) = 𝑒
−𝛼 ln

( 𝜇1(𝑡)
𝜇0

)

𝑒−𝜅2𝑗 =
(

𝜇0
𝜇1(𝑡)

)𝛼
𝑒−

𝛼
𝑇 𝑗 ,

here 𝛼 = 𝜅2𝑇 . Since, by definition, |𝑧| = |𝑥| for every solution,
nequality (32) becomes (34). Similarly, inequality (33) becomes (35)
with 𝛼1 ∶= 𝜅1, 𝛼2 ∶= (𝜅3 + 𝜅2)𝑇 , 𝛼3 ∶= 𝜅3𝑇 , 𝛼4 ∶= 𝜅2, 𝛼5 ∶= 𝜅2𝑇 , and
6 ∶= 𝜅4. ■

4.3. PT-ISS in R-switching systems with unstable modes

We now consider the scenario where some of the modes 𝑓𝑞 in (18)
are unstable, i.e., 𝑢 ≠ ∅ and  = 𝑠 ∪ 𝑢. To study this case, we
ntroduce a blow-up average activation-time (BU𝑘-AAT) condition on the
mount of time that the unstable modes can remain active in any
ub-interval of [0, 𝛶𝑇 ,𝑘).

efinition 5. A switching signal 𝜎 ∶ [0, 𝛶𝑇 ,𝑘) →  is said to satisfy the
low-up average activation-time condition of order 𝑘 (BU𝑘-AAT) if there
xist 𝑇0 > 0 and 𝜏𝑎 > 1 such that for each pair of times 𝑡2, 𝑡1 ∈ dom(𝜎):

∫

𝑡2

𝑡1
𝜇𝑘(𝑡) ⋅ I𝑢 (𝜎(𝑡))𝑑𝑡 ≤

1
𝜏𝑎
𝜔𝑘

(

𝜇𝑘(𝑡2), 𝜇𝑘(𝑡1)
)

+ 𝑇0, (36)

where 𝜇𝑘 is given by (5). We denote the family of such signals as
𝛴BU𝑘−AAT(𝑢, 𝜏𝑎, 𝑇0, 𝑇 , 𝜇0). □

Remark 16. For asymptotic and exponential stability results in switch-
ing systems with both stable and unstable modes [26,31,41], it is com-
mon to restrict the family of admissible switching signals to those that
satisfy the ADT condition (27) and the following average activation-
time (AAT) condition:

∫

𝑡2

𝑡1
I𝑢 (𝜎(𝑡))𝑑𝑡 ≤

1
𝜏𝑎

(𝑡2 − 𝑡1) + 𝑇0, (37)

where 𝜏𝑎 > 1, and 𝑇0 > 0. This bound can be recovered from (36) by
taking the limit as 𝑇 → ∞ in both sides of (36) and using 𝜇0 = 1. Also,
note that for 𝑘 = 1, the BU1-AAT condition reduces to:

∫

𝑡2

𝑡1

I𝑢 (𝜎(𝑡))
𝛶𝑇 ,1 − 𝑡

𝑑𝑡 ≤ 1
𝜏𝑎

ln
(

𝑇 − 𝑡1𝜇0
𝑇 − 𝑡2𝜇0

)

+ 𝑇0.

imilar bounds can be obtained for 𝑘 ∈ Z≥2 using (5). □

Fig. 3 compares the BU𝑘-AAT bounds and the traditional AAT bound
(37). The left plot shows the left-hand side of (36) for different values
of 𝑘, under a particular switching signal 𝜎 that switches between one
stable mode and one unstable mode. The classic AAT bound is shown
9 
in purple color. The right plot shows (36) for 𝑘 = 1 and different values
f 𝜏𝑎.
To study the PT-S properties of the R-Switching system (18) when

 contains unstable modes, we now consider the HDS  with state
𝜓 = (𝑥, 𝜏, 𝜌, 𝑞) ∈ R𝑛+3, set-valued mappings:

𝐹𝛹 ∶= {𝑓𝑞(𝑥, 𝜇𝑘, 𝑢, 𝜏)}×
[

0, 1
𝜏𝑑

]

×
(

[

0, 1
𝜏𝑎

]

− I𝑢 (𝑞)
)

× {0}, (38a)

𝛹 ∶= {𝑅𝑞(𝑥)} × {𝜏 − 1} × {𝜌} ×∖{𝑞}, (38b)

nd sets:

𝛹𝐶 = R𝑛 × [0, 𝑁0] × [0, 𝑇0] ×, (38c)

𝐷 = R𝑛 × [1, 𝑁0] × [0, 𝑇0] ×. (38d)

here is a close connection between the hybrid time domains of the
olutions generated by the HDS  with data (38), and the switching
ignals that simultaneously satisfy (22) and (36).

emma 7. Let (𝐹𝛹 , 𝐺𝛹 , 𝛹𝐶 , 𝛹𝐷) be given by (38a)–(38c), and consider
he HDS  given by (4), under Assumption 2–3. Then, Assumption 1 holds,
nd:

(a) For every maximal solution 𝑧 to  and for any pair (𝑡1, 𝑗1), (𝑡2, 𝑗2) ∈
dom(𝑧), with 𝑡2 > 𝑡1, inequality (22) holds with 𝑁(𝑡2, 𝑡1) = 𝑗2 − 𝑗1,
and inequality (36) holds with 𝜎(𝑡) = 𝑞(𝑡, 𝑗(𝑡)), where 𝑗(𝑡) ∶=
min{𝑗 ∈ Z≥0 ∶ (𝑡, 𝑗) ∈ dom(𝑧)}.

(b) For every HTD satisfying property (a), there exists a solution 𝑧 of 
having the said HTD. □

roof. The overall HDS has state 𝑧 = (𝜓, 𝜇𝑘) ∈ R𝑛+4 with 𝜓 =
𝑥, 𝜏, 𝜌, 𝑞, ), and the following dynamics:

∈ 𝐶 ∶= R𝑛 × [0, 𝑁0] × [0, 𝑇0] × × R≥1, (39a)

̇ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑥̇
𝜏̇
𝜌̇
𝑞̇
𝜇̇𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ 𝐹 (𝑧, 𝑢) ∶=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜇𝑘 ⋅ 𝑓𝑞(𝑥, 𝜇𝑘, 𝑢, 𝜏)
[

0,
𝜇𝑘
𝜏𝑑

]

[

0,
𝜇𝑘
𝜏𝑎

]

− 𝜇𝑘I𝑢 (𝑞)

0

𝑘
𝑇
𝜇
1+ 1

𝑘
𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (39b)

𝑧 ∈ 𝐷 ∶= R𝑛 × [1, 𝑁0] × [0, 𝑇0] × × R≥1, (39c)

𝑧+ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑥+

𝜏+

𝜌+

𝑞+

𝜇+𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ 𝐺(𝑧, 𝑢) ∶=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑅𝑞(𝑥)

𝜏 − 1

𝜌

 ⧵ {𝑞}

𝜇𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (39d)

This system has a finite escape time at 𝑡 = 𝛶𝑇 ,𝑘, induced by 𝜇𝑘. Note
that, by construction, the states (𝜏, 𝜌, 𝑞) are confined to the compact sets
[0, 𝑁0], [0, 𝑇0], and  respectively. Using the time variable 𝑠 = 𝑘(𝑡)
defined in (7), and Proposition 2, we obtain the following HDS in the
(𝑠, 𝑗)-time scale:

̂ ∈ 𝐶, ̇̂𝑧𝑠 =
( ̇̂𝑥𝑠 ̇̂𝜏𝑠 ̇̂𝜌𝑠 ̇̂𝑞𝑠 ̇̂𝜇𝑘𝑠

)

∈ 𝐹 (𝑧̂, 𝑢̂) ∶=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

𝑓𝑞(𝑥̂, 𝜇̂𝑘, 𝑢̂, 𝜏)
[

0, 1
𝜏𝑑

]

[

0, 1
𝜏𝑎

]

− I𝑢 (𝑞)

0

𝑘 𝜇̂
1
𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

, (40a)
⎝ 𝑇 𝑘
⎠
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Fig. 3. Functions appearing in the BU𝑘-AAT condition (36) using the switching signal 𝜎(⋅) (see inset), 𝑇 = 10, and 𝜇0 = 1.
(
l

𝑧

w

𝑧̂ ∈ 𝐷, 𝑧̂+ ∈ 𝐺(𝑧̂), (40b)

where the subscript 𝑠 in (40a) indicates that the time derivative is taken
with respect to 𝑠. Since (40) incorporates an ADT automaton 𝜏 and a
time-ratio monitor 𝜌̂, by [31, Lemma 7] every solution 𝑧̂ of (40) has a
hybrid time domain such that for any pair (𝑠1, 𝑗1), (𝑠2, 𝑗2) ∈ dom(𝑧̂) the
bound (27) is satisfied, as well as the following bound:

T(𝑠1, 𝑠2)∶=∫

𝑠2

𝑠1
I𝑢 (𝑞(𝑠, 𝚥(𝑠)))𝑑𝑠 ≤

1
𝜏𝑎

(𝑠2 − 𝑠1) + 𝑇0, (41)

where 𝚥(𝑠) ∶= min
{

𝑗 ∈ Z≥0 ∶ (𝑠, 𝑗) ∈ dom(𝑞)
}

. Moreover, by [31,
Lemma 7] every hybrid arc satisfying (41) can be generated by the
HDS (40). Using 𝑠 = 𝑘(𝑡), the left-hand side of (41) can be expressed
in the 𝑡-variable as:

T(𝑘(𝑡2), 𝑘(𝑡1))=∫

𝑡2

𝑡1

𝜕𝑘(𝑡)
𝜕𝑡

⋅ I𝑢

(

𝑞
(

𝑘(𝑡), 𝚥
(

𝑘(𝑡)
)

)

)

𝑑𝑡

= ∫

𝑡2

𝑡1
𝜇𝑘(𝑡) ⋅ I𝑢

(

𝑞(𝑡, 𝑗(𝑡))
)

𝑑𝑡, (42)

where we used Proposition 1-(P3), together with the equality

̂(𝑘(𝑡), 𝚥
(

𝑘(𝑡)
)

) = 𝑞
(

 −1
𝑘 (𝑘(𝑡)), 𝑗

(

 −1
𝑘

(

𝑘(𝑡)
))

)

= 𝑞(𝑡, 𝑗(𝑡)).

Using (41)–(42), together with Proposition 1-(P2), the AAT condition
in the (𝑡, 𝑗)-time scale becomes

∫

𝑡2

𝑡1
𝜇𝑘(𝑡) ⋅ I𝑢 (𝑞(𝑡, 𝑗(𝑡)))𝑑𝑡 ≤

1
𝜏𝑎
𝜔𝑘

(

𝜇𝑘(𝑡2), 𝜇𝑘(𝑡1)
)

+ 𝑇0,

which is precisely (36). The fact that inequality (22) holds follows by
Lemma 6. ■

Similar to Lemma 6, the result of Lemma 7 enables the study of
the stability properties of the R-Switching system (18), under switching
signals 𝜎 satisfying (22) and (36), by studying the stability properties of
he HDS (39). In this case, we consider the set  given by (15), where
𝜓 is now given by

𝜓 = {0} × [0, 𝑁0] × [0, 𝑇0] ×. (43)

The next theorem is the second main result of this paper.

Theorem 2. Let 𝑁0 ≥ 1, 𝑇0 > 0, 𝑢 ≠ ∅, 𝑠 ≠ ∅, and consider the HDS
given by (4) with (𝐹𝛹 , 𝐺𝛹 , 𝛹𝐶 , 𝛹𝐷) given by (38a)–(38c). Suppose that
ssumptions 2–3 hold, and that

> 1
𝑐3𝜏𝑑

ln(𝑟) + 1
𝜏𝑎

(

1 +
𝑐5
𝑐3

)

, (44)

here 𝑟 = max{1, 𝜒}, 𝜒 > 0 is given in Assumption 3, 𝑐3 = min𝑝∈ 𝑐𝑞,3, and
𝑐5 = max𝑝∈ 𝑐𝑞,5. For each (𝑇 , 𝑘) ∈ R>0 × R≥1 the following holds:

(a) If 𝛥(𝜇𝑘) ≜ 0, then the set  is PT-SF.

