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Stability results for extremum seeking control in R” have predominantly been restricted to local or, at
best, semi-global practical stability. Extending semi-global stability results of extremum-seeking systems to
unbounded sets of initial conditions often demands a stringent global Lipschitz condition on the cost function,
which is rarely satisfied by practical applications. In this paper, we address this challenge by leveraging
tools from higher-order averaging theory. In particular, we establish a novel second-order averaging result
with global (practical) stability implications. By leveraging this result, we characterize sufficient conditions on
cost functions under which uniform global (i.e., under any initialization) practical asymptotic stability can be
established for a class of extremum-seeking systems acting on static maps. Our sufficient conditions include
the case when the gradient of the cost function, rather than the cost function itself, satisfies a global Lipschitz
condition, which covers quadratic cost functions. Our results are also applicable to vector fields that are not
necessarily Lipschitz continuous at the origin, opening the door to non-smooth Lie-bracket ES dynamics. We

illustrate all the results via different analytical and/or numerical examples.

1. Introduction

Extremum Seeking (ES) systems are some of the most popular real-
time model-free optimization and stabilization algorithms developed
during the last century [1]. The stability and robustness guarantees,
simplicity of implementation, and model-agnostic nature of ES make
it an attractive option for numerous practical control problems, espe-
cially when the plant model is unknown and real-time adaptation and
optimization are necessary, see [2—4].

The classical tool for analyzing the stability properties of ES systems
is (first-order) averaging theory [5, Ch. 10], [6], which enables local
or semi-global practical stability results under mild assumptions [7-
10]. These ideas have been extended to study ES systems that em-
ulate Newton-like flows [11,12], as well as ES schemes for control
and optimization problems involving delays [13], partial differential
equations [14], and hybrid dynamical systems [15-17], among other
examples. Recently, ES systems have also been studied via higher-order
averaging theory [18-20], which can offer some flexibility in the design
and analysis of the exploration-exploitation mechanism in problems
that involve geometric constraints [17,21-23], or when additional
structure is imposed on the exploration dynamics, e.g. when the explo-
ration is done through a Levi-Civita connection associated with a me-
chanical system [24-27]. Such tools have led to the discovery of new ES
algorithms with desirable properties such as bounded update rates [28],

vanishing amplitudes [29,30], and even local exponential/asymptotic
stability properties [31].

On the other hand, irrespective of the nature of the averaging
tool used for the analysis and design of continuous-time ES algo-
rithms, when the extremum seeking problem is defined on smooth
compact boundaryless manifolds, achieving uniform global stability
results (either practical or asymptotic) is, in general, not possible due
to the topological obstructions that apply to continuous-time systems
(time-invariant or periodic) evolving on such sets [32], [33, Sec. 4.1].
However, when the ES problem is defined in R”, such obstructions do
not emerge, and, in principle, it might be possible to achieve global
extremum seeking. Nevertheless, the majority of results on ES in R”
have achieved, at best, semi-global practical asymptotic stability [8,
11,18,20,28]. Such results enable convergence from arbitrarily large
pre-defined compact sets of initial conditions by appropriately tuning
the parameters of the controller. However, without further re-tuning
of these parameters, solutions initialized (or pushed via perturbations)
outside of these pre-defined compact sets might exhibit finite escape
times. Recently, global practical convergence properties were studied
in [34] using a normalized scheme, and also in [35] using tools from
quasi-stochastic approximation theory. However, results that assert
uniform global practical asymptotic stability (characterized by, e.g., KL
bounds) in ES controllers remain absent in the literature. One of the
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main challenges in achieving such a result using standard averaging
theory is the requirement for global Lipschitz conditions in the vector
fields of the dynamics (see [5, Ch.10], [17, Sec. 6.1]). This condition
is often violated even in the simplest ES problems, which involve
cost functions characterized by quadratic maps. This limitation raises
the question of whether ES systems can achieve global convergence
results in a representative class of problems—a property that could be
highly valuable in practical applications by removing any restrictions
on the initialization of the algorithms, thus rendering them not only
model-free but also “initialization-free”.

In this paper, we address the above question and provide a positive
answer by showing that certain ES systems can achieve uniform global
(practical) stability properties. Such properties are achieved by shifting
from first-order averaging-based feedback designs, such as those consid-
ered in [7,8,15,34], to second-order averaging-based feedback designs,
akin to those explored in [17,21-25], but utilizing a different averaging
tool for the purpose of analysis. In particular, the main contribution of
this paper is twofold:

(a) First, we introduce a novel second-order averaging theorem with
global practical stability implications for a class of highly-oscillatory
continuous-time systems under appropriate assumptions on the maps
involved. For standard (i.e., first-order) averaging, global stability re-
sults with applications to control have been studied in [36] for ODEs,
and in [17] for hybrid systems. However, to the best of our knowledge,
a result of this nature was absent in the literature of second-order
averaging. Furthermore, unlike existing results on second-order aver-
aging [18], our results allow for the relaxation of the local Lipschitz
condition on the vector field at the origin, requiring only continuity
instead. This relaxation opens the door to new non-smooth dynamics
that could potentially lead to improved transient performance away
from the origin.

(b) Second, we use the aforementioned second-order averaging
results to establish uniform global practical asymptotic stability proper-
ties for a class of ES systems for which a variety of “typical” cost func-
tions apply, including quadratic maps, and, more generally, strongly
convex functions with smooth gradients. However, we also show that
convexity of the cost function is, in general, not a necessary condition
to achieve global ES under the algorithms studied in this paper. Differ-
ent analytical and numerical examples are presented to illustrate our
results, as well as the limitations and generality of our assumptions.

The rest of the manuscript is organized as follows. We begin by
introducing our notation in Section 2. Global averaging results are
presented in Section 3. In Section 4, we apply the results of Section 3
to study a class of extremum seeking systems that attain global (practi-
cal) stability properties. All the proofs of the results are presented in
Section 5. Finally, the conclusions and future work are discussed in
Section 6.

2. Preliminaries
2.1. Notation

We use R, to denote the set of non-negative real numbers and
R, to denote the set of positive real numbers. Similarly, we use Q.
to denote the set of positive rational numbers and N, to denote the
set of positive integers. The 2-norm of a vector x € R” is denoted
by |x| := \/ﬁ, and the operator 2-norm of a matrix A € R"™" is
also denoted as |A| := sup{|Ax| : x € R", |x|] = 1}. Given functions
f:R" > R"and g : R" - R/, we use gof : R” —» R/ to denote
their composition, i.e. gof(x) = g(f(x)). We use C° to denote the class
of continuous functions, and C* to denote the class of functions that
are k-times continuously differentiable, for k > 1. Given a closed set
K c R*, the function f is said to be C*¥ on K if there exists an open
neighborhood ¥/ ¢ R” such that K ¢ U and f is C¥ on V. For
each § € R, we denote the closed ball of radius §, centered at the
origin, by 6B, i.e. 6B = {x € R" : |x| < §}. Given a set A C R”,
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we use cl(A) to denote the closure of A with respect to the natural
topology in R”. When f € C! is a vector-valued map, D f denotes the
Jacobian of f. If f € C? is a real-valued function, then Vf denotes
the gradient of f, and V2f is the Hessian of f, i.e. V2f = D(V/f).
If f ec'and f = f(x,...,x,) is vector-valued, then D.f denotes
the Jacobian of f with respect to the ith argument. The map x;
R™ x .- x R — R" is the canonical projection onto the x;-factor,
which is defined by z;(x|,...,x;) = x;. A class K-function is a strictly
increasing continuous function @ : R,q — R, such that «(0) = 0. A
class K -function is a class X-function with the additional requirement
that lim,_,, , a(p) = +oco. A class KL-function § : Ryg xRyo = Ry is a
continuous function such that, for every s € R, the function (-, s) is a
class K, -function, and, for every r € Ry, the function f(r, -) is a strictly
decreasing function and limg_, , ,, f(r, s) = 0. To simplify notation, given
two (or more) vectors x; € R",x, € R"2, we use (x;,x,) € Rt to
denote the concatenation of x; and x,. Finally, amap ¥ : D - R,
where D, R c R” are closed, is called a diffeomorphism if: (i) it is C',
(ii) there exists a C! map ¥~! : R — D such that ¥~!o¥(x) = x, for all
x €D, and Yo¥~!(x) = x, for all x € R.

2.2. Dynamical systems and stability notions

In this paper, we study continuous-time dynamical systems with
states (x,7) € R" X Ry, and dynamics

%= folx,7), t=¢2, 1)

where f, : R" xRy, — R” is a continuous function parameterized
by a small constant € > 0. Systems of the form (1) can model highly
oscillatory systems that showcase fast variations of r compared to the
state x. For completeness, the notion of solutions to systems of the form
(1) is reviewed below.

Definition 1. For (x),7)) € R" X Ry, a function (x,7) : dom(x,7) —
R" X R, is said to be a solution to (1) from the initial condition (x,, 7,)
if: (i) there exist t; € R,5 U {oo} such that dom(x,7) = [0,,), (ii)
(x(0), 7(0)) = (xg,7y), and (iii) the function (x, 7) is C! on dom(x,7) and
satisfies

0 = L6070, 0,

for all 1 € dom(x, 7). A solution (x, 7) to system (1) is said to be complete
ift,=00. I

To study the (uniform) stability properties of the parameter-
dependent system (1), we will use the following standard notions (see,
e.g., [371), which, without loss of generality, are stated with respect to
the origin x = 0.

Definition 2. System (1) is said to be uniformly globally practically
asymptotically stable (UGpAS) as ¢ — 0% if there exists a class KL-
function g such that, for every v € R, there exists ¢* > 0, such that,
for all ¢ € (0,¢*), each solution (x,7) to system (1) from any initial
condition (xg,79) € R" X R satisfies

[x®)] < B(lxpl, 1) + v, ®)
for all + > 0. When (2) holds with v = 0, system (1) is said to be
uniformly globally asymptotically stable (UGAS). [

If the residual upper-bound v in (2) cannot be controlled by the
parameter &, but the validity of the bound still depends on ¢, we will
study the following property:

Definition 3. System (1) is said to be A-uniformly globally ultimately
bounded (4-UGUB) if there exists 4 > 0, § € KL, and £* € R, such
that for all € € (0, £*), each solution (x, 7) to system (1) from any initial
condition (xy, 7y) € R” X Ry, satisfies

[x(®] < Bllxpl, 1) + 4, 3)
forallt>0. [
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Note that in Definitions 2 and 3 we do not insist on uniqueness of
solutions, but rather impose the appropriate bound (and the property
of completeness) to every solution of the system.

3. On global stability via second-order averaging

To study the stability properties of (1) using second-order averaging,
we consider a sub-class of systems of the form

%= fo(x,1) = e f1(x,7) + fo(x,7), t=¢g72, (O]

where f; : R" xR,q = R”, k € {1,2}, are continuous functions, and
e > 0. Such types of systems commonly emerge in ES [18,30] and
vibrational control [38], and they are typically studied via averaging
theory. A representative example is given by control-affine systems of
the form

ro 2
x=¢7! (Z X by (T (), 1)> + by(x), t=¢72, (5)
i=1 j=1
where x € R”, r € N, #, J is an application-dependent C? cost function
to be minimized, b;; are suitable vectors, u, ;(-,-) is a scalar-valued
feedback law to be designed, and ¢ > 0 is a small tunable parameter, see
Fig. 1 for a block representation of these systems. Particular examples
of functions by, b; ;,u; ; and J will be discussed later in Section 4.

The stability properties of system (4) will be studied using a change
of coordinates induced by a suitable diffeomorphism. In particular,
under the action of a diffeomorphism ¥ : R" x Ry, — R" x Ry,
a solution (x,7) to system (4) is transformed into a new function
Yo (x,7) : dom(x,7) = R" xRy that is a solution (see Lemma 11 in the
appendix) to the following system:

=Y, f(x1), t=e7, (62)
where, for all (x,7) € R” xRy, the map ¥, f, is given by
P, f. = (D, (z0¥) o) foo®™! + 72D, (z0¥) 0P, (6b)

which is continuous by construction. System (6) is called the pushfor-
ward of system (4) under the action of ¥.

3.1. A global practical near-identity transformation

Traditionally, the averaging-based analysis of oscillatory systems
relies on the construction of a suitable (first-order) “near-identity”
transformation that maps the original dynamics into a perturbed ver-
sion of the so-called average dynamics, see [5, Ch.10]. Therefore, to
study the global stability properties of (4), we first construct a similar
“second-order” near-identity transformation of global nature, which we
denote by ¥. Then, we show how to use ¥ as a diffeomorphism such
that the pushforward of the ODE (4) under ¥ (cf. the Egs. (6)) is a
perturbed version of the average dynamics of (4).

