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A B S T R A C T

We consider the frequency regulation problem for a Virtual Power Plant (VPP) consisting of inverter-interfaced
distributed energy resources connected to a power grid, modeled macroscopically, by a conventional generator
connected to multiple time-varying loads. To improve the transient performance (settling time, overshoot,
etc.) of the frequency response under load disturbances, we introduce a novel Droop Reset Integral Control
(DRIC) law that synergistically combines resetting integrators with integral droop controllers (also referred to
as proportional integral (PI) control in the literature). We prove the stability of the proposed control scheme,
and its robustness to external disturbances, using conditions based on linear matrix inequalities (LMI) that can
be numerically verified a priori. Furthermore, we validate the proposed approach using both learned voltage
source inverter dynamics and a high-fidelity Simscape model developed by Sandia National Laboratories. Our
results show that the DRIC algorithm is able to significantly reduce overshoot, induce zero steady-state error,
and decrease settling times up to 7 times that of standard droop and PI control. We also provide heuristic
tuning guidelines for the proposed controller, which can be particularly useful for system operators whenever
a detailed model of the virtual power plant is unavailable.
1. Introduction

Due to the volatile nature of the current global climate conditions,
there has been a steady rise in the adoption of distributed energy
resources (DERs) accompanied by a simultaneous departure from the
use of fossil fuel technologies. As a side effect, the modern power grid
continues to experience a decline in system inertia [1], a mechanism
that aids in the stability of power grids dominated by synchronous
machines. With reduced margins of stability and robustness, there is
a need to effectively coordinate the available DERs and to provide
ancillary services to the grid [2]. A potential solution to this multi-agent
coordination problem is the development and incorporation of the so
called Virtual Power Plants (VPPs), first introduced in [3]. VPPs can be
envisioned as distributed power plants primarily operating in a grid-
tied mode. They synergistically coordinate a collection of DERs (not
necessarily co-located) to emulate the behavior of a traditional power
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plant. For a detailed survey of the various components of VPPs and
related feedback control schemes from a multi-agent, cyber–physical
systems perspective, we refer the reader to the recent survey paper [4].

In this work, we address the frequency regulation problem of VPPs.
Traditionally, frequency regulation is addressed using droop control,
as discussed in [5]. In [6], the authors utilized a synthetic inertia
based approach within a cluster of inverter-based resources to provide
frequency regulation, compensating for the loss of synchronous inertial
response from conventional generators. In [7] a dynamic variant of
the classical droop control was introduced to overcome the problem of
unbounded noise amplification in controllers with synthetic inertia in
the presence of measurement noise. However, these control strategies
are susceptible to non-zero steady-state errors due to the lack of integral
action. This deficiency can result in a deviation of the grid frequency
from the nominal 60 Hz at steady state, as depicted in [8].
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A natural solution to this problem is to augment the standard droop
controller with integral action, as demonstrated in [5], leading to a
PI (proportional plus integral) feedback structure. In [9], the authors
employed a variant of the droop controller by dynamically updating
the controller gains. While this approach has been shown to improve
transient and steady-state performance compared to their static coun-
terparts, it can suffer from robustness issues in the presence of noisy
measurements. It is important to note that even though PI controllers
can result in zero steady-state error, standard linear controllers are
bound by fundamental limitations, as shown in [10], which cannot
be overcome without incorporating non-linear or non-smooth control
mechanisms.

On the other hand, nonlinear controllers, such as sliding mode
control (SMC) [11] and model predictive control (MPC) [12], have also
found applications in frequency regulation of power systems. However,
SMC suffers from the chattering phenomenon occurring along the
sliding surface, and MPC, while guaranteeing optimality, incurs high
computational costs which could be detrimental as the scale of the VPP
grows. Therefore, there is a pressing need for developing nonlinear
controllers capable of overcoming fundamental limitations of linear
controllers while simultaneously remaining computationally feasible
and robust to noise. In this context, reset-based controllers emerge as
a promising option.