(b) If 𝛥(𝜇𝑘) ≜ 1, then the set  is PT-ISSF.
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(c) If 𝛥(𝜇𝑘) ≜ 𝜇−𝓁𝑘 , 𝓁 > 0, then the set  is PT-ISS-CF. □

Proof. The proof follows the same three steps as in the proof of
Theorem 1. We start by using the time dilation  −1

𝑘 and Proposition 2.
Hence, we consider the HDS (40) in the (𝑠, 𝑗)-time scale, with state 𝑧̂ =
𝑥̂, 𝜏, 𝜌̂, 𝑞, 𝜇̂𝑘). To study the stability properties of this system, let 𝜉 ∶=
n(𝑟)𝜏+(𝑐3+𝑐5)𝜌̂, and consider the Lyapunov function𝑊2(𝑧̂) = 𝑉𝑞(𝑥̂, 𝜏)𝑒𝜉 ,
which, by Assumption 3-(a), satisfies the inequalities 𝜑|𝑧̂|2 ≤ 𝑊2(𝑧̂) ≤
𝜑|𝑧̂|2, with 𝜑 ∶= min𝑝∈ 𝑐𝑝,1 and 𝜑 ∶= max𝑝∈ 𝑐𝑝,2𝑒ln(𝑟)𝑁0+(𝑐3+𝑐5)𝑇0 . When
̂ ∈ 𝐶, the time derivative of 𝜉 with respect to 𝑠 satisfies:
̇̂𝜉𝑠 = ln(𝑟) ̇̂𝜏𝑠 + (𝑐3 + 𝑐5) ̇̂𝜌𝑠 ∈ [0, 𝛿] − (𝑐3 + 𝑐5)I𝑢 (𝑞),

where 𝛿 ∶= 1
𝜏𝑑

ln(𝑟) + 1
𝜏𝑎
(𝑐3 + 𝑐5). Using the above expression together

with Assumption 3, we evaluate the change of 𝑊2 during the flows of
stable and unstable modes. In particular, when 𝑧̂ ∈ 𝐶 and 𝑞 ∈ 𝑠, we
have

⟨∇𝑊2(𝑧̂), ̇̂𝑧𝑠⟩ = 𝑒𝜉
⟨

∇𝑉𝑞(𝑥̂, 𝜏), ̇̂𝑥𝑠
⟩

+ 𝑒𝜉𝑉𝑞(𝑥̂, 𝜏)
̇̂𝜉𝑠

≤ −(𝑐3 − 𝛿)𝑊2(𝑧̂) +
𝑐4
𝑐2
𝜑𝛥(𝑠)|𝑢̂|𝑝, (45)

here 𝛥(𝑠) ∶= 𝛥(𝜇̂𝑘(𝑠))𝑢̂(𝑠), 𝑐2 ∶= max𝑝∈ 𝑐2,𝑝 and 𝑐4 = max𝑝∈ 𝑐4,𝑝, and
where 𝑐3 − 𝛿 > 0 since (44) is satisfied by assumption. On the other
hand, when 𝑧̂ ∈ 𝐶 and 𝑞 ∈ 𝑢:

⟨∇𝑊2(𝑧̂), ̇̂𝑧𝑠⟩ ≤
(

𝑐5𝑉𝑞(𝑥̂, 𝜏) + 𝑐4𝛥(𝑠)|𝑢̂|
)

𝑒𝜉 + 𝑉𝑞(𝑥̂, 𝜏)𝑒𝜉
̇̂𝜉𝑠

≤
(

𝛿 − 𝑐3
)

𝑊2(𝑧̂) + 𝑐4𝛥(𝑠)|𝑢̂|𝑒𝜉

≤ −
(

𝑐3 − 𝛿
)

𝑊2(𝑧̂) +
𝑐4
𝑐2
𝜑𝛥(𝑠)|𝑢̂|𝑝,

which is the same bound as (45).
During jumps, it follows that 𝜉+ = ln(𝑟)𝜏+ + (𝑐3 + 𝑐4)𝜌̂

+ = 𝜉− ln(𝑟) for
all 𝑧̂ ∈ 𝐷. Then, using Assumption 3, the Lyapunov function satisfies:

𝑊2(𝑧̂+) = 𝑉𝑞+ (𝑥̂+, 𝜏+)𝑒𝜉
+
= 𝑉𝑞+

(

𝑅𝑞(𝑥̂), 𝜏 − 1
)

𝑒𝜉−ln(𝑟)

≤ 𝜒𝑉𝑞(𝑥̂, 𝜏)𝑒𝜉−ln(𝑟) =
𝜒

max{1, 𝜒}
𝑊2(𝑧̂) ≤ 𝑊2(𝑥̂).

It follows that 𝑊2(𝑧̂+)−𝑊2(𝑧̂) ≤ 0 for all 𝑧̂ ∈ 𝐷. Using Lemma 10 in the
Appendix, we conclude that every solution 𝑧̂ satisfies the bound

|𝑧̂(𝑠, 𝑗)| ≤ 𝜅1|𝑧̂(0, 0)|𝑒−𝜅2(𝑠+𝑗) + 𝜅3𝛥(𝑠)|𝑢̂|(𝑠,𝑗),

for all (𝑠, 𝑗) ∈ dom(𝑧̂), where 𝜅1 =
(

𝜑∕𝜑
)1∕𝑝

𝑒
𝜆
2𝑝

𝜏𝑑
1+𝜏𝑑

𝑁0 , 𝜅2 = 𝜆𝜏𝑑∕(2𝑝(1+

𝜏𝑑 )), 𝜅3 =
(

2𝑐4𝜑∕[𝑐2𝜆𝜑]
)1∕𝑝

, 𝜆 = 𝑐3 − 𝛿, and 𝛥(𝑠) ∶= 𝛥(𝜇̂𝑘(𝑠))𝑢̂(𝑠).
From here, the bounds (16)–(17) are obtained following the exact same
arguments used in Steps 2 and 3 of the proof of Theorem 1. ■

Remark 17 (Switching with Non-PT Unstable Modes). It is reasonable to

consider a situation where the unstable modes in (18a) do not have
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time-varying gains, i.e., 𝜇𝑘 ≡ 1 when 𝑞 ∈ 𝑢. In particular, consider a
system switching between the following two families of systems:

̇ = 𝜇𝑘𝑓𝑞(𝑥), 𝑞 ∈ 𝑠, and 𝑥̇ = 𝑓𝑝(𝑥), 𝑝 ∈ 𝑢,

where the modes in 𝑠 satisfy (20b), and the modes in 𝑢 satisfy (20c)
with 𝑢 ≡ 0. Following the same approach of Theorem 2, and operating
in the 𝑠-time scale for the flows, we now obtain the following two type
of modes:

̇̂
𝑠 = 𝑓𝑞(𝑥̂), 𝑞 ∈ 𝑠, and ̇̂𝑥𝑠 =

1
𝜇̂𝑘
𝑓𝑝(𝑥), 𝑝 ∈ 𝑢.

For this system, the same Lyapunov-based analysis can be applied as in
the proof of Theorem 2 to obtain the bound (45) for all 𝑞 ∈ 𝑠. On the
other hand, for 𝑞 ∈ 𝑢, we now obtain ⟨∇𝑊2(𝑧̂), ̇̂𝑧𝑠⟩ ≤ −

(

𝑐3 − 𝛿
)

𝑊2(𝑧̂)−
𝑐5

(

1 − 1
𝜇̂𝑘

)

𝑊2(𝑧̂). Note that 1 − 1
𝜇̂𝑘

≥ 0 since 𝜇̂𝑘 ≥ 1 by Lemma 3.
This implies that ⟨∇𝑊2(𝑧̂), ̇̂𝑧𝑠⟩ ≤ −

(

𝑐3 − 𝛿
)

𝑊2(𝑧̂). From here, the proofs
ollow the same steps as in the proof of Theorem 2. □

Remark 18. While all our results assumed that the resets (18b)
were stabilizing, or at least, not destabilizing, it is possible to extend
Theorems 1–2 to cases where the resets are destabilizing, provided the
flows of the HDS are ‘‘sufficiently’’ frequent compared to the jumps. In
this case, stability can be established by a simple modification of the
Lyapunov functions used to study the target systems ̂ as in [25, Prop.
3.29]. □

We conclude this section by noting that, with some additional effort,
the stability results of Theorems 1–2 could be extended to systems for
hich Lyapunov functions with monomial bounds do not exist. While
his represents an interesting research direction, such characterizations
re beyond the scope of this paper and could be more appropriately
tudied in the future within the context of integral-ISS, as described
n [26]. For our applications of interest, discussed in the next section,
s well as others not detailed here due to space constraints (e.g., con-
urrent learning [44], extremum seeking [17], feedback-optimization),
ssumption 3 is typically satisfied.

. Applications to PT-control and PT-decision making

This section presents two applications that illustrate our main re-
ults. Throughout this section, the state 𝑞 and the blow-up gain 𝜇𝑘 are
ssumed to follow the hybrid dynamics  defined in (4), with data
iven by (24) or (38). Since practical implementations of PT-Stable
lgorithms typically involve early terminations to avoid numerical
nstabilities, as well as techniques such as clipping and saturation [2,
1,17], for all our numerical simulations we employ a fourth-order
unge–Kutta method with fixed time step 𝛿𝑡 = 10−6 and we saturate
he blow-up gain 𝜇𝑘 at 1 × 103.

.1. PT-regulation with intermittent feedback

Consider a switched input-affine system with intermittent feedback,
f the form:

̇ = 𝑑𝑞(𝑥) + I𝑠 (𝑞) 𝑏𝑞(𝑥)𝑢𝑞(𝑥, 𝜇𝑘), (46)

here 𝑥 ∈ R𝑛, 𝑞 ∈  = 𝑠 ∪𝑢 is a logic state and 𝑢 ≠ ∅. The blow-up
ain 𝜇𝑘 is as defined in (5), 𝑑𝑞(𝑥) ∈ R𝑛 and 𝑏𝑞(𝑥) ∈ R𝑛×𝑛 denote mode-
ependent drift and input vector fields, respectively, 𝑢𝑞 ∶ R𝑛×R≥1 → R𝑛
s the control input, and I𝑠 (𝑞), is an indicator function representing
he intermittent nature of the feedback. Such input-affine switching sys-
ems model diverse phenomena, ranging from gene regulatory networks
n biology [45] to hybrid locomotion in robotics [46]. Incorporating
ntermittent feedback enhances the practical relevance of these models
y addressing challenges such as limited sensor availability, and adver-
arial operating environments. The implementation of prescribed time
ontrollers proves crucial in scenarios demanding strict time constraints
11 
hereby extending the applicability of these models to time-sensitive
pplications.
We assume that 𝑏𝑞(⋅) and 𝑑𝑞(⋅) are unknown locally Lipschitz func-

ions, which satisfy the following properties:

𝑑𝑞(𝑥)| ≤ 𝑑𝑞(𝑥), ∀ 𝑞 ∈ , 𝑥 ∈ R𝑛,

𝑏𝑞(𝑥) + 𝑏𝑞(𝑥)⊤ ⪰ 𝜖𝐼𝑛, ∀ 𝑞 ∈ 𝑠, 𝑥 ∈ R𝑛,

where 𝜖 > 0, and 𝑑𝑞(𝑥) > 0 is a known scalar-valued function assumed
o be continuous for all 𝑥 ∈ R𝑛 and all 𝑞 ∈ . We also assume that
𝑑𝑞(𝑥) is 𝓁𝑞-globally Lipschitz for all 𝑞 ∈ 𝑢. To regulate the state 𝑥 to
the origin in a prescribed time, we consider the following switching
feedback-law:

𝑢𝑞(𝑥, 𝜇𝑘) = −𝜇𝑘
(

𝜂𝑞 + 𝛿𝑞𝑑𝑞(𝑥)2
)

𝑥, (47)

ith 𝛿𝑞 > 0 and 𝜂𝑞 > 0 and 𝑘 ≥ 2. The closed-loop system has the form
f the HDS  with data (38) and continuous-time dynamics of 𝑥 given
y:

̇ = 𝜇𝑘(𝑡)𝑓𝜎(𝑡)(𝑥, 𝜇𝑘), (48)

here, for every 𝑞 ∈ , 𝑓𝑞 ∶ R𝑛 × R≥1 → R𝑛≥0 is given by

𝑓𝑞(𝑥, 𝜇𝑘) ∶= −I𝑠 (𝑞)
(

𝜂𝑞 + 𝛿𝑞𝜓𝑞(𝑥)2
)

𝑏𝑞(𝑥)𝑥 +
1
𝜇𝑘
𝑑𝑞(𝑥).