We begin by imposing some regularity conditions on f:

Assumption 1. There exists §; € [0, o) such that, for all k € {1,2},
the following conditions hold

(a) The map f is C¥ in R" xRy, and there exist a positive constant
L, such that
[ [, 1) = fi(xa, D] < Lilx) = x5,

for all x;,x, € {x e R" : |x| > §;} and all 7 € Ry.
(b) There exists T € R, such that

T
fix,t+T) = fi.(x,7), /0 f1(x,0)dt =0,

for all (x,7) € R" X Ry.
(c) The map f, is C>~* with respect to x in the domain {x € R" :
[x] =6}
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Fig. 1. Block diagram description of system (5). In the diagram, the matrix b, =
[b;1, b;,] multiplies the vector u,(J(x),7) = (u;(J(x),7), 4;5(J (x), 7)).

(d) There exists L; > 0 such that
D, f1Geps ) f1(x 1, 72) = Dy f1(x0, 7)) f1 (x5 1)1 < Lylxy — x5,
forall x;,x, € {x eR" : |x| > 6,} and all 7,7, € Ryy. O

In Assumption 1, the case §, = 0 is not excluded. However, by
allowing for positive values of 6, we can consider maps f, whose
regularity drops from being C3~* to merely CY, as required by item (a)
in Assumption 1, near the origin. This opens the door in our analysis to
study certain non-smooth ES dynamics that have been show to exhibit
suitable local exponential/asymptotic stability properties [29,39].

Next, for the purpose of analysis, we introduce the auxiliary func-
tions y; : R — R, where, j € {1,2}, given by

_Jexp(=rt) r>o0, . n@
M = {0 r<o0, x) = @+ =r

Also, let 6 := (6;,6,,63) € Rio be a vector of non-negative constants
satisfying: -

5, > 6,
5, =6,

if 5, >0

if 5, = 0 7

63> 6,, and {

where the choice of §; will be clear from the context. Using the function
1, and the vector §, we define the smooth “reverse” bump function
@ : R" - [0,1] as:

M) 5, >6
p(x) = 12<52’5] 2 !

1 5, =6, =0.

(8a)

The function ¢ will be used only for the purpose of analysis, and
any similarly defined smooth “reverse” bump function suffices for our
purposes. The following Lemma states some useful properties of ¢.

Lemma 1. Let 6, > &,. Then, the function ¢ is C* on R", all of its
derivatives have the compact support [5,,5,], and it satisfies:

(@) p(x)=1foradll x e {x' eR": |x'| > 65,}.

b)) p(x)=0foralxe{x' eR": |x'| <6}
Proof. Follows by [40, Lemmas 2.20-2.22] and the construction of the
argument of y,. [J

To state our first result, and using ¢, we introduce the auxiliary
maps f; : R" xRy, — R, for k € {1,2}, defined as

fix,©) 1= 0(x) fi(x, 1), (8b)
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Fig. 2. Visual depiction of ¢ and the sets M; for j € {1,2,3}.

as well as the transformation ¥, defined as
T 0¥ (x, ) = D(x, 1), T W(x,T) =1, (9a)
for all (x,7) € R" X Ry, where the map @ is defined as follows:

D(x,7) 1=x—€ev;(x,7) — ezvz(x, 7), (9b)

for all (x,7) € R"” X Ry, with

v (x,7) 1= /r fi(x, 5)ds, (90)
0

0y (x,7) i= w(x,7) — D, v, (x, T)v; (%, T), (9d)

w(x, 1) = / (f2(x, 8) + D f1 (x, ), (x, 5) = £(x)) ds, (%¢)
0

and where the second-order average mapping f is given by

T
F0 =5 [ A0+ i) dr, ©
0

for all (x,7) € R" x Ry, with T € R, being the same constant from
Assumption 1, and [v;, bi 11 denoting the Lie bracket between the vector
v, and f}, i.e.,

[v1, £110x, ) = D, £ (x, D)v; (x, T) = D,y (x, 7) f1 (x, 7).

Remark 1. The map ¥ defined via (9) is an example of a (second-
order) near-identity transformation [6], which is a standard tool in the
averaging literature. The nomenclature stems from the fact that when
e =0, the transformation ¥ defined by (9) reduces to the identity map
on its domain and, by choosing 0 < ¢ < 1 sufficiently small, ¥ can
be made arbitrarily close to the identity map on bounded subsets of its
domain [6, Lemma 2.8.3]. Note that ¥ depends (smoothly) on ¢, but
we suppress this dependency in the notation for brevity. []

Next, for 6 of the form (7), we also consider the closed sets

M; ={xeR": |x| 24}, Jj € ({1,2,3}, (10)

J
which satisfy M; 2 M, 2 Mj;. In fact, by construction, the case
M, = M, = R" can only occur if §; = 0. We illustrate the function
@ and the sets M, for j € {1,2,3}, in Fig. 2.

The following proposition, key for our results, characterizes some
useful properties of the map ¥ and the pushforward under ¥ of the
vector field (4) (cf. Egs. (6)).

Proposition 1. Suppose that Assumption 1 holds, and let § satisfy (7).
Then, there exists ), Ly, L, € R.(, and a C map g : R" xRy % [0,£0] -
R", such that for all € € (0, ¢,) the following holds:

(@) The map ¥ : R" xR,y — R" X Ry is a diffeomorphism.
(b) The map ¥ and its inverse ¥~ satisfy:

|7r1 o ¥(0, 1)| < Lye,

‘7[10'}’_1(0, 1)( < Lye,

Systems & Control Letters 191 (2024) 105881

|#(x),7) =P (xp,7)| < (1 + Lye)|x| — x,],
#7100 1) =¥ a0 < (L Lyl = x,l,
for all x;,x, € R", and for dll = € Ry,
(c) For all (x,7) € M3 X Ry, we have ¥~!(x,7) € M, X Ry,
(d) The pushforward ¥, f, is given by
Y, fe(x,7) = f(x) + £ 8(x,7,€), an
for dll (x,7) € M3 xRy,
(e) The map g satisfies
lg(x,7,€)] < L (Ix] + 1), 12)
for dll (x,7,€) € R" xRy x[0,60]. [

Proof. See Section 5.1.

Remark 2. Apart from the suitable smoothness and boundedness
properties of ¥, Proposition 1 asserts that the pushforward of system
(4) under the action of the diffeomorphism ¥, i.e., system (6), is given
by

x = f(x)+eg(x,7,6), (13)

for all (x,7,6) € M; X Ry, X (0,¢y), where f is given by (9f). Since
Proposition 1 also asserts that the map g is C°, it is clear that, for
0 < € < 1, system (13) can be considered as a perturbed version of
the nominal second-order average system

X =f(),
for all (x,7,e) € M; x Ry X (0,£,). By using this relationship, as well
as the properties of ¥, we can inform the stability analysis of system

(4) based on the stability properties of the nominal averaged system
14. O

xeR", 14

3.2. Global stability via second-order averaging

To study the stability properties of system (4) via averaging, we
make the following assumption on the average map f.

Assumption 2. There exists a vector § satisfying (7) with the same
8, generated by Assumption 1, a C! function V' : R" - Ry, a; € Ky,
¢; >0, for i € {1,2}, and a positive definite function ¢ : R" — R, all
independent of §,, such that the following holds:

(a) For all x € R”, we have that

@y (|x) £V (x) < ar(|xD), (15a)

IVV () < ey¢h(x). (15b)
(b) For all x € M3, we have that

(VV(x), F(x)) < —¢; (). (15¢)

(c) At least one of the following statements holds:
(i) There exists L, > 0, such that

lgx.7.0)] < L(d(x) + 1),

for all (x,7,€) € M3 xRy X [0, ], where the map g and
the constant ¢, are generated by Proposition 1.

(ii) There exists a3 € K, such that as(|x])|x| < ¢(x), for all
xeR. O

The quadratic-type Lyapunov conditions in items (a) and (b) of
Assumption 2 are similar to those studied in the literature of perturbed
ODEs [5, Section 9.1]. They imply that the origin is UGUB for the
nominal average system (14) [5, Thm. 4.18]. However, without further
restrictions on the rate of growth of the norm of the map g in (11)
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Fig. 3. Numerical results for Example 2. The initial conditions and parameters are: x(0) = (10°,—-10°), v(0) = (10°,-10%), & =

relative to the map ¢, the perturbation ¢ g may dominate the average
map f far from the origin, for any non-zero &, thereby destroying
global stability properties. To preclude this possibility, we impose the
additional assumptions in item (c) of Assumption 2, which are discussed
in the following remarks:

Remark 3. Item (c)-(i) in Assumption 2 is automatically satisfied
whenever the map g is uniformly bounded. As shown later in the proof
of Theorem 3, ES systems with bounded vector fields (see, e.g. [38]) sat-
isfy this condition under appropriate assumptions on the cost function.
However, note that item (c)—(i) leaves room for unbounded growth of
the map g, provided that it can be dominated by the positive definite
function ¢, for all (x, 7, &) € M3 XR5(X[0, &]. For example, item (c)—(i)
in Assumption 2 automatically holds for the case ¢(x) = |x| thanks to
item (e) in Proposition 1.

Remark 4. Item (c)-(ii) in Assumption 2 is automatically satisfied for
the case ¢(x) = |x|. However, since «; is an arbitrary K function, item
(c)-(ii) is a substantial relaxation of the local behavior of the function
¢ on any compact neighborhood of the origin.

By leveraging the previous constructions and Proposition 1, we can
now state the first main result of the paper, which applies to the
pushforward of system (4). All the proofs are presented in Section 5.

Theorem 1. Suppose that Assumptions 1-2 hold. Then, there exists A5 > 0
such that system (6) is As-UGUB.

We now provide several useful corollaries of Theorem 1. The first
corollary concerns the stability properties of the original system (4).

Corollary 1. Suppose the assumptions of Theorem 1 hold. Then, there
exists A; > 0 such that system (4) is A;-UGUB.

The following Corollary leverages additional “uniformity” assump-
tions with respect to the parameters § (defined as in (7)) to obtain
“practical” residual bounds for all the solutions of system (4).

Corollary 2. Suppose that Assumptions 1 and 2 are satisfied for all &
such that 6, > 0. Then, system (4) is UGpAS as ¢ — 0*.

Remark 5. Corollary 2 considers the situation in which Assumption 1
is satisfied for each 6, > 0 but might be violated for §; = 0. Such
a situation arises when the vector fields defining system (4) satisfy
Assumption 1 on any closed subset of the set R"\{0} X Ry, but strictly
violate the conditions of Assumption 1 on R” X R,,. We illustrate this
situation in Example 1 below. []

Example 1. Let x € R, 7 € Ry, and consider the dynamical system

X = —|x|%sign(x) sin(r)?, t=¢72, (16)

1
which fits the structure of (4) with f; = 0 and f,(x,7) = —|x|2sign(x)
sin(z)?. For any fixed 6, > 0, there exists a constant Ls, >0 such
that, for all x;,x, € R\(-6,,6;) and all = € R, the function f,

3 1
L rn=Landc=3.

1
ﬁ’}/l:

satisfies | f,(x;,7) — fo(x5,7)| < Ls, |x; = x,]. Indeed, it can be shown,
see Lemma 9 in the Appendix, that the constant may be taken as
Ls, = ;51 +24/8;. Clearly, the constant Ls, > 0 tends to +oo in the
limit 6, — 0. Moreover, it can be shown that there is no constant
Ly, > 0 such that, for all x;,x, € R and all = € R, we have
[ fo(x1,7) — fo(x5,7)| < Lg|x; — x,|. Nevertheless, system (16) satisfies
Assumption 1 for any &, > 0 with the constants L, = 0 and L, = L.
Using formula (9f), we obtain that, for any choice of §; > 0 and § as in
(7), the corresponding nominal averaged system is

%= (0 = =3 00|77 sign(s), a7

3
where ¢ is the function defined in (8a). Using V(x) = |x|2, which is
¢!, and ¢(x) = |x|2, which is positive definite, we have that V and ¢
satisfy item (a) in Assumption 2 with ¢, = %, and

V() = 3 |x17 sign(x) (VW /®) = -3p@per.  a8)

Moreover, by construction, for any choice of §; > 0 and § satisfying (7),
we have ¢(x) =1 for all |x| > &,. Therefore, V' and ¢ satisfy item (b) in
Assumption 2 with ¢, = %, for any 6, > 0 and § satisfying (7). Finally,
since fi(x,7) =0 and |f,(x,7)| < ¢(x), for all x € R and all = € R, it
can be shown (see Lemma 10 in the appendix) that for any §; > 0 and
6 satisfying (7), the function g generated by Proposition 1 satisfies item
(e)-(i) with Lg = \/E(i + L,,) where L and L,, are as given in (28).
It follows that system (16) satisfies the assumptions of Corollary 2, and
we conclude that system (16) is UGpAS. []

The following Corollary considers the situation in which Assump-
tion 1 is also satisfied with 6, = 0 in (7).