The concept of using resetting integrators in dynamical systems to
improve transient performance was introduced by Clegg in [13]. The
Clegg integrator is a linear integrator that resets its output to zero
when the signs of its input and output differ. The advantages of this
component can be quantified through its describing function, which ex-
hibits the same magnitude plot as a regular integrator but with a 51.9◦

maller phase lag than its linear counterpart. Clegg further showed that
uch a resetting mechanism could systematically address fundamental
imitations faced by linear controllers. However, it was not until the
ork presented in [14] that a concrete example of an integrator plant
vercoming overshoot and rise time constraints, which could not be
atisfied by a standard linear controller, was demonstrated. A necessary
nd sufficient condition for stability based on the strict positive realness
f transfer matrices was later established in [15]. For a survey of early
tability results on reset control, we direct the reader to [16].
The modern approach to modeling reset controllers leverages tools

rom hybrid dynamical systems. First proposed in [17], the first-order
eset element (FORE) introduced an additional tuning parameter for
djusting the overshoot response while reducing to the standard Clegg
ntegrator when the parameter is set to zero. Furthermore, the FORE
onstitutes a well-posed hybrid system, as defined in [18], which offers
everal theoretical guarantees in terms of existence of solutions, stabil-
ty and robustness to measurement noise. A comprehensive treatment
f the stability properties of FOREs can be found in [19].
In the context of frequency regulation, reset controllers were studied

n [20] to perform load frequency control of an islanded microgrid.
owever, this approach considered fixed pre-scheduled reset times
ather than state-based resets. In turn, fixed reset times require op-
imal tuning of the reset frequency to induce a suitable transient
erformance. Such optimal tuning is difficult to obtain whenever the
nderlying dynamics of the system are unknown, as demonstrated
n [19]. In [21], the authors also considered the frequency regulation
roblem of an islanded microgrid in the presence of parametric uncer-
ainty. However, no theoretical guarantees on closed-loop stability and
obustness were provided. Indeed, to the best of our knowledge, no
revious work has addressed the frequency regulation problem of VPPs
sing state-based reset laws while simultaneously providing stability
nd robustness guarantees.
In this work, we propose an extension of the familiar droop-based

ontrollers and their variants by incorporating nonlinear resetting in-
egrators [22] to enhance transient performance and overcome the
undamental limitations faced by smooth linear controllers, as demon-
2

trated in [14]. Additionally, we provide theoretical guarantees for the d
proposed controller by leveraging tools from hybrid control theory.
Moreover, we validate our approach on a high-fidelity model that
demonstrates significant improvements in overshoot and settling time
compared to standard controllers such as droop control and its variants.

2. Statement of contributions

The following are the main contributions of this work:

(1) First, and motivated by the fundamental limitations of existing
linear and smooth frequency controllers in terms of transient
performance, we introduce a novel reset-based controller for
frequency regulation in power systems. The proposed controller,
termed Droop Reset Integral Control (DRIC), can be seen as a
standard droop-integral controller extended with an integrator
that is reset to zero whenever a suitable condition is satisfied
by the frequency error. Such resets can significantly improve
the transient performance of the system by removing, or signifi-
cantly attenuating the overshoot induced by the control system.
Since the proposed controller combines continuous-time dynam-
ics (i.e., proportional integral action) and discrete-time dynam-
ics (i.e., integrator resets), we study the stability properties of
the closed-loop system and establish an Input-to-State Stability
result using tools from hybrid dynamical systems theory [18].

(2) To validate the performance of the proposed controller, we
test the algorithm in the high-fidelity non-linear FlexPower
model [6,23], developed by Sandia National Laboratories, which
models a VPP that incorporates wind turbines (WT), photo-
voltaic cell systems (PVs), battery energy storage systems (BESS),
and dynamic loads. The numerical results showed that DRIC can
yield significant improvements in terms of transient response
in VPPs when compared to conventional linear and smooth
controllers, such as droop control, its dynamic variants, and
droop integral control.

(3) We further test the performance of the proposed algorithm with
respect to external disturbances acting on the power system.
We show that the DRIC method is able to recover the nominal,
steady-state frequency of the VPP from sudden load changes
in the grid, without requiring parameter re-tuning of the con-
trollers. This inherent ‘‘adaptability’’ feature, inherent to in-
tegral action, holds significant practical value for real-world
applications.