The following proposition extends the results of [1, Sec. 3] to the sce-
nario where the system switches between multiple stable and unstable
modes:

Proposition 3. There exists 𝜏𝑑 > 0 and 𝜏𝑎 > 0 such that the set
𝜓 × R≥1 is PT-ISS-CF for the closed-loop system, where 𝜓 is as given
in (43). Additionally, the switching feedback-law 𝑢𝑞 is bounded over the
continuous-time interval [0, 𝛶𝑇 ,𝑘) and converges to 0 as 𝑡 → 𝛶𝑇 ,𝑘. □

Proof. We show that under Assumption 4 a suitable Lyapunov function
can be used to show that Assumption 3 is satisfied. Let 𝑉𝑞(𝑥̂) =

1
2𝜎𝑞

|𝑥̂|2

for every 𝑞 ∈ 𝑠. By employing Young’s inequality, we obtain
⟨

∇𝑉𝑞(𝑥̂), 𝑓𝑞(𝑥̂, 𝜇̂𝑘)
⟩

≤ −2𝜎𝑞𝜂𝑞𝑉𝑞(𝑥̂) +
1
𝜇̂2𝑘

1
4𝜎2𝑞𝛿𝑞

, (49)

or all 𝑞 ∈ 𝑠. Similarly, for all 𝑞 ∈ 𝑢 let 𝑉𝑞(𝑥̂) = |𝑥̂|2

2 . Using this
function, we obtain

⟨

∇𝑉𝑞(𝑥̂), 𝑓𝑞(𝑥̂, 𝜇̂𝑘)
⟩

≤ 𝑉𝑞(𝑥̂) +
1
𝜇̂2𝑘

𝑑2𝑞
2
, (50)

or all 𝑞 ∈ 𝑢. Using 𝑐𝑞,1 = 𝑐𝑞,2 = 1∕2𝜎𝑞 , 𝑐𝑞,3 = 2𝜎𝑞𝜂𝑞 , 𝑐𝑞,4 = 1∕4𝜎2𝑞𝛿𝑞 ,
when 𝑞 ∈ 𝑠, and 𝑐𝑞,1 = 𝑐𝑞,2 = 1∕2, 𝑐𝑞,5 = 1, 𝑐𝑞,4 = 𝑑2𝑞∕2 when 𝑞 ∈ 𝑢,
together with the set of smooth functions {𝑉𝑞}𝑞∈, Assumption 3 is
atisfied. Thus, we can always pick 𝜏𝑎 > 1 and 𝜏𝑑 > 0 large enough
o satisfy the stability condition (44). Additionally, Assumption 2 is
atisfied by the Lipschitz properties of both 𝑑𝑞(⋅) and 𝑏𝑞(⋅). Assumption 1
s met by the same Lipschitz property and the construction of the
DS  with data (38). It follow that 𝜓 × R≥1 is PT-ISS-C𝐹 for the
losed-loop system via Theorem 2-(c).
We now prove the boundedness and convergence to 0 of the switch-

ng feedback-law 𝑢𝑞 given in (47). By applying (33) from the proof
f Theorem 2-(c), for any (𝑥0, 𝜇0) ∈ R𝑛 × R≥1 and any solution 𝑧 =
𝑥, 𝜏, 𝜌, 𝑞, 𝜇𝑘) to the closed-loop system satisfying 𝑥(0, 0) = 𝑥0 and
𝑘(0, 0) = 𝜇0 we obtain:

𝑥(𝑡, 𝑗)| ≤ 𝛽𝑘(𝜅1𝑒−𝜅2(𝑘(𝑡)+𝑗)|𝑥(0, 0)| + 𝜅3𝑢, 𝑘(𝑡)), (51)

for all (𝑡, 𝑗) ∈ dom(𝑧), where 𝜅1, 𝜅2, 𝜅3 > 0, 𝑢 ∶= max
{

max𝑞∈𝑠
1

4𝜎2𝑞𝛿𝑞
,

max𝑞∈𝑢
𝑑
2
𝑞
2

}

, and 𝛽𝑘(𝑟, 𝑠) = 𝑟 ⋅ max{𝜅1𝑒−𝜅2𝑠, 𝜉−2𝑘 (𝑠)} =∶ 𝑟 ⋅ 𝛼𝑘(𝑠), with
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Fig. 4. Comparison between controller with Exponential convergences and PT-Regulation with intermittent feedback. Left: Trajectory of system’s state norm plotted in logarithmic
scale. Center: Trajectories of the switching feedback law 𝑢𝑞 . Right: Trajectories of the switching signal 𝜎 (top), the dwell-time state 𝜏 (middle), and the monitor state 𝜌 (bottom)
for the PT-Regulation mechanism with intermittent feedback.
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𝜉𝑘(𝑠) =
(

𝑘−1
𝑇 𝑠 + 1

)
𝑘
𝑘−1 , is the same  function obtained in Lemma 11.

hen, from (51) we obtain:

𝑥(𝑡, 𝑗)| ≤
(

𝜅1𝑒
−𝜅2(𝑘(𝑡)+𝑗)

|𝑥(0, 0)| + 𝜅3𝑢
)

𝛼𝑘( (𝑡)),

or all (𝑡, 𝑗) ∈ dom(𝑧). Hence, using Eq. (47) 𝑢𝑞 satisfies:

𝑢𝑞(𝑥(𝑡, 𝑗), 𝜇𝑘(𝑡))
|

|

|

≤ 𝑟𝑘(𝑡, 𝑗)
|

|

|

|

𝜂𝑞+𝛿𝑞𝑑
2
𝑞(𝑥(𝑡, 𝑗))

|

|

|

|

𝜇𝑘(𝑡)𝛼𝑘(𝑘(𝑡)),

for all (𝑡, 𝑗) ∈ dom(𝑧) and all 𝑞 ∈ , where 𝑟𝑘(𝑡, 𝑗) =
(

𝜅1𝑒−𝜅2(𝑘(𝑡)+𝑗)|𝑥(0, 0)
+ 𝜅3𝑢

)

. Since 𝑑𝑞(⋅) is assumed to be continuous for all 𝑥 ∈ R𝑛, it is
ocally bounded. Then, 𝑟𝑘(𝑡, 𝑗)

|

|

|

|

𝜂𝑞 + 𝛿𝑞𝑑
2
𝑞(𝑥(𝑡, 𝑗))

|

|

|

|

is bounded as 𝑟(𝑡, 𝑗) is

bounded by definition. Now, note that 𝛼𝑘(𝑠) = max{𝜅1𝑒−𝜅2𝑠, 𝜉−2𝑘 (𝑠)} =
𝜉−2𝑘 (𝑠) for 𝑠 sufficiently large since the inverse exponential decays
faster than any proper rational function. Additionally, by leverag-
ing the result of Proposition 2 it follows that 𝜇𝑘(𝑡) = 𝜇̂𝑘(𝑘(𝑡)) =
(

𝑘−1
𝑇 𝑘(𝑡) + 𝜇

𝑘−1
𝑘

0

)

𝑘
𝑘−1

for 𝑘 ≥ 2. Then, as 𝑡 → 𝛶𝑇 ,𝑘 we have that

𝑘(𝑡)𝛼𝑘(𝑘(𝑡)) =
[(

𝑘−1
𝑇 𝑘(𝑡) + 𝜇

𝑘−1
𝑘

0

)

∕
(

𝑘−1
𝑇 𝑘(𝑡) + 1

)2
]

𝑘
𝑘−1

which im-
plies that 𝜇𝑘(𝑡)𝛼𝑘(𝑘(𝑡)) → 0. Using this fact, together with the inequality
bove and the boundedness of 𝑟𝑘(𝑡, 𝑗)

|

|

|

|

𝜂𝑞 + 𝛿𝑞𝑑
2
𝑞(𝑥(𝑡, 𝑗))

|

|

|

|

, allows us to

conclude that 𝑢𝑞 → 0 as 𝑡 → 𝛶𝑇 ,𝑘. ■

To illustrate Proposition 3 with a numerical example, consider 𝑠 =
{1, 2}, 𝑢 = {3}, and 𝑥 ∈ R. Let 𝑑𝑞(𝑥) = 𝑞 tanh(𝑥), 𝑏𝑞(𝑥) = 1, ∀𝑞 ∈
, and consider the control-law 𝑢𝑞(𝑥, 𝑡) = −𝜇2(𝑡)(1 + 𝑞|𝑥|2)𝑥. Then,
all the conditions to apply Proposition 3 are satisfied. We numeri-
ally verify the PT-ISS-CF property by using a switching signal 𝜎 ∈
BU-ADT(𝜏𝑑 , 𝑁0, 𝑇 , 𝜇0) ∩ 𝛴BU-AAT(𝑢, 𝜏𝑎, 𝑇0, 𝑇 , 𝜇0) with 𝜏𝑎 = 2, 𝜏𝑑 = 1,
= 10, 𝑇0 = 2, and 𝑁0 = 1.5. Fig. 4 displays the trajectories of the norm
f the state 𝑥 plotted in logarithmic scale, the switching feedback-law
𝑞 , the switching signal 𝜎, and the associated average dwell-time and
verage activation time states 𝜏 and 𝜌. As shown in the figure, the state
and the switching feedback-law 𝑢𝑞 rapidly approach zero as 𝑡→ 𝛶𝑇 ,1
nd converge faster than using a switching feedback with static gains
for exponential convergence). The overshoot occur when the system is
n one of the modes without feedback.

.2. PT-decision-making in switching games

Consider a non-cooperative game with 𝑛 ∈ Z≥2 players [10], where
he cost functions defining the game are allowed to switch in time.
pecifically, for each 𝑖 ∈  = {1, 2,… , 𝑛}, the 𝑖th player has an as-
ociated mode-dependent and continuously differentiable cost function
𝑖
𝑞 ∶ R𝑛 → R, where 𝑞 ∈ . We refer to the 𝑞th game as the game
ith the set of cost functions

{

𝜙𝑖𝑞
}

𝑖∈
. The action of the 𝑖th player is

enoted by 𝑥𝑖1 ∈ R, and the action profile of the game is given by the
ector 𝑥 ∶=

(

𝑥1, 𝑥2,… , 𝑥𝑛
)

∈ R𝑛. The goal of the players is to converge
1 1 1 1
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o the unique common Nash equilibrium (NE) of the games [10,47],
efined as the vector 𝑥̃ ∈ R𝑛 that satisfies:

𝜙𝑖𝑞
(

𝑥̃𝑖, 𝑥̃−𝑖
)

= inf
𝑥𝑖1∈R

𝜙𝑖𝑞
(

𝑥𝑖1, 𝑥̃
−𝑖) , ∀𝑖 ∈  ,

for all 𝑞 ∈ , where 𝑥−𝑖1 ∈ R𝑛−1 denotes the vector that contains all
actions except those of player 𝑖. To study this problem, let 𝑞 ∶ R𝑛 → R𝑛
denote the pseudo-gradient of the 𝑞th game, which is given by:

𝑞(𝑥1) ∶=

(

𝜕𝜙1
𝑞

𝜕𝑥11
,
𝜕𝜙2

𝑞

𝜕𝑥21
,… ,

𝜕𝜙𝑛𝑞
𝜕𝑥𝑛1

,

)

.

For all 𝑞 ∈ , we assume that there exists 𝜅𝑞 > 0 and 𝓁𝑞 > 0 such that
𝑞 is a 𝜅𝑞-strongly monotone and 𝓁𝑞-globally Lipschitz mapping. These
properties are common in NE seeking problems and they guarantee
the existence and uniqueness of the NE 𝑥̃ [10]. To efficiently achieve
convergence to the NE in a prescribed time, we introduce PT high-
order NE-seeking dynamics with momentum and resets (PT-NESmr). The
proposed algorithm is modeled as a HDS  with data (24) and maps
𝑓𝑞 and 𝑅𝑞 defined as follows:

𝑓𝑞(𝑥, 𝜏) =
⎛

⎜

⎜

⎝

2
𝜂(𝜏)

(

𝑥2−𝑥1
)

−2𝜂(𝜏)𝑞(𝑥1)

⎞

⎟

⎟

⎠

, 𝑅𝑞(𝑥) =

(

𝑥1
𝑥1

)

, (52)

where 𝑥 ∶= (𝑥1, 𝑥2) ∈ R2𝑛, and 𝑥2 ∶= (𝑥12, 𝑥
2
2,… , 𝑥𝑛2) ∈ R𝑛, and where

𝜂 ∶ [0, 𝑁0] → [𝜂, 𝜂] is an affine bounded mapping defined as:

𝜂(𝜏) ∶= 𝜏

(

𝜂 − 𝜂
)

𝑁0
+ 𝜂 (53)

with 𝜂 > 𝜂 > 0 being tunable parameters. In the context of asymptotic
onvergence, mappings of the form (52), which incorporate momentum
via the state 𝑥2) and resets (via the update 𝑥+2 = 𝑥1), have been
ecently shown to improve the transient performance of NE-seeking
ynamics in (stable) strongly monotone games [43]. To further make
he convergence time independent of both the initial conditions and of
he monotonicity properties of the game, we study convergence to the
E in prescribed-time.
For every 𝑞 ∈ , let 𝜎𝑞 > 0 be such that 𝜎max

(

𝐼 − 𝜕𝑞(𝑥)
)

≤ 𝜎𝑞
or all 𝑥 ∈ R, where 𝜕𝑞 denotes the Jacobian of the pseudogradient,
nd where 𝜎max(⋅) denotes the maximum singular value of its argument.
uch 𝜎𝑞 always exists since the pseudo-gradient 𝑞 is assumed to be
lobally Lipschitz for all 𝑞 ∈ . We make the following assumption on
he parameters of the game and the selection of the tunable parameters
n (52)–(53).

ssumption 4 (Tuning Guidelines). There exist 0 ≤ 𝜂 ≤ 𝜂, 𝛿𝜂 > 0, and
𝑑 > 0 satisfying 𝛿𝜂 + 𝛿𝑑 ∶= 𝛿 ∈ (0, 1) and:

𝜂2 ≤ 𝛿𝜂
min𝑞∈ 𝜁𝑞

(

max𝑞∈ 𝜎𝑞
)2
, 1

𝜏𝑑
≤ 𝛿𝑑

𝑁0

𝜂 − 𝜂
min
𝑞∈

𝜁𝑞 , (54)

for some 𝜏 > 0 and 𝑁 ≥ 1, where 𝜁 ∶= 𝜅 ∕𝓁2. □
𝑑 0 𝑞 𝑞 𝑞
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Fig. 5. Comparison between Pseudo-Gradient Flow (PSG) with exponential convergence and PT Nash-Equilibrium Seeking in a Switching Game. Left: Trajectory of the errors to
the NE generated by the PT-NESmr, the PT-PSG, and the Exponential PSG dynamics. Right: Trajectories of the switching signal 𝜎(𝑡) (top), the dwell-time state 𝜏 (middle), and the
monitor state 𝜌(𝑡) (bottom) for the PT-NESmr dynamics.
f
t
a

The stability properties of the states 𝑥1, 𝑥2 are studied with respect
to the following set

𝑥 ∶= {𝑥̃} × {𝑥̃} ⊂ R𝑛 × R𝑛. (55)

The following proposition establishes PT-S𝐹 of the set 𝑥 under the
PT-NESmr dynamics.