Corollary 3. Suppose that Assumptions 1 and 2 are satisfied for all &
such that 6, = §; = 0. Then, system (4) is UGpAS as € — 0*.

Below, in Example 2, adapted from [41], we show how Corollary 3
can be used to establish global (practical) stabilization via vibrational
feedback control in certain systems with unknown control directions.

Example 2. Let x = (x;,x,) € R%, v = (v, 0,) € R?, B € R>? such that
rank(B) = 2, and consider the dynamical system

0 = Bil, 19)

where @ = (@, 2,) € R? is the control input. The goal is to stabilize the
equilibrium position x = v = 0 for system (19) under the assumption
that B is unknown. To tackle this problem, we consider a model-free
controller inspired by the ES systems studied in [39]. Namely, we let

e € Ry, 7 € Ry, and consider the feedback law:
i = e_lul(x, v, 1), iy = e_luz(x, v, 7), t=e2, (20a)

where the functions u; are given by

uy (x, 0, 7) = V27 (x, v) cos(log(J (x, v)) + T), (20b)
Uy (x, 0, 7) = VAT (x, v) cos(log(J (x, v)) + 27), (200)
and the function J is taken as

J(x,v) = [y x + 0% + ¢, (21)
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with ¢ > 0, where the positive gains y, and y, are tuning parameters. It
can be shown that the closed-loop system defined by (19)—(21) satisfies
Assumption 1 for §; = 0 (see the proof of Theorem 2 in Section 5.6).
Hence, we can use 6, = 6, = 0 and let §; > 0 be arbitrary. Using the
formula (9f), we obtain that the nominal averaged system is given by

X X 0 I X
(6)=4(0) = Crmmar gm57) (0)

for all (%,0) € R? x R?, which is a linear time-invariant system. If the
matrix A in (22) is Hurwitz, then system (22) is UGAS [5, Theorem
4.5] and, by converse Lyapunov theorems [5, Theorem 4.14], it also
satisfies Assumption 2 with ¢(x,v) = |(x,v)|, and a3(r) = tanh(r).
Consequently, by invoking Corollary 3 we conclude that the closed-
loop system defined by (19)—(21) is UGpAS. Fig. 3 shows the behavior
exhibited by the trajectories of the system. In all the simulations, we
used B = (1, 1;1,—1). We remark that, although we treat B as a constant
matrix, a similar result can be established when B is time-varying under
suitable uniform persistence of excitation conditions, see [41]. []

=1

Remark 6. The proof of Theorem 1 is constructive and provides an
explicit form for the upper bound &* on the parameter ¢ (cf. Eq. (44)).
However, we remark that, in general, the upper bound &* is usually
conservative.

4. Applications to extremum seeking systems

In this section, we leverage the averaging results established in The-
orem 1 and Corollaries 1-3 to study uniform global practical asymptotic
stability (UGpAS) properties in a class of ES systems of the form (5).

4.1. Main assumptions

To guarantee that the (open-loop) amplitudes of the exploration
signals in (5) have access to all directions in the parameter space, we
impose the following assumption on b, ;.

Assumption 3.
r 2 T 2 2
Zic Zia1 (bw.v) >ylvl5, forallveR". [J

We also make the following regularity assumption on the cost
functions J and the drift term b,. In all cases, we assume that J* :=
inf . cgn J(x) > —o0, and that J* = J(0). We remark that the assumption
J* = J(0) is not restrictive since, for the purposes of analysis, if J* =
J(x*) for some x* € R", we can always shift the origin of the coordinate
system to coincide with the unique minimizer x*. Similar conditions
have been used in the literature [31,39] to analyze ES systems with
(local) asymptotic stability properties.

There exists y > 0, such that the vectors b, ; satisfy

Assumption 4. The following holds:

(@) J(x) > J(0), for all x # 0.

(b) VJ(x) =0 if and only if x = 0.

(c) There exists L; > 0 such that |[V2J(x)| < Ly, for all x € R".

(d) There exists k3 > 0 such that |by(x)| < k3|VJ(x)|, for all x € R".

(e) There exists Ly > 0 such that |by(x;) — by(x,)| < Lylx; — x,|, for
all x;,x, eR". [

Remark 7. Items (a)-(b) in Assumption 4 are standard in ES prob-
lems [7,8]. Similarly, item (c) is equivalent to the assumption that
VJ is L;-globally Lipschitz [42, Lemma 1.2.2], which is satisfied by,
for example, quadratic maps, typical in the study of ES problems [2].
Finally, note that items (d)-(e) are relevant only when the drift term
by in (5) is not zero. However, in most ES systems this term is set to
zero. []

Next, we characterize two classes of cost functions J : R” — R that
we seek to globally minimize via the dynamics (5).
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Assumption 5. The cost J is a radially unbounded C2-function and
there exists a € K such that at least one of the following statements
holds:

(a) For all x € R", we have
a;([xDIx| < VI ().
(b) There exists M; > 0 such that
ay(IxD) < VI < My,
for all x e R". [
Remark 8. As shown in Lemma 7 in the Appendix, item (a) in
Assumption 5 is satisfied by any strongly convex C2-function with a
globally Lipschitz gradient. This family of functions includes quadratic
cost functions having a positive definite Hessian, which are common
in ES. However, as shown in the next example, convexity of the cost
function J is not needed to satisfy Assumption 5. []
Example 3. Let n =2, and let the function J : R*> - R be given by
J(x) := |x|> +3sin(|x])* + 1, (23)

which is not convex [43, pp. 4]. However, as shown in Lemma 8 in the
Appendix, the function J in (23) satisfies items (a)—(c) of Assumption 4
and item (a) of Assumption 5 with L; = 20 and class-K function
a;(s) = 0.5tanh(s). [J

The following example considers a cost function J obtained as a
regularization of the vector norm function, which satisfies item (b) in
Assumption 5.

Example 4. Let n =2, and let the function J : R” — R be given by

J(x) := |x| tanh(|x]) — 100. (24

It can be directly verified that the function J satisfies items (a)-(c) in
Assumption 4 and item (b) in Assumption 5 with L; =3, M; =2, and
the class-K function a;(s) = tanh(s). [

4.2. ES dynamics with linear growth

We now consider two different algorithms of the form (5) that are
able to achieve global ES. The first algorithm that we consider, initially
introduced in [39], can be written as (5) with the following functions

u;

V2w;ycos(log(y) + w;7) y>0

Uy (3, 7) = {O iy o (252)
V2w;ysin(log(y) + w;7) y>0

Uy o (0, 7) = {0 s e o (25b)

where o; € Q,, such that w; # w; for i # j. For the sake of
convenience, the closed loop system (5) is rewritten here:

ro 2
x=by(x)+ et Y N by uy (I (), 7), t=g2 (26)
i=1 j=1
Clearly, (26) has the same form as (4).
The following theorem is the second main result of this paper.

Theorem 2. Suppose that Assumptions 3 and 4 hold with y > k3. Then,
if item (a) in Assumption 5 holds:

(a) There exists A > 0 such that system (26) is A-UGUB under the
feedback law (25).

() If J* > 0, then system (26) is UGpAS under the feedback law
(25). O
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Fig. 4. Numerical results for Example 4 (left) and Example 5 (right). The insets in the top right of the figures depict the quasi-steady state.

The novelty of Theorem 2 compared to existing literature is to
establish uniform global bounds of the form (2)-(3) for the ES dynamics
(5) with feedback law (25). As discussed in Example 3, such bounds
can be obtained even when J is not convex.

Example 5 (Example 3 Continued). Let w; =1, r = 1, and consider the
ES system (5) with destabilizing drift by(x) = lx, and constant vectors
by = (1,0), b;, = (0,1). Notice that in this case y = 1, and it can be
shown that k3 = 0.8. Therefore, item (d) in Assumption 4 is satisfied.
The feedback law is given by (25), with cost function (23). Since all the
assumptions of Theorem 2 are satisfied and J* > 0, we conclude that
system (5) is UGpAS. Numerical simulation results are shown in Fig. 4.
In the figure, we present simulations obtained from various randomly
generated initial conditions and using ¢ = 1/ \/E As shown in the
figure, all trajectories converge to a neighborhood of the origin. []

4.3. ES dynamics with bounded control

The second ES algorithm that we consider can also be written as
system (5) with the following choice of the functions u; i

u; 1(y,7) 1= \/20; cos(y + o;7), (27a)
Ui (y,7) 1=\ 2w; sin(y + ;7). (27b)

The semi-global practical stability properties of these systems have
been studied in [28,38]. These algorithms are characterized by uni-
formly bounded vector fields, which are advantageous for applications
with actuator constraints. Note that system (5) with the feedback law
(27) can also be written as (26).

The following theorem is the third main result of this paper.

Theorem 3. Suppose that Assumptions 3 and 4 hold. If y > k3 and
item (b) in Assumption 5 is satisfied, then system (26) is UGpAS under the
feedback law (27). [

The novelty of Theorem 3 compared to the results of [28,38], is to
establish a global bound of the form (2) for all solutions of the system,
albeit under stronger assumptions on the cost functions.

We conclude this section by presenting a numerical example that
illustrates the application of Theorem 3.

Example 6 (Example 4 Continued). Let w; = 1, r = 1, and consider
the ES system (5) with by(x) = (0,0), b;; = (2,0), b;, = (0,2), and the
feedback law (27). Notice that in this case k3 = 0 and y = 2, so the
assumption that x; < y holds trivially. We consider the cost function
(24), which satisfies the required Assumptions to apply Theorem 3.
We simulate the system from randomly generated initial conditions
with e = 1/ \/4_7r Numerical simulation results are shown in Fig. 4.
Since item (b) in Assumption 5 restricts the gradient to be uniformly
bounded, the convergence rate that emerges is slower compared to
the convergence rate of the ES dynamics of Example 5. However,
Theorem 3 still asserts that system (5) is UGpAS. []

5. Proofs

In this section, we present the proofs of the main results.

5.1. Proof of Proposition 1

First, we introduce several constants which will be used in sub-
sequent steps of the proof. Let 6,,L,,L,,L; and T be the constants
generated by Assumption 1. For each § of the form (7) and k € {1,2},
define the constants:

B,s= sup |Vie(x) (28a)
x€35;B
B s = sup | fr(x, 7). (28b)
(x,7) €363 BXRs
. L, +4B, 56, -6 6,>6
Lk = k k,5( 2 1) 2 1 (ZSC)
Ly 6y =6, =0,
2 4Ly By 5
i Ly+3By;Ly + B} B+ 55 5,> 6y (284)
Ly 8, =6, =0.

where B, ; < +oo follows from Lemma 1, By 5 < +co follows from items
(a)-(b) in Assumption 1, and the compactness of the closed ball 35;B.
Using (28a)—-(28d), we also define the following constants:

L, =TL,, L,y =T (2L, +4TL;), (28e)
L:=(L,+2TL;), Ly :=n(L,, + L), (28f)

Ly :=8Ly +2T (By5+2B,5+3TL B ;). (28g)

L,y :=2L,, +TB;. (28h)

L,y =2L,,+T (2By5+3TL By;). (281)

Next, we define the constant ¢, € R, by:

g9 :=min{l,&,&,,&3,&4}, (29a)

where the constants £, are given by

g =4 L, + L) &=, L) (29b)

& =615, & =63 -0)(1+8)" (L, + L7 (29¢)

Henceforth, and for each § of the form (7), we shall require that £ €
(0, £).

Throughout the proof, we assume that a choice of § satisfying (7)
is fixed. For the sake of clarity, we divide the proof into several key
lemmas.

Lemma 2. Let the assumptions of Proposition 1 be satisfied. Then, for all
k € {1,2}, the following holds:

(a) For dll (x,7) € M,, we have that f,(x,7) = f,.(x, 7).

(b) For all (x,7) € cl (R"\M,) X Ry, we have that f,(x,7) = 0.

