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A B S T R A C T

Stability results for extremum seeking control in R𝑛 have predominantly been restricted to local or, at
best, semi-global practical stability. Extending semi-global stability results of extremum-seeking systems to
unbounded sets of initial conditions often demands a stringent global Lipschitz condition on the cost function,
which is rarely satisfied by practical applications. In this paper, we address this challenge by leveraging
tools from higher-order averaging theory. In particular, we establish a novel second-order averaging result
with global (practical) stability implications. By leveraging this result, we characterize sufficient conditions on
cost functions under which uniform global (i.e., under any initialization) practical asymptotic stability can be
established for a class of extremum-seeking systems acting on static maps. Our sufficient conditions include
the case when the gradient of the cost function, rather than the cost function itself, satisfies a global Lipschitz
condition, which covers quadratic cost functions. Our results are also applicable to vector fields that are not
necessarily Lipschitz continuous at the origin, opening the door to non-smooth Lie-bracket ES dynamics. We
illustrate all the results via different analytical and/or numerical examples.
1. Introduction

Extremum Seeking (ES) systems are some of the most popular real-
time model-free optimization and stabilization algorithms developed
during the last century [1]. The stability and robustness guarantees,
simplicity of implementation, and model-agnostic nature of ES make
it an attractive option for numerous practical control problems, espe-
cially when the plant model is unknown and real-time adaptation and
optimization are necessary, see [2–4].

The classical tool for analyzing the stability properties of ES systems
is (first-order) averaging theory [5, Ch. 10], [6], which enables local
r semi-global practical stability results under mild assumptions [7–
0]. These ideas have been extended to study ES systems that em-
ulate Newton-like flows [11,12], as well as ES schemes for control
and optimization problems involving delays [13], partial differential
equations [14], and hybrid dynamical systems [15–17], among other
examples. Recently, ES systems have also been studied via higher-order
averaging theory [18–20], which can offer some flexibility in the design
and analysis of the exploration–exploitation mechanism in problems
that involve geometric constraints [17,21–23], or when additional
tructure is imposed on the exploration dynamics, e.g. when the explo-
ation is done through a Levi-Civita connection associated with a me-
hanical system [24–27]. Such tools have led to the discovery of new ES
lgorithms with desirable properties such as bounded update rates [28],
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vanishing amplitudes [29,30], and even local exponential/asymptotic
stability properties [31].

On the other hand, irrespective of the nature of the averaging
tool used for the analysis and design of continuous-time ES algo-
rithms, when the extremum seeking problem is defined on smooth
compact boundaryless manifolds, achieving uniform global stability
results (either practical or asymptotic) is, in general, not possible due
to the topological obstructions that apply to continuous-time systems
(time-invariant or periodic) evolving on such sets [32], [33, Sec. 4.1].
However, when the ES problem is defined in R𝑛, such obstructions do
not emerge, and, in principle, it might be possible to achieve global
extremum seeking. Nevertheless, the majority of results on ES in R𝑛

have achieved, at best, semi-global practical asymptotic stability [8,
11,18,20,28]. Such results enable convergence from arbitrarily large
pre-defined compact sets of initial conditions by appropriately tuning
the parameters of the controller. However, without further re-tuning
of these parameters, solutions initialized (or pushed via perturbations)
outside of these pre-defined compact sets might exhibit finite escape
times. Recently, global practical convergence properties were studied
in [34] using a normalized scheme, and also in [35] using tools from
quasi-stochastic approximation theory. However, results that assert
uniform global practical asymptotic stability (characterized by, e.g., 
bounds) in ES controllers remain absent in the literature. One of the
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main challenges in achieving such a result using standard averaging
theory is the requirement for global Lipschitz conditions in the vector
fields of the dynamics (see [5, Ch.10], [17, Sec. 6.1]). This condition
is often violated even in the simplest ES problems, which involve
cost functions characterized by quadratic maps. This limitation raises
the question of whether ES systems can achieve global convergence
results in a representative class of problems—a property that could be
highly valuable in practical applications by removing any restrictions
on the initialization of the algorithms, thus rendering them not only
model-free but also ‘‘initialization-free’’.

In this paper, we address the above question and provide a positive
answer by showing that certain ES systems can achieve uniform global
(practical) stability properties. Such properties are achieved by shifting
from first-order averaging-based feedback designs, such as those consid-
ered in [7,8,15,34], to second-order averaging-based feedback designs,
akin to those explored in [17,21–25], but utilizing a different averaging
ool for the purpose of analysis. In particular, the main contribution of
his paper is twofold:
(a) First, we introduce a novel second-order averaging theorem with

lobal practical stability implications for a class of highly-oscillatory
ontinuous-time systems under appropriate assumptions on the maps
nvolved. For standard (i.e., first-order) averaging, global stability re-
ults with applications to control have been studied in [36] for ODEs,
nd in [17] for hybrid systems. However, to the best of our knowledge,
result of this nature was absent in the literature of second-order
veraging. Furthermore, unlike existing results on second-order aver-
ging [18], our results allow for the relaxation of the local Lipschitz
ondition on the vector field at the origin, requiring only continuity
nstead. This relaxation opens the door to new non-smooth dynamics
hat could potentially lead to improved transient performance away
rom the origin.
(b) Second, we use the aforementioned second-order averaging

esults to establish uniform global practical asymptotic stability proper-
ies for a class of ES systems for which a variety of ‘‘typical’’ cost func-
ions apply, including quadratic maps, and, more generally, strongly
onvex functions with smooth gradients. However, we also show that
onvexity of the cost function is, in general, not a necessary condition
o achieve global ES under the algorithms studied in this paper. Differ-
nt analytical and numerical examples are presented to illustrate our
esults, as well as the limitations and generality of our assumptions.
The rest of the manuscript is organized as follows. We begin by

ntroducing our notation in Section 2. Global averaging results are
resented in Section 3. In Section 4, we apply the results of Section 3
o study a class of extremum seeking systems that attain global (practi-
al) stability properties. All the proofs of the results are presented in
ection 5. Finally, the conclusions and future work are discussed in
ection 6.

2. Preliminaries

2.1. Notation

We use R≥0 to denote the set of non-negative real numbers and
R>0 to denote the set of positive real numbers. Similarly, we use Q>0
to denote the set of positive rational numbers and N≥1 to denote the
set of positive integers. The 2-norm of a vector 𝑥 ∈ R𝑛 is denoted
y |𝑥| ∶=

√

𝑥⊤𝑥, and the operator 2-norm of a matrix 𝐴 ∈ R𝑚×𝑛 is
also denoted as |𝐴| ∶= sup{|𝐴𝑥| ∶ 𝑥 ∈ R𝑛, |𝑥| = 1}. Given functions

∶ R𝑛 → R𝑚 and 𝑔 ∶ R𝑚 → R𝑙, we use 𝑔◦𝑓 ∶ R𝑛 → R𝑙 to denote
heir composition, i.e. 𝑔◦𝑓 (𝑥) = 𝑔(𝑓 (𝑥)). We use 0 to denote the class
f continuous functions, and 𝑘 to denote the class of functions that
re 𝑘-times continuously differentiable, for 𝑘 ≥ 1. Given a closed set
⊂ R𝑛, the function 𝑓 is said to be 𝑘 on 𝐾 if there exists an open

eighborhood  ⊂ R𝑛 such that 𝐾 ⊂  and 𝑓 is 𝑘 on  . For
ach 𝛿 ∈ R>0, we denote the closed ball of radius 𝛿, centered at the
rigin, by 𝛿B, i.e. 𝛿B ∶= {𝑥 ∈ R𝑛 ∶ |𝑥| ≤ 𝛿}. Given a set  ⊂ R𝑛,
2

f

e use cl() to denote the closure of  with respect to the natural
opology in R𝑛. When 𝑓 ∈ 1 is a vector-valued map, D𝑓 denotes the
acobian of 𝑓 . If 𝑓 ∈ 2 is a real-valued function, then ∇𝑓 denotes
he gradient of 𝑓 , and ∇2𝑓 is the Hessian of 𝑓 , i.e. ∇2𝑓 = D(∇𝑓 ).
f 𝑓 ∈ 1 and 𝑓 = 𝑓 (𝑥1,… , 𝑥𝑛) is vector-valued, then D𝑥𝑖𝑓 denotes
he Jacobian of 𝑓 with respect to the 𝑖th argument. The map 𝜋𝑖 ∶
𝑛1 × ⋯ × R𝑛𝑘 → R𝑛𝑖 is the canonical projection onto the 𝑥𝑖-factor,
hich is defined by 𝜋𝑖(𝑥1,… , 𝑥𝑘) = 𝑥𝑖. A class -function is a strictly
ncreasing continuous function 𝛼 ∶ R≥0 → R≥0 such that 𝛼(0) = 0. A
lass ∞-function is a class -function with the additional requirement
hat lim𝜌→+∞ 𝛼(𝜌) = +∞. A class -function 𝛽 ∶ R≥0 × R≥0 → R≥0 is a
ontinuous function such that, for every 𝑠 ∈ R≥0, the function 𝛽(⋅, 𝑠) is a
lass ∞-function, and, for every 𝑟 ∈ R≥0, the function 𝛽(𝑟, ⋅) is a strictly
ecreasing function and lim𝑠→+∞ 𝛽(𝑟, 𝑠) = 0. To simplify notation, given
wo (or more) vectors 𝑥1 ∈ R𝑛1 , 𝑥2 ∈ R𝑛2 , we use (𝑥1, 𝑥2) ∈ R𝑛1+𝑛2 to
enote the concatenation of 𝑥1 and 𝑥2. Finally, a map 𝛹 ∶  → ,
here , ⊂ R𝑛 are closed, is called a diffeomorphism if: (i) it is 1,
ii) there exists a 1 map 𝛹−1 ∶  →  such that 𝛹−1◦𝛹 (𝑥) = 𝑥, for all
∈ , and 𝛹◦𝛹−1(𝑥) = 𝑥, for all 𝑥 ∈ .

.2. Dynamical systems and stability notions

In this paper, we study continuous-time dynamical systems with
tates (𝑥, 𝜏) ∈ R𝑛 × R≥0, and dynamics

̇ = 𝑓𝜀(𝑥, 𝜏), 𝜏̇ = 𝜀−2, (1)

here 𝑓𝜀 ∶ R𝑛 × R≥0 → R𝑛 is a continuous function parameterized
y a small constant 𝜀 > 0. Systems of the form (1) can model highly
scillatory systems that showcase fast variations of 𝜏 compared to the
tate 𝑥. For completeness, the notion of solutions to systems of the form
1) is reviewed below.

efinition 1. For (𝑥0, 𝜏0) ∈ R𝑛 × R≥0, a function (𝑥, 𝜏) ∶ dom(𝑥, 𝜏) →
𝑛 ×R≥0 is said to be a solution to (1) from the initial condition (𝑥0, 𝜏0)

if: (i) there exist 𝑡𝑠 ∈ R>0 ∪ {∞} such that dom(𝑥, 𝜏) = [0, 𝑡𝑠), (ii)
𝑥(0), 𝜏(0)) = (𝑥0, 𝜏0), and (iii) the function (𝑥, 𝜏) is 1 on dom(𝑥, 𝜏) and
satisfies
𝑑𝑥(𝑡)
𝑑𝑡

= 𝑓𝜀(𝑥(𝑡), 𝜏(𝑡)),
𝑑𝜏(𝑡)
𝑑𝑡

= 𝜀−2.

for all 𝑡 ∈ dom(𝑥, 𝜏). A solution (𝑥, 𝜏) to system (1) is said to be complete
f 𝑡𝑠 = ∞. □

To study the (uniform) stability properties of the parameter-
ependent system (1), we will use the following standard notions (see,
.g., [37]), which, without loss of generality, are stated with respect to
he origin 𝑥 = 0.

efinition 2. System (1) is said to be uniformly globally practically
symptotically stable (UGpAS) as 𝜀 → 0+ if there exists a class -
unction 𝛽 such that, for every 𝜈 ∈ R>0, there exists 𝜀∗ > 0, such that,
or all 𝜀 ∈ (0, 𝜀∗), each solution (𝑥, 𝜏) to system (1) from any initial
condition (𝑥0, 𝜏0) ∈ R𝑛 × R≥0 satisfies

|𝑥(𝑡)| ≤ 𝛽(|𝑥0|, 𝑡) + 𝜈, (2)

for all 𝑡 ≥ 0. When (2) holds with 𝑣 = 0, system (1) is said to be
uniformly globally asymptotically stable (UGAS). □

If the residual upper-bound 𝜈 in (2) cannot be controlled by the
parameter 𝜀, but the validity of the bound still depends on 𝜀, we will
study the following property:

Definition 3. System (1) is said to be 𝛥-uniformly globally ultimately
bounded (𝛥-UGUB) if there exists 𝛥 > 0, 𝛽 ∈ , and 𝜀∗ ∈ R>0, such
that for all 𝜀 ∈ (0, 𝜀∗), each solution (𝑥, 𝜏) to system (1) from any initial
ondition (𝑥0, 𝜏0) ∈ R𝑛 × R≥0 satisfies

𝑥(𝑡)| ≤ 𝛽(|𝑥0|, 𝑡) + 𝛥, (3)

or all 𝑡 ≥ 0. □
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Note that in Definitions 2 and 3 we do not insist on uniqueness of
olutions, but rather impose the appropriate bound (and the property
f completeness) to every solution of the system.

. On global stability via second-order averaging

To study the stability properties of (1) using second-order averaging,
e consider a sub-class of systems of the form

̇ = 𝑓𝜀(𝑥, 𝜏) = 𝜀−1𝑓1(𝑥, 𝜏) + 𝑓2(𝑥, 𝜏), 𝜏̇ = 𝜀−2, (4)

here 𝑓𝑘 ∶ R𝑛 × R≥0 → R𝑛, 𝑘 ∈ {1, 2}, are continuous functions, and
> 0. Such types of systems commonly emerge in ES [18,30] and
ibrational control [38], and they are typically studied via averaging
heory. A representative example is given by control-affine systems of
he form

̇ = 𝜀−1
( 𝑟
∑

𝑖=1

2
∑

𝑗=1
𝑏𝑖,𝑗𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏)

)

+ 𝑏0(𝑥), 𝜏̇ = 𝜀−2, (5)

here 𝑥 ∈ R𝑛, 𝑟 ∈ N≥ 𝑛
2
, 𝐽 is an application-dependent 2 cost function

to be minimized, 𝑏𝑖,𝑗 are suitable vectors, 𝑢𝑖,𝑗 (⋅, ⋅) is a scalar-valued
feedback law to be designed, and 𝜀 > 0 is a small tunable parameter, see
ig. 1 for a block representation of these systems. Particular examples
f functions 𝑏0, 𝑏𝑖,𝑗 , 𝑢𝑖,𝑗 and 𝐽 will be discussed later in Section 4.
The stability properties of system (4) will be studied using a change

f coordinates induced by a suitable diffeomorphism. In particular,
nder the action of a diffeomorphism 𝛹 ∶ R𝑛 × R≥0 → R𝑛 × R≥0,
solution (𝑥, 𝜏) to system (4) is transformed into a new function
◦ (𝑥, 𝜏) ∶ dom(𝑥, 𝜏) → R𝑛×R≥0 that is a solution (see Lemma 11 in the
ppendix) to the following system:

̇ = 𝛹∗𝑓𝜀(𝑥, 𝜏), 𝜏̇ = 𝜀−2, (6a)

here, for all (𝑥, 𝜏) ∈ R𝑛 × R≥0, the map 𝛹∗𝑓𝜀 is given by

∗𝑓𝜀 =
(

D𝑥
(

𝜋1◦𝛹
)

◦𝛹−1) 𝑓𝜀◦𝛹
−1 + 𝜀−2D𝜏

(

𝜋1◦𝛹
)

◦𝛹−1, (6b)

hich is continuous by construction. System (6) is called the pushfor-
ard of system (4) under the action of 𝛹 .

.1. A global practical near-identity transformation

Traditionally, the averaging-based analysis of oscillatory systems
elies on the construction of a suitable (first-order) ‘‘near-identity’’
ransformation that maps the original dynamics into a perturbed ver-
ion of the so-called average dynamics, see [5, Ch.10]. Therefore, to
tudy the global stability properties of (4), we first construct a similar
‘second-order’’ near-identity transformation of global nature, which we
enote by 𝛹 . Then, we show how to use 𝛹 as a diffeomorphism such
hat the pushforward of the ODE (4) under 𝛹 (cf. the Eqs. (6)) is a
erturbed version of the average dynamics of (4).
We begin by imposing some regularity conditions on 𝑓𝑘:

ssumption 1. There exists 𝛿1 ∈ [0,∞) such that, for all 𝑘 ∈ {1, 2},
he following conditions hold

(a) The map 𝑓𝑘 is 0 in R𝑛 ×R≥0, and there exist a positive constant
𝐿𝑘 such that

|𝑓𝑘(𝑥1, 𝜏) − 𝑓𝑘(𝑥2, 𝜏)| ≤ 𝐿𝑘|𝑥1 − 𝑥2|,

for all 𝑥1, 𝑥2 ∈ {𝑥 ∈ R𝑛 ∶ |𝑥| ≥ 𝛿1} and all 𝜏 ∈ R≥0.
(b) There exists 𝑇 ∈ R>0 such that

𝑓𝑘(𝑥, 𝜏 + 𝑇 ) = 𝑓𝑘(𝑥, 𝜏), ∫

𝑇

0
𝑓1(𝑥, 𝜏)𝑑𝜏 = 0,

for all (𝑥, 𝜏) ∈ R𝑛 × R≥0.
(c) The map 𝑓𝑘 is 3−𝑘 with respect to 𝑥 in the domain {𝑥 ∈ R𝑛 ∶
3

|𝑥| ≥ 𝛿1}.
Fig. 1. Block diagram description of system (5). In the diagram, the matrix 𝑏𝑖 =
[𝑏𝑖,1 , 𝑏𝑖,2] multiplies the vector 𝑢𝑖(𝐽 (𝑥), 𝜏) = (𝑢𝑖,1(𝐽 (𝑥), 𝜏), 𝑢𝑖,2(𝐽 (𝑥), 𝜏)).

(d) There exists 𝐿3 > 0 such that

|D𝑥𝑓1(𝑥1, 𝜏1)𝑓1(𝑥1, 𝜏2) − D𝑥𝑓1(𝑥2, 𝜏1)𝑓1(𝑥2, 𝜏2)| ≤ 𝐿3|𝑥1 − 𝑥2|,

for all 𝑥1, 𝑥2 ∈ {𝑥 ∈ R𝑛 ∶ |𝑥| ≥ 𝛿1} and all 𝜏1, 𝜏2 ∈ R≥0. □

In Assumption 1, the case 𝛿1 = 0 is not excluded. However, by
allowing for positive values of 𝛿1 we can consider maps 𝑓𝑘 whose
regularity drops from being 3−𝑘 to merely 0, as required by item (a)
n Assumption 1, near the origin. This opens the door in our analysis to
tudy certain non-smooth ES dynamics that have been show to exhibit
uitable local exponential/asymptotic stability properties [29,39].
Next, for the purpose of analysis, we introduce the auxiliary func-

ions 𝜒𝑗 ∶ R → R≥0, where, 𝑗 ∈ {1, 2}, given by

𝜒1(𝑟) ∶=

{

exp
(

−𝑟−1
)

𝑟 > 0,
0 𝑟 ≤ 0,

𝜒2(𝑟) ∶=
𝜒1(𝑟)

𝜒1(𝑟) + 𝜒1(1 − 𝑟)
.

Also, let 𝛿 ∶= (𝛿1, 𝛿2, 𝛿3) ∈ R3
≥0 be a vector of non-negative constants

satisfying:

𝛿3 > 𝛿2, and
{

𝛿2 > 𝛿1 if 𝛿1 > 0
𝛿2 = 𝛿1 if 𝛿1 = 0

(7)

where the choice of 𝛿1 will be clear from the context. Using the function
𝜒2 and the vector 𝛿, we define the smooth ‘‘reverse’’ bump function
𝜑 ∶ R𝑛 → [0, 1] as:

𝜑(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝜒2

(

|𝑥|−𝛿1
𝛿2−𝛿1

)

𝛿2 > 𝛿1
1 𝛿2 = 𝛿1 = 0.

(8a)

The function 𝜑 will be used only for the purpose of analysis, and
any similarly defined smooth ‘‘reverse’’ bump function suffices for our
purposes. The following Lemma states some useful properties of 𝜑.

Lemma 1. Let 𝛿2 > 𝛿1. Then, the function 𝜑 is ∞ on R𝑛, all of its
derivatives have the compact support [𝛿1, 𝛿2], and it satisfies:

(a) 𝜑(𝑥) = 1 for all 𝑥 ∈ {𝑥′ ∈ R𝑛 ∶ |𝑥′| ≥ 𝛿2}.
(b) 𝜑(𝑥) = 0 for all 𝑥 ∈ {𝑥′ ∈ R𝑛 ∶ |𝑥′| ≤ 𝛿1}.