Proposition 4. Suppose that Assumption 4 is satisfied. Then, the PT-
NESmr dynamics render the set 𝑥 × [0, 𝑁0] ×  × R≥1 PT-SF, provided

𝜏𝑑 >
max

{

3, 2
(

1
𝜅2

+ 𝜂2
)}

ln (𝑟)

4𝜂𝜈
, (56)

where 𝜈 = (1−𝛿𝑑−𝛿𝜂 )𝜎
2

𝛿𝜂 (1−𝛿𝑑 )𝜁+𝜎
2 , 𝜎 ∶= max𝑞∈ 𝜎𝑞 , 𝜁 ∶= min𝑞∈ 𝜁𝑞 , and 𝑟 =

max
{

1, 𝓁
2

𝜅2
𝜂(𝑁0−1)2

𝜂(1)2 + 1
2𝜅2𝜂(1)2

}

. □

Proof. We show that, under Assumption 4, a suitable Lyapunov func-
ion for the ‘‘target’’ system ̂ can be used to show that Assumption 3
is satisfied. Indeed, for every 𝑞 ∈  consider the Lyapunov function

𝑉𝑞(𝑥̂, 𝜏) =
1
4
|𝑥̂2 − 𝑥∗|

2 + 1
4
|𝑥̂2 − 𝑥̂1|

2 +
𝜂(𝜏)2

2
|

|

|

𝑞(𝑥̂1)
|

|

|

2
,

which in the flow set and jump set satisfies: 𝑣𝑞,1|𝑥̂|2𝑥
≤ 𝑉𝑞(𝑥̂, 𝜏) ≤

𝑣𝑞,2|𝑥̂|
2
𝑥
, with 𝑣𝑞,1 ∶= 0.25min

{

1, 2𝜅2𝑞 𝜂
2
}

, and 𝑣𝑞,2 ∶= 0.25max

3, 2 + 2𝓁2
𝑞𝜂

2
}

. Let

(

𝑓𝑞 ,𝜌
)𝑉𝑞(𝑥̂, 𝜏) ∶=

⟨

∇𝑉𝑞(𝑥̂, 𝜏),
(

𝑓𝑞(𝑥̂, 𝜏)
𝜌

)⟩

(57)

ince 𝑞(⋅) is 𝜅𝑞-strongly-monotone and 𝓁𝑞−Lipschitz, we have that
𝑥1 − 𝑥̃, 𝑞(𝑥̂1)

⟩

≥ 𝜁𝑞
|

|

|

𝑞(𝑥̂1)
|

|

|

2
, where 𝜁𝑞 = 𝜅2𝑞∕𝓁𝑞 . During flows:

(𝑓𝑞 ,𝜌)𝑉𝑞(𝑥̂, 𝜏) = − 1
𝜂(𝜏)

|𝑥̂2 − 𝑥̂1|
2

− 2𝜂(𝜏)
⟨

𝑞(𝑥̂1),
[

𝐼 − 𝜕𝑞(𝑥̂1)
]

(𝑥̂2 − 𝑥̂1)
⟩

− 𝜂(𝜏)
[⟨

𝑥̂1 − 𝑥∗, 𝑞(𝑥̂1)
⟩

− 𝜌𝜂′(𝜏)|𝑞(𝑥̂1)|2
]

≤ −𝜂(𝜏)
⟨

𝜒𝑞 , 𝑀𝜁𝑞 (𝑥̂1, 𝜏)𝜒𝑞
⟩

, (58)

or all (𝑥̂, 𝜏, 𝜌) ∈ R2𝑛 × [0, 𝑁0] × [0, 𝜏−1𝑑 ], where 𝜒𝑞 ∶=
(

𝑥̂2 − 𝑥̂1,𝑞(𝑥̂1)
)

∈
2𝑛, and 𝑀𝜁𝑞 is given by

𝜁𝑞 (𝑥̂1, 𝜏) ∶=

(

1
𝜂(𝜏)2 𝐼 𝐼 − 𝜕𝑞(𝑥̂1)⊤

′

)

.

𝐼 − 𝜕𝑞(𝑥̂1) (𝜁𝑞 − 𝜌𝜂 (𝜏))𝐼
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Using Lemma 8 in the Appendix, we conclude that (𝑓𝑞 ,𝜌)𝑉𝑞(𝑥̂, 𝜏) ≤
−𝜂𝜈𝑀 |𝜒𝑞|

2 for all (𝑥̂1, 𝑥̂2, 𝜏) ∈ R2𝑛 × [0, 𝑁0]. Hence, by noting that

𝑉𝑞(𝑥̂, 𝜏) ≤
1
4 max

{

3, 2
(

1
𝜅2𝑞

+ 𝜂2
)}

|𝜒𝑞|
2 we obtain:

(𝑓𝑞 ,𝜌)𝑉𝑞(𝑥̂, 𝜏) ≤ −
4𝜂𝜈𝑀

max
{

3, 2
(

1
𝜅2𝑞

+ 𝜂2
)}𝑉𝑞(𝑥̂, 𝜏). (59)

Now, for all 𝑝̂, 𝑞 ∈ , let

𝛥𝑉 𝑞
𝑝̂ (𝑥̂, 𝜏) ∶= 𝑉𝑞

(

𝑅𝑝̂(𝑥̂), 𝜏 − 1
)

− 𝑉𝑝̂(𝑥̂, 𝜏), 𝜏 ∈ [1, 𝑁0].

During jumps:

𝛥𝑉 𝑞
𝑝̂ (𝑥̂, 𝜏) = 𝑉𝑞

(

(𝑥̂1, 𝑥̂1), 𝜏 − 1
)

− 𝑉𝑝̂(𝑥, 𝜏) (60)

≤ −1
4
|𝑥̂1 − 𝑥∗|

2 − 1
4
|𝑥̂1 − 𝑥̂2|

2 + 1
4𝜅2𝑝̂

|𝑝̂(𝑥̂1)|2

+ 1
2

(

𝜂(𝑁0 − 1)2
𝓁2
𝑞

𝜅2𝑝̂
− 𝜂(1)2

)

|

|

|

𝑝̂(𝑥̂1)
|

|

|

2

≤ −
(

1 − 𝛾𝑞𝑝̂
)

𝑉𝑝̂(𝑥̂, 𝜏),

where 𝛾𝑞𝑝̂ ∶=
2𝜂(𝑁0−1)2𝓁2𝑞+1

2𝜅2𝑝̂ 𝜂(1)
2 . The above inequality implies that 𝑉𝑞

(

𝑅𝑝̂(𝑥̂),

𝜏 − 1) ≤ 𝛾𝑞𝑝̂𝑉𝑝̂(𝑥̂, 𝜏). where 𝓁 ∶= min𝑞∈ 𝓁𝑞 , 𝜅 ∶= max𝑞∈ 𝜅𝑞 , and

𝜅 ∶= min𝑞∈ 𝜅𝑞 . Thus, noting that 𝛾
𝑞
𝑝̂ ≤ 𝓁

2

𝜅2
𝜂(𝑁0−1)2

𝜂(1)2 + 1
2𝜅2𝜂(1)2 =∶ 𝛾, we

obtain:

𝑉𝑞
(

𝑅𝑝̂(𝑥̂), 𝜏 − 1
)

≤ 𝛾𝑉𝑝̂(𝑥̂, 𝜏), (61)

or all 𝜏 ∈ [1, 𝑁0], 𝑝, 𝑞 ∈ . By the smoothness properties of 𝑞(⋅) and
he differentiability of 𝜂(⋅), we obtain that 𝑓𝑞(𝑥, 𝜏) is locally Lipschitz
nd, thus, that Assumption 2 also holds. On the other hand, note that
via a simple change of coordinates, and without loss of generality, the
results of Theorem 1 hold for  as defined in (28) but with the set {0}
replaced by the set 𝑥 in (55). Therefore, the quadratic bounds on the
Lyapunov function, together with condition (56), (59), and (61), imply
PT-SF of 𝑥 × [0, 𝑁0] × × R≥1 via Theorem 1-(a). ■

Remark 19 (PT-NESmr with Non-Monotone 𝑞). Unlike [43], the results
of Proposition 4 can be directly extended to switching games where
some modes lack strong monotonicity in their pseudo-gradients. In this
case, we can use the HDS  with data (38) and leverage Theorem 2,
paralleling the approach followed in Section 5.A to study unstable
plants. In this case, we obtain conditions on 𝜏𝑑 and 𝜏𝑎 in , charac-
terizing admissible switching signals under which PT-NESmr dynamics
attain prescribed-time stability. This broadens PT-NESmr’s applicability
to switching games with temporary loss of strong monotonicity. □
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To illustrate the previous discussion, let  = {1, 2, 3} and 𝑞(𝑥1) =
𝐴𝑞(𝑥1 − 𝑥̃), with 𝑥̃ = (1, 1), 𝐴1 = [6,−1.5; −1.5, 6], 𝐴2 = [8,−2; 2, 8],
3 = [4, 6; 5; 2], and 𝜗 = 5×10−2. The pseudo-gradient 𝑞(⋅) is 𝜅𝑞-strongly
onotone only for 𝑞 ∈ {1, 2} =∶ 𝑠 and 𝓁𝑞-globally Lipschitz for all
∈ . Using 𝑘 = 1, 𝜏𝑑 = 𝜏𝑎 = 2.5, 𝑁0 = 1.75, 𝑇0 = 2 we simulate
he system using a switching signal 𝜎 ∈ 𝛴BU-ADT(𝜏𝑑 , 𝑁0, 𝑇 , 𝜇0) with
= 10. We compare our results with the continuous-time prescribed-

ime pseudo-gradient-flows (PT-PSG), recently introduced in [48], and
iven by 𝑥̇1 = 𝜇1(𝑡)𝜎(𝑡)(𝑥1). The resulting trajectories are shown in
ig. 5. As shown in the figure, under the PT-NESmr and the PT-PSG dy-
amics, the state 𝑥1 rapidly approaches zero as 𝑡 → 𝛶𝑇 ,1 and converges
aster than using the standard pseudo-gradient flows with exponential
onvergence guarantees (Exponential-PSG). Also, note that the syner-
istic incorporation of momentum, resets, and PT techniques leads to
n improvement compared to the continuous-time PT-PSG algorithm
nder the same switching signal. The overshoots occur when the Nash-
quilibrium seeking algorithms operate with a pseudo-gradient that is
ot 𝜅-strongly monotone, or equivalently when 𝑞 ∈ 𝑢 =  ⧵𝑠.

. Conclusions

The property of prescribed-time stability was studied and extended
or a class of hybrid dynamical systems incorporating switching nonlin-
ar vector fields with time-varying increasing gains, exogenous inputs,
nd resets. Novel switching conditions that preserve the prescribed-
ime stability properties of the system were derived using tools from
ybrid dynamical systems theory and under a suitable contraction/
ilation of the hybrid time domains. The switching conditions allow
he incorporation of unstable modes. The results were illustrated in
wo applications in the context of control and decision-making. Fu-
ure applications will include prescribed-time concurrent learning and
rescribed-time switching extremum seeking. Future work will also
nclude studying the synergies between non-smooth and prescribed-
ime tools, as well as consistent discretization mechanisms for HDS,
imilar to [49].
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ppendix

We present detailed proofs of all the auxiliary lemmas and proposi-

ions used in the paper.
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.1. Proofs of Section 3

The results below follow directly by computations and/or straight-
orward extensions or specializations of existing results in the literature.

roof of Lemma 1. By direct integration, we have that:
𝜇𝑘(𝑡)

𝜇0

𝑑𝜇𝑘

𝜇
1+ 1

𝑘
𝑘

= ∫

𝑡

0

𝑘
𝑇
𝑑𝑡 ⟹ −𝑘𝜇

−1
𝑘
𝑘

|

|

|

𝜇𝑘(𝑡)

𝜇0
= 𝑘
𝑇
𝑡.