(4) Finally, we provide heuristic guidelines for the initial tuning of
the DRIC before it is subjected to multiple time-varying load
disturbances. These guidelines are particularly useful for system
operators in the absence of a detailed VPP model. Typical values
of the nominal reset gain are given. Parameters that affect the
influence of reset actions when the frequency response is far
away from the steady-state are stated. Additionally, the effect
of the reset gain parameter on the trade-off between overshoot
and settling time is highlighted.

he rest of the paper is organized as follows: In Section 3 we introduce
ome mathematical preliminaries on hybrid control systems that com-
ine continuous-time and discrete-time dynamics (complemented in the
ppendix). Section 4 formulates the frequency regulation problem, ex-
lains the setup considered in the paper, and provides a brief overview
f our proposed controller. In Section 5, we describe the dynamics
f the individual DERs and the proposed controller, verify sufficient
onditions for closed-loop stability, and robustness and apply said
esults on a learnt linearized model of a VPP consisting of photovoltaic
ells (PV), battery energy storage systems (BESS), wind turbines (WT),
nd a conventional generator (CG) in the presence of varying loads.
e numerically validate the proposed controller using both the learnt
inearized dynamics and the actual nonlinear high-fidelity models of
he FlexPower Plant. We also provide the practitioner with heuristic
ules for tuning the proposed controller even in the absence of a plant
odel. Finally, in Section 7 we conclude and provide some potential

irections for future research.



Electric Power Systems Research 235 (2024) 110762V. Shenoy et al.

𝑧

w
e
s

Fig. 1. Virtual power plant consisting of a grid (modeled by a synchronous machine
and time-varying loads), DERs : PV, BESS, WT and a control system supplying active
power reference signals for frequency regulation.

3. Preliminaries

The proposed controller, termed Droop Reset Integral Control
(DRIC), incorporates both continuous dynamics (i.e., integral action)
and discrete time dynamics (i.e., integrator resets). To study this
class of systems, we make use of the framework of hybrid dynamical
systems [18]. For our purposes, it suffices to define a hybrid system as
a dynamical system with state 𝑧 ∈ R𝑛, disturbance 𝑑 ∈ R𝑚, and the
following dynamics:

𝑧 ∈ , 𝑧̇ = 𝑓 (𝑧, 𝑑), (1a)

∈ , 𝑧+ = 𝑔(𝑧), (1b)

here the system evolves, or ‘‘flows’’, in accordance with the differ-
ntial equation with right hand side 𝑓 when its state 𝑧 is in the flow
et , and ‘‘jumps’’ according to (1b) when 𝑧 is in the jump set . In
(1a), 𝑑 can be seen as an external disturbance affecting the continuous-
time dynamics. System (1) can be represented in compact form by the
tuple  = (, 𝑓 ,, 𝑔). For the purpose of analysis, solutions to (1) are
parameterized by a continuous-time index 𝑡, which increases continu-
ously during flows (1a), and a discrete-time index 𝑗 that increases by
one during jumps (1b). Therefore, solutions to (1) are defined on hybrid
time domains which are special subsets of the Cartesian product R≥0×N.
For more details on the mathematical properties of hybrid systems we
refer the reader to the Appendix. In this paper, we work with systems
that satisfy the Hybrid Basic Conditions, see Definition 4 in Appendix.

We are interested in designing hybrid controllers that induce suit-
able closed-loop robust stability properties for the system. In particular,
we are interested in achieving asymptotic bounds of the form

|𝑧(𝑡, 𝑗)| ≤ 𝑚𝑒−𝑙𝑡|𝑧(0, 0)| + 𝛾|𝑑|∞, (2)

for all (𝑡, 𝑗) ∈ dom(𝑧), where 𝑚,𝓁, 𝛾 > 0, and |𝑑|∞ is the standard
infinite-norm of 𝑑, which is assumed to be bounded. Closed-loop sys-
tems that satisfy bounds of the form (2) for all initial conditions are said
to be finite gain exponentially input-to-state stable (ISS) from 𝑑 to 𝑧 [19].
Our goal is to achieve this property in a class of VPPs controlled via
DRIC.

4. Problem formulation

We consider a VPP that consists of PV, BESS, and WT subsystems.
These DERs are in turn connected to the grid which in our case, is
modeled (macroscopically) by a conventional generator operating at
60 Hz and a variety of electrical loads that may be freely connected and
disconnected in accordance with the demands imposed on the grid, see
Fig. 1.