Proof. Follows by [40, Lemmas 2.20-2.22] and the construction of the
argument of 𝜒2. □

To state our first result, and using 𝜑, we introduce the auxiliary
maps 𝑓𝑘 ∶ R𝑛 × R≥0 → R𝑛, for 𝑘 ∈ {1, 2}, defined as

𝑓 (𝑥, 𝜏) ∶= 𝜑(𝑥)𝑓 (𝑥, 𝜏), (8b)
𝑘 𝑘
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Fig. 2. Visual depiction of 𝜑 and the sets 𝑗 for 𝑗 ∈ {1, 2, 3}.

as well as the transformation 𝛹 , defined as

𝜋1◦𝛹 (𝑥, 𝜏) = 𝛷(𝑥, 𝜏), 𝜋2◦𝛹 (𝑥, 𝜏) = 𝜏, (9a)

for all (𝑥, 𝜏) ∈ R𝑛 × R≥0, where the map 𝛷 is defined as follows:

𝛷(𝑥, 𝜏) ∶= 𝑥 − 𝜀 𝑣1(𝑥, 𝜏) − 𝜀2𝑣2(𝑥, 𝜏), (9b)

for all (𝑥, 𝜏) ∈ R𝑛 × R≥0, with

𝑣1(𝑥, 𝜏) ∶= ∫

𝜏

0
𝑓1(𝑥, 𝑠)d𝑠, (9c)

𝑣2(𝑥, 𝜏) ∶= 𝑤(𝑥, 𝜏) − D𝑥𝑣1(𝑥, 𝜏)𝑣1(𝑥, 𝜏), (9d)

𝑤(𝑥, 𝜏) ∶= ∫

𝜏

0

(

𝑓2(𝑥, 𝑠) + D𝑥𝑓1(𝑥, 𝑠)𝑣1(𝑥, 𝑠) − 𝑓 (𝑥)
)

d𝑠, (9e)

and where the second-order average mapping 𝑓 is given by

̄(𝑥) ∶= 1
2𝑇 ∫

𝑇

0

(

2𝑓2(𝑥, 𝜏) + [𝑣1, 𝑓1](𝑥, 𝜏)
)

d𝜏, (9f)

for all (𝑥, 𝜏) ∈ R𝑛 × R≥0, with 𝑇 ∈ R>0 being the same constant from
Assumption 1, and [𝑣1, 𝑓1] denoting the Lie bracket between the vector
1 and 𝑓1, i.e.,

𝑣1, 𝑓1](𝑥, 𝜏) = D𝑥𝑓1(𝑥, 𝜏)𝑣1(𝑥, 𝜏) − D𝑥𝑣1(𝑥, 𝜏)𝑓1(𝑥, 𝜏).

emark 1. The map 𝛹 defined via (9) is an example of a (second-
order) near-identity transformation [6], which is a standard tool in the
averaging literature. The nomenclature stems from the fact that when
𝜀 = 0, the transformation 𝛹 defined by (9) reduces to the identity map
on its domain and, by choosing 0 < 𝜀 ≪ 1 sufficiently small, 𝛹 can
e made arbitrarily close to the identity map on bounded subsets of its
omain [6, Lemma 2.8.3]. Note that 𝛹 depends (smoothly) on 𝜀, but
e suppress this dependency in the notation for brevity. □

Next, for 𝛿 of the form (7), we also consider the closed sets

𝑗 ∶= {𝑥 ∈ R𝑛 ∶ |𝑥| ≥ 𝛿𝑗}, 𝑗 ∈ {1, 2, 3}, (10)

which satisfy 1 ⊇ 2 ⊇ 3. In fact, by construction, the case
1 = 2 = R𝑛 can only occur if 𝛿1 = 0. We illustrate the function
𝜑 and the sets 𝑗 , for 𝑗 ∈ {1, 2, 3}, in Fig. 2.

The following proposition, key for our results, characterizes some
useful properties of the map 𝛹 and the pushforward under 𝛹 of the
vector field (4) (cf. Eqs. (6)).

Proposition 1. Suppose that Assumption 1 holds, and let 𝛿 satisfy (7).
hen, there exists 𝜀0, 𝐿𝛹 , 𝐿𝑔 ∈ R>0, and a 0 map 𝑔 ∶ R𝑛 ×R≥0 ×[0, 𝜀0] →
𝑛, such that for all 𝜀 ∈ (0, 𝜀0) the following holds:

(a) The map 𝛹 ∶ R𝑛 × R≥0 → R𝑛 × R≥0 is a diffeomorphism.
(b) The map 𝛹 and its inverse 𝛹−1 satisfy:

|

|

𝜋1◦𝛹 (0, 𝜏)|
|

≤ 𝐿𝛹 𝜀,
| −1 |
4

|

|

𝜋1◦𝛹 (0, 𝜏)|
|

≤ 𝐿𝛹 𝜀, r
|

|

𝛹 (𝑥1, 𝜏) − 𝛹 (𝑥2, 𝜏)|| ≤ (1 + 𝐿𝛹 𝜀)|𝑥1 − 𝑥2|,
|

|

|

𝛹−1(𝑥1, 𝜏) − 𝛹−1(𝑥2, 𝜏)
|

|

|

≤ (1 + 𝐿𝛹 𝜀)|𝑥1 − 𝑥2|,

for all 𝑥1, 𝑥2 ∈ R𝑛, and for all 𝜏 ∈ R≥0.
(c) For all (𝑥, 𝜏) ∈ 3 × R≥0, we have 𝛹−1(𝑥, 𝜏) ∈ 2 × R≥0.
(d) The pushforward 𝛹∗𝑓𝜀 is given by

𝛹∗𝑓𝜀(𝑥, 𝜏) = 𝑓 (𝑥) + 𝜀 𝑔(𝑥, 𝜏, 𝜀), (11)

for all (𝑥, 𝜏) ∈ 3 × R≥0.
(e) The map 𝑔 satisfies

|𝑔(𝑥, 𝜏, 𝜀)| ≤ 𝐿𝑔(|𝑥| + 1), (12)

for all (𝑥, 𝜏, 𝜀) ∈ R𝑛 × R≥0 × [0, 𝜀0]. □

roof. See Section 5.1.

emark 2. Apart from the suitable smoothness and boundedness
roperties of 𝛹 , Proposition 1 asserts that the pushforward of system
4) under the action of the diffeomorphism 𝛹 , i.e., system (6), is given
y

̇ = 𝑓 (𝑥) + 𝜀𝑔(𝑥, 𝜏, 𝜀), (13)

or all (𝑥, 𝜏, 𝜀) ∈ 3 × R≥0 × (0, 𝜀0), where 𝑓 is given by (9f). Since
roposition 1 also asserts that the map 𝑔 is 0, it is clear that, for
< 𝜀 ≪ 1, system (13) can be considered as a perturbed version of

the nominal second-order average system

̇̄ = 𝑓 (𝑥̄), 𝑥̄ ∈ R𝑛, (14)

for all (𝑥, 𝜏, 𝜀) ∈ 3 × R≥0 × (0, 𝜀0). By using this relationship, as well
as the properties of 𝛹 , we can inform the stability analysis of system
(4) based on the stability properties of the nominal averaged system
14). □

.2. Global stability via second-order averaging

To study the stability properties of system (4) via averaging, we
ake the following assumption on the average map 𝑓 .

ssumption 2. There exists a vector 𝛿 satisfying (7) with the same
1 generated by Assumption 1, a 1 function 𝑉 ∶ R𝑛 → R≥0, 𝛼𝑖 ∈ ∞,
𝑖 > 0, for 𝑖 ∈ {1, 2}, and a positive definite function 𝜙 ∶ R𝑛 → R≥0, all
ndependent of 𝛿1, such that the following holds:

(a) For all 𝑥 ∈ R𝑛, we have that

𝛼1(|𝑥|) ≤ 𝑉 (𝑥) ≤ 𝛼2(|𝑥|), (15a)

|∇𝑉 (𝑥)| ≤ 𝑐2𝜙(𝑥). (15b)

(b) For all 𝑥 ∈ 3, we have that
⟨

∇𝑉 (𝑥), 𝑓 (𝑥)
⟩

≤ −𝑐1𝜙(𝑥)2. (15c)

(c) At least one of the following statements holds:

(i) There exists 𝐿̄𝑔 > 0, such that

|𝑔(𝑥, 𝜏, 𝜀)| ≤ 𝐿̄𝑔(𝜙(𝑥) + 1),

for all (𝑥, 𝜏, 𝜀) ∈ 3 × R≥0 × [0, 𝜀0], where the map 𝑔 and
the constant 𝜀0 are generated by Proposition 1.

(ii) There exists 𝛼3 ∈ , such that 𝛼3(|𝑥|)|𝑥| ≤ 𝜙(𝑥), for all
𝑥 ∈ R𝑛. □

The quadratic-type Lyapunov conditions in items (a) and (b) of
ssumption 2 are similar to those studied in the literature of perturbed
DEs [5, Section 9.1]. They imply that the origin is UGUB for the
ominal average system (14) [5, Thm. 4.18]. However, without further

)
estrictions on the rate of growth of the norm of the map 𝑔 in (11
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elative to the map 𝜙, the perturbation 𝜀 𝑔 may dominate the average
ap 𝑓 far from the origin, for any non-zero 𝜀, thereby destroying
lobal stability properties. To preclude this possibility, we impose the
dditional assumptions in item (c) of Assumption 2, which are discussed
n the following remarks:

emark 3. Item (c)–(i) in Assumption 2 is automatically satisfied
whenever the map 𝑔 is uniformly bounded. As shown later in the proof
of Theorem 3, ES systems with bounded vector fields (see, e.g. [38]) sat-
isfy this condition under appropriate assumptions on the cost function.
However, note that item (c)–(i) leaves room for unbounded growth of
the map 𝑔, provided that it can be dominated by the positive definite
function 𝜙, for all (𝑥, 𝜏, 𝜀) ∈ 3×R≥0×[0, 𝜀0]. For example, item (c)–(i)
in Assumption 2 automatically holds for the case 𝜙(𝑥) = |𝑥| thanks to
item (e) in Proposition 1.

Remark 4. Item (c)–(ii) in Assumption 2 is automatically satisfied for
the case 𝜙(𝑥) = |𝑥|. However, since 𝛼3 is an arbitrary  function, item
(c)–(ii) is a substantial relaxation of the local behavior of the function
𝜙 on any compact neighborhood of the origin.

By leveraging the previous constructions and Proposition 1, we can
now state the first main result of the paper, which applies to the
pushforward of system (4). All the proofs are presented in Section 5.

Theorem 1. Suppose that Assumptions 1–2 hold. Then, there exists 𝛥𝛿 > 0
such that system (6) is 𝛥𝛿-UGUB.

We now provide several useful corollaries of Theorem 1. The first
corollary concerns the stability properties of the original system (4).

Corollary 1. Suppose the assumptions of Theorem 1 hold. Then, there
exists 𝛥𝛿 > 0 such that system (4) is 𝛥𝛿-UGUB.

The following Corollary leverages additional ‘‘uniformity’’ assump-
tions with respect to the parameters 𝛿 (defined as in (7)) to obtain
‘‘practical’’ residual bounds for all the solutions of system (4).

Corollary 2. Suppose that Assumptions 1 and 2 are satisfied for all 𝛿
such that 𝛿1 > 0. Then, system (4) is UGpAS as 𝜀 → 0+.

Remark 5. Corollary 2 considers the situation in which Assumption 1
is satisfied for each 𝛿1 > 0 but might be violated for 𝛿1 = 0. Such
a situation arises when the vector fields defining system (4) satisfy
Assumption 1 on any closed subset of the set R𝑛∖{0} ×R≥0, but strictly
violate the conditions of Assumption 1 on R𝑛 × R≥0. We illustrate this
situation in Example 1 below. □

Example 1. Let 𝑥 ∈ R, 𝜏 ∈ R≥0, and consider the dynamical system

̇ = −|𝑥|
1
2 sign(𝑥) sin(𝜏)2, 𝜏̇ = 𝜀−2, (16)

hich fits the structure of (4) with 𝑓1 = 0 and 𝑓2(𝑥, 𝜏) = −|𝑥|
1
2 sign(𝑥)

sin(𝜏)2. For any fixed 𝛿1 > 0, there exists a constant 𝐿𝛿1 > 0 such
that, for all 𝑥 , 𝑥 ∈ R∖(−𝛿 , 𝛿 ) and all 𝜏 ∈ R , the function 𝑓
5

1 2 1 1 ≥0 2
satisfies |𝑓2(𝑥1, 𝜏) − 𝑓2(𝑥2, 𝜏)| ≤ 𝐿𝛿1 |𝑥1 − 𝑥2|. Indeed, it can be shown,
see Lemma 9 in the Appendix, that the constant may be taken as
𝐿𝛿1 = 1

√

𝛿1
+ 2

√

𝛿1. Clearly, the constant 𝐿𝛿1 > 0 tends to +∞ in the
imit 𝛿1 → 0. Moreover, it can be shown that there is no constant
0 > 0 such that, for all 𝑥1, 𝑥2 ∈ R and all 𝜏 ∈ R≥0, we have
𝑓2(𝑥1, 𝜏) − 𝑓2(𝑥2, 𝜏)| ≤ 𝐿0|𝑥1 − 𝑥2|. Nevertheless, system (16) satisfies
Assumption 1 for any 𝛿1 > 0 with the constants 𝐿1 = 0 and 𝐿2 = 𝐿𝛿1 .
Using formula (9f), we obtain that, for any choice of 𝛿1 > 0 and 𝛿 as in
(7), the corresponding nominal averaged system is

̇̄ = 𝑓 (𝑥) = −1
2
𝜑(𝑥̄)|𝑥̄|

1
2 sign(𝑥̄), (17)

here 𝜑 is the function defined in (8a). Using 𝑉 (𝑥) = |𝑥|
3
2 , which is

1, and 𝜙(𝑥) = |𝑥|
1
2 , which is positive definite, we have that 𝑉 and 𝜙

satisfy item (a) in Assumption 2 with 𝑐1 =
3
2 , and

∇𝑉 (𝑥) = 3
2
|𝑥|

1
2 sign(𝑥),

⟨

∇𝑉 (𝑥), 𝑓 (𝑥)
⟩

= −3
4
𝜑(𝑥)𝜙(𝑥)2. (18)

Moreover, by construction, for any choice of 𝛿1 > 0 and 𝛿 satisfying (7),
we have 𝜑(𝑥) = 1 for all |𝑥| ≥ 𝛿2. Therefore, 𝑉 and 𝜙 satisfy item (b) in
ssumption 2 with 𝑐2 = 3

4 , for any 𝛿1 > 0 and 𝛿 satisfying (7). Finally,
ince 𝑓1(𝑥, 𝜏) = 0 and |𝑓2(𝑥, 𝜏)| ≤ 𝜙(𝑥), for all 𝑥 ∈ R and all 𝜏 ∈ R≥0, it
an be shown (see Lemma 10 in the appendix) that for any 𝛿1 > 0 and
satisfying (7), the function 𝑔 generated by Proposition 1 satisfies item
c)–(i) with 𝐿̄𝑔 =

√

2(𝐿̄ + 𝐿𝑣,2) where 𝐿̄ and 𝐿𝑣,2 are as given in (28).
It follows that system (16) satisfies the assumptions of Corollary 2, and
e conclude that system (16) is UGpAS. □

The following Corollary considers the situation in which Assump-
ion 1 is also satisfied with 𝛿1 = 0 in (7).

orollary 3. Suppose that Assumptions 1 and 2 are satisfied for all 𝛿
uch that 𝛿2 = 𝛿1 = 0. Then, system (4) is UGpAS as 𝜀 → 0+.

Below, in Example 2, adapted from [41], we show how Corollary 3
an be used to establish global (practical) stabilization via vibrational
eedback control in certain systems with unknown control directions.

xample 2. Let 𝑥 = (𝑥1, 𝑥2) ∈ R2, 𝑣 = (𝑣1, 𝑣2) ∈ R2, 𝐵 ∈ R2×2 such that
ank(𝐵) = 2, and consider the dynamical system

𝑥̇ = 𝑣, 𝑣̇ = 𝐵𝑢̂, (19)

here 𝑢̂ = (𝑢̂1, 𝑢̂2) ∈ R2 is the control input. The goal is to stabilize the
quilibrium position 𝑥 = 𝑣 = 0 for system (19) under the assumption
hat 𝐵 is unknown. To tackle this problem, we consider a model-free
ontroller inspired by the ES systems studied in [39]. Namely, we let
∈ R>0, 𝜏 ∈ R≥0, and consider the feedback law:

𝑢̂1 = 𝜀−1𝑢1(𝑥, 𝑣, 𝜏), 𝑢̂2 = 𝜀−1𝑢2(𝑥, 𝑣, 𝜏), 𝜏̇ = 𝜀−2, (20a)

here the functions 𝑢𝑖 are given by

1(𝑥, 𝑣, 𝜏) =
√

2𝐽 (𝑥, 𝑣) cos(log(𝐽 (𝑥, 𝑣)) + 𝜏), (20b)

2(𝑥, 𝑣, 𝜏) =
√

4𝐽 (𝑥, 𝑣) cos(log(𝐽 (𝑥, 𝑣)) + 2𝜏), (20c)

and the function 𝐽 is taken as

𝐽 (𝑥, 𝑣) = |𝛾 𝑥 + 𝛾 𝑣|2 + 𝑐, (21)
1 2
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with 𝑐 > 0, where the positive gains 𝛾1 and 𝛾2 are tuning parameters. It
can be shown that the closed-loop system defined by (19)–(21) satisfies
Assumption 1 for 𝛿1 = 0 (see the proof of Theorem 2 in Section 5.6).
Hence, we can use 𝛿1 = 𝛿2 = 0 and let 𝛿3 > 0 be arbitrary. Using the
formula (9f), we obtain that the nominal averaged system is given by
( ̇̄𝑥

̇̄𝑣

)

= 𝐴
(

𝑥̄
𝑣̄

)

=
(

0 I
−𝛾1𝛾2𝐵𝐵⊤ −𝛾22𝐵𝐵

⊤

)(

𝑥̄
𝑣̄

)

, (22)

for all (𝑥̄, 𝑣̄) ∈ R2 × R2, which is a linear time-invariant system. If the
matrix 𝐴 in (22) is Hurwitz, then system (22) is UGAS [5, Theorem
4.5] and, by converse Lyapunov theorems [5, Theorem 4.14], it also
satisfies Assumption 2 with 𝜙(𝑥, 𝑣) = |(𝑥, 𝑣)|, and 𝛼3(𝑟) = tanh(𝑟).
onsequently, by invoking Corollary 3 we conclude that the closed-
oop system defined by (19)–(21) is UGpAS. Fig. 3 shows the behavior
xhibited by the trajectories of the system. In all the simulations, we
sed 𝐵 = (1, 1; 1,−1). We remark that, although we treat 𝐵 as a constant
atrix, a similar result can be established when 𝐵 is time-varying under
uitable uniform persistence of excitation conditions, see [41]. □

emark 6. The proof of Theorem 1 is constructive and provides an
xplicit form for the upper bound 𝜀∗ on the parameter 𝜀 (cf. Eq. (44)).
owever, we remark that, in general, the upper bound 𝜀∗ is usually
onservative.

. Applications to extremum seeking systems

In this section, we leverage the averaging results established in The-
rem 1 and Corollaries 1–3 to study uniform global practical asymptotic
tability (UGpAS) properties in a class of ES systems of the form (5).

.1. Main assumptions

To guarantee that the (open-loop) amplitudes of the exploration
ignals in (5) have access to all directions in the parameter space, we
mpose the following assumption on 𝑏𝑖,𝑗 .

ssumption 3. There exists 𝛾 > 0, such that the vectors 𝑏𝑖,𝑗 satisfy
𝑟
𝑖=1

∑2
𝑗=1

(

𝑏⊤𝑖,𝑗𝑣
)2

≥ 𝛾|𝑣|2, for all 𝑣 ∈ R𝑛. □

We also make the following regularity assumption on the cost
unctions 𝐽 and the drift term 𝑏0. In all cases, we assume that 𝐽⋆ ∶=
nf𝑥∈R𝑛 𝐽 (𝑥) > −∞, and that 𝐽⋆ = 𝐽 (0). We remark that the assumption
⋆ = 𝐽 (0) is not restrictive since, for the purposes of analysis, if 𝐽⋆ =
(𝑥⋆) for some 𝑥⋆ ∈ R𝑛, we can always shift the origin of the coordinate
ystem to coincide with the unique minimizer 𝑥⋆. Similar conditions
have been used in the literature [31,39] to analyze ES systems with
(local) asymptotic stability properties.

Assumption 4. The following holds:

(a) 𝐽 (𝑥) > 𝐽 (0), for all 𝑥 ≠ 0.
(b) ∇𝐽 (𝑥) = 0 if and only if 𝑥 = 0.
(c) There exists 𝐿𝐽 > 0 such that |∇2𝐽 (𝑥)| ≤ 𝐿𝐽 , for all 𝑥 ∈ R𝑛.
(d) There exists 𝜅3 > 0 such that |𝑏0(𝑥)| ≤ 𝜅3|∇𝐽 (𝑥)|, for all 𝑥 ∈ R𝑛.
(e) There exists 𝐿0 > 0 such that |𝑏0(𝑥1) − 𝑏0(𝑥2)| ≤ 𝐿0|𝑥1 − 𝑥2|, for

all 𝑥1, 𝑥2 ∈ R𝑛. □

emark 7. Items (a)–(b) in Assumption 4 are standard in ES prob-
ems [7,8]. Similarly, item (c) is equivalent to the assumption that
𝐽 is 𝐿𝐽 -globally Lipschitz [42, Lemma 1.2.2], which is satisfied by,
or example, quadratic maps, typical in the study of ES problems [2].
inally, note that items (d)–(e) are relevant only when the drift term
0 in (5) is not zero. However, in most ES systems this term is set to
ero. □

Next, we characterize two classes of cost functions 𝐽 ∶ R𝑛 → R that
6

e seek to globally minimize via the dynamics (5).
ssumption 5. The cost 𝐽 is a radially unbounded 2-function and
here exists 𝛼 ∈  such that at least one of the following statements
olds:

(a) For all 𝑥 ∈ R𝑛, we have

𝛼𝐽 (|𝑥|)|𝑥| ≤ |∇𝐽 (𝑥)|.