Thus, it follows that 𝑘
(

−𝜇𝑘(𝑡)
−1
𝑘 + 𝜇𝑘(0)

−1
𝑘
)

= 𝑘
𝑇 𝑡, and:

1

𝜇𝑘(𝑡)
1
𝑘

= 1

𝜇𝑘(0)
1
𝑘

− 𝑡
𝑇

=
𝑇 − 𝑡𝜇𝑘(0)

1
𝑘

𝑇𝜇𝑘(0)
1
𝑘

,

from which we obtain the result. ■

Proof of Lemma 3. By direct integration, we have that:

∫

𝜇̂𝑘(𝑡)

𝜇0

𝑑𝜇̂𝑘

𝜇̂
1
𝑘
𝑘

= ∫

𝑡

0

𝑘
𝑇
𝑑𝑡 ⟹

1
1 − 1

𝑘

𝜇̂
1− 1

. 𝑘
𝑘

|

|

|

𝜇̂𝑘(𝑡)

𝜇0
= 𝑘
𝑇
𝑡.

Therefore, we obtain 𝑘
𝑘−1

(

𝜇̂
1− 1

𝑘
𝑘 (𝑡) − 𝜇

1− 1
𝑘

0

)

= 𝑘
𝑇 𝑡, and:

̂𝑘(𝑡) =
(

𝑘 − 1
𝑇

𝑡 + 𝜇
𝑘−1
𝑘

0

)

𝑘
𝑘−1

.

This obtains the result. ■

Proof of Proposition 1.
(P1) Follows by the monotonicity of 𝜔𝑘(⋅, ⋅) in its first argument,

combined with the limit lim𝑡→𝛶𝑇 ,𝑘 𝜇𝑘(𝑡) = ∞.
(P2) For 𝑘 > 1, the result follows by direct computation. For 𝑘 = 1,

the result is obtained by the properties of the logarithm.
(P3) By definition, the equality 𝑘(0) = 0 holds for all 𝑘 ∈ R≥1. For

𝑘 = 1, by direct computation, we have: 𝑑1(𝑡)
𝑑𝑡 = 𝑇

𝜇1(𝑡)
𝜇̇1(𝑡) = 𝜇1(𝑡). For

𝑘 > 1, by the chain rule, we obtain:
𝑑𝑘(𝑡)
𝑑𝑡

=
𝜕𝜔𝑘(𝑏, 𝜇𝑘(0))

𝜕𝑏
|

|

|

|𝑏=𝜇𝑘(𝑡)
𝜇̇𝑘 = 𝜇𝑘(𝑡).

(P4) For 𝑘 = 1, we have that 𝜇1(𝑡) = 𝜇0𝑇
𝑇−𝜇0𝑡

. It then follows

hat 𝑠 =
(

1◦ −1
1

)

(𝑠) = 𝑇 ln
(

𝜇1
(

 −1(𝑠)
)

𝜇0

)

. Solving for  −1
1 (𝑠) leads to

 −1
1 (𝑠) = 𝛶𝑇 ,1

(

1 − 𝑒−
𝑠
𝑇
)

. For 𝑘 > 1, let 𝑦𝑘 ∶=  −1
𝑘 . By using (5), and the

inverse function theorem, we obtain that 𝑑𝑦𝑘𝑑𝑠 = (𝛶𝑇 ,𝑘−𝑦)𝑘
𝑇 𝑘 . Then, by direct

ntegration and using the fact that 𝑦𝑘(0) = 0, we obtain the following

quality 𝛶𝑇 ,𝑘−𝑦𝑘(𝑠) =
(

(𝑘−1)𝑠
𝑇 𝑘 + 𝛶 1−𝑘

𝑇 ,𝑘

)
1

1−𝑘 . Solving for  −1
𝑘 (𝑠), we obtain

that  −1
𝑘 (𝑠) = 𝛶𝑇 ,𝑘 − 𝛶𝑇 ,𝑘

(

1 + (𝑘−1)𝑠
𝛶𝑇 ,𝑘𝜇0

)
1

1−𝑘 .
(P5) Follows directly by the inverse function theorem.

(P6) For 𝑘 = 1, using the equality ln(1 − 𝑥) =
∑∞
𝑙=1

−1
𝑙 𝑥

𝑙, |𝑥| < 1, we
btain that 1(𝑡) = 𝜇0𝑡+

∑∞
𝑙=2

1
𝑙 𝜇

𝑙
0𝑡
𝑙𝑇 1−𝑙, for all 𝑡𝜇0 < 𝑇 . Letting 𝑇 → ∞,

he second term in this expression vanishes, and we obtain that the
quality lim𝑇→∞ 1(𝑡) = 𝜇0𝑡 holds for all (𝑡, 𝜇0) ∈ R≥0 × R≥1. For 𝑘 > 1,
rom Remark 5 it follows that

𝑘(𝑡) =
𝑇𝜇

𝑘−1
𝑘

0
𝑘 − 1

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

1 −
𝑡𝜇

1
𝑘
0
𝑇

⎞

⎟

⎟

⎟

⎠

1−𝑘

− 1

⎞

⎟

⎟

⎟

⎠

. (62)

Now, using the binomial theorem we have that

⎛

⎜

⎜

⎜

1 −
𝑡𝜇

1
𝑘
0
𝑇

⎞

⎟

⎟

⎟

1−𝑘

− 1 =
(𝑘 − 1)𝑡𝜇

1
𝑘
0

𝑇
+

∞
∑

𝑙=2
𝑔𝑘,𝑙

⎛

⎜

⎜

⎜

𝑡𝜇
1
𝑘
0
𝑇

⎞

⎟

⎟

⎟

𝑙

,

⎝ ⎠ ⎝ ⎠
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for all 𝑡𝜇
1
𝑘
0 < 𝑇 , and where 𝑔𝑘,𝑙 =

(𝑘−1)𝑘(𝑘+1)⋯(𝑘+𝑙−2)
𝑙! . Thus, for all 𝑡𝜇

1
𝑘
0 <

𝑇 , equality (62) can be written as 𝑘(𝑡) = 𝜇
𝑘−1
𝑘2
0 𝑡 +

∑∞
𝑙=2

𝑔𝑘,𝑙
𝑘−1 𝑡

𝑙𝜇
(𝑘−1)𝑙
𝑘2

0 𝑇 1−𝑙 .
Letting 𝑇 → ∞, the second term in this expression vanishes. Thus,

it follows that the limit lim𝑇→∞ 𝑘(𝑡) = 𝜇
𝑘−1
𝑘2
0 𝑡 holds for all (𝑡, 𝜇0) ∈

R≥0 × R≥1. ■

A.2. Proofs of Section 4

In this section, we present the proofs of Section 4.

Proof of Lemma 4. Let 𝜏𝑑 > 0, 𝑁0 ≥ 1, and 𝜎(𝑡) ∈ 𝛴ADT(𝜏𝑑 , 𝑁0). Then,
it follows that

𝑁(𝑡2, 𝑡1) ≤
1
𝜏𝑑

(𝑡2 − 𝑡1) +𝑁0, (63)

for all 𝑡1 ≤ 𝑡2. We prove that expression (63) can be upper bounded by
he right-hand side of (22).
Case 𝑘 = 1: Assume that 𝑡1, 𝑡2 ∈ [0, 𝛶𝑇 ,𝑘) and define 𝑋 ∶= 𝛶𝑇 ,𝑘−𝑡1

𝛶𝑇 ,𝑘−𝑡2
,

where 𝛶𝑇 ,1 = 𝑇𝜇−10 and 𝜇0 ≥ 1 fixed. Then, 𝑋 ≥ 1 and:

𝑡2 − 𝑡1 = (𝛶𝑇 ,1 − 𝑡1)
(

1 − 1
𝑋

)

.

ow, fix 𝑡1 and define 𝑓 (𝑋) ∶= ln(𝑋) − 𝑇 −1(𝛶𝑇 ,1 − 𝑡1)
(

1 − 1
𝑋

)

. Since
1 satisfies 𝑡1 ≤ 𝛶𝑇 ,1 ≤ 𝑇 by assumption, it follows that there exists
𝑡1 ∈ [0, 1] such that:

(𝑋) = ln(𝑋) − 𝛿𝑡1
(

1 − 1
𝑋

)

.

y noting that 𝑓 (1) = 0, and since 𝑋 ≥ 1, it follows that the derivative
f 𝑓 satisfies:

′(𝑋) = 1
𝑋

(

1 −
𝛿𝑡1
𝑋

)

≥ 0,

for all 𝛿𝑡1 ∈ [0, 1]. Thus, 𝑓 (𝑋) ≥ 0 for all 𝑋 ≥ 1 and 𝑡1 ≤ 𝛶𝑇 ,1.
Equivalently, by using the definition of 𝑋, it follows that:

𝑇 ln
(𝛶𝑇 ,1 − 𝑡1
𝛶𝑇 ,1 − 𝑡2

)

− (𝑡2 − 𝑡1) ≥ 0,

for all 0 ≤ 𝑡1 ≤ 𝑡2 < 𝛶𝑇 ,1, where we have used the definition of 𝑋. Using
this bound in (63) yields:

𝑁(𝑡2, 𝑡1) ≤
𝑇
𝜏𝑑

ln
(𝛶𝑇 ,1 − 𝑡1
𝛶𝑇 ,1 − 𝑡2

)

+𝑁0,

for all 0 ≤ 𝑡1 ≤ 𝑡2 < 𝛶𝑇 ,1, which implies that 𝜎(𝑡), when restricted to
0, 𝛶𝑇 ,1), satisfies the bound (22) for 𝑘 = 1.

Case 𝑘 > 1: Assume that 𝑡1, 𝑡2 ∈ [0, 𝛶𝑇 ,𝑘), with 𝛶𝑇 ,𝑘 = 𝑇𝜇
− 1
𝑘

0 , 𝑇 > 0
nd 𝜇0 ≥ 1. Let 𝛥 = 𝑡2 − 𝑡1, and define

(𝛥) = 𝑘(𝑡1 + 𝛥) − 𝑘(𝑡1) − 𝛥, 𝛥 ∈ [0, 𝛶𝑇 ,𝑘).

hen, by using the result of Proposition 1-(P3) the derivative of 𝑓
atisfies:
′(𝛥) = 𝜇𝑘(𝑡1 + 𝛥) − 1,

or all 𝑡1, 𝛥 ∈ [0, 𝛶𝑇 ,𝑘). Since 𝜇𝑘(𝑡) ≥ 1 for all 𝑡 ∈ R≥0, the previous
quality implies that 𝑓 ′(𝛥) ≥ 0. This result, together with the fact that
(0) = 0, implies that 𝑓 (𝛥) ≥ 0 for all 𝑡1, 𝛥 ∈ [0, 𝛶𝑇 ,𝑘). Equivalently, by
using the definition of 𝛥 we obtain:

0 ≤ 𝑘(𝑡2) − 𝑘(𝑡1) − (𝑡1 − 𝑡2)

⟹ (𝑡1 − 𝑡2) ≤ 𝜔𝑘(𝜇𝑘(𝑡2), 𝜇𝑘(𝑡1)),

where the implication follows from the result of Proposition 1-(P2).
Using this bound in (63) yields:

𝑁(𝑡2, 𝑡1) ≤
1
𝜏𝑑
𝜔𝑘(𝜇𝑘(𝑡2), 𝜇𝑘(𝑡1)) +𝑁0,

for all 0 ≤ 𝑡1 ≤ 𝑡2 < 𝛶𝑇 ,1, which implies that 𝜎(𝑡), when restricted to
[0, 𝛶 ), satisfies the bound (22) for 𝑘 ∈ Z . ■
𝑇 ,1 ≥1
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Proof of Lemma 5. The case 𝑘 = 1 follows directly by the definition of
1 and Remark 3. For 𝑘 > 1, consider expanding the right-hand side of
(22):

𝑁(𝑡2, 𝑡1) ≤
𝑇
𝜏𝑑

⎛

⎜

⎜

⎝

𝜇𝑘(𝑡2)
𝑘−1
𝑘

𝑘 − 1
−
𝜇𝑘(𝑡1)

𝑘−1
𝑘

𝑘 − 1

⎞

⎟

⎟

⎠

+𝑁0

= 𝑇 𝑘

𝜏𝑑 (𝑘 − 1)

(
(

𝛶𝑇 ,𝑘 − 𝑡1
)𝑘−1 −

(

𝛶𝑇 ,𝑘 − 𝑡2
)𝑘−1

((

𝛶𝑇 ,𝑘 − 𝑡2
) (

𝛶𝑇 ,𝑘 − 𝑡1
))𝑘−1

)

+𝑁0.

aking the limit as 𝑘 → 1, one obtains (23), see also Remark 3. On
he other hand, when 𝑘 ∈ Z>1, the Binomial theorem can be used
o write (𝛶𝑇 ,𝑘 − 𝑡𝑖)𝑘−1 =

∑𝑘−1
𝓁=0 𝑏𝑘,𝑙𝛶

𝑘−1−𝓁
𝑇 ,𝑘 (−𝑡𝑖)𝓁 , for 𝑖 ∈ {1, 2}, where

𝑘,𝑙 ∶=
(𝑘−1)!