(c) For dll (x,7) € R" xRy, and for the same T € R, from item (b)
in Assumption 1, we have that

T
Fulet+T) = fu(x.0), /0 1, 0dz = 0.
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(d) The map f, is C° and, for dll x|,x, € R" and dll t € Ry, the map
fy satisfies

|71, 0) = fieg, 0| < Eyley =3,

(e) The map f, is C3~* with respect to x on R”" x Ry,
(P For dll (x|, 7)), (x5, 7,) € R" X Ry, the map D, f, - f, satisfies

|Dxf](xl’7|)'fl(x]’72)_Dxfl(x2771)'fl(x2’772)| < ﬁ3|x1 - x|

Proof. If 5, = 6, = 0, then @(x) = 1 and all the conclusions of the
proposition follow immediately by (8b) and Assumption 1. Therefore,
without loss of generality, we assume that &, > §,.

Proof of items (a), (b), and (¢): By Lemma 1, ¢(x) = 1, for all x € M,.
Hence, by construction, the map fk satisfies fk(x, 7) = fi(x,7), for all
(x,7) € M, x Ry, which proves item (a). Similarly, by Lemma 1,
@(x) = 0, for all x € §,B. Hence, by construction, the map fk also
satisfies fk(x, 7) = 0, for all (x,7) € §;B X R, which proves item (b).
Item (c) follows directly from the definition of the map fk.

Proof of item (d): By Lemma 1, the map ¢(x) is C®. Hence, by
item (a) in Assumption 1, the definition of the map £, implies that
fiG.) is €% on R”" x Ry. Since fi(x,7) = fi(x,7), for all (x,7) €
M, X Ry, it follows that f, inherits all the properties of f, in the
domain M, X Ry. In particular, items in Assumption 1 imply that
D, f is well-defined and satisfies the bound |D, f;(x,7)| < L,, for all
(x,7) € M| x Ryg D M, x Ry. Consequently, D, f,(x,7) also satisfies
the bound |Dxfk(x, 7)| < Ly, for all (x,7) € M, X Ry. Similarly, since
filx,7) =0, for all (x,7) € §;B X Ry, it follows that D, £, (x,7) = 0 is
well-defined and satisfies Dxfk(x, 7) = 0, for all (x,7) € 6;B x Ry,.

The definition of the map £ implies that, for all (x, 7) € cl (M, \M,)x
Ry, we have

D, (e, DI < 19D, £, (x, )] + | £ (x, DI V().

On the other hand, it can be shown that |Ve(x)| < 4/(5, — §,), for all
x € R". In addition, since cl (M;\M,) c 35BN M,, it follows that, for
all (x,7) € R" X Ry, the Jacobian D, f « is well-defined and satisfies

D, fi(x. 0l < Ly
Consequently, for all x;,x, € R", and Vr € Ry, the map f, satisfies

oGy 7) = frlea, ol < Ly lx) — x5l

which concludes the proof of item (d).

Proof of item (e): Since the map ¢ is C®, the definition of the map
fk implies that it inherits all the smoothness properties of f, in the
domain M; X R,g. In particular, item (c) in Assumption 1 implies that
fx(,7)is €% on the closed set M, for all 7 € Ry(. On the other hand,
since fk(x, 7) =0 for all (x,7) € ;B x R, it follows that fk(~,r) is C*®
on the open set R"\M,, for all = € Ry,. Therefore, f;(-,7) is C** on
R", for all = € Ry, which proves item (e).

Proof of item (f): For (x,7,7,) € R" X R,y X R, define the maps

F(x,71,1) 1= D, f1(x, 7)) f1(x, 7).
F(x, 71, 7)) 1= (X)F(x,7,7)) = Dxfl(x, rl)fl(x,rz).

Since f,(-,7;) is €2 on R", for all 7; € Ry, and f;(-, 7)) is C? on M,
for all 7| € Ry, it follows that the map F(-,7;,1,) is C! on M,, for all
(71, 1) € Ryy X Ryp. In addition, since the map ¢ is C*, it follows that
the map F£(-,7,17,) is also C' on M, for all (z),7,) € Ry X Ryy.

From Lemma 1, ¢(x) = 1, for all x € M,. Hence, by definition,
the map F satisfies F“(x,rl,rz) = F(x,7|,71), for all (x,7),7,) € M, X
R,y X Ry,, which means that F inherits all the properties of the
map F in the domain M, X R,y X R,,. In particular, from items (c)
and (d) in Assumption 1, D F is well-defined and satisfies the bound
D, F(x,7y,7)| < Ls, for all (x,7,7,) € My X Ry X Ry, which implies
that D, F also satisfies the bound |D, F(x, 7;,1,)| < Ls, for all (x,7,7,) €
My X Ry X Ry
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From Lemma 1, ¢(x) = 0, for all x € §;B. Hence, by definition, the
map £ satisfies F(x, 7, 7,) =0, for all (x, 7|, 7,) € §, BXRy( xRy, which
implies that F(~,rl,12) is ! on R", for all (z;,1,) € R X Ry, and that
D, F satisfies D, F(x, 7|, 7,) =0, for all (x,7},7,) € §;B X Ry X Ry,

The definition of the map F implies that, for all (x,7) € cl (M \M,)
x R5(, we have
D, F(x, 71, 7)| < [9(x)D, F(x, 71, 7)] + | F(x, 71, )] [ Vep() T
Recalling the definition of the map F, we obtain that

D, F(x,7,7) = D, f1(x, 7)) f1(x, ) Vo(X)T + @(x)D, (D, f1(x, 71) f1 (X, 72))
+ D, f1(x, 1)V o) f1(x, ) + f1(x, 7))V@(X)TD, f1(x, 75)
+ [1( )1 1) TV (),

which leads to the upper bounds

|F(x,71,7)| < ilBl,(Sv

ID,F(x,7,7)| < L3+ 3L By 5+ Blz,an,a"

for all (x,7,7,) € 36;B X R, X R,. Therefore, we obtain that

- 2 4L, B,
D F(x,7y, 7)) < L3 + 3L By 5+ By ;B 5 + %6,
for all (x,7),7,) € 36;B x Ry X Ry, which concludes the proof of the
Lemma. |

Lemma 3. Let the assumptions of Proposition 1 be satisfied. Then, the
following holds:

(a) The maps f and vy, for k € {1,2}, are C! on R" x Ry.
(b) For dll x|,x, € R" and dll = € R, the following holds:

|f(x) = fe)l < Lixy — x5,
[0k (xy,7) = 0k (X0, D < Lygelx) — x|, V k€ {1,2}.

Proof. We prove each item separately.

Proof of item (a): Since v, is the integral of f, with respect to 7, it
follows from item (e) in Lemma 2 that the map v, is C%inx, and C! in
7. In addition, since f is obtained as the definite integral with respect to
7 of the terms D, v; f;, D, f, vy, and f,, and, from item (e) in Lemma 2,
all those of terms are C! in x, it follows that f is C!. Moreover, since
v, is the sum of the term D, v,v,, which is C! in all arguments, and the
integral with respect to 7 of the terms D, v; f}, D, f; vy, and f,, which
are all, from item (e) in Lemma 2, C! in x and C? in 7, it follows that
v, is C! in all arguments.

Proof of item (b): From the definition of the map v, and item (d) in
Lemma 2, we have that

T
J01Ge1,2) = 0, (53, 2] = \/ (Frros) = fep0 ) ds
0
< Lytlxy = xl STLyIx) = xol,

for all x;,x, € R"” and all = € [0,T]. In addition, from item (c) in
Lemma 2, v, is periodic in 7. It follows that, for all x;,x, € R” and
all 7 € Ry, we have

[01(x1,7) = 01 (x2,7)| < Ly |x) — x5

From the definition of v, and by interchanging matrix multiplication
with the integral, we have that

D, f,(x, D)o, (x, 7) :/ D, f1(x,7)f1(x, s)ds.
0

From item (f) in Lemma 2, we have that

ID,f1(x1, D)0y (1, 7) = D, f1 (%2, D)0y (x5, 7))

[} (Dxfl(xl,‘r)fl(xl,s) - Dxfl(xz,r)fl(xz,s)) ds

< I:3T|x1 - x| < Tﬁ3|x| - x|
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for all x;,x, € R” and all = € [0,T]. In addition, from item (c) in
Lemma 2, v; and f, are periodic in . It follows that, for all x,,x, € R”
and all = € R, we have that

ID, £, (xy, T)vy (X1, 7) = D f1(30. )0y (x5, T < TL3]x; = x5

From the definition of v;, using Leibniz’s rule, and by interchanging
matrix multiplication with the integral, we have that

val(x77)fl(x’7):/)TDxfl(xss)fl(X’T)d&
From item (f) in Lemma 2, we have that
D01 (x1. 7)f1(x1.7) = D0y (63, 7). (5. D)
= ' /0 "D fi(12 9 (512 = Dy fy (53,90 (1)) s
< Lyl = %l S TLylxy = xa.

for all x;,x, € R"” and all = € [0,T]. In addition, from item (c) in
Lemma 2, v; and f, are periodic in <. It follows that, for all x,,x, € R"
and all = € R, we have that

D01 (x1, 1) f1 (x> 7) = D0y (X0, 7) f1 (X0, D) < TL4]x; = x,].

From the definition of v, using Leibniz’s rule, and interchanging
matrix multiplication with the integral, we have that

D,v;(x, )y (x,7) = /0 /OTDxf, (x, $).f1(x, 0)ds do.

From item (f) in Lemma 2, we have that

ID, v (x1, T)0; (X1, 7) = Doy (o, )0y (X5, 7))

/0 ) /0 (D fy (12501 (512 0) = Dy f (532 50 (532 ) s o

< L37lxy = x| S T?Lalx; — xl,

for all x;,x, € R” and all = € [0,T]. In addition, from item (c) in
Lemma 2, v; is periodic in z. It follows that, for all x;,x, € R” and
all 7 € Ry, we have that

ID, vy (xy, T)0; (X1, T) = Dy (xa, Ty (X5, T)| < T2 L4]x; = x,].

Finally, note that, for all x;,x, € R", we have that
T
T|f(x1)—f(xz)| < / |f2(x1,7) - fz(x2,7)|d‘f
0
T A A
+ / D vy (x1,7) f1(x1,7) = Dyvy(x,, ) f1 (X5, 7)|dT
0

T

+ / |Dxf1(X1,T)U1(X1,T) - Dfol(xz,T)Ul(Xz,TNdT

0

ST (Ly+2TL3) |x; = x,,
and, for all x;,x, € R"” and all = € R, we have that
[0y (X1, T)=0p (X2, 7)| 5/ |fz(X1,T) - fz(xz,f)|df

0
+ [ 17w foide
0

T
+ /0 D, f1 (1, 2oy (%1, 7) = D fy (30, Ty (x5, 7)] dT

+ |D,v;(x1, 7)v1 (X1, 7) = D0y (X0, T)01 (X5, 7)|

<T (2L, +4TL3) Ix; — x,1,
The proof of the Lemma is concluded by noting that L = T(L, + 2L,)
and L,, =T (20, +4TL;). W
Lemma 4. Let the assumptions of Proposition 1 be satisfied. Then, for all

e € [0, &), the following holds:

(@) ¥ is a diffeomorphism on R" X R.
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(b) For dll T € Ry, ¥ and its inverse ¥~! satis
>0

|70 (0, 7)] < Lye, ‘71'10'1"_](0, r)( < Lye.

(c) For dll x|,x, € R" and for dll = € R, the map ¥ and its inverse
v satisfy
[P(xy,7) =P (x0,7)| < (14 Lype)|x; — Xy,
|lp-1(x1,f) - qf-l(xz,r)) <(1+ Lye)lx; — x,.

(d) For dll (x,7) € M3 x Ry, ¥~!(x,7) € M,.

Proof (Proof of Item (a)). Let (x,7) and (%,%) be any two points in
R" x R, and suppose that ¥(x, 7) = ¥(%, 7). Then, by construction, we
have 7 = %, and

2
e =% < )€ lv(x,7) = 0%, 7).

i=1

From item (b) in Lemma 3, we obtain that
|x = %] <e(L,; + L,pe)|x—X|.

We note that for all € € (0, ¢y) we have that |x — X| < %|x — X|, which

can only happen if |x — X| = 0. Therefore, for all (x, 7) € R"XRs,, for all
(%,7) € R"xR, and for all € € (0, (), ¥(x,7) = P(X,7) = x =X, and
7 = 7, which in turn implies that the map ¥ is injective on R” X Ry.
Next, for each (%,7) € R” xR, define the map @ : R" > R™:

D(x) = X+ x — D(x,7).

By direct computation

D(x) =%+ Z ekvk(x, 7).
k=1

Now let x;,x, € R” be any two points. It follows that

[B(x)) = D(xy)| < Y o ey, 7) = 0 (g, 7).
k=1

From item (b) in Lemma 3, we obtain that
[®(x)) = D(xy)| < &(Lyy + Lype)lx; — x].