(b) There exists 𝑀𝐽 > 0 such that

𝛼𝐽 (|𝑥|) ≤ |∇𝐽 (𝑥)| ≤ 𝑀𝐽 ,

for all 𝑥 ∈ R𝑛. □

emark 8. As shown in Lemma 7 in the Appendix, item (a) in
ssumption 5 is satisfied by any strongly convex 2-function with a
lobally Lipschitz gradient. This family of functions includes quadratic
ost functions having a positive definite Hessian, which are common
n ES. However, as shown in the next example, convexity of the cost
unction 𝐽 is not needed to satisfy Assumption 5. □

xample 3. Let 𝑛 = 2, and let the function 𝐽 ∶ R2 → R be given by

(𝑥) ∶= |𝑥|2 + 3 sin (|𝑥|)2 + 1, (23)

hich is not convex [43, pp. 4]. However, as shown in Lemma 8 in the
ppendix, the function 𝐽 in (23) satisfies items (a)–(c) of Assumption 4
and item (a) of Assumption 5 with 𝐿𝐽 = 20 and class- function
𝐽 (𝑠) = 0.5 tanh(𝑠). □

The following example considers a cost function 𝐽 obtained as a
egularization of the vector norm function, which satisfies item (b) in
ssumption 5.

xample 4. Let 𝑛 = 2, and let the function 𝐽 ∶ R𝑛 → R be given by

(𝑥) ∶= |𝑥| tanh(|𝑥|) − 100. (24)

It can be directly verified that the function 𝐽 satisfies items (a)–(c) in
Assumption 4 and item (b) in Assumption 5 with 𝐿𝐽 = 3, 𝑀𝐽 = 2, and
the class- function 𝛼𝐽 (𝑠) = tanh(𝑠). □

4.2. ES dynamics with linear growth

We now consider two different algorithms of the form (5) that are
able to achieve global ES. The first algorithm that we consider, initially
introduced in [39], can be written as (5) with the following functions
𝑢𝑖,𝑗 :

𝑢𝑖,1(𝑦, 𝜏) ∶=

{
√

2𝜔𝑖𝑦 cos(log(𝑦) + 𝜔𝑖𝜏) 𝑦 > 0
0 𝑦 ≤ 0 ,

(25a)

𝑖,2(𝑦, 𝜏) ∶=

{
√

2𝜔𝑖𝑦 sin(log(𝑦) + 𝜔𝑖𝜏) 𝑦 > 0
0 𝑦 ≤ 0,

(25b)

here 𝜔𝑖 ∈ Q>0, such that 𝜔𝑖 ≠ 𝜔𝑗 for 𝑖 ≠ 𝑗. For the sake of
onvenience, the closed loop system (5) is rewritten here:

̇ = 𝑏0(𝑥) + 𝜀−1
𝑟
∑

𝑖=1

2
∑

𝑗=1
𝑏𝑖,𝑗𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏), 𝜏̇ = 𝜀−2. (26)

learly, (26) has the same form as (4).
The following theorem is the second main result of this paper.

Theorem 2. Suppose that Assumptions 3 and 4 hold with 𝛾 > 𝜅3. Then,
if item (a) in Assumption 5 holds:

(a) There exists 𝛥 > 0 such that system (26) is 𝛥-UGUB under the
feedback law (25).

(b) If 𝐽⋆ ≥ 0, then system (26) is UGpAS under the feedback law

(25). □
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Fig. 4. Numerical results for Example 4 (left) and Example 5 (right). The insets in the top right of the figures depict the quasi-steady state.
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The novelty of Theorem 2 compared to existing literature is to
establish uniform global bounds of the form (2)–(3) for the ES dynamics
(5) with feedback law (25). As discussed in Example 3, such bounds
can be obtained even when 𝐽 is not convex.

Example 5 (Example 3 Continued). Let 𝜔1 = 1, 𝑟 = 1, and consider the
ES system (5) with destabilizing drift 𝑏0(𝑥) =

1
2𝑥, and constant vectors

𝑏1,1 = (1, 0), 𝑏1,2 = (0, 1). Notice that in this case 𝛾 = 1, and it can be
shown that 𝜅3 = 0.8. Therefore, item (d) in Assumption 4 is satisfied.
he feedback law is given by (25), with cost function (23). Since all the
ssumptions of Theorem 2 are satisfied and 𝐽⋆ > 0, we conclude that
ystem (5) is UGpAS. Numerical simulation results are shown in Fig. 4.
n the figure, we present simulations obtained from various randomly
enerated initial conditions and using 𝜀 = 1∕

√

4𝜋. As shown in the
figure, all trajectories converge to a neighborhood of the origin. □

4.3. ES dynamics with bounded control

The second ES algorithm that we consider can also be written as
system (5) with the following choice of the functions 𝑢𝑖,𝑗 :

𝑖,1(𝑦, 𝜏) ∶=
√

2𝜔𝑖 cos(𝑦 + 𝜔𝑖𝜏), (27a)

𝑖,2(𝑦, 𝜏) ∶=
√

2𝜔𝑖 sin(𝑦 + 𝜔𝑖𝜏). (27b)

The semi-global practical stability properties of these systems have
een studied in [28,38]. These algorithms are characterized by uni-
ormly bounded vector fields, which are advantageous for applications
ith actuator constraints. Note that system (5) with the feedback law
27) can also be written as (26).
The following theorem is the third main result of this paper.

Theorem 3. Suppose that Assumptions 3 and 4 hold. If 𝛾 > 𝜅3 and
item (b) in Assumption 5 is satisfied, then system (26) is UGpAS under the
feedback law (27). □

The novelty of Theorem 3 compared to the results of [28,38], is to
establish a global bound of the form (2) for all solutions of the system,
albeit under stronger assumptions on the cost functions.

We conclude this section by presenting a numerical example that
illustrates the application of Theorem 3.

Example 6 (Example 4 Continued). Let 𝜔1 = 1, 𝑟 = 1, and consider
the ES system (5) with 𝑏0(𝑥) = (0, 0), 𝑏1,1 = (2, 0), 𝑏1,2 = (0, 2), and the
feedback law (27). Notice that in this case 𝜅3 = 0 and 𝛾 = 2, so the
assumption that 𝜅3 < 𝛾 holds trivially. We consider the cost function
(24), which satisfies the required Assumptions to apply Theorem 3.
We simulate the system from randomly generated initial conditions
with 𝜀 = 1∕

√

4𝜋. Numerical simulation results are shown in Fig. 4.
ince item (b) in Assumption 5 restricts the gradient to be uniformly
ounded, the convergence rate that emerges is slower compared to
he convergence rate of the ES dynamics of Example 5. However,
heorem 3 still asserts that system (5) is UGpAS. □

. Proofs

In this section, we present the proofs of the main results.
7

.1. Proof of Proposition 1

First, we introduce several constants which will be used in sub-
equent steps of the proof. Let 𝛿1, 𝐿1, 𝐿2, 𝐿3 and 𝑇 be the constants
enerated by Assumption 1. For each 𝛿 of the form (7) and 𝑘 ∈ {1, 2},
efine the constants:

𝜑,𝛿 = sup
𝑥∈3𝛿3B

|∇2𝜑(𝑥)| (28a)

𝐵𝑘,𝛿 ∶= sup
(𝑥,𝜏) ∈ 3𝛿3B×R≥0

|𝑓𝑘(𝑥, 𝜏)|. (28b)

𝐿̂𝑘 ∶=

{

𝐿𝑘 + 4𝐵𝑘,𝛿(𝛿2 − 𝛿1)−1 𝛿2 > 𝛿1
𝐿𝑘 𝛿2 = 𝛿1 = 0,

(28c)

𝐿̂3 ∶=

⎧

⎪

⎨

⎪

⎩

𝐿3 + 3𝐵1,𝛿𝐿1 + 𝐵2
1,𝛿𝐵𝜑,𝛿 +

4𝐿̂1𝐵1,𝛿
𝛿2−𝛿1

𝛿2 > 𝛿1
𝐿3 𝛿2 = 𝛿1 = 0.

(28d)

where 𝐵𝜑,𝛿 < +∞ follows from Lemma 1, 𝐵𝑘,𝛿 < +∞ follows from items
(a)–(b) in Assumption 1, and the compactness of the closed ball 3𝛿3B.
Using (28a)–(28d), we also define the following constants:

𝐿𝑣,1 ∶= 𝑇 𝐿̂1, 𝐿𝑣,2 ∶= 𝑇
(

2𝐿̂2 + 4𝑇 𝐿̂3
)

, (28e)

𝐿̄ ∶= (𝐿̂2 + 2𝑇 𝐿̂3), 𝐿̃𝛹 ∶= 𝑛(𝐿𝑣,1 + 𝐿𝑣,2), (28f)

𝐿𝛹 ∶= 8𝐿̃𝛹 + 2𝑇
(

𝐵1,𝛿 + 2𝐵2,𝛿 + 3𝑇 𝐿̂1𝐵1,𝛿
)

, (28g)

𝐿̂𝑣,1 ∶= 2𝐿𝑣,1 + 𝑇𝐵1,𝛿 , (28h)

𝐿̂𝑣,2 ∶= 2𝐿𝑣,2 + 𝑇
(

2𝐵2,𝛿 + 3𝑇 𝐿̂1𝐵1,𝛿
)

. (28i)

Next, we define the constant 𝜀0 ∈ R>0 by:

𝜀0 ∶= min{1, 𝜀̄1, 𝜀̄2, 𝜀̄3, 𝜀̄4}, (29a)

where the constants 𝜀̄𝑘 are given by

𝜀̄1 ∶= 4−1𝑛−1(𝐿𝑣,1 + 𝐿𝑣,2)−1, 𝜀̄2 ∶= (𝐿̂𝑣,1 + 𝐿̂𝑣,2)−1, (29b)

𝜀̄3 ∶= 𝛿3𝐿
−1
𝛹 , 𝜀̄4 ∶= (𝛿3 − 𝛿2)(1 + 𝛿3)−1(𝐿̂𝑣,1 + 𝐿̂𝑣,2)−1. (29c)

Henceforth, and for each 𝛿 of the form (7), we shall require that 𝜀 ∈
(0, 𝜀0).

Throughout the proof, we assume that a choice of 𝛿 satisfying (7)
is fixed. For the sake of clarity, we divide the proof into several key
lemmas.

Lemma 2. Let the assumptions of Proposition 1 be satisfied. Then, for all
𝑘 ∈ {1, 2}, the following holds:

(a) For all (𝑥, 𝜏) ∈ 2, we have that 𝑓𝑘(𝑥, 𝜏) = 𝑓𝑘(𝑥, 𝜏).
(b) For all (𝑥, 𝜏) ∈ cl

(

R𝑛∖1
)

× R≥0, we have that 𝑓𝑘(𝑥, 𝜏) = 0.
(c) For all (𝑥, 𝜏) ∈ R𝑛 × R≥0, and for the same 𝑇 ∈ R>0 from item (b)

in Assumption 1, we have that

𝑓𝑘(𝑥, 𝜏 + 𝑇 ) = 𝑓𝑘(𝑥, 𝜏), ∫

𝑇

0
𝑓1(𝑥, 𝜏)𝑑𝜏 = 0.
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(d) The map 𝑓𝑘 is 0 and, for all 𝑥1, 𝑥2 ∈ R𝑛 and all 𝜏 ∈ R≥0, the map
𝑓𝑘 satisfies
|

|

|

𝑓𝑘(𝑥1, 𝜏) − 𝑓𝑘(𝑥2, 𝜏)
|

|

|

≤ 𝐿̂𝑘|𝑥1 − 𝑥2|.

(e) The map 𝑓𝑘 is 3−𝑘 with respect to 𝑥 on R𝑛 × R≥0.
(f) For all (𝑥1, 𝜏1), (𝑥2, 𝜏2) ∈ R𝑛 × R≥0, the map D𝑥𝑓1 ⋅ 𝑓1, satisfies

|D𝑥𝑓1(𝑥1, 𝜏1) ⋅ 𝑓1(𝑥1, 𝜏2) − D𝑥𝑓1(𝑥2, 𝜏1) ⋅ 𝑓1(𝑥2, 𝜏2)| ≤ 𝐿̂3|𝑥1 − 𝑥2|.

Proof. If 𝛿1 = 𝛿2 = 0, then 𝜑(𝑥) = 1 and all the conclusions of the
proposition follow immediately by (8b) and Assumption 1. Therefore,
without loss of generality, we assume that 𝛿2 > 𝛿1.

Proof of items (a), (b), and (c): By Lemma 1, 𝜑(𝑥) = 1, for all 𝑥 ∈ 2.
Hence, by construction, the map 𝑓𝑘 satisfies 𝑓𝑘(𝑥, 𝜏) = 𝑓𝑘(𝑥, 𝜏), for all
(𝑥, 𝜏) ∈ 2 × R≥0, which proves item (a). Similarly, by Lemma 1,
𝜑(𝑥) = 0, for all 𝑥 ∈ 𝛿1B. Hence, by construction, the map 𝑓𝑘 also
satisfies 𝑓𝑘(𝑥, 𝜏) = 0, for all (𝑥, 𝜏) ∈ 𝛿1B × R≥0, which proves item (b).
Item (c) follows directly from the definition of the map 𝑓𝑘.

Proof of item (d): By Lemma 1, the map 𝜑(𝑥) is ∞. Hence, by
item (a) in Assumption 1, the definition of the map 𝑓𝑘 implies that
𝑓𝑘(⋅, ⋅) is 0 on R𝑛 × R≥0. Since 𝑓𝑘(𝑥, 𝜏) = 𝑓𝑘(𝑥, 𝜏), for all (𝑥, 𝜏) ∈
2 × R≥0, it follows that 𝑓𝑘 inherits all the properties of 𝑓𝑘 in the
domain 2 × R≥0. In particular, items in Assumption 1 imply that
D𝑥𝑓𝑘 is well-defined and satisfies the bound |D𝑥𝑓𝑘(𝑥, 𝜏)| ≤ 𝐿𝑘, for all
(𝑥, 𝜏) ∈ 1 × R≥0 ⊃ 2 × R≥0. Consequently, D𝑥𝑓𝑘(𝑥, 𝜏) also satisfies
the bound |D𝑥𝑓𝑘(𝑥, 𝜏)| ≤ 𝐿𝑘, for all (𝑥, 𝜏) ∈ 2 × R≥0. Similarly, since
𝑓𝑘(𝑥, 𝜏) = 0, for all (𝑥, 𝜏) ∈ 𝛿1B × R≥0, it follows that D𝑥𝑓𝑘(𝑥, 𝜏) = 0 is
well-defined and satisfies D𝑥𝑓𝑘(𝑥, 𝜏) = 0, for all (𝑥, 𝜏) ∈ 𝛿1B × R≥0.

The definition of the map 𝑓𝑘 implies that, for all (𝑥, 𝜏) ∈ cl
(

1∖2
)

R≥0, we have

|D𝑥𝑓𝑘(𝑥, 𝜏)| ≤ |𝜑(𝑥)D𝑥𝑓𝑘(𝑥, 𝜏)| + |𝑓𝑘(𝑥, 𝜏)||∇𝜑(𝑥)|.

On the other hand, it can be shown that |∇𝜑(𝑥)| ≤ 4∕(𝛿2 − 𝛿1), for all
𝑥 ∈ R𝑛. In addition, since cl

(

1∖2
)

⊂ 3𝛿3B∩1, it follows that, for
all (𝑥, 𝜏) ∈ R𝑛 × R≥0, the Jacobian D𝑥𝑓𝑘 is well-defined and satisfies

|D𝑥𝑓𝑘(𝑥, 𝜏)| ≤ 𝐿̂𝑘.

Consequently, for all 𝑥1, 𝑥2 ∈ R𝑛, and ∀𝜏 ∈ R≥0, the map 𝑓𝑘 satisfies

|𝑓𝑘(𝑥1, 𝜏) − 𝑓𝑘(𝑥2, 𝜏)| ≤ 𝐿̂𝑘|𝑥1 − 𝑥2|,

which concludes the proof of item (d).
Proof of item (e): Since the map 𝜑 is ∞, the definition of the map

𝑓𝑘 implies that it inherits all the smoothness properties of 𝑓𝑘 in the
domain 1 ×R≥0. In particular, item (c) in Assumption 1 implies that
𝑓𝑘(⋅, 𝜏) is 3−𝑘 on the closed set1, for all 𝜏 ∈ R≥0. On the other hand,
since 𝑓𝑘(𝑥, 𝜏) = 0 for all (𝑥, 𝜏) ∈ 𝛿1B × R≥0, it follows that 𝑓𝑘(⋅, 𝜏) is ∞

on the open set R𝑛∖1, for all 𝜏 ∈ R≥0. Therefore, 𝑓𝑘(⋅, 𝜏) is 3−𝑘 on
R𝑛, for all 𝜏 ∈ R≥0, which proves item (e).

Proof of item (f): For (𝑥, 𝜏1, 𝜏2) ∈ R𝑛 × R≥0 × R≥0, define the maps

𝐹 (𝑥, 𝜏1, 𝜏2) ∶= D𝑥𝑓1(𝑥, 𝜏1)𝑓1(𝑥, 𝜏2),

𝐹 (𝑥, 𝜏1, 𝜏2) ∶= 𝜑(𝑥)𝐹 (𝑥, 𝜏1, 𝜏2) = D𝑥𝑓1(𝑥, 𝜏1)𝑓1(𝑥, 𝜏2).

Since 𝑓1(⋅, 𝜏1) is 2 on R𝑛, for all 𝜏1 ∈ R≥0, and 𝑓1(⋅, 𝜏1) is 2 on 1,
for all 𝜏1 ∈ R≥0, it follows that the map 𝐹 (⋅, 𝜏1, 𝜏2) is 1 on 1, for all
(𝜏1, 𝜏2) ∈ R≥0 × R≥0. In addition, since the map 𝜑 is ∞, it follows that
the map 𝐹 (⋅, 𝜏1, 𝜏2) is also 1 on 1, for all (𝜏1, 𝜏2) ∈ R≥0 × R≥0.

From Lemma 1, 𝜑(𝑥) = 1, for all 𝑥 ∈ 2. Hence, by definition,
the map 𝐹 satisfies 𝐹 (𝑥, 𝜏1, 𝜏2) = 𝐹 (𝑥, 𝜏1, 𝜏2), for all (𝑥, 𝜏1, 𝜏2) ∈ 2 ×
R≥0 × R≥0, which means that 𝐹 inherits all the properties of the
map 𝐹 in the domain 2 × R≥0 × R≥0. In particular, from items (c)
and (d) in Assumption 1, D𝑥𝐹 is well-defined and satisfies the bound
|D𝑥𝐹 (𝑥, 𝜏1, 𝜏2)| ≤ 𝐿3, for all (𝑥, 𝜏1, 𝜏2) ∈ 2 × R≥0 × R≥0, which implies
that D𝑥𝐹 also satisfies the bound |D𝑥𝐹 (𝑥, 𝜏1, 𝜏2)| ≤ 𝐿3, for all (𝑥, 𝜏1, 𝜏2) ∈
 × R × R .
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2 ≥0 ≥0
From Lemma 1, 𝜑(𝑥) = 0, for all 𝑥 ∈ 𝛿1B. Hence, by definition, the
map 𝐹 satisfies 𝐹 (𝑥, 𝜏1, 𝜏2) = 0, for all (𝑥, 𝜏1, 𝜏2) ∈ 𝛿1B×R≥0×R≥0, which
implies that 𝐹 (⋅, 𝜏1, 𝜏2) is 1 on R𝑛, for all (𝜏1, 𝜏2) ∈ R≥0 ×R≥0, and that
D𝑥𝐹 satisfies D𝑥𝐹 (𝑥, 𝜏1, 𝜏2) = 0, for all (𝑥, 𝜏1, 𝜏2) ∈ 𝛿1B × R≥0 × R≥0.

The definition of the map 𝐹 implies that, for all (𝑥, 𝜏) ∈ cl
(

1∖2
)

× R≥0, we have

|D𝑥𝐹 (𝑥, 𝜏1, 𝜏2)| ≤ |𝜑(𝑥)D𝑥𝐹 (𝑥, 𝜏1, 𝜏2)| + |𝐹 (𝑥, 𝜏1, 𝜏2)||∇𝜑(𝑥)⊤|.

Recalling the definition of the map 𝐹 , we obtain that

D𝑥𝐹 (𝑥, 𝜏1, 𝜏2) = D𝑥𝑓1(𝑥, 𝜏1)𝑓1(𝑥, 𝜏2)∇𝜑(𝑥)⊺ + 𝜑(𝑥)D𝑥(D𝑥𝑓1(𝑥, 𝜏1)𝑓1(𝑥, 𝜏2))

+ D𝑥𝑓1(𝑥, 𝜏1)∇𝜑(𝑥)⊺𝑓1(𝑥, 𝜏2) + 𝑓1(𝑥, 𝜏1)∇𝜑(𝑥)⊺D𝑥𝑓1(𝑥, 𝜏2)

+ 𝑓1(𝑥, 𝜏1)𝑓1(𝑥, 𝜏2)⊺∇2𝜑(𝑥),

which leads to the upper bounds

|𝐹 (𝑥, 𝜏1, 𝜏2)| ≤ 𝐿̂1𝐵1,𝛿 ,

|D𝑥𝐹 (𝑥, 𝜏1, 𝜏2)| ≤ 𝐿3 + 3𝐿1𝐵1,𝛿 + 𝐵2
1,𝛿𝐵𝜑,𝛿 ,

for all (𝑥, 𝜏1, 𝜏2) ∈ 3𝛿3B × R≥0 × R≥0. Therefore, we obtain that

|D𝑥𝐹 (𝑥, 𝜏1, 𝜏2)| ≤ 𝐿3 + 3𝐿1𝐵1,𝛿 + 𝐵2
1,𝛿𝐵𝜑,𝛿 +

4𝐿̂1𝐵1,𝛿

𝛿2 − 𝛿1
,

or all (𝑥, 𝜏1, 𝜏2) ∈ 3𝛿3B × R≥0 × R≥0, which concludes the proof of the
Lemma. ■

Lemma 3. Let the assumptions of Proposition 1 be satisfied. Then, the
following holds:

(a) The maps 𝑓 and 𝑣𝑘, for 𝑘 ∈ {1, 2}, are 1 on R𝑛 × R≥0.
(b) For all 𝑥1, 𝑥2 ∈ R𝑛 and all 𝜏 ∈ R≥0, the following holds:

|𝑓 (𝑥1) − 𝑓 (𝑥2)| ≤ 𝐿̄|𝑥1 − 𝑥2|,

|𝑣𝑘(𝑥1, 𝜏) − 𝑣𝑘(𝑥2, 𝜏)| ≤ 𝐿𝑣,𝑘|𝑥1 − 𝑥2|, ∀ 𝑘 ∈ {1, 2}.

roof. We prove each item separately.
Proof of item (a): Since 𝑣1 is the integral of 𝑓1 with respect to 𝜏, it

ollows from item (e) in Lemma 2 that the map 𝑣1 is 2 in 𝑥, and 1 in
𝜏. In addition, since 𝑓 is obtained as the definite integral with respect to
𝜏 of the terms D𝑥𝑣1 𝑓1, D𝑥𝑓1 𝑣1, and 𝑓2, and, from item (e) in Lemma 2,
all those of terms are 1 in 𝑥, it follows that 𝑓 is 1. Moreover, since
𝑣2 is the sum of the term D𝑥𝑣1𝑣1, which is 1 in all arguments, and the
integral with respect to 𝜏 of the terms D𝑥𝑣1 𝑓1, D𝑥𝑓1 𝑣1, and 𝑓2, which
are all, from item (e) in Lemma 2, 1 in 𝑥 and 0 in 𝜏, it follows that
𝑣2 is 1 in all arguments.