𝓁!(𝑘−𝓁−1)! are the so-called Binomial coefficients. Let

𝑆 ∶=
𝑘−1
∑

𝓁=0
𝑏𝑘,𝑙𝛶

𝑘−1−𝓁
𝑇 ,𝑘 (−𝑡1)𝓁 −

𝑘−1
∑

𝓁=0
𝑏𝑘,𝑙𝛶

𝑘−1−𝓁
𝑇 ,𝑘 (−𝑡2)𝓁

=
𝑘−1
∑

𝓁=1
𝑏𝑘,𝑙𝛶

𝑘−1−𝓁
𝑇 ,𝑘 (−𝑡1)𝓁 −

𝑘−1
∑

𝓁=1
𝑏𝑘,𝑙𝛶

𝑘−1−𝓁
𝑇 ,𝑘 (−𝑡2)𝓁

= 𝑏𝑘,1𝛶
𝑘−2
𝑇 ,𝑘 (𝑡2 − 𝑡1) +

𝑘−1
∑

𝓁=2
𝑏𝑘,𝑙𝛶

𝑘−1−𝓁
𝑇 ,𝑘

(

(−𝑡1)𝓁 − (−𝑡2)𝓁
)

= 𝑏𝑘,1𝛶
𝑘−2
𝑇 ,𝑘 (𝑡2 − 𝑡1) +

𝑘−1
∑

𝓁=2
(−1)𝓁+1𝑏𝑘,𝑙𝛶 𝑘−1−𝓁𝑇 ,𝑘

(

𝑡𝓁2 − 𝑡𝓁1
)

.

herefore, the BU𝑘-ADT bound can be written as

(𝑡2, 𝑡1) ≤
𝑇 𝑘

𝜏𝑑 (𝑘 − 1)

(

𝑆
(

(𝛶𝑇 ,𝑘 − 𝑡2)(𝛶𝑇 ,𝑘 − 𝑡1)
)𝑘−1

)

+𝑁0

=
𝛾𝑘(𝑡1, 𝑡2)
𝜏𝑑

[

(𝑡2 − 𝑡1) +
𝑘−1
∑

𝓁=2
𝑐𝓁,𝑘

(

𝑡𝓁2 − 𝑡𝓁1
)

]

+𝑁0,

here

𝑐𝓁,𝑘 = (−1)𝓁+1𝑏𝑘,𝑙𝛶 𝑘−1−𝓁𝑇 ,𝑘

(

𝑏𝑘,1𝛶
𝑘−2
𝑇 ,𝑘

)−1
= (−1)𝓁+1

𝑏𝑘,𝑙
𝑏𝑘,1

𝛶 1−𝓁
𝑇 ,𝑘 ,

and

𝛾𝑘(𝑡1, 𝑡2) =
𝑏𝑘,1𝑇 𝑘𝛶 𝑘−2𝑇 ,𝑘

(𝑘 − 1)

(

1
(𝛶𝑇 ,𝑘 − 𝑡2)(𝛶𝑇 ,𝑘 − 𝑡1)

)𝑘−1

= 𝑇 𝑘

𝛶𝑇 ,𝑘

[

𝛶𝑇 ,𝑘
(

𝛶𝑇 ,𝑘 − 𝑡2
) (

𝛶𝑇 ,𝑘 − 𝑡1
)

]𝑘−1

= 𝜇0

[

𝛶 2
𝑇 ,𝑘

(

𝛶𝑇 ,𝑘 − 𝑡2
) (

𝛶𝑇 ,𝑘 − 𝑡1
)

]𝑘−1

where we have used the fact that 𝑏𝑘,1 = 𝑘 − 1. ■

A.3. Auxiliary results of Section 5

The following Lemma is instrumental in studying the stability prop-
erties of the HDS with data (52).

Lemma 8. Consider the matrix

𝑀𝜁𝑞 (𝑥1, 𝜏) ∶=

(

1
𝜂(𝜏)2 𝐼 𝐼 − 𝜕𝑞(𝑥1)⊤

𝐼 − 𝜕𝑞(𝑥1) (𝜁𝑞 − 𝜌𝜂′(𝜏))𝐼

)

, (64)

here 𝑞 ∈ , 𝜏 ∈ [0, 𝑁0], 𝜂(𝜏) ∈ [𝜂, 𝜂], 𝜌 ∈ [0, 1∕𝜏𝑑 ], and 𝜂′(𝜏) ∶=
𝑑𝜂
𝑑𝜏 (𝜏),

𝑞(⋅), and 𝜁𝑞 are as introduced in Section 5.2. Suppose that Assumption 4
is satisfied. Then,

𝑀𝜁𝑞 (𝑥1, 𝜏) ⪰ 𝜈𝑀𝐼, ∀ 𝜏 ∈ [0, 𝑁0], 𝑥1 ∈ R𝑛 (65)

where 𝜈𝑀∶= (1−𝛿𝑑−𝛿𝜂 )𝜎
2

2 , with 𝜁 ∶= min𝑞∈ 𝜁𝑞 and 𝜎 ∶= max𝑞∈ 𝜎𝑞 . □

𝛿𝜂 (1−𝛿𝑑 )𝜁+𝜎
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Proof.
First we show that matrix-valued function 𝑀𝜁𝑞 (⋅, ⋅) is positive-

definite uniformly over 𝜌 ∈ [0, 𝜏−1𝑑 ], 𝑥1 ∈ R𝑛, and 𝜏 ∈ [0, 𝑁0]. To this
end, we decompose the matrix 𝑀𝜁𝑞 (𝑥1, 𝜏) as follows:

𝑀𝜁𝑞 (𝑥1, 𝜏) = 𝑈𝑞(𝑥1, 𝜏)𝑊𝑞(𝜏, 𝑥1)𝑈𝑞(𝑥1, 𝜏)⊤, (66a)

𝑊𝑞(𝜏, 𝑥1) ∶=

(

𝐼
𝜂(𝜏)2 0
0 𝜚𝑞(𝜏)𝐼 − 𝜂2(𝜏)𝛴𝑞(𝑥1)𝛴𝑞(𝑥1)⊤

)

, (66b)

𝑞(𝜏) ∶= 𝜁𝑞 − 𝜌𝜂′(𝜏), 𝛴𝑞(𝑥1) ∶= 𝐼 − 𝜕𝑞(𝑥1), (66c)

𝑈𝑞(𝑥1, 𝜏) ∶=
(

𝐼 0
𝜂2(𝜏)𝛴𝑞(𝑥1) 𝐼

)

. (66d)

By the fact that 𝜂(𝜏) ∈ [𝜂, 𝜂] for all 𝜏 ∈ [0, 𝑁0] it follows that

1
𝜂(𝜏)2

𝐼 ⪰ 1
𝜂2
𝐼. (67)

Also, by Assumptions 4, we have that

𝜚𝑞(𝜏)𝐼 − 𝜂(𝜏)2𝛴𝑞(𝑥1)𝛴𝑞(𝑥1) ⪰
(

𝜚𝑞(𝜏) − 𝜂
2𝜎2𝑞

)

𝐼

⪰

(

𝜁𝑞 −
𝜂 − 𝜂

𝜏𝑑𝑁0
− 𝜂2𝜎2𝑞

)

𝐼

⪰ 𝛿𝐼, (68)

where 𝛿 ∶= (1 − 𝛿)𝜁 , with 𝜁 ∶= min𝑞∈ 𝜁𝑞 . Therefore, via [50, Theorem
7.7.7], the matrix 𝑀𝜁𝑞 (𝑥1, 𝜏) is positive definite for all 𝑥1 ∈ R𝑛 and
𝜏 ∈ [0, 𝑁0]. Now, we establish the matrix inequality (65). To do so, we
use (67) and (68) in (66a) to obtain that

𝑀𝜁𝑞 (𝑥1, 𝜏) ⪰ 𝑈𝑞(𝑥1, 𝜏)

( 1
𝜂2
𝐼 0

0 𝛿𝐼

)

𝑈⊤
𝑞 (𝑥1, 𝜏)

⪰ 𝑍𝑞(𝑥1, 𝜏)𝑍𝑞(𝑥1, 𝜏)⊤, (69)

here 𝑍𝑞(𝑥1, 𝜏)⊤ is the upper block triangular matrix

𝑞(𝑥1, 𝜏)⊤ ∶=

(

1
𝜂 𝐼

𝜂(𝜏)2
𝜂 𝛴𝑞(𝑥1, 𝜏)⊤

0
√

𝛿𝐼

)

.

By applying [51, Lemma 9], and using (69) together with the fact that
𝑍𝑞(𝑥1, 𝜏) has full column rank for all 𝑥1 ∈ R𝑛 and 𝜏 ∈ [0, 𝑁0] and
hus that 𝜎min(𝑍𝑞(𝑥1, 𝜏)𝑍𝑞(𝑥1, 𝜏)⊤) ≥ 𝜎min(𝑍𝑞(𝑥1, 𝜏))𝜎min(𝑍𝑞(𝑥1, 𝜏)⊤) =
2
min(𝑍𝑞(𝑥1, 𝜏)

⊤), we obtain

𝜁𝑞 (𝑥1, 𝜏) ⪰
1

𝜂2
(

1 + 𝜂2

𝛿 ‖𝛴𝑞(𝑥1)
2
‖

)

+ 1
𝛿

𝐼

⪰
(1 − 𝛿𝑑 − 𝛿𝜂)𝜎

2

𝛿𝜂(1 − 𝛿𝑑 )𝜁 + 𝜎
2
𝐼,

where in the last two steps we used Assumption 4. This completes the
proof. ■

A.4. Lyapunov conditions for exponential-ISS of hybrid dynamical systems

The following lemma is a specialization of [33, Prop. 2.7] for the
case when the system is exponentially ISS. We present the complete
proof here only for the purpose of completeness.

Lemma 9. Consider the HDS (3), and a closed set  ⊂ R𝑚. Suppose
there exist constants 𝛼, 𝛼, 𝜌, 𝑝 > 0, 𝜆 ∈ (0, 1), and a smooth function
𝑉 ∶ 𝐶 ∪𝐷 → R≥0, such that the following inequalities hold:

𝛼|𝑧|𝑝 ≤ 𝑉 (𝑧) ≤ 𝛼|𝑧|𝑝, ∀ 𝑧 ∈ 𝐶 ∪𝐷 ∪ 𝐺(𝐷),

∇𝑉 (𝑧), 𝐹 (𝑧, 𝑢)⟩ ≤ −𝜆𝑉 (𝑧) + 𝜌|𝑢|𝑝, ∀ (𝑧, 𝑢) ∈ 𝐶 × R𝑚,

𝑉 (𝐺(𝑧)) − 𝑉 (𝑧) ≤ −𝜆𝑉 (𝑧) + 𝜌|𝑢|𝑝, ∀ (𝑧, 𝑢) ∈ 𝐷 × R𝑚.
16 
hen, every solution of (3) satisfies

𝑧(𝑠, 𝑗)| ≤ 𝜅1𝑒
−𝜅2(𝑠+𝑗)

|𝑧(0, 0)| + 𝜅3 sup
0≤𝜏≤𝑠

|𝑢(𝜏)|, (70)

for all (𝑠, 𝑗) ∈ dom(𝑧), and where 𝜅1 =
(

𝛼∕𝛼
)𝑝, 𝜅2 = 𝜆∕2𝑝, and 𝜅3 =

(

2𝜌
𝜆𝛼

)1∕𝑝
. □

Proof. We follow similar ideas as in the proof of [33, Prop. 2.7], but
considering set-valued flow and jump maps. The proof has four main
steps:

Step 1: First, note that for all (𝑧, 𝑢) ∈ (𝐶 ∪𝐷) × R𝑚:

− 𝜆𝑉 (𝑧) + 𝜌|𝑢|𝑝 ≤ −𝜆
2
𝑉 (𝑧), if 𝑉 (𝑧) ≥ 2𝜌

𝜆
|𝑢|𝑝. (71)

herefore, whenever 𝑉 (𝑧) ≥ 2𝜌
𝜆 |𝑢|

𝑝 we have that

⟨∇𝑉 (𝑧), 𝐹 (𝑧, 𝑢)⟩ ≤ −𝜆̃𝑉 (𝑧), ∀(𝑧, 𝑢) ∈ 𝐶 × R𝑚,

𝑉 (𝐺(𝑧)) − 𝑉 (𝑧) ≤ −𝜆̃𝑉 (𝑧), ∀(𝑧, 𝑢) ∈ 𝐷 × R𝑚,

where 𝜆̃ ∶= 𝜆∕2.
Step 2: For any 𝑟 ≥ 0, define 𝛾𝑐4 (𝑟, 𝑠, 𝑗) = 𝑒−𝜆̃(𝑠+𝑗)𝑟. We first show that

when 𝑉 (𝑧) ≥ 2𝜌
𝜆 |𝑢|

𝑝, the function 𝑉 evaluated along the solutions of (3)
atisfies

(𝑧(𝑠, 𝑗)) ≤ 𝛾𝜆(𝑉 (𝑧(0, 0)), 𝑠, 𝑗), ∀ (𝑠, 𝑗) ∈ dom(𝑧). (72)

o establish this property, note that since 𝑉 (𝑧(⋅, ⋅)) is not increasing
uring flows and jumps, if there is (𝑠′, 𝑗′) ∈ dom(𝑧) with 0 < 𝑠′+𝑗′ < 𝑡+𝑗
nd such that 𝑉 (𝑧(𝑠′, 𝑗′)) = 0, then we necessarily must have 𝑉 (𝑧(𝑠̃, 𝑗)) =
for all (𝑠̃, 𝑗) ∈ dom(𝑧) such that 𝑠′ + 𝑗′ ≤ 𝑠̃+ 𝑗 ≤ 𝑠+ 𝑗, and (72) would
old for such times (𝑠̃, 𝑗). Suppose there is no (𝑠′, 𝑗′) ∈ dom(𝑧) with
< 𝑠′ + 𝑗′ < 𝑡 + 𝑗 such that 𝑉 (𝑧(𝑠′, 𝑗′)) = 0. For each (𝑠, 𝑗) ∈ dom(𝑧),
e partition the hybrid time domain of 𝑧 up to time (𝑠, 𝑗) as dom(𝑧) =
𝑗
𝑛=0[𝑠𝑛, 𝑠𝑛+1] × {𝑛}, with 𝑠0 = 0 and 𝑠𝑗+1 = 𝑠. For any 𝑛 ∈ {0, 1,… , 𝑗},

𝑉 satisfies

∫

𝑠𝑛+1

𝑠𝑛

̇⏞⏞⏞⏞⏞⏞⏞
𝑉 (𝑧(𝜏, 𝑛))
𝜆̃𝑉 (𝑧(𝜏, 𝑛))

𝑑𝜏 ≤ −∫

𝑠𝑛+1

𝑠𝑛
𝑑𝜏 = −(𝑠𝑛+1 − 𝑠𝑛).

sing the new variable 𝜚 = 𝑉 (𝑧(𝜏, 𝑛)), we obtain 𝑑𝜚 = 𝑉̇ 𝑑𝜏 and the
bove integral can be written as

∫

𝑉 (𝑧(𝑠𝑛+1 ,𝑛))

𝑉 (𝑧(𝑠𝑛 ,𝑛))

𝑑𝜚
𝜆̃𝜚

≤ −(𝑠𝑛+1 − 𝑠𝑛). (73)

imilarly, note that
𝑉 (𝑧(𝑠𝑛+1 ,𝑛+1))

𝑉 (𝑧(𝑠𝑛+1 ,𝑛))

𝑑𝜚
𝜆̃𝜚

≤ ∫

𝑉 (𝑧(𝑠𝑛+1 ,𝑛+1))

𝑉 (𝑧(𝑠𝑛+1 ,𝑛))

𝑑𝜚
𝜆̃𝑉 (𝑧(𝑠𝑛+1, 𝑛))

≤ −1,

where the last inequality follows by the inequality 𝑉 (𝑧(𝑠, 𝑗 + 1)) −
𝑉 (𝑧(𝑠, 𝑗)) ≤ −𝜆̃𝑉 (𝑧(𝑠, 𝑗)). Combining the above two inequalities, we
obtain

∫

𝑉 (𝑧(𝑠,𝑗))

𝑉 (𝑧(0,0))

𝑑𝜌
𝜆̃𝜚

=
𝑗
∑

𝑛=0
∫

𝑉 (𝑧(𝑠𝑛+1 ,𝑛))

𝑉 (𝑧(𝑠𝑛 ,𝑛))

𝑑𝜚
𝜆̃𝜚

+
𝑗
∑

𝑛=1
∫

𝑉 (𝑧(𝑠𝑛+1 ,𝑛+1))

𝑉 (𝑧(𝑠𝑛+1 ,𝑛))

𝑑𝜚
𝜆̃𝜚

≤ −

( 𝑗
∑

𝑛=0
(𝑠𝑛+1 − 𝑠𝑛) +

𝑗
∑

𝑛=1
1

)

= −(𝑠𝑗+1 − 𝑠0 + 𝑗) = −(𝑠 + 𝑗). (74)

Integrating the left-hand side, we obtain 1
𝜆̃ ln

(

𝑉 (𝑧(𝑠,𝑗))
𝑉 (𝑧(0,0))

)

≤ −(𝑠+ 𝑗), from
which we directly get

𝑉 (𝑧(𝑠, 𝑗)) ≤ 𝑉 (𝑧(0, 0))𝑒−
𝜆
2 (𝑠+𝑗) (75)
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Step 3: Let (𝑧, 𝑢) be a maximal solution pair of (3). Define the set

𝛺 ∶=
{

𝑧 ∈ R𝑛 ∶ 𝑉 (𝑧) ≤ 2𝜌
𝜆
|𝑢|𝑝∞

}

. (76)

or each 𝑧0 ∈ R𝑛, let

𝑧,𝑢,𝑧0 ∶= sup
{

𝜏 ∈ R≥0 ∶ 𝑧(𝑠, 𝑗) ∉ 𝛺, 𝑧(0, 0) = 𝑧0,

∀ (𝑠, 𝑗) ∈ dom(𝑧), 0 ≤ 𝑠 + 𝑗 ≤ 𝜏
}

.

t follows that for all solutions of (3) with 𝑧(0, 0) = 𝑧0 and (𝑠, 𝑗) ∈ dom(𝑧)
uch that 0 ≤ 𝑠+ 𝑗 < 𝑇𝑧,𝑢,𝑧0 we have that 𝑉 (𝑧) > 2𝜌

𝜆 |𝑢|
𝑝
∞, which, by Step

2, implies that 𝑉 satisfies (75). Using the quadratic upper and lower
bounds on 𝑉 , we obtain:

|𝑧(𝑠, 𝑗)| ≤
(

𝛼
𝛼

)
1
𝑝
|𝑧(0, 0)|𝑒

− 𝜆
2𝑝 (𝑠+𝑗), (77)

which holds for all (𝑠, 𝑗) ∈ dom(𝑧) such that 0 ≤ 𝑠 + 𝑗 < 𝑇𝑧,𝑢,𝑧0 .
Step 4: The last step is to prove forward invariance of 𝛺. Suppose

there exist (𝑠′, 𝑗′) ∈ dom(𝑧) such that 𝑧(𝑠′, 𝑗′) ∈ 𝛺 and (𝑠′, 𝑗′ + 1) ∈
om(𝑧). Since 𝜆̃ < 𝜆, 𝑉 satisfies

(𝑧(𝑠′, 𝑗′ + 1)) ≤ (1 − 𝜆̃)𝑉 (𝑧(𝑠′, 𝑗′)) + 𝜌|𝑢|𝑝∞,

≤
(

1 − 𝜆
2

) 2𝜌
𝜆
|𝑢|𝑝∞ + 𝜌|𝑢|𝑝∞ =

2𝜌
𝜆
|𝑢|𝑝∞.

Moreover, if (𝑠′, 𝑗′ + 1) ∈ dom(𝑧), then 𝑧 cannot leave 𝛺 via flows
because 𝑉̇ ≤ 0 if 𝑉 (𝑧) ≥ 2𝜌

𝜆 |𝑢|
𝑝
∞. It follows that for all (𝑠, 𝑗) ∈ dom(𝑧)

such that 𝑠 + 𝑗 ≥ 𝑇𝑧,𝑢,𝑧0 the solution 𝑧 satisfies:

𝛼|𝑧(𝑠, 𝑗)|𝑝 ≤ 𝑉 (𝑧(𝑠, 𝑗)) ≤ 2𝜌
𝜆
|𝑢|𝑝∞, (78)

that is, |𝑧(𝑠, 𝑗)| ≤
(

2𝜌
𝜆𝛼

)
1
𝑝
|𝑢|∞, for all 𝑠 + 𝑗 ≥ 𝑇𝑧,𝑢,𝑧0 . Combining this

ound with (77) we obtain

𝑧(𝑠, 𝑗)| ≤ max

⎧

⎪

⎨

⎪

⎩

(

𝛼
𝛼

)
1
𝑝
|𝑧(0, 0)|𝑒−

𝜆
2𝑝 (𝑠+𝑗),

(

2𝜌
𝜆𝛼

)
1
𝑝
|𝑢|∞

⎫

⎪

⎬

⎪

⎭

, (79)

or all (𝑠, 𝑗) ∈ dom(𝑧). Since max{𝑎, 𝑏} ≤ 𝑎 + 𝑏, we obtain

𝑧(𝑠, 𝑗)| ≤ 𝜅1|𝑧(0, 0)|𝑒−𝜅2(𝑠+𝑗) + 𝜅3|𝑢|∞, (80)

ith 𝜅1 =
(

𝛼
𝛼

)
1
𝑝 , 𝜅2 = 𝜆

2𝑝 and 𝜅3 =
(

2𝜌
𝜆𝛼

)
1
𝑝 . The result follows from the

above inequality by time-invariance and causality. ■

The following result relaxes the third condition in Lemma 9 under
standard average dwell-time condition on the jumps.

emma 10. Consider the HDS (3), and suppose that: (a) every solution
atisfies the ADT constraint (21); (b) there exist constants 𝛼, 𝛼, 𝜌, 𝑝 > 0,
∈ (0, 1), and a smooth function 𝑉 ∶ 𝐶 ∪𝐷 → R≥0, such that the following
nequalities hold:

𝛼|𝑧|𝑝 ≤ 𝑉 (𝑧) ≤ 𝛼|𝑧|𝑝, ∀ 𝑧 ∈ 𝐶 ∪𝐷 ∪ 𝐺(𝐷),

∇𝑉 (𝑧), 𝐹 (𝑧, 𝑢)⟩ ≤ −𝜆𝑉 (𝑧) + 𝜌|𝑢|𝑝, ∀ (𝑧, 𝑢) ∈ 𝐶 × R𝑚,

𝑉 (𝐺(𝑧)) − 𝑉 (𝑧) ≤ 0, ∀ 𝑧 ∈ 𝐷.

Then, every solution of (3) satisfies

𝑧(𝑠, 𝑗)| ≤ 𝜅1𝑒
−𝜅2(𝑠+𝑗)

|𝑧(0, 0)| + 𝜅3 sup
0≤𝜏≤𝑠

|𝑢(𝜏)|, (81)

or all (𝑠, 𝑗) ∈ dom(𝑧), where 𝜅𝑖 > 0, for 𝑖 ∈ {1, 2, 3}. □

roof. The proof follows similar steps as the proof of Lemma 9. In
articular, inequality (73) still holds. On the other hand, during jumps,
e now have

(𝑧(𝑠 , 𝑛 + 1)) − 𝑉 (𝑧(𝑠 , 𝑛)) ≤ 0 (82)
𝑛+1 𝑛+1

17 
ividing both sides by 𝜆̃𝑉 (𝑧(𝑠𝑛+1, 𝑛)), we obtain

≥
𝑉 (𝑧(𝑠𝑛+1, 𝑛 + 1)) − 𝑉 (𝑧(𝑠𝑛+1, 𝑛))

𝜆̃𝑉 (𝑧(𝑠𝑛+1, 𝑛))

= ∫

𝑉 (𝑧(𝑠𝑛+1 ,𝑛+1))

𝑉 (𝑧(𝑠𝑛+1 ,𝑛))

𝑑𝜚
𝜆̃𝑉 (𝑧(𝑠𝑛+1, 𝑛))

.