Since € € (0,¢), it follows that |D(x)) — D(xy)| < %|x1 — X,| for all
xy, X, € R", which implies that @ is a contraction. Thus, @ has a unique
fixed point [40, Lemma C.35], which implies that for all £ € (0, ¢,), for
all x € R” and for all = € Ry, there exists a unique point x € R” such
that

% =mo¥(x,1) = D, 7). (30)

In other words, ¥ is onto, and therefore a bijection on R” x Ry.
From item (a) in Lemma 3, we know that the map ¥ is C' on
R" x Ry, and so its Jacobian D¥ is well-defined, and given by

_ (D@ D&
mu_< 2 D )

where the Jacobians D, @ and D,® are given by
2 2
D@ =1-) D, D,®=-Y £D,u.
k=1 k=1

For each i € {1,....n} and k € {1,2}, let R}, : R" xRy, — Ry, be
given by '
n
R (er)= Y |(Deox0), |-
=1 j#i

where (D, v (x, T))ij are the entries of the matrix D, v, (x, 7). From items
in Lemma 3, the maps v, are C! and satisfy | D, v;(x,7)| < L,, for all
(x,7) € R"XRy and k € {1,2}. In particular, for all (x, 7) € R"XRy,, for
alli,j € {1,...,n}, and for all k € {1,2}, we have that ‘(vak(x, T))ij| <
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L, . As such, for all (x,7) € R" xRy, for all i € {1,...,n}, and for all
k € {1,2}, we have that 0 < R"Uk(x,r) < (n-1)L,,. Next, note that the
entries of D, @ are given by:

2
Zek D vk(x,‘r))“.,
k=1
2
_ Z £k

k=1

(D, @(x,7)), vie{l,...,n}

(Dy@(x,7)),; = (Dyvy(x. 7)), - Vi#je{l,...,n},
Consequently, for all (x,7) € R"” X Ry, for all ¢ € R, and for all

i€ {l,...,n}, we have

Z‘Dd?(xr) ‘ iek

J#i= k

Ri(x,7) 1=

i | D Uk(x,r))’.j|

J#i=1

1
2 2
=Y R () S (n=1) Y ¥ Ly
k=1

k=1
Similarly, we have
2 2

1- ZekLU’k < (DX<I>(x,T))” <1+ Z EkLL,,k.
k=1 k=1

Therefore, for all € € (0, ¢p), all (x,7) € R" xRy, and all i € {1,...,n}:

<l-Lye< (Dxtb(x,z'))“. <l+Lge< %

I
=

0<R(x‘r)<Ll1,e T

By applying the GerShgorin circle theorem [44, p. 269], we obtain
that for all € € (0,¢), for all (x,7) € R" X R, the eigenvalues of
the Jacobian matrix D, @(x,7) are contained in the compact interval
[1 —2Lye, 1 +2Lge] C[1/2,3/2].

Then, we have the following claim, proved in Appendix B.1.

Claim 1. Forall e € (0,¢), and all (x, ) € R" xR, the Jacobian matrix
D, ®(x, ) is invertible,

ID.®(x,7)| < 1 +4Lye <2, D, &(x, T)*“ <1+4lpe<2,

and the Jacobian D¥ (x,7)~! is well-defined and given by

D, @(x,7)"'  —D,®(x,7)"'D,d(x, r)> 0

0 1 @D

D¥(x,7)"' = <
For all € € (0, &), the map ¥ is bijective and, for all (x, 7) € R"XR,
the Jacobian D¥(x, 7) is invertible and its inverse is continuous. Thus,
by invoking the global rank theorem [40, Theorem 4.14], we conclude
that, for all € € (0,¢), the map ¥ is a diffeomorphism.
Proof of item (b): Note that by [40, Proposition C.4] the Jacobian of
-1 is given by

DY (x,7) = (D¥o ¥~ (x, 7)) "

From the definition of ¥, for all (z,e) € R,y X (0,¢(), we have that
70%(0,7) = — Yi_, €0,(0,7). Since 0 € 38;B, the definition of v,
implies that, for all = € R, we have that

[v,(0,7)] <TB, [0,0,7)| < T (2B, 5+3TL B, 5).

Define the constant Ly ; by

Ly, :=4Ly +T (B, 5+2By5+3TLB;). (32)

It follows that, for all (z, ¢) € Ry %(0,&y), we have |70 ¥ (0,7)| < Ly €.
Since ¥ is a diffeomorphism, we have
2

0=r0%o¥~1(0,7) =m0 ¥~1(0,7) = ) ek, 0¥ 1(0,7).

k=1
By adding and subtracting the term ZLI £¥v,(0,7) and invoking the
Lipschitz continuity of the maps v,, we have that

2 2

710 # 710, 0] < | Y e (00 ¥ (0,7) = 00, 7D + | Y €40, 0, )
k=1 k=1

10
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2 2

<Y Ly lm o 0, ) + ) e v (0,7,

k=1 k=1

which implies that

2 2
(1 -y ekLU,k> Iz 0% 0. 1) < ) €400, 7).

k=1 k=1
Since € € (0, ¢), it follows that

2

7010, ) <2 ) v, (0, 7).
k=1

Recalling the definition of Ly, we obtain that, for all = € R,,, we have

|70 %(0,7)| < Lye, |7 0¥ 710, 7)] < Lye. (33)
1 v 1 v

Proof of item (c): Note that, for all x;,x, € R”, for all = € R, and
for all € € (0, ¢y), we obtain via Hadamard’s Lemma [45, Lemma 2.8]

|#(x1,7) = P (xp.7)| < [Ty o %0, 7)| %) — X2,

(lp—l(x],f) _lp—l(xz,f)| < [yt G, %0, 0| 131 = X3,

where the matrix-valued maps J, and J,-1 are given by
1
Jp(x1,%,,7) = / D, ®@(x; + A(x| — x,), 7)dA4,
0

Jy-1(x1, %5, 7) = /01 D@ ! (xy + Ax; — x,), 7)d4,
and where we used the shorthand notation
D@ ! (x,7) := (D, @o ¥ (x,7)) "
It follows that

|P(x1,7) =¥ (x5, 7)| < (14 Lype)|x; — x,],
(av (x1,7) =¥ (x2,1)| (1+ Lye)|x; — x,|-

(34a)
(34b)

for all x;,x, € R”, for all = € Ry, and for all € € (0, ¢).
Proof of item (d): Since ¥ is a diffeomorphism, we have that
2
x=rmoWo¥ (x,1) = 1o ¥ (x,1) = Y vy ¥ (x, 7).
k=1
Therefore, for all (x,7,£) € R" X Ry, X (0, £):

2

Zekuko v=l(x, 7).

|7zlo¥’_1(x,r)—x| = (35)

From item (b) in Lemma 3 and the inequality (34), we know that, for
all x;,x, € R” and all = € R, the maps v, satisfy:

(ukoqfl(x],r) - ukolrl(xz,r)) < 2Ly 4lx) — x5l

Moreover, since g, < 8;/Ly, it follows from inequality (33) that
mo¥~1(0,7) € 35;B, which implies that, for all = € R, we have that

‘Ulo’l’_](o 1)‘ <TBy;

‘Uzo'l’ o, f)‘ (2B, ;5 +3TL By ;).

Therefore, by adding and subtracting terms to (35) and using the
triangle inequality and the previous bounds, we obtain that

2

‘nlo'l’_'(x, T)— x‘ 2

Lo x(x1+ D),

for all (x,7) € R" xRy, and all € € (0, (). Invoking the reverse triangle
inequality, we get

2
[x] —e(x| + 1) Z Ly < ‘HIOW_I(X,T) ,
k=1
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for all (x,7,e) € R" xRy X (0, (). Next, for all € € (0, ¢(), we have that
0<1-¢ Zi=l L,y for all (x,7) € R" X R, Hence, we obtain that

2 2
(1 —€ Ziv,k) |x| —€ ZIA‘U”‘ < |7rlo&”_1(x,r)‘,
k=1

k=1

for all (x,7,e) € R" xRy X (0, &y), which implies that

2 2
8, < <1 —sZI:U‘k> G—e Y L< ‘IIIO‘I’_I(X,T)|,
k=1 k=1

for all (x,7,e) € M3 xRy X (0, ). [

Lemma 5. There exists a C* map g : R" X Ry X (0,£y) > R" such that,
for all (x,7) € M3 xRy, and dll € € (0,¢), the map Y, f,, given by (6b),
satisfies

P, fo(x,7) = f(x) +eg(x,7,8),

where f is given by (91).

Proof. By direct computation, we obtain:

¥, fo(x,7) = (D@0 (x,7)) f0¥ ' (x,7)
+ (D@ (x, 1)) flo¥(x, 7)™
+D, 0¥ (x,0) 72,
2
D, ®o v lx,r)=- ekDTuko v=l(x, 1)

2
Z &kauk> 0¥ l(x, 7).

k=1

k=1
D, ®o¥ ! (x,7) = (1 -
Moreover, note that
Do~ (x,7) = fio ¥ (x,7),
and also that

D,vy(x,7) = fo(x,7) + D, f1(x, D)o, (x,7) — F(x)

=D, w(x,7)

D, f1(x,7)v, (x, T) — D0 (x, 7) f1 (x, T)

=-D, (D, v; (x.7)v} (x,7))
= f2(x,7) = D0 (6, ) f1(x, 1) = (%)
which implies that
D,vy0 ¥ (x,7) = fro ¥ (x,7) — fom o ¥ (x,7)
— (Do P (x, 1)) froP T (x, 1)
Therefore, another direct computation shows that
¥, [ =(fro®P () = floP T (x, 1)) e!
+ (fr0 P (x,0) = fro¥ (x, 1))
—D, w0 (x, 2) f10 ¥ (x, 7)
+D, 00?7 (e, D) fio? T (D) + (0 + f(x,me),  (36)
where the map f is given by
f(x,7,6) = fompo¥ (x,7) = f(x) — eD w0 ¥ (x,7) fL0¥ (x,7)
— €D, 00 ¥ (x, 1) flo W H(x, T)
— 2D, 0,0 P (x,7) S0P (x, 7).

Using Hadamard’s Lemma [45, Lemma 2.8] and the fact that f is C!,
we obtain:

Fxp) = Flx) = Fxp, xp)(x) = Xy),

for all x,,x, € R?, where F is given by

1
F(x;,x,) :=/ D, f(Ax; + (1 = Dxy)dA.
0

11
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Hence, using the fact that ¥~! is a bijection:
Ffompo®™(x,7) - f(x) = F(x,7) (m 0?7\ (x,7) — x),
for all x € R", where F is given by

F(x,7) := F (m0P7'(x,7),x). 37)

However, since ¥ is a diffeomorphism, we have

2
x=ﬂloll’oll’_l(x,z')=zrloll’_l(x,‘c)— ekukoli’_l(x,r),
k=1

which implies that
formpo¥ l(x,7) = f(x)=¢ F(x,7)vj0¥  (x,7)
+ 2F (x,7)vy0 v-l(x, 1),
and that f can be written as
f(x, 7,€) =€g(x,7,€),
where g can be written in compact form as:
g=FuoW™ ' —Dwjo? ! oWl —D w0 ! flow!
+ & (Foyo?™' =D 0yo?! frowl). (38)

Since ¥ is a diffeomorphism, and g is a combination of C° maps
composed with ¥, it follows that g is C° in all arguments.