Proof of item (b): From the definition of the map 𝑣1 and item (d) in
Lemma 2, we have that

|𝑣1(𝑥1, 𝜏) − 𝑣1(𝑥2, 𝜏)| =
|

|

|

|

∫

𝜏

0

(

𝑓1(𝑥1, 𝑠) − 𝑓1(𝑥2, 𝑠)
)

d𝑠
|

|

|

|

≤ 𝐿̂1𝜏|𝑥1 − 𝑥2| ≤ 𝑇 𝐿̂1|𝑥1 − 𝑥2|,

for all 𝑥1, 𝑥2 ∈ R𝑛 and all 𝜏 ∈ [0, 𝑇 ]. In addition, from item (c) in
Lemma 2, 𝑣1 is periodic in 𝜏. It follows that, for all 𝑥1, 𝑥2 ∈ R𝑛 and
all 𝜏 ∈ R≥0, we have

|𝑣1(𝑥1, 𝜏) − 𝑣1(𝑥2, 𝜏)| ≤ 𝐿𝑣,1|𝑥1 − 𝑥2|.

From the definition of 𝑣1, and by interchanging matrix multiplication
with the integral, we have that

D𝑥𝑓1(𝑥, 𝜏)𝑣1(𝑥, 𝜏) = ∫

𝜏

0
D𝑥𝑓1(𝑥, 𝜏)𝑓1(𝑥, 𝑠)d𝑠.

From item (f) in Lemma 2, we have that

|D𝑥𝑓1(𝑥1, 𝜏)𝑣1(𝑥1, 𝜏) − D𝑥𝑓1(𝑥2, 𝜏)𝑣1(𝑥2, 𝜏)|

=
|

|

|

|

∫

𝜏

0

(

D𝑥𝑓1(𝑥1, 𝜏)𝑓1(𝑥1, 𝑠) − D𝑥𝑓1(𝑥2, 𝜏)𝑓1(𝑥2, 𝑠)
)

d𝑠
|

|

|

|

≤ 𝐿̂3𝜏|𝑥1 − 𝑥2| ≤ 𝑇 𝐿̂3|𝑥1 − 𝑥2|.
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for all 𝑥1, 𝑥2 ∈ R𝑛 and all 𝜏 ∈ [0, 𝑇 ]. In addition, from item (c) in
Lemma 2, 𝑣1 and 𝑓1 are periodic in 𝜏. It follows that, for all 𝑥1, 𝑥2 ∈ R𝑛

and all 𝜏 ∈ R≥0, we have that

|D𝑥𝑓1(𝑥1, 𝜏)𝑣1(𝑥1, 𝜏) − D𝑥𝑓1(𝑥2, 𝜏)𝑣1(𝑥2, 𝜏)| ≤ 𝑇 𝐿̂3|𝑥1 − 𝑥2|.

From the definition of 𝑣1, using Leibniz’s rule, and by interchanging
matrix multiplication with the integral, we have that

D𝑥𝑣1(𝑥, 𝜏)𝑓1(𝑥, 𝜏) = ∫

𝜏

0
D𝑥𝑓1(𝑥, 𝑠)𝑓1(𝑥, 𝜏)d𝑠.

From item (f) in Lemma 2, we have that

|D𝑥𝑣1(𝑥1, 𝜏)𝑓1(𝑥1, 𝜏) − D𝑥𝑣1(𝑥2, 𝜏)𝑓1(𝑥2, 𝜏)|

=
|

|

|

|

∫

𝜏

0

(

D𝑥𝑓1(𝑥1, 𝑠)𝑓1(𝑥1, 𝜏) − D𝑥𝑓1(𝑥2, 𝑠)𝑓1(𝑥2, 𝜏)
)

d𝑠
|

|

|

|

≤ 𝐿̂3𝜏|𝑥1 − 𝑥2| ≤ 𝑇 𝐿̂3|𝑥1 − 𝑥2|.

for all 𝑥1, 𝑥2 ∈ R𝑛 and all 𝜏 ∈ [0, 𝑇 ]. In addition, from item (c) in
Lemma 2, 𝑣1 and 𝑓1 are periodic in 𝜏. It follows that, for all 𝑥1, 𝑥2 ∈ R𝑛

and all 𝜏 ∈ R≥0, we have that

|D𝑥𝑣1(𝑥1, 𝜏)𝑓1(𝑥1, 𝜏) − D𝑥𝑣1(𝑥2, 𝜏)𝑓1(𝑥2, 𝜏)| ≤ 𝑇 𝐿̂3|𝑥1 − 𝑥2|.

From the definition of 𝑣1, using Leibniz’s rule, and interchanging
matrix multiplication with the integral, we have that

D𝑥𝑣1(𝑥, 𝜏)𝑣1(𝑥, 𝜏) = ∫

𝜏

0 ∫

𝜏

0
D𝑥𝑓1(𝑥, 𝑠)𝑓1(𝑥, 𝜎)d𝑠d𝜎.

From item (f) in Lemma 2, we have that

|D𝑥𝑣1(𝑥1, 𝜏)𝑣1(𝑥1, 𝜏) − D𝑥𝑣1(𝑥2, 𝜏)𝑣1(𝑥2, 𝜏)|

=
|

|

|

|

∫

𝜏

0 ∫

𝜏

0

(

D𝑥𝑓1(𝑥1, 𝑠)𝑓1(𝑥1, 𝜎) − D𝑥𝑓1(𝑥2, 𝑠)𝑓1(𝑥2, 𝜎)
)

d𝑠d𝜎
|

|

|

|

≤ 𝐿̂3𝜏
2
|𝑥1 − 𝑥2| ≤ 𝑇 2𝐿̂3|𝑥1 − 𝑥2|,

for all 𝑥1, 𝑥2 ∈ R𝑛 and all 𝜏 ∈ [0, 𝑇 ]. In addition, from item (c) in
Lemma 2, 𝑣1 is periodic in 𝜏. It follows that, for all 𝑥1, 𝑥2 ∈ R𝑛 and
all 𝜏 ∈ R≥0, we have that

|D𝑥𝑣1(𝑥1, 𝜏)𝑣1(𝑥1, 𝜏) − D𝑥𝑣1(𝑥2, 𝜏)𝑣1(𝑥2, 𝜏)| ≤ 𝑇 2𝐿̂3|𝑥1 − 𝑥2|.

Finally, note that, for all 𝑥1, 𝑥2 ∈ R𝑛, we have that

𝑇 |𝑓 (𝑥1)−𝑓 (𝑥2)| ≤ ∫

𝑇

0
|𝑓2(𝑥1, 𝜏) − 𝑓2(𝑥2, 𝜏)|d𝜏

+ ∫

𝑇

0
|D𝑥𝑣1(𝑥1, 𝜏)𝑓1(𝑥1, 𝜏) − D𝑥𝑣1(𝑥2, 𝜏)𝑓1(𝑥2, 𝜏)|d𝜏

+ ∫

𝑇

0
|D𝑥𝑓1(𝑥1, 𝜏)𝑣1(𝑥1, 𝜏) − D𝑥𝑓1(𝑥2, 𝜏)𝑣1(𝑥2, 𝜏)|d𝜏

≤ 𝑇
(

𝐿̂2 + 2𝑇 𝐿̂3
)

|𝑥1 − 𝑥2|,

and, for all 𝑥1, 𝑥2 ∈ R𝑛 and all 𝜏 ∈ R≥0, we have that

|𝑣2(𝑥1, 𝜏)−𝑣2(𝑥2, 𝜏)| ≤ ∫

𝜏

0
|𝑓2(𝑥1, 𝜏) − 𝑓2(𝑥2, 𝜏)|d𝜏

+ ∫

𝜏

0
|𝑓 (𝑥1) − 𝑓 (𝑥2)|d𝜏

+ ∫

𝑇

0
|D𝑥𝑓1(𝑥1, 𝜏)𝑣1(𝑥1, 𝜏) − D𝑥𝑓1(𝑥2, 𝜏)𝑣1(𝑥2, 𝜏)|d𝜏

+ |D𝑥𝑣1(𝑥1, 𝜏)𝑣1(𝑥1, 𝜏) − D𝑥𝑣1(𝑥2, 𝜏)𝑣1(𝑥2, 𝜏)|

≤ 𝑇
(

2𝐿̂2 + 4𝑇 𝐿̂3
)

|𝑥1 − 𝑥2|,

The proof of the Lemma is concluded by noting that 𝐿̄ = 𝑇 (𝐿̂2 + 2𝐿̂3)
and 𝐿𝑣,2 = 𝑇

(

2𝐿̂2 + 4𝑇 𝐿̂3
)

. ■

Lemma 4. Let the assumptions of Proposition 1 be satisfied. Then, for all
𝜀 ∈ [0, 𝜀0], the following holds:

𝑛

9

(a) 𝛹 is a diffeomorphism on R × R≥0. a
(b) For all 𝜏 ∈ R≥0, 𝛹 and its inverse 𝛹−1 satisfy

|

|

𝜋1◦𝛹 (0, 𝜏)|
|

≤ 𝐿𝛹 𝜀,
|

|

|

𝜋1◦𝛹
−1(0, 𝜏)||

|

≤ 𝐿𝛹 𝜀.

(c) For all 𝑥1, 𝑥2 ∈ R𝑛 and for all 𝜏 ∈ R≥0, the map 𝛹 and its inverse
𝛹−1 satisfy

|

|

𝛹 (𝑥1, 𝜏) − 𝛹 (𝑥2, 𝜏)|| ≤ (1 + 𝐿𝛹 𝜀)|𝑥1 − 𝑥2|,
|

|

|

𝛹−1(𝑥1, 𝜏) − 𝛹−1(𝑥2, 𝜏)
|

|

|

≤ (1 + 𝐿𝛹 𝜀)|𝑥1 − 𝑥2|.

(d) For all (𝑥, 𝜏) ∈ 3 × R≥0, 𝛹−1(𝑥, 𝜏) ∈ 2.

Proof (Proof of Item (a)). Let (𝑥, 𝜏) and (𝑥̃, 𝜏) be any two points in
R𝑛 × R≥0 and suppose that 𝛹 (𝑥, 𝜏) = 𝛹 (𝑥̃, 𝜏). Then, by construction, we
have 𝜏 = 𝜏, and

|𝑥 − 𝑥̃| ≤
2
∑

𝑖=1
𝜀𝑖|𝑣𝑖(𝑥, 𝜏) − 𝑣𝑖(𝑥̃, 𝜏)|.

From item (b) in Lemma 3, we obtain that

|𝑥 − 𝑥̃| ≤ 𝜀 (𝐿𝑣,1 + 𝐿𝑣,2𝜀)|𝑥 − 𝑥̃|.

We note that for all 𝜀 ∈ (0, 𝜀0) we have that |𝑥 − 𝑥̃| ≤ 1
2 |𝑥 − 𝑥̃|, which

can only happen if |𝑥 − 𝑥̃| = 0. Therefore, for all (𝑥, 𝜏) ∈ R𝑛×R≥0, for all
(𝑥̃, 𝜏) ∈ R𝑛×R≥0, and for all 𝜀 ∈ (0, 𝜀0), 𝛹 (𝑥, 𝜏) = 𝛹 (𝑥̃, 𝜏) ⟹ 𝑥 = 𝑥̃, and
= 𝜏, which in turn implies that the map 𝛹 is injective on R𝑛 × R≥0.
ext, for each (𝑥̃, 𝜏) ∈ R𝑛 × R≥0, define the map 𝛷̃ ∶ R𝑛 → R𝑛:

̃ (𝑥) = 𝑥̃ + 𝑥 −𝛷(𝑥, 𝜏).

y direct computation

̃ (𝑥) = 𝑥̃ +
∑

𝑘=1
𝜀𝑘𝑣𝑘(𝑥, 𝜏).

ow let 𝑥1, 𝑥2 ∈ R𝑛 be any two points. It follows that

𝛷̃(𝑥1) − 𝛷̃(𝑥2)|| ≤
∑

𝑘=1
𝜀𝑘|𝑣𝑘(𝑥1, 𝜏) − 𝑣𝑘(𝑥2, 𝜏)|.

rom item (b) in Lemma 3, we obtain that

𝛷̃(𝑥1) − 𝛷̃(𝑥2)|| ≤ 𝜀 (𝐿𝑣,1 + 𝐿𝑣,2𝜀)|𝑥1 − 𝑥2|.

ince 𝜀 ∈ (0, 𝜀0), it follows that |

|

𝛷̃(𝑥1) − 𝛷̃(𝑥2)|| ≤ 1
2 |𝑥1 − 𝑥2| for all

1, 𝑥2 ∈ R𝑛, which implies that 𝛷̃ is a contraction. Thus, 𝛷̃ has a unique
ixed point [40, Lemma C.35], which implies that for all 𝜀 ∈ (0, 𝜀0), for
ll 𝑥̃ ∈ R𝑛 and for all 𝜏 ∈ R≥0, there exists a unique point 𝑥 ∈ R𝑛 such
hat

𝑥̃ = 𝜋1◦𝛹 (𝑥, 𝜏) = 𝛷(𝑥, 𝜏). (30)

n other words, 𝛹 is onto, and therefore a bijection on R𝑛 × R≥0.
From item (a) in Lemma 3, we know that the map 𝛹 is 1 on

𝑛 × R≥0, and so its Jacobian D𝛹 is well-defined, and given by

𝛹 =
(

D𝑥𝛷 D𝜏𝛷
0 1

)

,

here the Jacobians D𝑥𝛷 and D𝜏𝛷 are given by

𝑥𝛷 = I −
2
∑

𝑘=1
𝜀𝑘D𝑥𝑣𝑘, D𝜏𝛷 = −

2
∑

𝑘=1
𝜀𝑘D𝜏𝑣𝑘.

or each 𝑖 ∈ {1,… , 𝑛} and 𝑘 ∈ {1, 2}, let 𝑅𝑖
𝑣,𝑘 ∶ R𝑛 × R≥0 → R≥0 be

iven by

𝑖
𝑣,𝑘(𝑥, 𝜏) =

𝑛
∑

𝑗=1, 𝑗≠𝑖

|

|

|

(

𝐷𝑥𝑣𝑘(𝑥, 𝜏)
)

𝑖𝑗
|

|

|

,

here
(

𝐷𝑥𝑣𝑘(𝑥, 𝜏)
)

𝑖𝑗 are the entries of the matrix 𝐷𝑥𝑣𝑘(𝑥, 𝜏). From items
n Lemma 3, the maps 𝑣𝑘 are 1 and satisfy |

|

𝐷𝑥𝑣𝑘(𝑥, 𝜏)|| ≤ 𝐿𝑣,𝑘, for all
𝑥, 𝜏) ∈ R𝑛×R≥0 and 𝑘 ∈ {1, 2}. In particular, for all (𝑥, 𝜏) ∈ R𝑛×R≥0, for

|

( )

|
ll 𝑖, 𝑗 ∈ {1,… , 𝑛}, and for all 𝑘 ∈ {1, 2}, we have that |
|

𝐷𝑥𝑣𝑘(𝑥, 𝜏) 𝑖𝑗 |
|

≤
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𝐿𝑣,𝑘. As such, for all (𝑥, 𝜏) ∈ R𝑛 × R≥0, for all 𝑖 ∈ {1,… , 𝑛}, and for all
𝑘 ∈ {1, 2}, we have that 0 ≤ 𝑅𝑖

𝑣,𝑘(𝑥, 𝜏) ≤ (𝑛 − 1)𝐿𝑣,𝑘. Next, note that the
ntries of D𝑥𝛷 are given by:

(

D𝑥𝛷(𝑥, 𝜏)
)

𝑖𝑖 = 1 −
2
∑

𝑘=1
𝜀𝑘

(

D𝑥𝑣𝑘(𝑥, 𝜏)
)

𝑖𝑖 , ∀𝑖 ∈ {1,… , 𝑛}

(

D𝑥𝛷(𝑥, 𝜏)
)

𝑖𝑗 = −
2
∑

𝑘=1
𝜀𝑘

(

D𝑥𝑣𝑘(𝑥, 𝜏)
)

𝑖𝑗 , ∀𝑖 ≠ 𝑗 ∈ {1,… , 𝑛},

Consequently, for all (𝑥, 𝜏) ∈ R𝑛 × R≥0, for all 𝜀 ∈ R≥0, and for all
𝑖 ∈ {1,… , 𝑛}, we have

𝑅𝑖(𝑥, 𝜏) ∶=
𝑛
∑

𝑗≠𝑖=1

|

|

|

(

D𝑥𝛷(𝑥, 𝜏)
)

𝑖𝑗
|

|

|

≤
2
∑

𝑘=1
𝜀𝑘

𝑛
∑

𝑗≠𝑖=1

|

|

|

(

D𝑥𝑣𝑘(𝑥, 𝜏)
)

𝑖𝑗
|

|

|

=
2
∑

𝑘=1
𝜀𝑘𝑅𝑖

𝑣,𝑘(𝑥, 𝜏) ≤ (𝑛 − 1)
2
∑

𝑘=1
𝜀𝑘𝐿𝑣,𝑘.

Similarly, we have

1 −
2
∑

𝑘=1
𝜀𝑘𝐿𝑣,𝑘 ≤

(

D𝑥𝛷(𝑥, 𝜏)
)

𝑖𝑖 ≤ 1 +
2
∑

𝑘=1
𝜀𝑘𝐿𝑣,𝑘.

Therefore, for all 𝜀 ∈ (0, 𝜀0), all (𝑥, 𝜏) ∈ R𝑛 × R≥0, and all 𝑖 ∈ {1,… , 𝑛}:
3
4
≤ 1 − 𝐿̃𝛹 𝜀 ≤

(

D𝑥𝛷(𝑥, 𝜏)
)

𝑖𝑖 ≤ 1 + 𝐿̃𝛹 𝜀 ≤ 5
4
,

0 ≤ 𝑅𝑖(𝑥, 𝜏) ≤ 𝐿̃𝛹 𝜀 ≤ 1
4
.

y applying the Geršhgorin circle theorem [44, p. 269], we obtain
hat for all 𝜀 ∈ (0, 𝜀0), for all (𝑥, 𝜏) ∈ R𝑛 × R≥0, the eigenvalues of
he Jacobian matrix D𝑥𝛷(𝑥, 𝜏) are contained in the compact interval
1 − 2𝐿̃𝛹 𝜀, 1 + 2𝐿̃𝛹 𝜀] ⊂ [1∕2, 3∕2].
Then, we have the following claim, proved in Appendix B.1.

laim 1. For all 𝜀 ∈ (0, 𝜀0), and all (𝑥, 𝜏) ∈ R𝑛×R≥0, the Jacobian matrix
𝑥𝛷(𝑥, 𝜏) is invertible,

D𝑥𝛷(𝑥, 𝜏)|
|

≤ 1 + 4𝐿̃𝛹 𝜀 ≤ 2, |

|

|

D𝑥𝛷(𝑥, 𝜏)−1||
|

≤ 1 + 4𝐿̃𝛹 𝜀 ≤ 2,

nd the Jacobian 𝐷𝛹 (𝑥, 𝜏)−1 is well-defined and given by

𝛹 (𝑥, 𝜏)−1 =
(

D𝑥𝛷(𝑥, 𝜏)−1 −D𝑥𝛷(𝑥, 𝜏)−1D𝜏𝛷(𝑥, 𝜏)
0 1

)

. □ (31)

For all 𝜀 ∈ (0, 𝜀0), the map 𝛹 is bijective and, for all (𝑥, 𝜏) ∈ R𝑛×R≥0,
he Jacobian D𝛹 (𝑥, 𝜏) is invertible and its inverse is continuous. Thus,
y invoking the global rank theorem [40, Theorem 4.14], we conclude
hat, for all 𝜀 ∈ (0, 𝜀0), the map 𝛹 is a diffeomorphism.
Proof of item (b): Note that by [40, Proposition C.4] the Jacobian of

−1 is given by

𝛹−1(𝑥, 𝜏) =
(

D𝛹◦𝛹−1(𝑥, 𝜏)
)−1 .

rom the definition of 𝛹 , for all (𝜏, 𝜀) ∈ R≥0 × (0, 𝜀0), we have that
1◦𝛹 (0, 𝜏) = −

∑2
𝑘=1 𝜀

𝑘𝑣𝑘(0, 𝜏). Since 0 ∈ 3𝛿3B, the definition of 𝑣𝑘
implies that, for all 𝜏 ∈ R≥0, we have that

|𝑣1(0, 𝜏)| ≤ 𝑇𝐵1,𝛿 , |𝑣2(0, 𝜏)| ≤ 𝑇
(

2𝐵2,𝛿 + 3𝑇 𝐿̂1𝐵1,𝛿
)

.