It follows that inequality (74) now becomes ∫ 𝑉 (𝑧(𝑠,𝑗))
𝑉 (𝑧(0,0))

𝑑𝜌
𝜆̃𝜚 ≤ −𝑠, from

which we obtain after integration:

𝑉 (𝑧(𝑠, 𝑗)) ≤ 𝑉 (𝑧(0, 0))𝑒−
𝜆
2 𝑠 (83)

Finally, the ADT condition (27) guarantees that 𝑗 ≤ 1
𝜏𝑑
𝑠 + 𝑁0 for any

(𝑠, 𝑗) ∈ dom(𝑧̂), which implies that 𝑠 + 𝑗 ≤ ( 1
𝜏𝑑

+ 1)𝑠 +𝑁0. In turn, this
nequality can be written as 𝑠 ≥ 𝜏𝑑

1+𝜏𝑑
(𝑠 + 𝑗) − 𝜏𝑑

1+𝜏𝑑
𝑁0, so that (83) can

be upper-bounded as follows:

𝑉 (𝑧(𝑠, 𝑗)) ≤ 𝜅7𝑒
−𝜅8(𝑠+𝑗)𝑉 (𝑧(0, 0)), (84)

where 𝜅7 ∶= 𝑒
𝜆
2

𝜏𝑑
1+𝜏𝑑

𝑁0 and 𝜅8 ∶=
𝜆
2

𝜏𝑑
1+𝜏𝑑

. From here the proof follows the
same Steps 3–4 from the proof of Lemma 9. In particular, the inequality
(80) now becomes

|𝑧(𝑠, 𝑗)| ≤ 𝜅̃1|𝑧(0, 0)|𝑒−𝜅̃2(𝑠+𝑗) + 𝜅̃3|𝑢|∞,

with 𝜅̃1 ∶=
(

𝛼
𝛼

)
1
𝑝 𝑒

𝜆
2𝑝

𝜏𝑑
1+𝜏𝑑

𝑁0 , 𝜅̃2 ∶=
𝜆
2𝑝

𝜏𝑑
1+𝜏𝑑

, and 𝜅3 =
(

2𝜌
𝜆𝛼

)
1
𝑝 . ■

Corollary 2. Consider the normalized-by-𝜇𝑘 BU-ODE of Lemma 3,
𝑑𝜇̂𝑘
𝑑𝑠 =

𝑘
𝑇 𝜇̂

1
𝑘
𝑘 . Then, for any 𝓁 > 0 and any solution 𝜇̂𝑘 to the ODE satisfying

𝜇𝑘(0) = 𝜇0 ≥ 1 the following bound holds:
−𝓁
1 (𝑠) ≤ 𝑒−𝓁

𝑠
𝑇 , ∀𝑠 ∈ R≥1,

when 𝑘 = 1, and

𝜇−𝓁𝑘 (𝑠) ≤
(𝑘 − 1

𝑇
𝑠 + 1

)−𝓁 𝑘
𝑘−1 , ∀𝑠 ∈ R≥1,

when 𝑘 ∈ Z≥2. □

Proof. We divide the proof into two cases.
Case 𝑘 = 1: From Lemma 3, for 𝑘 = 1, the solution to the

normalized-by-𝜇𝑘 BU-ODE is given by:

̂𝑘(𝑠) = 𝜇0𝑒
𝑠
𝑇 .

It follows that 𝜇−𝓁𝑘 (𝑠) = 𝜇−𝓁0 𝑒−
𝓁
𝑇 𝑠 ≤ 𝑒−

𝓁
𝑇 𝑠 for all 𝑠 ≥ 0, where we have

sed the fact that 𝜇−𝓁0 ≤ 1 since 𝜇0 ≥ 1 and 𝓁 > 0 by assumption.
Case 𝑘 > 1: From Lemma 3, for 𝑘 > 1, the solution to the

normalized-by-𝜇𝑘 BU-ODE is given by:

𝜇̂𝑘(𝑠) =
(

𝑘 − 1
𝑇

𝑠 + 𝜇
𝑘−1
𝑘

0

)

𝑘
𝑘−1

.

Using the fact that 𝜇0 ≥ 1 and that (⋅)
𝑘
𝑘−1 is monotonically increasing in

R≥0 for any 𝑘 > 1, and thus preserves the order in R≥0, it follows that

̂𝑘(𝑠) ≥
(

𝑘−1
𝑇 𝑠 + 1

)
𝑘
𝑘−1 . Therefore, we obtain: 𝜇̂−𝓁𝑘 (𝑠) ≤

(

𝑘−1
𝑇 𝑠 + 1

)−𝓁 𝑘
𝑘−1

for all 𝑠 ≥ 0.

Lemma 11. Suppose that every solution pair (𝑧̂, 𝑢̂) of the HDS (26) satisfies
the bound (30) for all (𝑠, 𝑗) ∈ dom(𝑧̂). Assume that 𝛥(𝜇̂𝑘) = 𝜇̂−𝓁𝑘 , where
𝓁 > 0. Then, (𝑧̂, 𝑢̂) satisfies the inequality

|𝑧̂(𝑠, 𝑗)| ≤ 𝛽𝑘
(

𝜅̄1|𝑧̂(0, 0)|𝑒−𝜅̄2(𝑠+𝑗) + 𝜅̄3|𝑢̂|(𝑠,𝑗), 𝑠
)

,

for all (𝑠, 𝑗) ∈ dom(𝑧̂), where 𝜅̄1 ∶= 𝜅1, 𝜅2 ∶=
𝜅2
2 , 𝜅̄3 ∶= 2𝜅3. Here 𝛽𝑘(𝑟, 𝑠) ∈

 is defined as 𝛽𝑘(𝑟, 𝑠) = 𝑟 ⋅max{𝜅1𝑒−𝜅2𝑠, 𝜉−𝓁𝑘 (𝑠)}, 𝜉𝑘(𝑠) =
(

𝑘−1
𝑇 𝑠 + 1

)
𝑘
𝑘−1

for all 𝑘 > 1, and 𝜉 (𝑠) = 𝑒
𝑠
𝑇 . □
1
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Proof. Consider a complete solution pair (𝑧̂, 𝑢̂) of the HDS (26) satisfy-
ing the bound (30). Then, we have that

|𝑧̂(𝑠, 𝑗)| ≤ 𝜅1𝑒
−𝜅2(𝑠+𝑗)

|𝑧̂(0, 0)| + 𝜅3 ⋅ sup
0≤𝜁≤𝑠

|𝛥(𝜁 )|, (85)

or all (𝑠, 𝑗) ∈ dom(𝑧̂), and where 𝛥(𝑠) ∶= 𝛥(𝜇−𝓁𝑘 (𝑠))𝑢̂(𝑠). Next, pick an
rbitrary time (𝑠̄, 𝑗) ∈ dom(𝑧̂), and let 𝑦̂(𝑟, 𝑘) ∶= 𝑧̂(𝑟 + 𝑠̄, 𝑘 + 𝑗), and
(𝑟, 𝑘) ∶= 𝜇−𝓁𝑘 (𝑠̄ + 𝑟). Since 𝑦̂ is also a hybrid arc that is a solution to
26), using the above bound and by time-invariance, it satisfies:

𝑦̂(𝑟, 𝑘)| ≤ 𝜅1|𝑦̂(0, 0)|𝑒−𝜅2(𝑟+𝑘) + 𝜅3|𝑢̂|(𝑟,𝑘)|𝑣|(𝑟,𝑘)
= 𝜅1|𝑧̂(𝑠̄, 𝑗)|𝑒−𝜅2(𝑟+𝑘) + 𝜅3|𝑢̂|(𝑟,𝑘) sup

0≤𝜏≤𝑟
𝜇̂−𝓁(𝑠̄ + 𝜏)

≤ 𝜅1|𝑧̂(𝑠̄, 𝑗)|𝑒−𝜅2(𝑟+𝑘) + 𝜅3|𝑢̂|(𝑟,𝑘)𝜇̂−𝓁𝑘 (𝑠̄). (86)

ow, using (85) with 𝑠 = 𝑠̄ and 𝑗 = 𝑗, we obtain:

𝑧̂(𝑠̄, 𝑗)| ≤ 𝜅1|𝑧̂(0, 0)|𝑒−𝜅2(𝑠̄+𝑗) + 𝜅3|𝑢̂|(𝑠̄,𝑗) sup
0≤𝜏≤𝑟

𝜇̂−𝓁𝑘 (𝜏). (87)

ombining (86) and (87), and using Remark 2, we have

𝑦̂(𝑟, 𝑘)| ≤ 𝜅1
(

𝜅1|𝑧̂(0, 0)|𝑒−𝜅2(𝑠̄+𝑗)

+ 𝜅3 sup
0≤𝜏≤𝑟

|𝑢̂(𝜏)| sup
0≤𝜏≤𝑟

𝜇̂−𝓁𝑘 (𝜏)
)

𝑒−𝜅2(𝑟+𝑘)

+ 𝜅3 sup
0≤𝜏≤𝑟

|𝑢̂(𝜏)|𝜇̂−𝓁𝑘 (𝑠̄).

Evaluating the above bound at 𝑟 = 𝑠̄ and 𝑗 ∈ Z≥0 such that (𝑠̄, 𝑗) ∈
dom(𝑦), we obtain:

|𝑦̂(𝑠̄, 𝑗)| ≤ 𝜅1
(

𝜅1|𝑧̂(0, 0)|𝑒−𝜅2(𝑠̄+𝑗)

+ 𝜅3 sup
0≤𝜏≤𝑠̄

|𝑢̂(𝜏)| sup
0≤𝜏≤𝑠̄

𝜇̂−𝓁𝑘 (𝜏)
)

𝑒−𝜅2(𝑠̄+𝑗)

+ 𝜅3 sup
0≤𝜏≤𝑠̄

|𝑢̂(𝜏)|𝜇̂−𝓁𝑘 (𝑠̄)

≤ 𝜅1
(

𝜅1|𝑧̂(0, 0)|𝑒−𝜅2(𝑠̄+𝑗) + 𝜅3 sup
0≤𝜏≤𝑠̄

|𝑢̂(𝜏)|
)

𝑒−𝜅2(𝑠̄+𝑗)

+ 𝜅3 sup
0≤𝜏≤𝑠̄

|𝑢̂(𝜏)|𝜇̂−𝓁𝑘 (𝑠̄)

≤
(

𝜅1|𝑧̂(0, 0)|𝑒−𝜅2(𝑠̄+𝑗+𝑗)

+ 2𝜅3 sup
0≤𝜏≤𝑠̄

|𝑢̂(𝜏)|
)

max
{

𝜅1𝑒
−𝜅2 𝑠̄, 𝜇̂−𝓁𝑘 (𝑠)

}

,

where we used the fact that 𝑒−𝜅2𝑗 ≤ 1, and sup0≤𝜏≤𝑠 𝜇̂−𝓁𝑘 (𝜏) ≤ 𝜇−𝓁0 ≤ 1
since 𝜇0 ≥ 1 and 𝓁 > 0. Using the result of Corollary 2 it then follows
that

|𝑦̂(𝑠̄, 𝑗)| ≤
(

𝜅1|𝑧̂(0, 0)|𝑒−𝜅2(𝑠̄+𝑗+𝑗) + 2𝜅3 sup
0≤𝜏≤𝑠̄

|𝑢̂(𝜏)|
)

𝜂𝑘(𝑠)

where 𝜂𝑘(𝑠) ∶= max{𝜅1𝑒−𝜅2𝑠, 𝜉−𝓁𝑘 (𝑠)}, 𝜉𝑘(𝑠) =
(

𝑘−1
𝑇 𝑠 + 1

)
𝑘
𝑘−1 for all 𝑘 > 1

and 𝜉1(𝑠) = 𝑒
𝑠
𝑇 . Note that 𝜂𝑘 is continuous and satisfies 𝜂𝑘(𝑠) → 0 as

𝑠 → ∞ since 𝜅1𝑒−𝜅2𝑠 → 0 and 𝜉𝑘(𝑠) → 0 as 𝑠 → ∞. Now, using the
definition of 𝑦̂, and letting 𝜆 ∶= 2𝑠̄, 𝑖 ∶= 𝑗 + 𝑗:

|𝑧̂(𝜆, 𝑖)| ≤
(

𝜅1|𝑧̂(0, 0)|𝑒
−𝜅2(

𝜆
2 +𝑖) + 2𝜅3 sup

0≤𝜏≤𝑠̄
|𝑢̂(𝜏)|

)

𝜂𝑘(𝜆∕2)

Since the choice of (𝑠̄, 𝑗) ∈ dom(𝑧) was arbitrary, 𝑧 is complete,
nd the previous inequality holds for all 𝑗 ∈ Z≥0, in particular we can
se 𝑠 = 2𝑠̄, 𝑗 = 𝑗, and 𝑗 = 0 such that (𝑠, 𝑗) ∈ dom(𝑧). Thus, from
he above inequality and using Remark 2, we obtain that there exists
𝑘(𝑟, 𝑠) ∶= 𝑟 ⋅ 𝜂𝑘(𝑠) ∈  such that

𝑧̂(𝑠, 𝑗)| ≤ 𝛽𝑘
(

𝜅̄1|𝑧̂(0, 0)|𝑒−𝜅̄2(𝑠+𝑗) + 𝜅̄3|𝑢̂|(𝑠,𝑗), 𝑠
)

,

ith 𝜅̄1 ∶= 𝜅1, 𝜅2 ∶=
𝜅2
2 , 𝜅̄3 ∶= 2𝜅3. ■
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