Finally, by item (d) in Lemma 4, for all (x,7,e) € M3 xR x (0, &),
we have that ¥~!(x, 1) € M, x Ry. Also, by item (a) in Lemma 2, for
all (x,7) € M, xR, we have that fk(x, 7) = fi(x, 7). Therefore,

Fro?lx, 1) = fro¥ 1 (x, ),

for all (x,7,€) € M3 xRy, x(0,£)). Hence, in this set the first four terms
in (36) cancel, and we obtain that the pushforward map ¥, f, satisfies

V. fe(x,1) = f(x)+eg(x,7,¢).

for all (x,7,€) € M3 xRy X (0, £p). [ |

Lemma 6. There exists a positive constant L, > 0 such that the map g,
defined in (38), satisfies

lg(x,7,€)| < Ly(|x| + 1), 39
for all (x,7,e) € R" X Ry x (0, &p).
Proof. The map g can be written in compact form as
5
g, 7,8) = ) Gix,7,) g(x, 7, 8), (40

k=1
with the matrix-valued maps G; given by
Gi(x,7) = F(x,7),

G;(x,7) = Dvy0 Pl (x, 1),
Gs(x,7) = €D, 0,0 ¥~ (x, 1),

Gy(x,7) =D, 0,0 ¥ (x, 1),
Gy(x,7) = €F (x,7),

and the maps g; given by

&(x.7) = —f0¥ 7 (x,7),
24(x,7) = 0o ¥ (x, 7),

g1(x,7)=vo0 ‘l’_l(x, T),
8(x.7) = —f1o¥ ' (x,7),
g5(x,7) = —fr0 ' (x, 7).

where the explicit (smooth) dependence on ¢ is omitted to simplify
notation. By Lemma 3, the maps f and v, are C!' and satisfy

D, f()l < L, ID v (x, )| < Ly,

for all (x, 7,€) € R"XR5(x(0, &y). Thus, for all (x, 7, £) € R"xR5( %[0, &,
we have that |G;(x,7,€)| < M,; for all i, where the constants M, ; are
given by

M, = 2L, M,, :=2L,,, M,; :=2L,,,
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M

g4 ==2L, Mg,S = 2Lu,2’

By Lemma 4, the diffeomorphism ¥ and its inverse ¥~! are globally Lip-
schitz in x. In addition, from items (a) in Assumption 1 and Lemma 3,
the maps f; are Lipschitz in x for all (x, 7) € M xRy, and are C° for all
(x,7) € R"XRy. Furthermore, ¥~!(x,7) € M, XRyo C M| xRy, for all
(x,7) € M3xRy. Therefore, for all x;,x, € Mj, all (z,€) € Ry X (0, &),
and all i € {1,2,...,5}:

|gi(x1,7,€) — g;(xp,7,€)| < Lg;lx; —x3],
where the constants L, ; are

L,, :==2L,,, L, :=2L,,
Loy :=2L,,, L,s :=2L,.

L, :=2Ly,
g4 2.5

Substituting with x; = x € 6B and x, = 7;0¥(0,7) in item (c) of
Lemma 4, we have that

710W 7 (x, 7)| < (1 + Lyé)|x| + Lye < 2|x| + 85 < 3685,

for all x € 6;B. It follows that ¥~!(x,7) € 36;B x Ry, for all (x,7) €
6;B X R,. Consequently, we have that

sup | fro ¥k, 7)| < sup
(x,7) € 53BxRq (x,7) €353 BXR5

[fx(x, 7)) = By 5.

Recall that
g1(x,7,6) = 0o P (x, 1),
Hence, we have that

sup lg1(x,7)| < sup [y, D) <TB 5= M.

(x.7) €53 BxR5 (x.7) €363BXRy
Similarly, it can be shown that, there exist constants M,; € R, such
that |g;(x,7,€)| < My, for all (x,7,¢) € 6;B xR, % (0, &). In particular,
the constants M) ; are given by
My, :=TB,,

My, :=T (2B, 5+3TLBy;),

My, = By s,
Mys := By ;.

Mys =By ;.

Let x,, € {x : R" : |x| = 63} be an arbitrary point, and note that
X, € M3 n&;B, and that, for all (x,7,e) € R" X Ry, X (0,¢,), we have
that each term in (40) can be written as:

Gi(x,7,6)g;(x,7,€) = Gi(x,7,€)(g;(x, T, €) — gi(X,,, T, E))
+ Gi(x,7,€)g;(xy, T, €).

For all x € R", either x € M3 or x € (R"\M;) C 6;B. If x € M3, then
we have that

|Gi(x, 7, €)g;(x, 7,€)| < My, Ly ;|x = x| + My ; M,
S Mg iLglxl+ Mg (Ly 85 + Mg p)-

Alternatively, if x € (R"\\M3;), then we have that
|Gi(x, 7, €)g;(x, 7, €)| < My ;M.

Combining all of the above, we obtain that, for all (x,7,e) € R" xRy x
(0, &), the map g satisfies the inequality

lgCx. 7.0 < Ly(Ix] + 1),

. s 5
where L, :=max {Ei=l Mg Ly; > Mg (Ly 65 + Mg,O)}' [ |
All the claims of Proposition 1 follow now directly by
Lemmas 2-6. [ ]

5.2. Proof of Theorem 1

First, we introduce several definitions. Let ¢;,c,, a;, . a3, Lg, and
¢ be generated by Assumption 2, and let ¢, and L, be the constants
generated by Proposition 1. Let a4 € K be such that a,(|x|) < ¢(x)
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for all x € R". Such a function exists because ¢ is positive definite [5,
Lemma 4.3]. Let

as = sup az(r), ay := sup ay(r), 41)
reRsy r€R>g

0t i=c;/(4ey Ly), €] 1= min{eg, n}, asn} /2}, (42)

ny 1= cy/(4ey L), €5 :=min{eg, asn; /2}, (43)

and let as5(r) := a3(r)r € K. Note that, in general, a3,a, € R,y U {o0}.
By Assumption 2, at least one of the following cases holds:

(C1) Item (c)—(i) in Assumption 2 holds; or
(C2) Item (c)-(ii) in Assumption 2 holds.

Therefore, the constants:

(€ = (e7,mp)  (CD %s true & (C2) is false (44)
(5,15)  (C2) is true,

and the function:

1 €
' (%)
a;l (%) +“5_1 <%> (C2) is true,

h )

are always well-defined whenever Assumption 2 holds, where p de-
pends on § through L, or L,, appearing in the definition of the
constants #; and #;, which, in general, are fixed only after a choice
of § is fixed. Also, for any fixed choice of § satisfying (7), the function
p(8,+) is a class K function [5, Lemma 4.2].

Next, note that from Assumption 1 and Proposition 1, and for all
e € (0,¢y), the map ¥, f, is continuous. Hence, for all (x(,7y,¢) €
R"xR5(x(0, £)), a solution to system (6a) starting at the initial condition
(xq, 79) exists.

Let V be given by Assumption 2. Its time derivative along the
trajectories of (6a) satisfies:

(C1) is true & (C2) is false

p(6,€) i= (45)

V= VV(x)TBV*fE(x, T,€).

Using item (d) in Proposition 1 and the bounds from Assumption 2, we
obtain that for all (x,7,e) € M3 X Ry X (0, £p):

V<V F(x)+eVV(x) gx, 1, €)
< =19 + (0|8 (x. 7. ).
We consider two possible cases:
(C1) Item (c)—(i) in Assumption 2 holds, then:
. c c -
V<= 2o - (G —eal,) g
¢ _
- 90 (Fo00—carl, ).

for all (x,7,€) € Mz xRy % (0,&,), which implies that:

Vix| > 65 +a;! <i>
m

(C2) Item (c)—(ii) in Assumption 2 holds. Then:

.. A 2
V<-5¢0"

V< —%tﬁ(x)z - (%) (%a;(lxb - fszg) Ix]
€1
— 00 (Sas(xDlnl ey Ly ).

for all (x,7,€) € M3 xR, X (0,¢y), where a3 € K, and where we
used Proposition 1-(e). It follows that:

; 2 2 -1 € -1 €
V<——¢x), V|x|>6+a — |+« — .
2 e\ )t

Combining all of the above, we obtain that ¥ < —c¢(x)?, for all
|x] > 263 + p(6,¢) and all € € (0,¢*), with ¢ := ¢, /2. Then, following



M. Abdelgalil and J.I. Poveda

similar steps as in [5, Appendix C.9] and the proof of [46, Appendix
C.], there exist functions § € KL and ¥« € K, such that, for all
(x9,79,€) € R" x Ry X (0,€*), any solution to system (6a) starting at
(xg, 7p), satisfies

lx(O] < px(D], 1) + 45, V120, (46)

where 4;, 1= k(255 + p(5, €)). [

5.3. Proof of Corollary 1

By Theorem 1, there exists an ¢* € (0,¢y) and g € KL such that,
for all (Xp,79,.6) € R" X R,y X (0,€*), any solution (%,7) of system
(6a) starting from (%, 7,) satisfies the XL bound (46). Let (x,7) be a
solution of system (4) starting from an initial condition (x, 7). Since
¥ is a diffeomorphism, and system (6a) is the pushforward of system (4)
under ¥, it follows that (x(z), 7(r)) = ¥~ 1(x(t), 7()), for all t > 0, where
(x,7) is some solution of system (6a) with initial condition ¥(x, 7).
Therefore, from the triangle inequality, we have that for all + > 0:

XD < |0 ® 7 G0, 70) = 71070, 70| + |70 (0,70
From item (b) in Proposition 1, we obtain that

‘”1"”’_1(3(1), ©(1) — 70?70, T(T))| <+ Lyo)|x@),

and also |z;0¥~1(0,7(t))| < Lye. Therefore, it follows that
[x] < (1+ Lype)p(|z 0 ¥ (xo, 7)l, 1) + (1 + Lype)ds . + Lype.
Similarly, we have

|10 ¥ (xg, 79)| < |70 ¥ (xg, 79) — 710 W (0, 70)| + |70 P (0, 7p)|

<A+ Lypo)lxgl + Lye.
Since f(-,1) € K, it is strictly increasing and satisfies
Bz 0¥ (xp, 7)1, 1) < f((1 + Lye)|xg| + Lye, 1).

for all (xg, 79,1,€) € R" XR5y X Ry X [0,€*]. We then have two possible
cases:

(C1) If |xy| < Lye, then
B0 W (xg. 70)], 1) < PQ2Lye + Liye, ).
(C2) If |xy| > Lye, then
Bz 0¥ (xp, t)l, 1) < B2 + Lye)|xgl, 7).
Therefore, for all (x.7).7.£) € R" X Ryy X Ry X [0, €*]:

B(|m10 ¥ (x0, 7], 1) < B2 + Lype)|xol, 1) + PRLye + Ly, 1)
< B2+ Lypo)lxol, ) + fQLye + LLE2,0).

However, from Claim 1, we have that Lye < 1, for all € € [0,€*].
Therefore, we have that

B(|lmy o ¥ (xg, 1)l 1) < B3lxgl.1) + BBLyE,0).

The result of the corollary follows by defining

A(5,€) := (1 + Lye)As, + Lye + (1 + Lye)B3Lye,0) (47)
and

B(r,s) :=2pGr, s), (48)
for all r,s > 0. ||
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5.4. Proof of Corollary 2

It follows from Assumption 2 that x € K and g € KL generated by
the proof of Theorem 1 are independent of the choice of §, > 0 and &
satisfying (7). Let v > 0 be given. Hence, there exists r > 0 sufficiently
small such that x(r) < f. Let 6, < r/16, and choose, 6, = \/561,
85 = 31/38, = 46, which satisfy (7). It follows that 26; = 85, < %. Let
e, > 0 be such that p(5,¢) < % for all € € (0,¢,). Such ¢, always exist
because p(3,-) € K. It follows that 4;, = k(255 + p(8,€)) < f. Letg, >0
be such that Lye < min{v/3,1/3} and f(3Lye,0) < v/4foralle € (0,¢,),
where g comes from (46). Such ¢, always exist because (-, s) € K. Let
e* > 0 be generated by Corollary 1, and define ¢** = min{e,, €,,€*}.
Then, every solution of system (4) starting at (x, 7,) satisfies the bound
(3) with KL function given by (48) and ultimate bound A~5,5 given by
(47). However, by the choice of 5 and &, we have that A},E < v, which
establishes the desired bound. [ ]

5.5. Proof of Corollary 3

Since Assumptions 1 and 2 are satisfied for all 6; > 6, = 6, =0, we
may pick §; € (0, o) arbitrarily small. Following similar steps to the
proof of Corollary 2 yields the desired result. [ |

5.6. Proof of Theorem 2

We consider the case when J* € R is arbitrary, and we verify that
the maps defining system (26) satisfy Assumption 1. Clearly, the right
hand side in (26) is C° and satisfies item (b) in Assumption 1. Let
J € Ry, and let §; € [0, c0) be such that J(x) > J, for all |x| > §,.
Such 6, always exists because J is radially unbounded. It follows that
the feedback law

u; 1 (J (%), 7) = 2w, J (x) cos(log(J (x)) + w;7)

u;»(J(x), 7) = \/20,;J (x) sin(log(J (x)) + »;7),

is C2 for all |x| > 6,. We recall that system (26) has the form of system
(4) with

r 2
AT =D by (T(x),7),

i=1 j=1

S2(x, 1) = by(x). (49)

Since the vectors b, ; are constant and the functions u; ;(J(x),7) are
C? for all |x| > ), it follows that system (26) satisfies item (c) in

Assumption 1. Next, direct computation gives

r 2
ID, £,Ge, O < (VI Y D Dyuy ;(J(x), 7l 1b .

i=1 j=1

r 2
ID. 106 7D 166t < 0 D 1Byl 11U, g (x, 71, 72)1,
ik=1j,I=1
r 2

ID.(D, £ T 1T < D Y 1y llby DU, (e, 7y, )1,

ik=1j,1=1
where the maps U; ikl and D, U; ki are given by
U[,j,k,[(X, T),7) = Dyui,j('](x)! 7] )uk,,(J(x), 7)VJ(x),
DU j ii(x, 71, 72) = Dy ;(J (%), 7)uy ; (J (%), ’L’Z)VZJ(X)
+ Dyu; ;(J (%), 71)D g (J (), ‘rz)VJ(x)VJ(x)T
+ Df,”i,j (J(x), 7y, (J (%), TZ)VJ(X)VJ(X)T,

and the maps D, ; and Di”h ; are given by

Ve

Dyu; (. 7) = — (cos (za; +log(y)) — 2sin (ze; +10g(»)))
V2

Dyu; (3, 7) = i (2cos (rw; +1og(y)) + sin (re; +log(y)))

£



M. Abdelgalil and J.I. Poveda

NG

Dzu.,l(y, T)=— cos (rw + log(y)) s
g 2\/5y% '
54/o;
Diu,-yz(y, T) = sin (ra) + log(y))

2\/5y2
for all (y,7) € R,y X Ryy. We observe that, for all |x| > 4, and all

7 € Ry, we have that
1 Sw; _1
lu; ;(J (%), D] £ V20,0 ()7, IDyu; ;(J (%), 7)| < - J

SV |
V2

(J(x),7)] <
2

ID%u (x)

y l/
Therefore, we obtain that

UG 71 2] < Vw00 d ()72 VI ()L,
DU, 44 (511 2| < V@ ST VI + V5IVI ).