Define the constant 𝐿𝛹,1 by

𝐿𝛹,1 ∶= 4𝐿̃𝛹 + 𝑇
(

𝐵1,𝛿 + 2𝐵2,𝛿 + 3𝑇 𝐿̂1𝐵1,𝛿
)

. (32)

It follows that, for all (𝜏, 𝜀) ∈ R≥0×(0, 𝜀0), we have |𝜋1◦𝛹 (0, 𝜏)| ≤ 𝐿𝛹,1𝜀.
Since 𝛹 is a diffeomorphism, we have

0 = 𝜋1◦𝛹◦𝛹−1(0, 𝜏) = 𝜋1◦𝛹
−1(0, 𝜏) −

2
∑

𝑘=1
𝜀𝑘𝑣𝑘◦𝛹

−1(0, 𝜏).

By adding and subtracting the term ∑2
𝑘=1 𝜀

𝑘𝑣𝑘(0, 𝜏) and invoking the
Lipschitz continuity of the maps 𝑣𝑘, we have that

|𝜋1◦𝛹
−1(0, 𝜏)| ≤ |

2
∑

𝜀𝑘(𝑣𝑘◦𝛹−1(0, 𝜏) − 𝑣𝑘(0, 𝜏))| + |

2
∑

𝜀𝑘𝑣𝑘(0, 𝜏)|
10

𝑘=1 𝑘=1
≤
2
∑

𝑘=1
𝜀𝑘𝐿𝑣,𝑘|𝜋1◦𝛹

−1(0, 𝜏)| +
2
∑

𝑘=1
𝜀𝑘|𝑣𝑘(0, 𝜏)|,

which implies that
(

1 −
2
∑

𝑘=1
𝜀𝑘𝐿𝑣,𝑘

)

|𝜋1◦𝛹
−1(0, 𝜏)| ≤

2
∑

𝑘=1
𝜀𝑘|𝑣𝑘(0, 𝜏)|.

Since 𝜀 ∈ (0, 𝜀0), it follows that

|𝜋1◦𝛹
−1(0, 𝜏)| ≤ 2

2
∑

𝑘=1
𝜀𝑘|𝑣𝑘(0, 𝜏)|.

Recalling the definition of 𝐿𝛹 , we obtain that, for all 𝜏 ∈ R≥0, we have

|𝜋1◦𝛹 (0, 𝜏)| ≤ 𝐿𝛹 𝜀, |𝜋1◦𝛹
−1(0, 𝜏)| ≤ 𝐿𝛹 𝜀. (33)

Proof of item (c): Note that, for all 𝑥1, 𝑥2 ∈ R𝑛, for all 𝜏 ∈ R≥0, and
for all 𝜀 ∈ (0, 𝜀0), we obtain via Hadamard’s Lemma [45, Lemma 2.8]

|

|

𝛹 (𝑥1, 𝜏) − 𝛹 (𝑥2, 𝜏)|| ≤ |

|

J𝛹 (𝑥1, 𝑥2, 𝜏)|| |𝑥1 − 𝑥2|,
|

|

|

𝛹−1(𝑥1, 𝜏) − 𝛹−1(𝑥2, 𝜏)
|

|

|

≤ |

|

J𝛹−1 (𝑥1, 𝑥2, 𝜏)|| |𝑥1 − 𝑥2|,

where the matrix-valued maps J𝛹 and J𝛹−1 are given by

J𝛹 (𝑥1, 𝑥2, 𝜏) ∶= ∫

1

0
D𝑥𝛷(𝑥2 + 𝜆(𝑥1 − 𝑥2), 𝜏)d𝜆,

J𝛹−1 (𝑥1, 𝑥2, 𝜏) ∶= ∫

1

0
D𝑥𝛷

−1(𝑥2 + 𝜆(𝑥1 − 𝑥2), 𝜏)d𝜆,

and where we used the shorthand notation

D𝑥𝛷
−1(𝑥, 𝜏) ∶=

(

D𝑥𝛷◦𝛹−1(𝑥, 𝜏)
)−1 .

It follows that

|

|

𝛹 (𝑥1, 𝜏) − 𝛹 (𝑥2, 𝜏)|| ≤ (1 + 𝐿𝛹 𝜀)|𝑥1 − 𝑥2|, (34a)
|

|

|

𝛹−1(𝑥1, 𝜏) − 𝛹−1(𝑥2, 𝜏)
|

|

|

≤ (1 + 𝐿𝛹 𝜀)|𝑥1 − 𝑥2|. (34b)

for all 𝑥1, 𝑥2 ∈ R𝑛, for all 𝜏 ∈ R≥0, and for all 𝜀 ∈ (0, 𝜀0).
Proof of item (d): Since 𝛹 is a diffeomorphism, we have that

𝑥 = 𝜋1◦𝛹◦𝛹−1(𝑥, 𝜏) = 𝜋1◦𝛹
−1(𝑥, 𝜏) −

2
∑

𝑘=1
𝜀𝑘𝑣𝑘◦𝛹

−1(𝑥, 𝜏).

Therefore, for all (𝑥, 𝜏, 𝜀) ∈ R𝑛 × R≥0 × (0, 𝜀0):

|

|

|

𝜋1◦𝛹
−1(𝑥, 𝜏) − 𝑥||

|

=
|

|

|

|

|

|

2
∑

𝑘=1
𝜀𝑘𝑣𝑘◦𝛹

−1(𝑥, 𝜏)
|

|

|

|

|

|

. (35)

From item (b) in Lemma 3 and the inequality (34), we know that, for
all 𝑥1, 𝑥2 ∈ R𝑛 and all 𝜏 ∈ R≥0, the maps 𝑣𝑘 satisfy:
|

|

|

𝑣𝑘◦𝛹
−1(𝑥1, 𝜏) − 𝑣𝑘◦𝛹

−1(𝑥2, 𝜏)
|

|

|

≤ 2𝐿𝑣,𝑘|𝑥1 − 𝑥2|.

Moreover, since 𝜀0 ≤ 𝛿3∕𝐿𝛹 , it follows from inequality (33) that
𝜋1◦𝛹−1(0, 𝜏) ∈ 3𝛿3B, which implies that, for all 𝜏 ∈ R≥0, we have that
|

|

|

𝑣1◦𝛹
−1(0, 𝜏)||

|

≤ 𝑇𝐵1,𝛿 ,
|

|

|

𝑣2◦𝛹
−1(0, 𝜏)||

|

≤ 𝑇
(

2𝐵2,𝛿 + 3𝑇 𝐿̂1𝐵1,𝛿
)

.

Therefore, by adding and subtracting terms to (35) and using the
triangle inequality and the previous bounds, we obtain that

|

|

|

𝜋1◦𝛹
−1(𝑥, 𝜏) − 𝑥||

|

≤
2
∑

𝑘=1
𝜀𝑘𝐿̂𝑣,𝑘(|𝑥| + 1),

for all (𝑥, 𝜏) ∈ R𝑛 ×R≥0 and all 𝜀 ∈ (0, 𝜀0). Invoking the reverse triangle
inequality, we get

|𝑥| − 𝜀(|𝑥| + 1)
2
∑

𝐿̂𝑣,𝑘 ≤ |

|

|

𝜋1◦𝛹
−1(𝑥, 𝜏)||

|

,

𝑘=1
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f

𝛿

f

L
f

for all (𝑥, 𝜏, 𝜀) ∈ R𝑛 ×R≥0 × (0, 𝜀0). Next, for all 𝜀 ∈ (0, 𝜀0), we have that
0 ≤ 1 − 𝜀

∑2
𝑘=1 𝐿̂𝑣,𝑘, for all (𝑥, 𝜏) ∈ R𝑛 × R≥0. Hence, we obtain that

1 − 𝜀
2
∑

𝑘=1
𝐿̂𝑣,𝑘

)

|𝑥| − 𝜀
2
∑

𝑘=1
𝐿̂𝑣,𝑘 ≤ |

|

|

𝜋1◦𝛹
−1(𝑥, 𝜏)||

|

,

or all (𝑥, 𝜏, 𝜀) ∈ R𝑛 × R≥0 × (0, 𝜀0), which implies that

2 ≤

(

1 − 𝜀
2
∑

𝑘=1
𝐿̂𝑣,𝑘

)

𝛿3 − 𝜀
2
∑

𝑘=1
𝐿̂𝑣,𝑘 ≤ |

|

|

𝜋1◦𝛹
−1(𝑥, 𝜏)||

|

,

or all (𝑥, 𝜏, 𝜀) ∈ 3 × R≥0 × (0, 𝜀0). ■

emma 5. There exists a 0 map 𝑔 ∶ R𝑛 × R≥0 × (0, 𝜀0) → R𝑛 such that,
or all (𝑥, 𝜏) ∈ 3 × R≥0 and all 𝜀 ∈ (0, 𝜀0), the map 𝛹∗𝑓𝜀, given by (6b),
satisfies

𝛹∗𝑓𝜀(𝑥, 𝜏) = 𝑓 (𝑥) + 𝜀 𝑔(𝑥, 𝜏, 𝜀),

where 𝑓 is given by (9f).

Proof. By direct computation, we obtain:

𝛹∗𝑓𝜀(𝑥, 𝜏) =
(

D𝑥𝛷◦𝛹−1(𝑥, 𝜏)
)

𝑓2◦𝛹
−1(𝑥, 𝜏)

+
(

D𝑥𝛷◦𝛹−1(𝑥, 𝜏)
)

𝑓1◦𝛹
−1(𝑥, 𝜏) 𝜀−1

+ D𝜏𝛷◦𝛹−1(𝑥, 𝜏) 𝜀−2,

D𝜏𝛷◦𝛹−1(𝑥, 𝜏) = −
2
∑

𝑘=1
𝜀𝑘D𝜏𝑣𝑘◦𝛹

−1(𝑥, 𝜏)

D𝑥𝛷◦𝛹−1(𝑥, 𝜏) =

(

𝐼 −
2
∑

𝑘=1
𝜀𝑘D𝑥𝑣𝑘

)

◦𝛹−1(𝑥, 𝜏).

Moreover, note that

D𝜏𝑣1◦𝛹
−1(𝑥, 𝜏) = 𝑓1◦𝛹

−1(𝑥, 𝜏),

and also that

D𝜏𝑣2(𝑥, 𝜏) = 𝑓2(𝑥, 𝜏) + D𝑥𝑓1(𝑥, 𝜏)𝑣1(𝑥, 𝜏) − 𝑓 (𝑥)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=D𝜏𝑤(𝑥,𝜏)

−D𝑥𝑓1(𝑥, 𝜏)𝑣1(𝑥, 𝜏) − D𝑥𝑣1(𝑥, 𝜏)𝑓1(𝑥, 𝜏)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=−D𝜏 (D𝑥𝑣1(𝑥,𝜏)𝑣1(𝑥,𝜏))
= 𝑓2(𝑥, 𝜏) − D𝑥𝑣1(𝑥, 𝜏)𝑓1(𝑥, 𝜏) − 𝑓 (𝑥)

which implies that

D𝜏𝑣2◦𝛹
−1(𝑥, 𝜏) = 𝑓2◦𝛹

−1(𝑥, 𝜏) − 𝑓◦𝜋1◦𝛹
−1(𝑥, 𝜏)

−
(

D𝑥𝑣1◦𝛹
−1(𝑥, 𝜏)

)

𝑓1◦𝛹
−1(𝑥, 𝜏).

Therefore, another direct computation shows that

𝛹∗𝑓𝜀(𝑥, 𝜏) =
(

𝑓1◦𝛹
−1(𝑥, 𝜏) − 𝑓1◦𝛹

−1(𝑥, 𝜏)
)

𝜀−1

+
(

𝑓2◦𝛹
−1(𝑥, 𝜏) − 𝑓2◦𝛹

−1(𝑥, 𝜏)
)

− D𝑥𝑣1◦𝛹
−1(𝑥, 𝜏)𝑓1◦𝛹−1(𝑥, 𝜏)

+ D𝑥𝑣1◦𝛹
−1(𝑥, 𝜏)𝑓1◦𝛹−1(𝑥, 𝜏) + 𝑓 (𝑥) + 𝑓 (𝑥, 𝜏, 𝜀), (36)

where the map 𝑓 is given by

𝑓 (𝑥, 𝜏, 𝜀) = 𝑓◦𝜋1◦𝛹
−1(𝑥, 𝜏) − 𝑓 (𝑥) − 𝜀D𝑥𝑣1◦𝛹

−1(𝑥, 𝜏) 𝑓2◦𝛹−1(𝑥, 𝜏)

− 𝜀D𝑥𝑣2◦𝛹
−1(𝑥, 𝜏) 𝑓1◦𝛹−1(𝑥, 𝜏)

− 𝜀2D𝑥𝑣2◦𝛹
−1(𝑥, 𝜏) 𝑓2◦𝛹−1(𝑥, 𝜏).

Using Hadamard’s Lemma [45, Lemma 2.8] and the fact that 𝑓 is 1,
we obtain:

𝑓 (𝑥1) − 𝑓 (𝑥2) = 𝐹 (𝑥1, 𝑥2)(𝑥1 − 𝑥2),

for all 𝑥1, 𝑥2 ∈ R𝑛, where 𝐹 is given by

𝐹 (𝑥1, 𝑥2) ∶=
1
D𝑥𝑓 (𝜆𝑥1 + (1 − 𝜆)𝑥2) 𝑑𝜆.
11

∫0
Hence, using the fact that 𝛹−1 is a bijection:

𝑓◦𝜋1◦𝛹
−1(𝑥, 𝜏) − 𝑓 (𝑥) = 𝐹 (𝑥, 𝜏)

(

𝜋1◦𝛹
−1(𝑥, 𝜏) − 𝑥

)

,

for all 𝑥 ∈ R𝑛, where 𝐹 is given by

𝐹 (𝑥, 𝜏) ∶= 𝐹
(

𝜋1◦𝛹
−1(𝑥, 𝜏), 𝑥

)

. (37)

However, since 𝛹 is a diffeomorphism, we have

𝑥 = 𝜋1◦𝛹◦𝛹−1(𝑥, 𝜏) = 𝜋1◦𝛹
−1(𝑥, 𝜏) −

2
∑

𝑘=1
𝜀𝑘𝑣𝑘◦𝛹

−1(𝑥, 𝜏),

which implies that

𝑓◦𝜋1◦𝛹
−1(𝑥, 𝜏) − 𝑓 (𝑥) = 𝜀 𝐹 (𝑥, 𝜏) 𝑣1◦𝛹−1(𝑥, 𝜏)

+ 𝜀2𝐹 (𝑥, 𝜏) 𝑣2◦𝛹−1(𝑥, 𝜏),

and that 𝑓 can be written as

𝑓 (𝑥, 𝜏, 𝜀) = 𝜀 𝑔(𝑥, 𝜏, 𝜀),

where 𝑔 can be written in compact form as:

𝑔 = 𝐹 𝑣1◦𝛹
−1 − D𝑥𝑣1◦𝛹

−1 𝑓2◦𝛹
−1 − D𝑥𝑣2◦𝛹

−1 𝑓1◦𝛹
−1

+ 𝜀
(

𝐹 𝑣2◦𝛹
−1 − D𝑥𝑣2◦𝛹

−1 𝑓2◦𝛹
−1) . (38)

Since 𝛹 is a diffeomorphism, and 𝑔 is a combination of 0 maps
composed with 𝛹 , it follows that 𝑔 is 0 in all arguments.

Finally, by item (d) in Lemma 4, for all (𝑥, 𝜏, 𝜀) ∈ 3 ×R≥0 × (0, 𝜀0),
we have that 𝛹−1(𝑥, 𝜏) ∈ 2 × R≥0. Also, by item (a) in Lemma 2, for
all (𝑥, 𝜏) ∈ 2 × R≥0, we have that 𝑓𝑘(𝑥, 𝜏) = 𝑓𝑘(𝑥, 𝜏). Therefore,

𝑓𝑘◦𝛹
−1(𝑥, 𝜏) = 𝑓𝑘◦𝛹

−1(𝑥, 𝜏),

for all (𝑥, 𝜏, 𝜀) ∈ 3×R≥0×(0, 𝜀0). Hence, in this set the first four terms
in (36) cancel, and we obtain that the pushforward map 𝛹∗𝑓𝜀 satisfies

𝛹∗𝑓𝜀(𝑥, 𝜏) = 𝑓 (𝑥) + 𝜀 𝑔(𝑥, 𝜏, 𝜀).

for all (𝑥, 𝜏, 𝜀) ∈ 3 × R≥0 × (0, 𝜀0). ■

Lemma 6. There exists a positive constant 𝐿𝑔 > 0 such that the map 𝑔,
defined in (38), satisfies

|𝑔(𝑥, 𝜏, 𝜀)| ≤ 𝐿𝑔(|𝑥| + 1), (39)

for all (𝑥, 𝜏, 𝜀) ∈ R𝑛 × R≥0 × (0, 𝜀0).

Proof. The map 𝑔 can be written in compact form as

𝑔(𝑥, 𝜏, 𝜀) =
5
∑

𝑘=1
𝐺𝑖(𝑥, 𝜏, 𝜀) 𝑔𝑖(𝑥, 𝜏, 𝜀), (40)

with the matrix-valued maps 𝐺𝑖 given by

𝐺1(𝑥, 𝜏) = 𝐹 (𝑥, 𝜏) , 𝐺2(𝑥, 𝜏) = D𝑥𝑣1◦𝛹
−1(𝑥, 𝜏),

𝐺3(𝑥, 𝜏) = D𝑥𝑣2◦𝛹
−1(𝑥, 𝜏), 𝐺4(𝑥, 𝜏) = 𝜀𝐹 (𝑥, 𝜏) ,

𝐺5(𝑥, 𝜏) = 𝜀D𝑥𝑣2◦𝛹
−1(𝑥, 𝜏),

and the maps 𝑔𝑖 given by

𝑔1(𝑥, 𝜏) = 𝑣1◦𝛹
−1(𝑥, 𝜏), 𝑔2(𝑥, 𝜏) = −𝑓2◦𝛹−1(𝑥, 𝜏),

𝑔3(𝑥, 𝜏) = −𝑓1◦𝛹−1(𝑥, 𝜏), 𝑔4(𝑥, 𝜏) = 𝑣2◦𝛹
−1(𝑥, 𝜏),

𝑔5(𝑥, 𝜏) = −𝑓2◦𝛹−1(𝑥, 𝜏).

where the explicit (smooth) dependence on 𝜀 is omitted to simplify
notation. By Lemma 3, the maps 𝑓 and 𝑣𝑘 are 1 and satisfy

|D𝑥𝑓 (𝑥)| ≤ 𝐿̄, |D𝑥𝑣𝑘(𝑥, 𝜏)| ≤ 𝐿𝑣,𝑘,

for all (𝑥, 𝜏, 𝜀) ∈ R𝑛×R≥0×(0, 𝜀0). Thus, for all (𝑥, 𝜏, 𝜀) ∈ R𝑛×R≥0×[0, 𝜀0],
we have that |𝐺𝑖(𝑥, 𝜏, 𝜀)| ≤ 𝑀𝑔,𝑖 for all 𝑖, where the constants 𝑀𝑔,𝑖 are
given by

𝑀 ∶= 2𝐿̄, 𝑀 ∶= 2𝐿 , 𝑀 ∶= 2𝐿 ,
𝑔,1 𝑔,2 𝑣,1 𝑔,3 𝑣,2
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𝑀𝑔,4 ∶= 2𝐿̄, 𝑀𝑔,5 ∶= 2𝐿𝑣,2,

y Lemma 4, the diffeomorphism 𝛹 and its inverse 𝛹−1 are globally Lip-
chitz in 𝑥. In addition, from items (a) in Assumption 1 and Lemma 3,
he maps 𝑓𝑘 are Lipschitz in 𝑥 for all (𝑥, 𝜏) ∈ 1×R≥0 and are 0 for all
𝑥, 𝜏) ∈ R𝑛×R≥0. Furthermore, 𝛹−1(𝑥, 𝜏) ∈ 2×R≥0 ⊂ 1×R≥0, for all
𝑥, 𝜏) ∈ 3×R≥0. Therefore, for all 𝑥1, 𝑥2 ∈ 3, all (𝜏, 𝜀) ∈ R≥0×(0, 𝜀0),
nd all 𝑖 ∈ {1, 2,… , 5}:

𝑔𝑖(𝑥1, 𝜏, 𝜀) − 𝑔𝑖(𝑥2, 𝜏, 𝜀)| ≤ 𝐿𝑔,𝑖|𝑥1 − 𝑥2|,

here the constants 𝐿𝑔,𝑖 are

𝑔,1 ∶= 2𝐿𝑣,1, 𝐿𝑔,2 ∶= 2𝐿2, 𝐿𝑔,3 ∶= 2𝐿1,

𝑔,4 ∶= 2𝐿𝑣,2, 𝐿𝑔,5 ∶= 2𝐿2.

ubstituting with 𝑥1 = 𝑥 ∈ 𝛿3B and 𝑥2 = 𝜋1◦𝛹 (0, 𝜏) in item (c) of
emma 4, we have that

𝜋1◦𝛹
−1(𝑥, 𝜏)||

|

≤ (1 + 𝐿𝛹 𝜀)|𝑥| + 𝐿𝛹 𝜀 < 2|𝑥| + 𝛿3 < 3𝛿3,

or all 𝑥 ∈ 𝛿3B. It follows that 𝛹−1(𝑥, 𝜏) ∈ 3𝛿3B × R≥0, for all (𝑥, 𝜏) ∈
3B × R≥0. Consequently, we have that

sup
𝑥,𝜏) ∈ 𝛿3B×R≥0

|𝑓𝑘◦𝛹
−1(𝑥, 𝜏)| ≤ sup

(𝑥,𝜏) ∈ 3𝛿3B×R≥0

|𝑓𝑘(𝑥, 𝜏)| = 𝐵𝑘,𝛿 .

Recall that

𝑔1(𝑥, 𝜏, 𝜀) = 𝑣1◦𝛹
−1(𝑥, 𝜏),

Hence, we have that

sup
(𝑥,𝜏) ∈ 𝛿3B×R≥0

|𝑔1(𝑥, 𝜏)| ≤ sup
(𝑥,𝜏) ∈ 3𝛿3B×R≥0

|𝑣1(𝑥, 𝜏)| ≤ 𝑇𝐵1,𝛿 =∶ 𝑀0,1.

Similarly, it can be shown that, there exist constants 𝑀0,𝑖 ∈ R>0 such
that |𝑔𝑖(𝑥, 𝜏, 𝜀)| ≤ 𝑀0,𝑖, for all (𝑥, 𝜏, 𝜀) ∈ 𝛿3B×R≥0 × (0, 𝜀0). In particular,
the constants 𝑀0,𝑖 are given by

𝑀0,1 ∶= 𝑇𝐵1,𝛿 , 𝑀0,2 ∶= 𝐵2,𝛿 , 𝑀0,3 ∶= 𝐵1,𝛿 ,

𝑀0,4 ∶= 𝑇
(

2𝐵2,𝛿 + 3𝑇 𝐿̂1𝐵1,𝛿
)

, 𝑀0,5 ∶= 𝐵2,𝛿 .

Let 𝑥𝑚 ∈ {𝑥 ∶ R𝑛 ∶ |𝑥| = 𝛿3} be an arbitrary point, and note that
𝑥𝑚 ∈ 3 ∩ 𝛿3B, and that, for all (𝑥, 𝜏, 𝜀) ∈ R𝑛 × R≥0 × (0, 𝜀0), we have
that each term in (40) can be written as:

𝐺𝑖(𝑥, 𝜏, 𝜀)𝑔𝑖(𝑥, 𝜏, 𝜀) = 𝐺𝑖(𝑥, 𝜏, 𝜀)(𝑔𝑖(𝑥, 𝜏, 𝜀) − 𝑔𝑖(𝑥𝑚, 𝜏, 𝜀))

+ 𝐺𝑖(𝑥, 𝜏, 𝜀)𝑔𝑖(𝑥𝑚, 𝜏, 𝜀).

For all 𝑥 ∈ R𝑛, either 𝑥 ∈ 3 or 𝑥 ∈ (R𝑛∖3) ⊂ 𝛿3B. If 𝑥 ∈ 3, then
we have that

|

|

𝐺𝑖(𝑥, 𝜏, 𝜀)𝑔𝑖(𝑥, 𝜏, 𝜀)|| ≤ 𝑀𝑔,𝑖𝐿𝑔,𝑖|𝑥 − 𝑥𝑚| +𝑀𝑔,𝑖𝑀𝑔,0

≤ 𝑀𝑔,𝑖𝐿𝑔,𝑖|𝑥| +𝑀𝑔,𝑖(𝐿𝑔,𝑖𝛿3 +𝑀𝑔,0).

Alternatively, if 𝑥 ∈ (R𝑛∖3), then we have that

|

|

𝐺𝑖(𝑥, 𝜏, 𝜀)𝑔𝑖(𝑥, 𝜏, 𝜀)|| ≤ 𝑀𝑔,𝑖𝑀𝑔,0.

Combining all of the above, we obtain that, for all (𝑥, 𝜏, 𝜀) ∈ R𝑛 ×R≥0 ×
(0, 𝜀0), the map 𝑔 satisfies the inequality

|𝑔(𝑥, 𝜏, 𝜀)| ≤ 𝐿𝑔(|𝑥| + 1),

where 𝐿𝑔 ∶= max
{

∑5
𝑖=1 𝑀𝑔,𝑖𝐿𝑔,𝑖,

∑5
𝑖=1 𝑀𝑔,𝑖(𝐿𝑔,𝑖𝛿3 +𝑀𝑔,0)

}

. ■

All the claims of Proposition 1 follow now directly by
Lemmas 2–6. ■

5.2. Proof of Theorem 1

First, we introduce several definitions. Let 𝑐1, 𝑐2, 𝛼1, 𝛼2, 𝛼3, 𝐿̄𝑔 , and
𝜙 be generated by Assumption 2, and let 𝜀0 and 𝐿𝑔 be the constants
12

generated by Proposition 1. Let 𝛼4 ∈  be such that 𝛼4(|𝑥|) ≤ 𝜙(𝑥)
for all 𝑥 ∈ R𝑛. Such a function exists because 𝜙 is positive definite [5,
Lemma 4.3]. Let

𝑎3 ∶= sup
𝑟∈R≥0

𝛼3(𝑟), 𝑎4 ∶= sup
𝑟∈R≥0

𝛼4(𝑟), (41)

𝜂∗1 ∶= 𝑐1∕(4𝑐2𝐿̄𝑔), 𝜀∗1 ∶= min{𝜀0, 𝜂∗1 , 𝑎4𝜂
∗
1∕2}, (42)

𝜂∗2 ∶= 𝑐1∕(4𝑐2𝐿𝑔), 𝜀∗2 ∶= min{𝜀0, 𝑎3𝜂∗2∕2}, (43)

and let 𝛼5(𝑟) ∶= 𝛼3(𝑟) 𝑟 ∈ ∞. Note that, in general, 𝑎3, 𝑎4 ∈ R>0 ∪ {∞}.
By Assumption 2, at least one of the following cases holds:

(C1) Item (c)–(i) in Assumption 2 holds; or
(C2) Item (c)–(ii) in Assumption 2 holds.

Therefore, the constants:

(𝜀∗, 𝜂∗) ∶=

{

(𝜀∗1 , 𝜂
∗
1 ) (C1) is true & (C2) is false

(𝜀∗2 , 𝜂
∗
2 ) (C2) is true,

(44)

and the function:

𝜌(𝛿, 𝜀) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼−14

(

𝜀
𝜂∗1

)

(C1) is true & (C2) is false

𝛼−13

(

𝜀
𝜂∗2

)

+ 𝛼−15

(

𝜀
𝜂∗2

)

(C2) is true,
(45)

are always well-defined whenever Assumption 2 holds, where 𝜌 de-
pends on 𝛿 through 𝐿𝑔 or 𝐿̄𝑔 , appearing in the definition of the
onstants 𝜂∗1 and 𝜂∗2 , which, in general, are fixed only after a choice
f 𝛿 is fixed. Also, for any fixed choice of 𝛿 satisfying (7), the function
(𝛿, ⋅) is a class  function [5, Lemma 4.2].
Next, note that from Assumption 1 and Proposition 1, and for all
∈ (0, 𝜀0), the map 𝛹∗𝑓𝜀 is continuous. Hence, for all (𝑥0, 𝜏0, 𝜀) ∈

𝑛×R≥0×(0, 𝜀0), a solution to system (6a) starting at the initial condition
𝑥0, 𝜏0) exists.
Let 𝑉 be given by Assumption 2. Its time derivative along the

rajectories of (6a) satisfies:

̇ = ∇𝑉 (𝑥)⊤𝛹∗𝑓𝜀(𝑥, 𝜏, 𝜀).

sing item (d) in Proposition 1 and the bounds from Assumption 2, we
btain that for all (𝑥, 𝜏, 𝜀) ∈ 3 × R≥0 × (0, 𝜀0):

̇ ≤ ∇𝑉 (𝑥)⊤𝑓 (𝑥) + 𝜀∇𝑉 (𝑥)⊤𝑔(𝑥, 𝜏, 𝜀)

≤ −𝑐1𝜙(𝑥)2 + 𝜀𝑐2𝜙(𝑥)|𝑔(𝑥, 𝜏, 𝜀)|.

We consider two possible cases:

(C1) Item (c)–(i) in Assumption 2 holds, then:

𝑉̇ ≤ −
𝑐1
2
𝜙(𝑥)2 −

( 𝑐1
4

− 𝜀𝑐2𝐿̄𝑔

)

𝜙(𝑥)2

− 𝜙(𝑥)
( 𝑐1
4
𝜙(𝑥) − 𝜀𝑐2𝐿̄𝑔

)

,

for all (𝑥, 𝜏, 𝜀) ∈ 3 × R≥0 × (0, 𝜀0), which implies that:

𝑉̇ ≤ −
𝑐1
2
𝜙(𝑥)2, ∀|𝑥| ≥ 𝛿3 + 𝛼−14

(

𝜀
𝜂∗1

)

.

(C2) Item (c)–(ii) in Assumption 2 holds. Then:

𝑉̇ ≤ −
𝑐1
2
𝜙(𝑥)2 − 𝜙(𝑥)

( 𝑐1
4
𝛼3(|𝑥|) − 𝜀𝑐2𝐿𝑔

)

|𝑥|

− 𝜙(𝑥)
( 𝑐1
4
𝛼3(|𝑥|)|𝑥| − 𝜀𝑐2𝐿𝑔

)

,

for all (𝑥, 𝜏, 𝜀) ∈ 3 ×R≥0 × (0, 𝜀0), where 𝛼3 ∈ , and where we
used Proposition 1-(e). It follows that:

𝑉̇ ≤ −
𝑐1
2
𝜙(𝑥)2, ∀|𝑥| ≥ 𝛿3 + 𝛼−13

(

𝜀
𝜂∗2

)

+ 𝛼−15

(

𝜀
𝜂∗2

)

.

Combining all of the above, we obtain that 𝑉̇ ≤ −𝑐𝜙(𝑥)2, for all
|𝑥| ≥ 2𝛿 + 𝜌(𝛿, 𝜀) and all 𝜀 ∈ (0, 𝜀∗), with 𝑐 ∶= 𝑐 ∕2. Then, following
3 1
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similar steps as in [5, Appendix C.9] and the proof of [46, Appendix
C.], there exist functions 𝛽 ∈  and 𝜅 ∈ ∞ such that, for all
𝑥0, 𝜏0, 𝜀) ∈ R𝑛 × R≥0 × (0, 𝜀∗), any solution to system (6a) starting at
𝑥0, 𝜏0), satisfies

𝑥(𝑡)| ≤ 𝛽(|𝑥(𝑡)|, 𝑡) + 𝛥𝛿,𝜀, ∀𝑡 ≥ 0, (46)

here 𝛥𝛿,𝜀 ∶= 𝜅(2𝛿3 + 𝜌(𝛿, 𝜀)). ■

5.3. Proof of Corollary 1

By Theorem 1, there exists an 𝜀∗ ∈ (0, 𝜀0) and 𝛽 ∈  such that,
for all (𝑥̄0, 𝜏0, 𝜀) ∈ R𝑛 × R≥0 × (0, 𝜀∗), any solution (𝑥̄, 𝜏) of system
(6a) starting from (𝑥̄0, 𝜏0) satisfies the  bound (46). Let (𝑥, 𝜏) be a
solution of system (4) starting from an initial condition (𝑥0, 𝜏0). Since
𝛹 is a diffeomorphism, and system (6a) is the pushforward of system (4)
under 𝛹 , it follows that (𝑥(𝑡), 𝜏(𝑡)) = 𝛹−1(𝑥̄(𝑡), 𝜏(𝑡)), for all 𝑡 > 0, where
(𝑥̄, 𝜏) is some solution of system (6a) with initial condition 𝛹 (𝑥0, 𝜏0).
Therefore, from the triangle inequality, we have that for all 𝑡 ≥ 0:

|𝑥(𝑡)| ≤ |

|

|

𝜋1◦𝛹
−1(𝑥̄(𝑡), 𝜏(𝑡)) − 𝜋1◦𝛹

−1(0, 𝜏(𝑡))||
|

+ |

|

|

𝜋1◦𝛹
−1(0, 𝜏(𝑡))||

|

.

From item (b) in Proposition 1, we obtain that
|

|

|

𝜋1◦𝛹
−1(𝑥̄(𝑡), 𝜏(𝑡)) − 𝜋1◦𝛹

−1(0, 𝜏(𝑡))||
|

≤ (1 + 𝐿𝛹 𝜀)|𝑥̄(𝑡)|,

and also |𝜋1◦𝛹−1(0, 𝜏(𝑡))| ≤ 𝐿𝛹 𝜀. Therefore, it follows that

|𝑥(𝑡)| ≤ (1 + 𝐿𝛹 𝜀)𝛽(|𝜋1◦𝛹 (𝑥0, 𝜏0)|, 𝑡) + (1 + 𝐿𝛹 𝜀)𝛥𝛿,𝜀 + 𝐿𝛹 𝜀.

Similarly, we have

|𝜋1◦𝛹 (𝑥0, 𝜏0)| ≤ |𝜋1◦𝛹 (𝑥0, 𝜏0) − 𝜋1◦𝛹 (0, 𝜏0)| + |𝜋1◦𝛹 (0, 𝜏0)|

≤ (1 + 𝐿𝛹 𝜀)|𝑥0| + 𝐿𝛹 𝜀.

Since 𝛽(⋅, 𝑡) ∈ ∞, it is strictly increasing and satisfies

𝛽(|𝜋1◦𝛹 (𝑥0, 𝜏0)|, 𝑡) ≤ 𝛽((1 + 𝐿𝛹 𝜀)|𝑥0| + 𝐿𝛹 𝜀, 𝑡).

for all (𝑥0, 𝜏0, 𝑡, 𝜀) ∈ R𝑛 ×R≥0 ×R≥0 × [0, 𝜀∗]. We then have two possible
cases:

(C1) If |𝑥0| ≤ 𝐿𝛹 𝜀, then

𝛽(|𝜋1◦𝛹 (𝑥0, 𝜏0)|, 𝑡) ≤ 𝛽(2𝐿𝛹 𝜀 + 𝐿2
𝛹 𝜀

2, 𝑡).

(C2) If |𝑥0| > 𝐿𝛹 𝜀, then

𝛽(|𝜋1◦𝛹 (𝑥0, 𝜏0)|, 𝑡) ≤ 𝛽((2 + 𝐿𝛹 𝜀)|𝑥0|, 𝑡).

Therefore, for all (𝑥0, 𝜏0, 𝑡, 𝜀) ∈ R𝑛 × R≥0 × R≥0 × [0, 𝜀∗]:

𝛽(|𝜋1◦𝛹 (𝑥0, 𝜏0)|, 𝑡) ≤ 𝛽((2 + 𝐿𝛹 𝜀)|𝑥0|, 𝑡) + 𝛽(2𝐿𝛹 𝜀 + 𝐿2
𝛹 𝜀

2, 𝑡)

≤ 𝛽((2 + 𝐿𝛹 𝜀)|𝑥0|, 𝑡) + 𝛽(2𝐿𝛹 𝜀 + 𝐿2
𝛹 𝜀

2, 0).

However, from Claim 1, we have that 𝐿𝛹 𝜀 ≤ 1, for all 𝜀 ∈ [0, 𝜀∗].
Therefore, we have that

𝛽(|𝜋1◦𝛹 (𝑥0, 𝜏0)|, 𝑡) ≤ 𝛽(3|𝑥0|, 𝑡) + 𝛽(3𝐿𝛹 𝜀, 0).

The result of the corollary follows by defining

𝛥(𝛿, 𝜀) ∶= (1 + 𝐿𝛹 𝜀)𝛥𝛿,𝜀 + 𝐿𝛹 𝜀 + (1 + 𝐿𝛹 𝜀)𝛽(3𝐿𝛹 𝜀, 0) (47)

and

𝛽(𝑟, 𝑠) ∶= 2𝛽(3𝑟, 𝑠), (48)

for all 𝑟, 𝑠 ≥ 0. ■
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5.4. Proof of Corollary 2

It follows from Assumption 2 that 𝜅 ∈  and 𝛽 ∈  generated by
the proof of Theorem 1 are independent of the choice of 𝛿1 > 0 and 𝛿
satisfying (7). Let 𝜈 > 0 be given. Hence, there exists 𝑟 > 0 sufficiently
small such that 𝜅(𝑟) < 𝑣

4 . Let 𝛿1 < 𝑟∕16, and choose, 𝛿2 =
√

3𝛿1,
𝛿3 = 4

3

√

3𝛿2 = 4𝛿1, which satisfy (7). It follows that 2𝛿3 = 8𝛿1 < 𝑟
2 . Let

𝜀𝑎 > 0 be such that 𝜌(𝛿, 𝜀) < 𝑟
2 for all 𝜀 ∈ (0, 𝜀𝑎). Such 𝜀𝑎 always exist

ecause 𝜌(𝛿, ⋅) ∈ . It follows that 𝛥𝛿,𝜀 = 𝜅(2𝛿3 + 𝜌(𝛿, 𝜀)) < 𝑣
4 . Let 𝜀𝑏 > 0

e such that 𝐿𝛹 𝜀 ≤ min{𝜈∕3, 1∕3} and 𝛽(3𝐿𝛹 𝜀, 0) ≤ 𝜈∕4 for all 𝜀 ∈ (0, 𝜀𝑏),
where 𝛽 comes from (46). Such 𝜀𝑏 always exist because 𝛽(⋅, 𝑠) ∈ . Let
∗ > 0 be generated by Corollary 1, and define 𝜀∗∗ = min{𝜀𝑎, 𝜀𝑏, 𝜀∗}.
hen, every solution of system (4) starting at (𝑥0, 𝜏0) satisfies the bound
(3) with  function given by (48) and ultimate bound 𝛥𝛿,𝜀 given by
(47). However, by the choice of 𝛿 and 𝜀, we have that 𝛥𝛿,𝜀 ≤ 𝜈, which
establishes the desired bound. ■

5.5. Proof of Corollary 3

Since Assumptions 1 and 2 are satisfied for all 𝛿3 > 𝛿2 = 𝛿1 = 0, we
may pick 𝛿3 ∈ (0,∞) arbitrarily small. Following similar steps to the
proof of Corollary 2 yields the desired result. ■

5.6. Proof of Theorem 2

We consider the case when 𝐽⋆ ∈ R is arbitrary, and we verify that
the maps defining system (26) satisfy Assumption 1. Clearly, the right
hand side in (26) is 0 and satisfies item (b) in Assumption 1. Let
𝐽 ∈ R>0, and let 𝛿1 ∈ [0,∞) be such that 𝐽 (𝑥) ≥ 𝐽 , for all |𝑥| ≥ 𝛿1.
Such 𝛿1 always exists because 𝐽 is radially unbounded. It follows that
the feedback law

𝑢𝑖,1(𝐽 (𝑥), 𝜏) =
√

2𝜔𝑖𝐽 (𝑥) cos(log(𝐽 (𝑥)) + 𝜔𝑖𝜏)

𝑢𝑖,2(𝐽 (𝑥), 𝜏) =
√

2𝜔𝑖𝐽 (𝑥) sin(log(𝐽 (𝑥)) + 𝜔𝑖𝜏),

is 2 for all |𝑥| ≥ 𝛿1. We recall that system (26) has the form of system
(4) with

𝑓1(𝑥, 𝜏) =
𝑟
∑

𝑖=1

2
∑

𝑗=1
𝑏𝑖,𝑗𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏), 𝑓2(𝑥, 𝜏) = 𝑏0(𝑥). (49)

Since the vectors 𝑏𝑖,𝑗 are constant and the functions 𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏) are
2 for all |𝑥| ≥ 𝛿1, it follows that system (26) satisfies item (c) in
Assumption 1. Next, direct computation gives

|D𝑥𝑓1(𝑥, 𝜏)| ≤ |∇𝐽 (𝑥)|
𝑟
∑

𝑖=1

2
∑

𝑗=1
|D𝑦𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏)||𝑏𝑖,𝑗 |.

|D𝑥𝑓1(𝑥, 𝜏1)𝑓1(𝑥, 𝜏2)| ≤
𝑟
∑

𝑖,𝑘=1

2
∑

𝑗,𝑙=1
|𝑏𝑖,𝑗 ||𝑏𝑘,𝑙||𝑈𝑖,𝑗,𝑘,𝑙(𝑥, 𝜏1, 𝜏2)|,

|D𝑥(D𝑥𝑓1(𝑥, 𝜏1)𝑓1(𝑥, 𝜏2))| ≤
𝑟
∑

𝑖,𝑘=1

2
∑

𝑗,𝑙=1
|𝑏𝑖,𝑗‖𝑏𝑘,𝑙‖D𝑥𝑈𝑖,𝑗,𝑘,𝑙(𝑥, 𝜏1, 𝜏2)|,

where the maps 𝑈𝑖,𝑗,𝑘,𝑙 and D𝑥𝑈𝑖,𝑗,𝑘,𝑙 are given by

𝑈𝑖,𝑗,𝑘,𝑙(𝑥, 𝜏1, 𝜏2) = D𝑦𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏1)𝑢𝑘,𝑙(𝐽 (𝑥), 𝜏2)∇𝐽 (𝑥),

D𝑥𝑈𝑖,𝑗,𝑘,𝑙(𝑥, 𝜏1, 𝜏2) = D𝑦𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏1)𝑢𝑘,𝑙(𝐽 (𝑥), 𝜏2)∇2𝐽 (𝑥)

+ D𝑦𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏1)D𝑦𝑢𝑘,𝑙(𝐽 (𝑥), 𝜏2)∇𝐽 (𝑥)∇𝐽 (𝑥)⊤

+ D2
𝑦𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏1)𝑢𝑘,𝑙(𝐽 (𝑥), 𝜏2)∇𝐽 (𝑥)∇𝐽 (𝑥)

⊤,

and the maps D𝑦𝑢𝑖,𝑗 and D2
𝑦𝑢𝑖,𝑗 are given by

D𝑦𝑢𝑖,1(𝑦, 𝜏) =

√

𝜔𝑖
√

2𝑦

(

cos
(

𝜏𝜔𝑖 + log(𝑦)
)

− 2 sin
(

𝜏𝜔𝑖 + log(𝑦)
))

,

D𝑦𝑢𝑖,2(𝑦, 𝜏) =

√

𝜔𝑖
√

(

2 cos
(

𝜏𝜔𝑖 + log(𝑦)
)