From Assumption 4-(c), we have that VJ is L;-globally Lipschitz,
which implies that IVIx)|? < 2L;(J(x)—J*), for all x € R" [47, Lemma
1, pp.23]. It follows that

1
Uy j (71,1 < VI0L w0 (14 J*T) 2
Similarly, from Assumption 4-(c), we obtain that
IDLU a6 71, 2] < 2Ly 3wy (V5 (14 7T) +1)).

for all |x| > é; and all = € R,,. Combining all of the above, we arrive
at the upper bounds

D, f1(x, D) £ L,|D,(D, f1(x, 7)) f1(x,72))| < L3,

(50)

for all x| > 6; and all = € Ry, where the constants L; and L; are
given by
o2
Ly=vVL (1+7%7)2 Y Y \5lb, (51a)
i=1 j=1
' r 2
Ly =2L, (\/5(1+J* ) D Z Sl 1Byl (51b)

ik=1j,I=1

Therefore, system (26) satisfies items (a) in Assumption 1 for k = 1 and
(d) in Assumption 1 with the Lipschitz constants L; and L; given by
(51). Finally, we note that, since f,(x,7) = by(x), it follows that system
(26) satisfies items (a) for k = 2 with the Lipschitz constant L, = L,
where L, is the Lipschitz constant from item (e) in Assumption 4.
Hence, we have shown that system (26) satisfies all of the items in
Assumption 1.

Next, let 6, € (§;,), 3 € (5,,0), and let M, for j € {1,2,3},
be the corresponding nested subsets defined in (10). Using the formula
(9f), the nominal average system (14) corresponding to system (26) on
Ms, is given by

i = () = o(x)(by(x) + 2 Z by bl VI (). (52)

i=1 j=1

Consider the Lyapunov function candidate V' and the positive defi-
nite function ¢ defined by

Vi) =Jx)-J%, P(x) = VI ()], (53)
which satisfy the inequalities

a(Ix) V() S ap(Ix, VYV (0] < ¢, (54)
for all x € R”, and also satisfy the inequality

VW) F(0) < (k3 = I VI <0, (55)
for all x € Mj;, where the functions «; and «, are K, functions,

whose existence is guaranteed by the radial unboundedness of V [5,
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Lemma 4.3]. Since, by assumption y > k3, system (26) satisfies items
(a)-(b) in Assumption 2. Moreover, from Assumption 5, we have that
a;(|x])]x| < |VJ(x)|, where a; is a class K function. Hence, system
(26) satisfies item (c)—(ii) in Assumption 2 with ¢(x) := |VJ(x)|. By
Theorem 1 we conclude that system (26) is UGUB.

Next, we consider the case when J* € R,. In this case, there exists
J € Rsuch that 0 < J < J*. Since J* is the minimum value of the cost,
it follows that J(x) > J for all x € R”, which implies that the previous
computations hold with §, = 0. In addition, in this case Assumption 1
holds with §; = 0, and the Lyapunov function candidate ¥ and the
positive definite function ¢ in (53) still satisfy the inequalities (54)-(55)
for any choice of § satisfying (7), with M,, for j € {1,2,3}, being the
corresponding nested subsets defined in (10). Therefore, by invoking
Corollary 3, we conclude that system (26) is UGpAS. Finally, if J* =0,
we can take J = 0 and in this case, Assumption 1 will be satisfied for
all 6; € (0, 0) using /m = 1/2w;k in (50). Therefore, by Corollary 2, we
conclude that the closed-loop system is UGpAS. [ |

5.7. Proof of Theorem 3

It is easy to see that the right hand side in (26) is C° and satisfies
item (b) in Assumption 1. In addition, the maps u; ; are C%, which
implies that the maps u; ;(J(-), 7) are C? for all x € R". Therefore,
system (26) satisfies item (c) in Assumption 1. Similar to the proof of
Theorem 2, we compute that

ro 2
ID, £1(x, D) < [VI@)] Y, Y 1Dy (J (), Dl by |-

i=1 j=1
r 2
Dy f1Ge, ) f1(x, 1)| < 2 2 15; j11br U j gy (X, 715 7)1
i.k=1j,I=1
r 2
ID.(D, f166 ) F1 T < D0 D 1y Iy IDLU, 6, 7, ),
ik=1j,I=1

where the maps U; Lkl and D, U; ij.k are given by
Dyu; ;(J (%), 71)uy  (J (x), 1) VI (x),
i (TG0, 7 (T (x), 72) V2T (x)

+ Dy ;(J (), 7Dy (J (%), 1) VI (VI (x) T
+ Diu,‘,j (J(x), 7y (J (%), TZ)VJ(X)VJ(X)T,

Ui jri(x.71.73) =

D, Ui g (%715 7,) =D

and the maps D u; ; and Df}u,’ ; are given by

D,u; 1 (. 7) = =2, sin (0,7 + y) .
Dyu;»(y,7) = y/2w; cos (wi’[,' + y) ,

Diu,-,l(y, 7) = —/2w; cos (wiT + y) ,
D2u;5(y,7) = =20, sin (0,7 + y) ,

for all (y, 7) € R,(xRy,. We observe that, for all x € R” and all = € Ry,
we have that

[u; j(J(x),7)| <20,
|Dy Ij(J(x)’T)l < \/2(1),-.
Therefore, we obtain that

U j ki (6, 715 T)| < 24/@;00, [ VI ()],

ID,U, ;16 71, 72| < 20/@,0, IV + V2T ().

From Assumption 4-(c) and Assumption 5-(b), we have that |VJ(x)| <
M; and |V2J(x)| < L, for all x € R". It follows that

|U,-J,k,,(x, 71, 7)) £ 2M ;4\ /w0,
DU, j s 71 7)) € 22M3 + L)y /ooy

for all x € R” and all = € R,,. Combining all of the above, we arrive
at the upper bounds

IDyu; ;(J (). 7| < V2.

|Dxf1(x7 )| < Ly, |Dx(Dxf1(X, ) f1(x, Tz))| < Lj,
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for all (x,7) € R" X Ry, where the constants L; and L; are given by

ro 2
Ly = VM, 3 3 ooy )

i=1 j=1

r 2
Ly=20M3+Ly) Y, Y oo lb, bl

ik=1jI=1

(56)

(57)

Therefore, system (26) satisfies Assumption 1 with §; = 0. Next, let
6; = &, = 0, and fix an arbitrary choice of é; € (0,0), and let M;
for j € {1,2,3} be the corresponding nested subsets as defined in (10).
Using the formula (9f), the nominal average system (14) corresponding
to system (26) on R”, is given by

ro 2
X =00 =byx)+ Y\ D by b VI (58)

i=1 j=1
Since the Lyapunov function candidate V' and the function ¢ (53)
now satisfy the inequalities (54)-(55) for all x € M3, for any choice
of 6; € (0,00), it follows that system (26) satisfies items (a)-(b) in
Assumption 2. Moreover, from item (b) in Assumption 5, we have that
ay(|x]) < |VJ(x)|, where a; is a class K function. Finally, using item
(b) in Assumption 5 and item (d) in Assumption 4, we obtain that
[by(x)| < |VJ(x)] < Ly, for all x € R". Then, we have the following
Claim.

Claim 2. The map g from item (d) in Proposition 1 is uniformly bounded,
for all (x,7,e) € R" X Ry X [0, £].

The proof of Claim 2 can be found in Appendix A. From Claim 2,
it follows that system (26) satisfies item (c)-(i) in Assumption 2.
Therefore, by Corollary 3 we conclude that system (26) is UGpAS. W

6. Conclusion and future work

We introduced a (second-order) averaging method that allows to
study the stability properties of a class of oscillatory systems with
periodic flows based on the stability properties of their corresponding
averaged systems. In contrast to existing results in the literature, the
method is suitable for the study of uniform global (practical) stability
properties. Such properties are studied under suitable assumptions,
which, naturally, are stronger compared to others that only enable local
or semi-global practical results. By leveraging the proposed method,
we showed that a class of extremum seeking algorithms is able to
achieve uniform global practical asymptotic stability for a broad range
of cost functions, which include quadratic (with positive definite Hes-
sian), strongly convex, and certain invex functions. Future research will
extend these results via singular perturbation theory to study dynamic
plants in the loop, as well as systems with hybrid dynamics.
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Appendix A. Auxiliary lemmas

Lemma 7. LetJ : R" - R be a u-strongly convex C! function with L
globally Lipschitz gradient. Then, item (d) in Assumption 5 is satisfied.

Proof. The upper bound follows directly by [42, Thm. 2.1.5]. To obtain
the lower bound, note that by u-strong convexity:
(VI(x)) - VJ(xz))T () = x2) 2 plx; = X512

for all x;,x, € R". Using Cauchy-Schwartz inequality, it is easy to
see that the following holds |VJ(x|) — VJ(xy)| > ulx; —x,| for all
xy,X, € R". It follows that

[VI () = VI 2 1P 1xy = x,)%,

for all x;,x, € R". Let a; [0,00) — [0,u) be given by a;(s) :=
u tanh(s), which is strictly increasing and satisfies a;(0) = 0. Therefore,
a; € K and, by definition, a;(s) < u, for all s > 0. It follows that

[VI(x) = VI 2 ay(x) = %)% 1x; = [

for all x;,x, e R".

Lemma 8. Let J : R" — R be the function defined in Example 3. Then,
J satisfies Assumption 3.

Proof. The cost function J can be written as J = ho H where A(s) =
s+3 sin(\/g)2 and H(x) := |x|*> are C*® everywhere on their domain.
Moreover, H(x) > 0 for all x € R". Therefore, the function J = ho H is
C*®. The derivative of J satisfies

VJ(x) = Dh(H (x))VH (x) = 2Dh(H (x))(x),
where
3sin (2 H(x))

VH®X)

1

Dh(H (x)) = 5 24 eR.

It follows that
[VJ(x)> = 4|Dh(H (x))(x)|* = 4Dh(H (x))*|x|?,

and it can be verified that i < Dh(H (x)) < 4, for all x € R". Therefore,
there exists u € R, such that, for all x € R", we have that

VIR 2 42 |x > 2 oy (1xD?|x ],
where a;(s) := 2utanh(s). Similarly, the second derivative of J satisfies
V2J(x) = D*h(H(x))VH(x)VH (x)" + Dh(H(x))V>H (x),
where
3cos (2 H(x)) 3sin (2 H(x))

2 - -
D h(H(x)) = )

4H (x)3/?
It follows that
2
IV2J ()| < ID*h(HG)IIVH ()] + [DACH )|V H (),
where |D*A(H (x))| < % Hence, the Hessian satisfies the inequality

3|VHx)?