+ sin
(

𝜏𝜔𝑖 + log(𝑦)
))

,

2𝑦
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D2
𝑦𝑢𝑖,1(𝑦, 𝜏) = −

5
√

𝜔𝑖

2
√

2𝑦
3
2

cos
(

𝜏𝜔𝑖 + log(𝑦)
)

,

D2
𝑦𝑢𝑖,2(𝑦, 𝜏) = −

5
√

𝜔𝑖

2
√

2𝑦
3
2

sin
(

𝜏𝜔𝑖 + log(𝑦)
)

,

for all (𝑦, 𝜏) ∈ R>0 × R≥0. We observe that, for all |𝑥| ≥ 𝛿1 and all
𝜏 ∈ R≥0, we have that

|𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏)| ≤
√

2𝜔𝑖𝐽 (𝑥)
1
2 , |D𝑦𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏)| ≤

√

5𝜔𝑖
2

𝐽 (𝑥)−
1
2 ,

D2
𝑦𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏)| ≤

5
√

𝜔𝑖

2
√

2
𝐽 (𝑥)−

3
2 .

herefore, we obtain that

|𝑈𝑖,𝑗,𝑘,𝑙(𝑥, 𝜏1, 𝜏2)| ≤
√

5𝜔𝑖𝜔𝑘𝐽 (𝑥)
− 1

2
|∇𝐽 (𝑥)|,

|D𝑥𝑈𝑖,𝑗,𝑘,𝑙(𝑥, 𝜏1, 𝜏2)| ≤
√

𝜔𝑖𝜔𝑘(5𝐽 (𝑥)−1|∇𝐽 (𝑥)|
2 +

√

5|∇2𝐽 (𝑥)|).

rom Assumption 4-(c), we have that ∇𝐽 is 𝐿𝐽 -globally Lipschitz,
hich implies that |∇𝐽 (𝑥)|2 ≤ 2𝐿𝐽 (𝐽 (𝑥)−𝐽⋆), for all 𝑥 ∈ R𝑛 [47, Lemma
, pp.23]. It follows that

𝑈𝑖,𝑗,𝑘,𝑙(𝑥, 𝜏1, 𝜏2)| ≤
√

10𝐿𝐽𝜔𝑖𝜔𝑘
(

1 + 𝐽⋆𝐽
)
1
2 . (50)

imilarly, from Assumption 4-(c), we obtain that

D𝑥𝑈𝑖,𝑗,𝑘,𝑙(𝑥, 𝜏1, 𝜏2)| ≤ 2𝐿𝐽
√

5𝜔𝑖𝜔𝑘

(
√

5
(

1 + 𝐽⋆𝐽
)

+ 1
)

.

or all |𝑥| ≥ 𝛿1 and all 𝜏 ∈ R≥0. Combining all of the above, we arrive
t the upper bounds

D𝑥𝑓1(𝑥, 𝜏)| ≤ 𝐿1,|D𝑥(D𝑥𝑓1(𝑥, 𝜏1)𝑓1(𝑥, 𝜏2))| ≤ 𝐿3,

or all |𝑥| ≥ 𝛿1 and all 𝜏 ∈ R≥0, where the constants 𝐿1 and 𝐿3 are
given by

𝐿1 =
√

𝐿𝐽
(

1 + 𝐽⋆𝐽
)
1
2

𝑟
∑

𝑖=1

2
∑

𝑗=1

√

5𝜔𝑖|𝑏𝑖,𝑗 |, (51a)

3 = 2𝐿𝐽

(
√

5
(

1 + 𝐽⋆𝐽
)

+ 1
)

𝑟
∑

𝑖,𝑘=1

2
∑

𝑗,𝑙=1

√

5𝜔𝑖𝜔𝑘|𝑏𝑖,𝑗 ||𝑏𝑘,𝑙|. (51b)

Therefore, system (26) satisfies items (a) in Assumption 1 for 𝑘 = 1 and
(d) in Assumption 1 with the Lipschitz constants 𝐿1 and 𝐿3 given by
(51). Finally, we note that, since 𝑓2(𝑥, 𝜏) = 𝑏0(𝑥), it follows that system
(26) satisfies items (a) for 𝑘 = 2 with the Lipschitz constant 𝐿2 = 𝐿0
here 𝐿0 is the Lipschitz constant from item (e) in Assumption 4.
ence, we have shown that system (26) satisfies all of the items in
ssumption 1.
Next, let 𝛿2 ∈ (𝛿1,∞), 𝛿3 ∈ (𝛿2,∞), and let 𝑗 , for 𝑗 ∈ {1, 2, 3},

be the corresponding nested subsets defined in (10). Using the formula
(9f), the nominal average system (14) corresponding to system (26) on

3, is given by

̇ = 𝑓 (𝑥) = 𝜑(𝑥)(𝑏0(𝑥) +
𝑟
∑

𝑖=1

2
∑

𝑗=1
𝑏𝑖,𝑗𝑏

⊤
𝑖,𝑗∇𝐽 (𝑥)). (52)

Consider the Lyapunov function candidate 𝑉 and the positive defi-
ite function 𝜙 defined by

(𝑥) = 𝐽 (𝑥) − 𝐽⋆, 𝜙(𝑥) = |∇𝐽 (𝑥)|, (53)

hich satisfy the inequalities

1(|𝑥|) ≤ 𝑉 (𝑥) ≤ 𝛼2(|𝑥|), |∇𝑉 (𝑥)| ≤ 𝜙(𝑥), (54)

or all 𝑥 ∈ R𝑛, and also satisfy the inequality

𝑉 (𝑥)⊤𝑓 (𝑥) ≤ (𝜅3 − 𝛾)|∇𝐽 (𝑥)|2 < 0, (55)

or all 𝑥 ∈ 3, where the functions 𝛼1 and 𝛼2 are ∞ functions,
hose existence is guaranteed by the radial unboundedness of 𝑉 [5,
14
emma 4.3]. Since, by assumption 𝛾 > 𝜅3, system (26) satisfies items
a)–(b) in Assumption 2. Moreover, from Assumption 5, we have that
𝐽 (|𝑥|)|𝑥| ≤ |∇𝐽 (𝑥)|, where 𝛼𝐽 is a class  function. Hence, system
26) satisfies item (c)–(ii) in Assumption 2 with 𝜙(𝑥) ∶= |∇𝐽 (𝑥)|. By
heorem 1 we conclude that system (26) is UGUB.
Next, we consider the case when 𝐽⋆ ∈ R>0. In this case, there exists

̄ ∈ R such that 0 < 𝐽 < 𝐽⋆. Since 𝐽⋆ is the minimum value of the cost,
t follows that 𝐽 (𝑥) > 𝐽 for all 𝑥 ∈ R𝑛, which implies that the previous
omputations hold with 𝛿1 = 0. In addition, in this case Assumption 1
olds with 𝛿1 = 0, and the Lyapunov function candidate 𝑉 and the
ositive definite function 𝜙 in (53) still satisfy the inequalities (54)–(55)
or any choice of 𝛿 satisfying (7), with 𝑗 , for 𝑗 ∈ {1, 2, 3}, being the
orresponding nested subsets defined in (10). Therefore, by invoking
orollary 3, we conclude that system (26) is UGpAS. Finally, if 𝐽⋆ = 0,
e can take 𝐽 = 0 and in this case, Assumption 1 will be satisfied for
ll 𝛿1 ∈ (0,∞) using 𝑚̃ =

√

2𝜔𝑖𝜅 in (50). Therefore, by Corollary 2, we
conclude that the closed-loop system is UGpAS. ■

5.7. Proof of Theorem 3

It is easy to see that the right hand side in (26) is 0 and satisfies
item (b) in Assumption 1. In addition, the maps 𝑢𝑖,𝑗 are ∞, which
implies that the maps 𝑢𝑖,𝑗 (𝐽 (⋅), 𝜏) are 2 for all 𝑥 ∈ R𝑛. Therefore,
system (26) satisfies item (c) in Assumption 1. Similar to the proof of
Theorem 2, we compute that

|D𝑥𝑓1(𝑥, 𝜏)| ≤ |∇𝐽 (𝑥)|
𝑟
∑

𝑖=1

2
∑

𝑗=1
|D𝑦𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏)||𝑏𝑖,𝑗 |.

|D𝑥𝑓1(𝑥, 𝜏1)𝑓1(𝑥, 𝜏2)| ≤
𝑟
∑

𝑖,𝑘=1

2
∑

𝑗,𝑙=1
|𝑏𝑖,𝑗 ||𝑏𝑘,𝑙||𝑈𝑖,𝑗,𝑘,𝑙(𝑥, 𝜏1, 𝜏2)|,

|D𝑥(D𝑥𝑓1(𝑥, 𝜏1)𝑓1(𝑥, 𝜏2))| ≤
𝑟
∑

𝑖,𝑘=1

2
∑

𝑗,𝑙=1
|𝑏𝑖,𝑗‖𝑏𝑘,𝑙‖D𝑥𝑈𝑖,𝑗,𝑘,𝑙(𝑥, 𝜏1, 𝜏2)|,

where the maps 𝑈𝑖,𝑗,𝑘,𝑙 and D𝑥𝑈𝑖,𝑗,𝑘,𝑙 are given by

𝑈𝑖,𝑗,𝑘,𝑙(𝑥, 𝜏1, 𝜏2) = D𝑦𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏1)𝑢𝑘,𝑙(𝐽 (𝑥), 𝜏2)∇𝐽 (𝑥),

D𝑥𝑈𝑖,𝑗,𝑘,𝑙(𝑥, 𝜏1, 𝜏2) = D𝑦𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏1)𝑢𝑘,𝑙(𝐽 (𝑥), 𝜏2)∇2𝐽 (𝑥)

+ D𝑦𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏1)D𝑦𝑢𝑘,𝑙(𝐽 (𝑥), 𝜏2)∇𝐽 (𝑥)∇𝐽 (𝑥)⊤

+ D2
𝑦𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏1)𝑢𝑘,𝑙(𝐽 (𝑥), 𝜏2)∇𝐽 (𝑥)∇𝐽 (𝑥)

⊤,

and the maps D𝑦𝑢𝑖,𝑗 and D2
𝑦𝑢𝑖,𝑗 are given by

D𝑦𝑢𝑖,1(𝑦, 𝜏) = −
√

2𝜔𝑖 sin
(

𝜔𝑖𝜏 + 𝑦
)

,

D𝑦𝑢𝑖,2(𝑦, 𝜏) =
√

2𝜔𝑖 cos
(

𝜔𝑖𝜏 + 𝑦
)

,

D2
𝑦𝑢𝑖,1(𝑦, 𝜏) = −

√

2𝜔𝑖 cos
(

𝜔𝑖𝜏 + 𝑦
)

,

D2
𝑦𝑢𝑖,2(𝑦, 𝜏) = −

√

2𝜔𝑖 sin
(

𝜔𝑖𝜏 + 𝑦
)

,

for all (𝑦, 𝜏) ∈ R>0×R≥0. We observe that, for all 𝑥 ∈ R𝑛 and all 𝜏 ∈ R≥0,
we have that

|𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏)| ≤
√

2𝜔𝑖, |D𝑦𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏)| ≤
√

2𝜔𝑖,

|D2
𝑦𝑢𝑖,𝑗 (𝐽 (𝑥), 𝜏)| ≤

√

2𝜔𝑖.

Therefore, we obtain that

|𝑈𝑖,𝑗,𝑘,𝑙(𝑥, 𝜏1, 𝜏2)| ≤ 2
√

𝜔𝑖𝜔𝑘|∇𝐽 (𝑥)|,

|D𝑥𝑈𝑖,𝑗,𝑘,𝑙(𝑥, 𝜏1, 𝜏2)| ≤ 2
√

𝜔𝑖𝜔𝑘(2|∇𝐽 (𝑥)|
2 + |∇2𝐽 (𝑥)|).

From Assumption 4-(c) and Assumption 5-(b), we have that |∇𝐽 (𝑥)| ≤
𝑀𝐽 and |∇2𝐽 (𝑥)| ≤ 𝐿𝐽 for all 𝑥 ∈ R𝑛. It follows that

|𝑈𝑖,𝑗,𝑘,𝑙(𝑥, 𝜏1, 𝜏2)| ≤ 2𝑀𝐽
√

𝜔𝑖𝜔𝑘

|D𝑥𝑈𝑖,𝑗,𝑘,𝑙(𝑥, 𝜏1, 𝜏2)| ≤ 2(2𝑀2
𝐽 + 𝐿𝐽 )

√

𝜔𝑖𝜔𝑘.

for all 𝑥 ∈ R𝑛 and all 𝜏 ∈ R≥0. Combining all of the above, we arrive
at the upper bounds
|D𝑥𝑓1(𝑥, 𝜏)| ≤ 𝐿1, |D𝑥(D𝑥𝑓1(𝑥, 𝜏1)𝑓1(𝑥, 𝜏2))| ≤ 𝐿3,
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w
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for all (𝑥, 𝜏) ∈ R𝑛 × R≥0, where the constants 𝐿1 and 𝐿3 are given by

1 =
√

2𝑀𝐽

𝑟
∑

𝑖=1

2
∑

𝑗=1

√

𝜔𝑖|𝑏𝑖,𝑗 |, (56)

3 = 2(2𝑀2
𝐽 + 𝐿𝐽 )

𝑟
∑

𝑖,𝑘=1

2
∑

𝑗,𝑙=1

√

𝜔𝑖𝜔𝑘|𝑏𝑖,𝑗 ||𝑏𝑘,𝑙|. (57)

Therefore, system (26) satisfies Assumption 1 with 𝛿1 = 0. Next, let
𝛿1 = 𝛿2 = 0, and fix an arbitrary choice of 𝛿3 ∈ (0,∞), and let 𝑗
for 𝑗 ∈ {1, 2, 3} be the corresponding nested subsets as defined in (10).
Using the formula (9f), the nominal average system (14) corresponding
to system (26) on R𝑛, is given by

̇ = 𝑓 (𝑥) = 𝑏0(𝑥) +
𝑟
∑

𝑖=1

2
∑

𝑗=1
𝑏𝑖,𝑗𝑏

⊤
𝑖,𝑗∇𝐽 (𝑥). (58)

Since the Lyapunov function candidate 𝑉 and the function 𝜙 (53)
now satisfy the inequalities (54)–(55) for all 𝑥 ∈ 3, for any choice
of 𝛿3 ∈ (0,∞), it follows that system (26) satisfies items (a)–(b) in
ssumption 2. Moreover, from item (b) in Assumption 5, we have that
𝐽 (|𝑥|) ≤ |∇𝐽 (𝑥)|, where 𝛼𝐽 is a class  function. Finally, using item
b) in Assumption 5 and item (d) in Assumption 4, we obtain that
|𝑏0(𝑥)| ≤ |∇𝐽 (𝑥)| ≤ 𝐿𝐽 , for all 𝑥 ∈ R𝑛. Then, we have the following
Claim.

Claim 2. The map 𝑔 from item (d) in Proposition 1 is uniformly bounded,
for all (𝑥, 𝜏, 𝜀) ∈ R𝑛 × R≥0 × [0, 𝜀0].

The proof of Claim 2 can be found in Appendix A. From Claim 2,
it follows that system (26) satisfies item (c)–(i) in Assumption 2.
Therefore, by Corollary 3 we conclude that system (26) is UGpAS. ■

6. Conclusion and future work

We introduced a (second-order) averaging method that allows to
study the stability properties of a class of oscillatory systems with
periodic flows based on the stability properties of their corresponding
averaged systems. In contrast to existing results in the literature, the
method is suitable for the study of uniform global (practical) stability
properties. Such properties are studied under suitable assumptions,
which, naturally, are stronger compared to others that only enable local
or semi-global practical results. By leveraging the proposed method,
we showed that a class of extremum seeking algorithms is able to
achieve uniform global practical asymptotic stability for a broad range
of cost functions, which include quadratic (with positive definite Hes-
sian), strongly convex, and certain invex functions. Future research will
extend these results via singular perturbation theory to study dynamic
plants in the loop, as well as systems with hybrid dynamics.
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Appendix A. Auxiliary lemmas

Lemma 7. Let 𝐽 ∶ R𝑛 → R be a 𝜇-strongly convex 1 function with 𝐿
globally Lipschitz gradient. Then, item (d) in Assumption 5 is satisfied.

Proof. The upper bound follows directly by [42, Thm. 2.1.5]. To obtain
the lower bound, note that by 𝜇-strong convexity:
(

∇𝐽 (𝑥1) − ∇𝐽 (𝑥2)
)⊤ (𝑥1 − 𝑥2) ≥ 𝜇|𝑥1 − 𝑥2|

2,

for all 𝑥1, 𝑥2 ∈ R𝑛. Using Cauchy-Schwartz inequality, it is easy to
see that the following holds |

|

∇𝐽 (𝑥1) − ∇𝐽 (𝑥2)|| ≥ 𝜇|𝑥1 − 𝑥2| for all
𝑥1, 𝑥2 ∈ R𝑛. It follows that

|

|

∇𝐽 (𝑥1) − ∇𝐽 (𝑥2)||
2 ≥ 𝜇2

|𝑥1 − 𝑥2|
2,

for all 𝑥1, 𝑥2 ∈ R𝑛. Let 𝛼𝐽 ∶ [0,∞) → [0, 𝜇) be given by 𝛼𝐽 (𝑠) ∶=
𝜇 tanh(𝑠), which is strictly increasing and satisfies 𝛼𝐽 (0) = 0. Therefore,
𝛼𝐽 ∈  and, by definition, 𝛼𝐽 (𝑠) < 𝜇, for all 𝑠 ≥ 0. It follows that

|

|

∇𝐽 (𝑥1) − ∇𝐽 (𝑥2)||
2 ≥ 𝛼𝐽 (|𝑥1 − 𝑥2|)2|𝑥1 − 𝑥2|

2.

for all 𝑥1, 𝑥2 ∈ R𝑛.

Lemma 8. Let 𝐽 ∶ R𝑛 → R be the function defined in Example 3. Then,
𝐽 satisfies Assumption 3.

Proof. The cost function 𝐽 can be written as 𝐽 = ℎ◦𝐻 where ℎ(𝑠) =
𝑠 + 3 sin(

√

𝑠)2 and 𝐻(𝑥) ∶= |𝑥|2 are ∞ everywhere on their domain.
oreover, 𝐻(𝑥) ≥ 0 for all 𝑥 ∈ R𝑛. Therefore, the function 𝐽 = ℎ◦𝐻 is
∞. The derivative of 𝐽 satisfies

𝐽 (𝑥) = Dℎ(𝐻(𝑥))∇𝐻(𝑥) = 2Dℎ(𝐻(𝑥))(𝑥),

here

ℎ(𝐻(𝑥)) = 1
2

⎛

⎜

⎜

⎜

⎝

2 +
3 sin

(

2
√

𝐻(𝑥)
)

√

𝐻(𝑥)

⎞

⎟

⎟

⎟

⎠

∈ R.

It follows that

|∇𝐽 (𝑥)|2 = 4|Dℎ(𝐻(𝑥))(𝑥)|2 = 4𝐷ℎ(𝐻(𝑥))2|𝑥|2,

nd it can be verified that 1
4 < Dℎ(𝐻(𝑥)) < 4, for all 𝑥 ∈ R𝑛. Therefore,

there exists 𝜇 ∈ R>0 such that, for all 𝑥 ∈ R𝑛, we have that

∇𝐽 (𝑥)|2 ≥ 4𝜇2
|𝑥|2 ≥ 𝛼𝐽 (|𝑥|)2|𝑥|

2,

here 𝛼𝐽 (𝑠) ∶= 2𝜇 tanh(𝑠). Similarly, the second derivative of 𝐽 satisfies
2𝐽 (𝑥) = D2ℎ(𝐻(𝑥))∇𝐻(𝑥)∇𝐻(𝑥)⊤ + Dℎ(𝐻(𝑥))∇2𝐻(𝑥),

here

2ℎ(𝐻(𝑥)) =
3 cos

(

2
√

𝐻(𝑥)
)

2𝐻(𝑥)
−

3 sin
(

2
√

𝐻(𝑥)
)

4𝐻(𝑥)3∕2
,

It follows that

|∇2𝐽 (𝑥)| ≤ |D2ℎ(𝐻(𝑥))‖∇𝐻(𝑥)|
2
+ |Dℎ(𝐻(𝑥))‖∇2𝐻(𝑥)|,

where |D2ℎ(𝐻(𝑥))| ≤ 3
𝐻(𝑥) . Hence, the Hessian satisfies the inequality

|∇2𝐽 (𝑥)| ≤ 3|∇𝐻(𝑥)|2
+ 8 ≤ 20.
𝐻(𝑥)
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Appendix B. Proofs of auxiliary claims

B.1. Proof of Claim 1

Proof. The matrix D𝑥𝛷(𝑥, 𝜏) is a square matrix, and therefore its
singular value decomposition is given by

D𝑥𝛷(𝑥, 𝜏) = 𝑉 (𝑥, 𝜏)𝛴(𝑥, 𝜏)𝑈 (𝑥, 𝜏)⊤,

where the matrices 𝑉 (𝑥, 𝜏) and 𝑈 (𝑥, 𝜏) are orthonormal matrices and
𝛴(𝑥, 𝜏) is a square diagonal matrix with the singular values of D𝑥𝛷(𝑥, 𝜏)
on the diagonal. Since for all 𝜀 ∈ (0, 𝜀0), for all (𝑥, 𝜏) ∈ R𝑛 × R≥0,
the eigenvalues of the Jacobian matrix D𝑥𝛷(𝑥, 𝜏) are contained in
he compact interval [1 − 2𝐿̃𝛹 𝜀, 1 + 2𝐿̃𝛹 𝜀] ⊂ [1∕2, 3∕2], it follows
that the singular values of D𝑥𝛷(𝑥, 𝜏) coincide with its eigenvalues and
herefore are also contained in the compact interval [1 − 2𝐿̃𝛹 𝜀, 1 +
𝐿̃𝛹 𝜀] ⊂ [1∕2, 3∕2]. Moreover, the matrix D𝑥𝛷(𝑥, 𝜏) is invertible and
ts inverse coincides with its pseudo-inverse. From the singular value
ecomposition of D𝑥𝛷(𝑥, 𝜏), we have that its pseudo-inverse D𝑥𝛷(𝑥, 𝜏)†

s given by

𝑥𝛷(𝑥, 𝜏)† = 𝑈 (𝑥, 𝜏)𝛴(𝑥, 𝜏)†𝑉 (𝑥, 𝜏)⊤,

owever, 𝛴(𝑥, 𝜏)† is simply the inverse of 𝛴(𝑥, 𝜏) which is well-defined
ince 𝛴(𝑥, 𝜏) is a diagonal matrix whose diagonal entries belong to the
ompact interval [1 − 2𝐿̃𝛹 𝜀, 1 + 2𝐿̃𝛹 𝜀] ⊂ [1∕2, 3∕2]. Therefore, we have
hat

𝑥𝛷(𝑥, 𝜏)−1 = D𝑥𝛷(𝑥, 𝜏)† = 𝑈 (𝑥, 𝜏)𝛴(𝑥, 𝜏)−1𝑉 (𝑥, 𝜏)⊤,

nd, using the properties of the operator norm of matrices, we have
hat

|

|

D𝑥𝛷(𝑥, 𝜏)|
|

≤ |𝑈 (𝑥, 𝜏)| |𝛴(𝑥, 𝜏)| |𝑉 (𝑥, 𝜏)|,

D𝑥𝛷(𝑥, 𝜏)−1||
|

≤ |𝑈 (𝑥, 𝜏)| ||
|

𝛴(𝑥, 𝜏)−1||
|

|𝑉 (𝑥, 𝜏)|.

ince 𝑈 (𝑥, 𝜏) and 𝑉 (𝑥, 𝜏) are orthonormal matrices, it follows that
|𝑈 (𝑥, 𝜏)| = |𝑉 (𝑥, 𝜏)| = 1. In addition, since 𝛴(𝑥, 𝜏) is a diagonal matrix
whose diagonal entries belong to the compact interval [1 − 2𝐿̃𝛹 𝜀, 1 +
𝐿̃𝛹 𝜀] ⊂ [1∕2, 3∕2], we have that |𝛴(𝑥, 𝜏)| ≤ 1 + 2𝐿̃𝛹 𝜀 ≤ 3

2 , and
𝛴(𝑥, 𝜏)−1||

|

≤ 1
1−2𝐿̃𝛹 𝜀 ≤ 2. However, since 0 ≤ 𝜀 ≤ 1

4𝐿̃𝛹
, then 1

1−2𝐿̃𝛹 𝜀 ≤
1 + 4𝐿̃𝛹 𝜀. Therefore, we have that

|

|

D𝑥𝛷(𝑥, 𝜏)|
|

≤ 1 + 2𝐿̃𝛹 𝜀,
|

|

|

D𝑥𝛷(𝑥, 𝜏)−1||
|

≤ 1 + 4𝐿̃𝛹 𝜀.

It follows that the inverse of the Jacobian matrix D𝛹 (𝑥, 𝜏) is well-
defined and is given by (31), [44, p. 146], which concludes the proof
of the claim. ■

B.2. Proof of Claim 2

Proof. The map 𝑔 from item (d) in Proposition 1 has the explicit form

𝑔(𝑥, 𝜏, 𝜀) =
5
∑

𝑘=1
𝐺𝑖(𝑥, 𝜏, 𝜀) 𝑔𝑖(𝑥, 𝜏, 𝜀),

where the matrix-valued maps 𝐺𝑖 are uniformly bounded and the maps
𝑔𝑖 are given by

𝑔1(𝑥, 𝜏) = 𝑣1◦𝛹
−1(𝑥, 𝜏), 𝑔2(𝑥, 𝜏) = −𝑓2◦𝛹−1(𝑥, 𝜏),

𝑔3(𝑥, 𝜏) = −𝑓1◦𝛹−1(𝑥, 𝜏), 𝑔4(𝑥, 𝜏) = 𝑣2◦𝛹
−1(𝑥, 𝜏),

𝑔5(𝑥, 𝜏) = −𝑓2◦𝛹−1(𝑥, 𝜏).

In this case, since 𝛿1 = 𝛿2 = 0, we have that 𝑓𝑘(𝑥, 𝜏) = 𝑓𝑘(𝑥, 𝜏), and
therefore we obtain that

𝑓1(𝑥, 𝜏) =
𝑟
∑

𝑖=1

2
∑

𝑗=1
𝑏𝑖,𝑗

√

2𝜔𝑖𝜉𝑖(𝐽 (𝑥) + 𝜔𝑖𝜏),𝑓2(𝑥, 𝜏) = 𝑏0(𝑥),
16
here 𝜉1(𝑠) = cos(𝑠) and 𝜉2(𝑠) = sin(𝑠). Clearly, for all (𝑥, 𝜏) ∈ R𝑛 × R≥0,
e have that

𝑓1(𝑥, 𝜏)| ≤
𝑟
∑

𝑖=1

2
∑

𝑗=1

√

2𝜔𝑖|𝑏𝑖,𝑗 |, |𝑓2(𝑥, 𝜏)| ≤ |∇𝐽 (𝑥)| ≤ 𝑀𝐽 .

here used item (b) in Assumption 5. In addition, direct differentiation
hows that

D𝑥𝑓1(𝑥, 𝜏)| ≤
𝑟
∑

𝑖=1

2
∑

𝑗=1

√

2𝜔𝑖|𝑏𝑖,𝑗 ||∇𝐽 (𝑥)|,

which is also uniformly bounded due to item (b) in Assumption 5. Since
𝑣1 is the integral of 𝑓1 with respect to 𝜏 and is periodic in 𝜏, it follows
hat 𝑣1 is also uniformly bounded. Similarly, 𝑣2 is the integral with
espect to 𝜏 of terms that (smoothly) depend on 𝑓1, D𝑥𝑓1, and 𝑓2, all
f which are uniformly bounded, and is periodic in 𝜏. It follows that
2 is also uniformly bounded. Finally, since 𝛹−1 is diffeomorphism, it
ollows that all the maps 𝑔𝑖 for 𝑖 ∈ {1,… , 5} are uniformly bounded.
herefore, the remainder map 𝑔 is also uniformly bounded. ■

ppendix C. Auxiliary lemmas

emma 9. For any fixed 𝛿1 > 0, there exists a constant 𝐿𝛿1 > 0 such
hat: |𝑓2(𝑥1, 𝜏) − 𝑓2(𝑥2, 𝜏)| ≤ 𝐿𝛿1 |𝑥1 − 𝑥2|, for all 𝑥1, 𝑥2 ∈ R∖(−𝛿1, 𝛿1)
nd all 𝜏 ∈ R≥0, where 𝑓2 ∶ R × R → R is the function given by

2(𝑥, 𝜏) = −|𝑥|
1
2 sign(𝑥) sin(𝜏)2.

roof. Since 𝑓2(⋅, 𝜏) ∶ R → R is absolutely continuous for all 𝜏 ∈ R≥0,
nd by invoking the fundamental theorem of calculus, we have that

𝑓2(𝑥1, 𝜏) − 𝑓2(𝑥2, 𝜏)| ≤ ∫

1

0
|D𝑥𝑓2(𝑥(𝜆), 𝜏)|d𝜆 |𝑥1 − 𝑥2|.

here 𝑥(𝜆) ∶= 𝑥2 + 𝜆(𝑥1 − 𝑥2), and D𝑥𝑓2(𝑥, 𝜏) = − 1
2 |𝑥|

− 1
2 sin(𝜏)2. In

particular, for all 𝜏 ∈ R≥0 and all 𝛿1 ∈ (0,∞), the map D𝑥𝑓2(⋅, 𝜏) ∶
−𝛿1, 𝛿1] → R belongs to the function space 1([−𝛿1, 𝛿1]). Fix 𝛿1 ∈ (0,∞),
nd let 𝑥1, 𝑥2 ∈ R∖(−𝛿1, 𝛿1) be two arbitrary points. If 𝑥1 = 𝑥2, then
here is nothing to prove. Therefore, without loss of generality, we may
ssume that 𝑥1 > 𝑥2. Then, only one of the following cases holds:

(C1) 𝑥1, 𝑥2 ∈ [+𝛿1,+∞), which implies that 𝑥(𝜆) ∈ [𝛿1,∞), for all
𝜆 ∈ [0, 1]. Consequently, for all 𝜏 ∈ R≥0:

∫

1

0
|D𝑥𝑓2(𝑥(𝜆), 𝜏)|d𝜆 ≤ 1

2
√

𝛿1
.

(C2) 𝑥1, 𝑥2 ∈ (−∞,−𝛿1], which implies that 𝑥(𝜆) ∈ (−∞,−𝛿1], for all
𝜆 ∈ [0, 1]. Consequently, for all 𝜏 ∈ R≥0:

∫

1

0
|D𝑥𝑓2(𝑥(𝜆), 𝜏)|d𝜆 ≤ 1

2
√

𝛿1
.

(C3) 𝑥1 ∈ [+𝛿1,+∞) and 𝑥2 ∈ (−∞,−𝛿1], which implies that there
exists 𝜆1, 𝜆2 ∈ [0, 1], such that 𝑥(𝜆1) = 𝛿1, 𝑥(𝜆2) = −𝛿2, 𝜆1 > 𝜆2,
and the following relations hold

𝑥(𝜆) ∈ (−∞,−𝛿1], ∀𝜆 ∈ [0, 𝜆2],

𝑥(𝜆) ∈ [−𝛿1,+𝛿1], ∀𝜆 ∈ [𝜆2, 𝜆1],

𝑥(𝜆) ∈ [+𝛿1,+∞), ∀𝜆 ∈ [𝜆1, 1].

Using the properties of the integral, we have that

∫

1

0
|D𝑥𝑓2(𝑥(𝜆), 𝜏)|d𝜆 ≤ ∫

𝜆2

0
|D𝑥𝑓2(𝑥(𝜆), 𝜏)|d𝜆

+ ∫

𝜆1

𝜆2
|D𝑥𝑓2(𝑥(𝜆), 𝜏)|d𝜆

+
1
|D𝑥𝑓2(𝑥(𝜆), 𝜏)|d𝜆,

(C.1)
∫𝜆1
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for all 𝜏 ∈ R≥0. Therefore, we have that

∫

1

0
|D𝑥𝑓2(𝑥(𝜆), 𝜏)|d𝜆 ≤ 1

√

𝛿1
+ ∫

𝛿1

−𝛿1
|D𝑥𝑓2(𝑦, 𝜏)|d𝑦. (C.2)

Finally, we compute ∫ 𝛿1
−𝛿1

|D𝑥𝑓2(𝑦, 𝜏)|d𝑦 = 2
√

𝛿1.

By defining 𝐿𝛿1 with 𝐿𝛿1 ∶= 1
√

𝛿1
+ 2

√

𝛿1, the proof of the Lemma is
oncluded. ■

Lemma 10. Consider system (4) with 𝑥 ∈ R, 𝑓1(𝑥, 𝜏) = 0, and

2(𝑥, 𝜏) = −|𝑥|
1
2 sign(𝑥) sin(𝜏)2,

nd let 𝑔 be the map generated by Proposition 1. Then, there exists a
onstant 𝐿̄𝑔 such that

𝑔(𝑥, 𝜏, 𝜀)| ≤ 𝐿̄𝑔(|𝑥|
1
2 + 1),

or all (𝑥, 𝜏, 𝜀) ∈ R × R≥0 × (0, 𝜀0).

roof. As shown in Lemma 9, for any 𝛿1 ∈ (0,∞) there exists a constant
𝛿1 > 0 such that

𝑓2(𝑥1, 𝜏) − 𝑓2(𝑥2, 𝜏)| ≤ 𝐿𝛿1 |𝑥1 − 𝑥2|,

or all 𝑥1, 𝑥2 ∈ R and all 𝜏 ∈ R≥0. Therefore, and since 𝑓1 = 0, system
4) satisfies Assumption 1 for any 𝛿1 ∈ (0,∞). Consequently, for any
fixed) choice of 𝛿 satisfying (7), there exists 𝜀0 such that all assertions
f Proposition 1 are true. In particular, the pushforward of system (4)
under the action of the diffeomorphism 𝛹 generated by Proposition 1
satisfies

̇ = 𝑓 (𝑥) + 𝜀 𝑔(𝑥, 𝜏, 𝜀),

where the averaged vector field 𝑓 is given by

𝑓 (𝑥)(𝑥) = −1
2
𝜑(𝑥)|𝑥|

1
2 sign(𝑥).

sing formulas (9), we compute that

2(𝑥, 𝜏) =
1
2
𝜑(𝑥)|𝑥|

1
2 sin(2𝜏) ⟹ |𝑣2(𝑥, 𝜏)| ≤

1
2
|𝑥|

1
2 ,

for all (𝑥, 𝜏) ∈ R×R≥0. From the proof of Proposition 1, we obtain that
the map 𝑔 has the explicit expression

𝑔(𝑥, 𝜏, 𝜀) = 𝜀𝐹 (𝑥, 𝜏)𝑣2◦𝛹−1(𝑥, 𝜏)

− 𝜀D𝑥𝑣2◦𝛹
−1(𝑥, 𝜏)𝑓2◦𝛹−1(𝑥, 𝜏),

or all (𝑥, 𝜏, 𝜀) ∈ R×R≥0 × (0, 𝜀0), where 𝜀0 is the constant generated by
roposition 1, and 𝐹 is the map given by

𝐹 (𝑥, 𝜏) = 𝐹 (𝜋1◦𝛹−1(𝑥, 𝜏), 𝑥),

̄ (𝑥1, 𝑥2) = ∫

1

0
D𝑥𝑓 (𝜆𝑥1 + (1 − 𝜆)𝑥2)d𝜆.

n addition, Lemma 3 implies that there exist constants 𝐿̄ and 𝐿̄𝑣,2 such
hat

D𝑓 (𝑥)| ≤ 𝐿̄, |D𝑥𝑣2(𝑥, 𝜏)| ≤ 𝐿𝑣,2,

𝑥, 𝜏) ∈ R × R≥0. It follows that

𝐹 (𝑥, 𝜏)| ≤ 𝐿̄, |D𝑥𝑣2◦𝛹
−1(𝑥, 𝜏)| ≤ 𝐿𝑣,2,

𝑥, 𝜏) ∈ R × R≥0. Hence, the map 𝑔 satisfies the upper bound

𝑔(𝑥, 𝜏, 𝜀)| ≤ 𝜀(𝐿̄|𝑣2◦𝛹−1(𝑥, 𝜏)| + 𝐿𝑣,2|𝑓2◦𝛹
−1(𝑥, 𝜏)|)

≤ 𝜀(𝐿̄ + 𝐿𝑣,2)|𝛹−1(𝑥, 𝜏)|
1
2 ,

or all (𝑥, 𝜏, 𝜀) ∈ R × R≥0 × (0, 𝜀0). On the other hand, using Lemma 4,
t can be shown that, for all (𝑥, 𝜏) ∈ R × R≥0, the diffeomorphism 𝛹−1

atisfies the upper bound

𝛹−1(𝑥, 𝜏)| ≤ (1 + 𝐿 𝜀)|𝑥| + 𝐿 𝜀.
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ence, we have that

𝑔(𝑥, 𝜏, 𝜀)| ≤ 𝜀(𝐿̄ + 𝐿𝑣,2)((1 + 𝐿𝛹 𝜀)|𝑥| + 𝐿𝛹 𝜀)
1
2

≤ 𝜀(𝐿̄ + 𝐿𝑣,2)
(

(1 + 𝐿𝛹 𝜀)
1
2
|𝑥|

1
2 + (𝐿𝛹 𝜀)

1
2
)

≤ 𝜀(𝐿̄ + 𝐿𝑣,2)
(
√

2|𝑥|
1
2 + 1

)

≤ 𝐿̄𝑔

(

|𝑥|
1
2 + 1

)

,

for all (𝑥, 𝜏, 𝜀) ∈ R×R≥0×(0, 𝜀0), where 𝐿̄𝑔 = 𝜀
√

2(𝐿̄+𝐿𝑣,2) is the sought
after constant. ■

Let 𝑓 ∶ R𝑛 → R𝑛 be a 0 map and let 𝛹 ∶ R𝑛 → R𝑛 be a
diffeomorphism. Let the map 𝛹∗𝑓 ∶ R𝑛 → R𝑛 be given by

𝛹∗𝑓 (𝑥) = D𝛹◦𝛹−1(𝑥)𝑓◦𝛹−1(𝑥). (C.3)

Clearly, the map 𝛹∗𝑓 is 0. Consider the two ODEs

̇ = 𝑓 (𝑥), 𝑥(0) = 𝑥0 (C.4)
̇̄ = 𝛹∗𝑓 (𝑥̄), 𝑥̄(0) = 𝑥̄0. (C.5)

ince 𝑓 and 𝛹∗𝑓 are both 0, it follows that both ODEs (C.4) and
C.5) have the local existence of solutions property from any initial
ondition [48]. Then, we have the following Lemma.

emma 11. Let 𝑥 ∶ [0, 𝑡𝑠) → R𝑛 be any maximal solution to (C.4)
here [0, 𝑡𝑠) is the maximal interval of existence of the solution, for some

𝑠 ∈ R>0∪{∞}. Then there exists a (unique) maximal solution 𝑥̄ ∶ [0, 𝑡𝑠) →
𝑛 to (C.5) such that 𝑥̄(𝑡) = 𝛹 (𝑥(𝑡)), for all 𝑡 ∈ [0, 𝑡𝑠). Conversely, if

̄ ∶ [0, 𝑡𝑠) → R𝑛 is any maximal solution to (C.5), then there exists a
unique) solution 𝑥 ∶ [0, 𝑡𝑠) → R𝑛 to (C.4) such that 𝑥(𝑡) = 𝛹−1(𝑥̄(𝑡)),
or all 𝑡 ∈ [0, 𝑡𝑠).

roof. If 𝑥 ∶ [0, 𝑡𝑠) → R𝑛 is a solution to (C.4), then, by definition, 𝑥 is
1 and, for every 𝑡 ∈ [0, 𝑡𝑠), we have that

̇ (𝑡) = 𝑓 (𝑥(𝑡)), 𝑥(0) = 𝑥0 ∈ R𝑛. (C.6)

onsider the map 𝑥̄ = 𝛹◦ 𝑥 ∶ [0, 𝑡𝑠) → R𝑛. Since 𝛹 and 𝑥 are 1, it
ollows that 𝑥̄ is also 1. Using the chain rule, we have

̇̄ (𝑡) = d
d𝑡 (𝛹 (𝑥(𝑡))) = D𝛹 (𝑥(𝑡))𝑥̇(𝑡) = D𝛹 (𝑥(𝑡))𝑓 (𝑥(𝑡)), (C.7)

or all 𝑡 ∈ [0, 𝑡𝑠). However, since 𝛹 is a diffeomorphism, it has a 1

nverse 𝛹−1 ∶ R𝑛 → R𝑛, which implies that 𝑥(𝑡) = 𝛹−1(𝑥̄(𝑡)), for all
∈ [0, 𝑡𝑠). Therefore, we obtain that the map 𝑥̄ satisfies

̇̄ (𝑡) = D𝛹 (𝛹−1(𝑥̄(𝑡)))𝑓 (𝛹−1(𝑥̄(𝑡))) = 𝛹∗𝑓 (𝑥̄(𝑡)), 𝑥̄(0) = 𝛹 (𝑥0),

or all 𝑡 ∈ [0, 𝑡𝑠). That is, the map 𝑥̄ ∶ [0, 𝑡𝑠) → R𝑛 is a solution of system
C.5). To prove uniqueness, suppose by contradiction that 𝑥̃ ∶ [0, 𝑡𝑠) →
R𝑛 is another maximal solution to (C.5) such that 𝑥̃(𝑡) = 𝛹 (𝑥(𝑡)) for all
∈ [0, 𝑡𝑠), and ∃𝑡𝑒 ∈ [0, 𝑡𝑠) such that 𝑥̃(𝑡𝑒) ≠ 𝑥̄(𝑡𝑒). This implies that

(𝑥(𝑡𝑒)) = 𝑥̃(𝑡𝑒) ≠ 𝑥̄(𝑡𝑒) = 𝛹 (𝑥(𝑡𝑒)),

hich is a clear contradiction. Conversely, suppose by contradiction
hat 𝑥̂ is another maximal solution to (C.4) such that 𝑥̄(𝑡) = 𝛹 (𝑥̂(𝑡))
or all 𝑡 ∈ [0, 𝑡𝑠), and ∃𝑡𝑒 ∈ [0, 𝑡𝑠) such that 𝑥̂(𝑡𝑒) ≠ 𝑥(𝑡𝑒). Since 𝛹 is a
iffeomorphism, it follows that 𝑥̂(𝑡) = 𝛹−1(𝑥̄(𝑡)), for all 𝑡 ∈ [0, 𝑡𝑠). This
mplies that

−1(𝑥̄(𝑡𝑒)) = 𝑥̂(𝑡𝑒) ≠ 𝑥(𝑡𝑒) = 𝛹−1(𝑥̄(𝑡𝑒)),

hich is also a clear contradiction. Therefore, if 𝑥 ∶ [0, 𝑡𝑠) → R𝑛 is a
aximal solution to (C.4), then 𝑥̄ = 𝛹◦ 𝑥 ∶ [0, 𝑡𝑠) → R𝑛 is the only
aximal solution to (C.5) such that 𝑥̄(𝑡) = 𝛹 (𝑥(𝑡)), for all 𝑡 ∈ [0, 𝑡𝑠). The

−1
onverse argument is identical if we replace 𝛹 by 𝛹 . ■
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