8 <20.
Ho) +06<

[V2J(x)] <
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Appendix B. Proofs of auxiliary claims

B.1. Proof of Claim 1

Proof. The matrix D, @(x,7) is a square matrix, and therefore its
singular value decomposition is given by

D.@(x,7)=V(x,7)Z(x,7)U(x, ‘L')T,

where the matrices V(x,r) and U(x, r) are orthonormal matrices and
X(x, ) is a square diagonal matrix with the singular values of D ®(x, 7)
on the diagonal. Since for all ¢ € (0,¢), for all (x,7) € R" X Ry,
the eigenvalues of the Jacobian matrix D,®(x,7) are contained in
the compact interval [I — 2Lye, 1 + 2Lye] € [1/2,3/2], it follows
that the singular values of D, @(x, r) coincide with its eigenvalues and
therefore are also contained in the compact interval [1 — 2Lye, 1 +
2Lye] c [1/2,3/2]. Moreover, the matrix D,®(x, 7) is invertible and
its inverse coincides with its pseudo-inverse. From the singular value
decomposition of D, @(x, 7), we have that its pseudo-inverse D, ®(x, )"
is given by

D, ®(x, D =UxDZx0)Vix, 1),

However, X(x, )’ is simply the inverse of X(x, r) which is well-defined
since X(x, 7) is a diagonal matrix whose diagonal entries belong to the
compact interval [1 —2Lye, | +2Lye] C [1/2,3/2]. Therefore, we have
that

D, &(x,7)"! =D, &(x,7)" = U(x, 1) Z(x, 7)" WV (x,7)T,

and, using the properties of the operator norm of matrices, we have
that

D, @(x. 7)| < [UGx )] |2, 0] V(. 2],
‘DX(D(X, r)_1| <|U(x,7)| )Z(x, T)_l) |V (x,7)].

Since U(x,7) and V(x,7) are orthonormal matrices, it follows that
|U(x,7)| = |V(x,7)| = 1. In addition, since X(x, r) is a diagonal matrix
whose diagonal entries belong to the compact interval [1 — 2Lye, 1 +
2Lye] C [1/2,3/2], we have that |Z(x,7)] < 1 + 2Lye < g and
‘Z(x,:r)’l‘ < ]_21@5 < 2. However, since 0 < € < ﬁ, then I—Z]W <
1 +4Lye. Therefore, we have that

D, ®(x,7)| <1+ 2Lye, D @(x,7)" | < 1+4Lye.

It follows that the inverse of the Jacobian matrix D¥(x, ) is well-
defined and is given by (31), [44, p. 146], which concludes the proof
of the claim. |

B.2. Proof of Claim 2

Proof. The map g from item (d) in Proposition 1 has the explicit form

5

gx,7,6) = ) Gi(x,7,€) g(x, 7€),
k=1

where the matrix-valued maps G; are uniformly bounded and the maps
g; are given by

& (x,7) = —f0P7(x,7),

&(x. 1) = 007 (x,2),

gi(x,7)= Ulo'l’_'(x,r),
&0, 1)=—fo¥ ' (x,7),
g5(x,7) = —fr0 v1(x, 7).

In this case, since §, = §, = 0, we have that fk(x, 7) = fi(x,7), and
therefore we obtain that

ro 2
[661) = D0 b 20,8 () + 0,7), fo(x, ) = by(x),

i=1 j=1
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where & (s) = cos(s) and &,(s) = sin(s). Clearly, for all (x,7) € R"” X Ry,
we have that

ro 2
[fi(x,7)| < Z Z \/2_C0i|bi,j|,

i=1 j=1

|2 D < VI < M.

where used item (b) in Assumption 5. In addition, direct differentiation
shows that

ro 2
ID, 1D < ) Y V20,1 VI ()L,

i=1 j=1
which is also uniformly bounded due to item (b) in Assumption 5. Since
v, is the integral of f, with respect to = and is periodic in 7, it follows
that v, is also uniformly bounded. Similarly, v, is the integral with
respect to = of terms that (smoothly) depend on f, D, f}, and f,, all
of which are uniformly bounded, and is periodic in z. It follows that
v, is also uniformly bounded. Finally, since ¥~! is diffeomorphism, it
follows that all the maps g; for i € {1,...,5} are uniformly bounded.
Therefore, the remainder map g is also uniformly bounded. [ ]

Appendix C. Auxiliary lemmas

Lemma 9. For any fixed §, > 0, there exists a constant L5 > 0 such
that: | f,(x1,7) = f,(x0, D) < L |x) = x5], for all x,x, € R\(=6},6))
and all © € Ry, where f, R xR — R is the function given by

F2(x, 7) = —|x] 2sign(x) sin(r)2.

Proof. Since f,(-,7) : R — R is absolutely continuous for all 7 € Ry,
and by invoking the fundamental theorem of calculus, we have that

1
o108 = Fola 7] < /O ID. £2(x(). DIdA |x, = xa].

where x(4) = x, + Ax; — x,), and D, fo(x,7) = —l|x|_% sin(7)2. In
particular, for all = € R, and all §; € (0,), the map D, f,(-,7) :
[-8,,8,] = R belongs to the function space L!([—5,,6,]). Fix 6; € (0, ),
and let x;,x, € R\(-6;,6;) be two arbitrary points. If x; = x,, then
there is nothing to prove. Therefore, without loss of generality, we may
assume that x; > x,. Then, only one of the following cases holds:

(C1) x;,x, € [+6;,+00), which implies that x(1) € [§,, ), for all
4 € [0, 1]. Consequently, for all = € R,:

1
1
D, fo(x(A), T)|dA £ ——.
/0 ? 24/,
(C2) x,x, € (—c0,—6;], which implies that x(1) € (-0, -6, ], for all
4 €[0,1]. Consequently, for all 7 € R,:

1
1
Dy fo(x(A), D) dA £ —.
/0 ? 21/,
(C3) x; € [+6),+) and x, € (—o0,—6;], which implies that there
exists A;, 4, € [0, 1], such that x(4)) = §;, x(4,) = =65, 4| > 4,
and the following relations hold

X(4) € (-0, =61, Vi€ [0, 4],
x(4) € [-61,+6;], VA €[4y, 4],
x(A) € [+68), +), VA €[4, 11.

Using the properties of the integral, we have that
1 X
/ D, fo(x(4), )] dA < / D, f2(x(4), 7)] d4
0 0

A1
+ / [D, fo(x(A), 7)| dA (C.1)

A

1
+ //1 |D, f>(x(4), )| d4,
1



M. Abdelgalil and J.I. Poveda

for all 7 € Ry. Therefore, we have that

1 1 3
Dx ((/l),)d/lﬁ—+/ Dx (y,7)| dy. C.2
/0| A DI < ID, f3(y. 0l dy C.2)

1 —6
Finally, we compute fj;l ID, f>(y, 7| dy = 24/8;.

L

75 + 2\/6_1 , the proof of the Lemma is
1

By defining L; with Ls :=
concluded.

Lemma 10. Consider system (4) with x € R, f|(x,7) =0, and

falx,7) = —|x|%8ign(x) sin(r)?,

and let g be the map generated by Proposition 1. Then, there exists a
constant L, such that

_ 1
lg(x, 7.0)] < Ly(Ix]? + 1),
for dll (x,7,€) € RX Ry X (0, ).

Proof. As shown in Lemma 9, for any §, € (0, o) there exists a constant
Ls, > 0 such that

[f2(x1,7) = fo(x2, )] < L, Ix1 — x5,

for all x;,x, € R and all = € Ry. Therefore, and since f; = 0, system
(4) satisfies Assumption 1 for any 6, € (0, o). Consequently, for any
(fixed) choice of ¢ satisfying (7), there exists ¢, such that all assertions
of Proposition 1 are true. In particular, the pushforward of system (4)
under the action of the diffeomorphism ¥ generated by Proposition 1
satisfies

x = f(x)+eglx,1,¢€),

where the averaged vector field f is given by
) = =3 p(01x|Tsign().

Using formulas (9), we compute that

02(x,7) = 2RI Sin@0) = [oy(x, )] < 1,

for all (x,7) € RxR,. From the proof of Proposition 1, we obtain that
the map g has the explicit expression

g(x,7,€) = e F(x, 1)v,0 P (x,7)
— €D, v, 0¥ (x,7) fro ¥ (x, 7),

for all (x,7,e) € RxR5( X (0, &), where ¢, is the constant generated by
Proposition 1, and F is the map given by

Fx,1) = F(m 0P~ (x,7), %),
1
F(x;.xy) =/ D, f(ix, + (1 — A)x,) dA.
0

In addition, Lemma 3 implies that there exist constants L and L, , such
that

IDf(x)| < L, Doy (x, D) < Lyp,
(x,7) € R xRy, It follows that
|F(x, o) < L, D 00 P~ (x,7)| < Lyys,
(x,7) € R xRy. Hence, the map g satisfies the upper bound
lgCx.7.0)| < e(Llvyo ¥~ (x. D) + Lyal fr0 ¥~ (x, D))

<eL+ Llv ol

for all (x,7,e) € R xR X (0,&y). On the other hand, using Lemma 4,
it can be shown that, for all (x,7) € R x R, the diffeomorphism ¥ -1
satisfies the upper bound

¥~ (x,7)| < (1 + Lype)|x| + Lye.

17

Systems & Control Letters 191 (2024) 105881

Hence, we have that

lgCx, 7, €) < e(L + L,5)((1+ Lye)|x| + L,,e)%
<e+ Ly ((1+ Lye)? [x]? + (Lye)? )
<e(L+Ly,y) (\/§|x|% +1) <L, (|x|% 1),

for all (x,7,€) € RxR,,x(0, &y), where I:g = s\/E(E+LU‘2) is the sought

after constant. |
Let f : R"” - R"beaC’map and let ¥ : R” - R” be a

diffeomorphism. Let the map ¥, f : R" - R” be given by

W, f(x) =D¥Po ¥ (x)fo P~ (x). (C.3)

Clearly, the map ¥, f is C°. Consider the two ODEs

X = f(x), x(0) = x ((eX)]

X=V, (), %(0) = X, (C.5)

Since f and ¥, f are both C?, it follows that both ODEs (C.4) and
(C.5) have the local existence of solutions property from any initial
condition [48]. Then, we have the following Lemma.

Lemma 11. Let x : [0,z;) — R" be any maximal solution to (C.4)
where [0,1,) is the maximal interval of existence of the solution, for some
t, € RygU{oo}. Then there exists a (unique) maximal solution x : [0,1,) —
R" to (C.5) such that x(1) = ¥ (x(1)), for all t € [0,t,). Conversely, if
x : [0,t,) —» R" is any maximal solution to (C.5), then there exists a
(unique) solution x : [0,t;) — R" to (C.4) such that x(t) = P~(x(t)),
for all t € [0,1,).

Proof. If x : [0,7,) > R" is a solution to (C.4), then, by definition, x is
C! and, for every 1 € [0,t,), we have that

x(0) = f(x(), x(0) = xo € R". (C.6)

Consider the map x = Yox : [0,¢,) — R”". Since ¥ and x are cl, it
follows that % is also C'. Using the chain rule, we have

X0 = %(T(X(l))) =D¥(x(0)x(r) = D¥ (x(0) f (x(1)), (&V))

for all ¢ € [0,t,). However, since ¥ is a diffeomorphism, it has a C!
inverse ¥~! : R” — R", which implies that x(r) = ¥~!(x(r)), for all
t € [0,1,). Therefore, we obtain that the map x satisfies

1) = DPP GO P HFZD)) = P, f(EO), %(0) = ¥(x),

for all t € [0, 1,). That is, the map x : [0,7,) - R" is a solution of system
(C.5). To prove uniqueness, suppose by contradiction that % : [0,7,) —
R”" is another maximal solution to (C.5) such that x(r) = ¥(x(¢)) for all
t €[0,¢,), and 3r, € [0,7,) such that X(z,) # x(z,). This implies that

W(x(1t,) = X(t,) # X(1,) = ¥ (x(,)),

which is a clear contradiction. Conversely, suppose by contradiction
that % is another maximal solution to (C.4) such that x(r) = Y(X(?))
for all ¢+ € [0,1,), and 3¢, € [0,¢,) such that X(z,) # x(z,). Since ¥ is a
diffeomorphism, it follows that %(f) = ¥~!(x(¢)), for all ¢ € [0,¢,). This
implies that

P (x(1,) = R€,) # x(1,) = PTHR@)),

which is also a clear contradiction. Therefore, if x : [0,7,) > R" is a
maximal solution to (C.4), then ¥ = Yox : [0,¢,) — R” is the only
maximal solution to (C.5) such that x(r) = ¥ (x(¢)), for all t € [0,1,). The
converse argument is identical if we replace ¥ by ¥~!. [ |
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