4.1. Overall description of the VPP

The VPP under study is realized via a high-fidelity non-linear Sim-
3

scape model designed by Sandia National Laboratories (termed the
FlexPower Plant [23]) wherein each DER is equipped with a control
loop that enables the tracking of an active/reactive power reference
within the ratings of the individual devices. As a consequence, we may
view each DER as a ‘‘blackbox’’ power source, rendering the entirety
of the VPP amenable to a frequency domain representation via model
approximation. These representations may then be converted to a more
suitable form for purposes of analysis using tools from hybrid control
theory.

The PV and BESS components in the high-fidelity simulink-based
model each have a DC-side voltage source, an averaged model of a
voltage sourced inverter, a phase-locked loop, and individual current
and voltage controllers modeled in the dq frame that provide droop and
integral action coupled with feed-forward compensation. The current
control loops generate input signals for the inverters. The wind turbine
subsystem is modeled as a Type-4 WT, as detailed in [24], and it is
also equipped with a turbine model with both pitch and torque control.
The conventional generator (CG) consists of a synchronous machine
equipped with an exciter and a governor that provides droop response.
Lastly, in this work, all loads are modeled as three-phase parallel RLC
branches. For a detailed description of the DER models, we refer the
reader to [23,25]. Fig. 1 illustrates the scheme considered in the paper.

4.2. Overall description of the control strategy

Within this setup, we solve the frequency regulation problem of
driving the grid frequency to the nominal 60 Hz in the presence of
a varying load profile by synergistically controlling the active power
generated by the aforementioned DERs. In the proposed approach,
we augment the PI (droop with integral action) controller with a
first order reset element (FORE), which is a first-order dynamical sys-
tem that incorporates a resetting integrator. As shown in the controls
literature [13,19,26], this resetting action can be used to overcome
some of the fundamental limitations, in terms of achievable transient
performance (e.g., overshoot, settling time, etc.), of standard linear
controllers. In particular, an integrator with resets is able to reduce the
phase lag by 51.9◦ [13].

Based on this background, in this paper, we consider the following
research questions: (1) How to design a robust frequency controller
with integral and resetting action able to guarantee closed-loop stability
when interconnected with the VPP? (2) How to guarantee that the
proposed controller successfully rejects time-varying loads, recovering
the steady-state operation of the plant with a minimal overshoot re-
sponse and a reduced settling time? We shall answer question 1 in the
affirmative via a theoretical guarantee in the next section and provide
sufficient evidence for question 2 in Section 6 via comprehensive
numerical experiments.

5. Frequency regulation via droop reset integral control

In this section, we provide a detailed description of the model of the
VPP and the resetting controller employed for the frequency regulation
problem.

5.1. Learnt voltage source inverter (VSI) dynamics

To account for the possibly non-linear dynamics of the individual
DERs and obtain a suitable approximation of the system model, we
impose a division of the range of available active power into a number
of operating points. Each operating point is further divided into fringes
which are meant to capture deviation from said point and are repre-
sented as percentages (see Fig. 2). Each fringe contributes training data
in the form of a step response whose amplitude is equal to the fringe
percentage times the operating point to which it belongs. This step
signal/response (input/output) pair is fed to the system identification
toolbox of the Matlab programming environment (see [27]) which,

using the Instrumental Variables (IV) method (see [28]), returns a
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Fig. 2. The system identification process using instrumental variables (IV) (left). Division
of operating point (OP) into fringes (right).

Table 1
Parameters for stability analysis via LMIs.
DER A B C

PV
[

−259.6460 −2.9029 ⋅ 104

1 0

] [

1
0

] [

1.3030
2.8979 ⋅ 104

]⊤

BESS
[

−258.5340 −3.0408 ⋅ 104

1 0

] [

1
0

] [

10.97
3.0392 ⋅ 104

]⊤

WT
⎡

⎢

⎢

⎣

−2.2250 −7704 −0.039
1 0 0
0 1 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

−0.1111
0.3630
0.0496

⎤

⎥

⎥

⎦

⊤

CG −0.1429 1 0.1429

stable transfer function representation of the DER dynamics at the
particular fringe with a pre-determined number of poles and zeros.

Using the training data from other fringes, the obtained transfer
function is validated. Among the different models, the one that achieves
best performance in terms of generalization is selected to represent
the dynamics of the DERs near that operating point. Repeating this
procedure on the remaining operating points gives us a holistic rep-
resentation of the DER dynamics in the frequency domain under step
responses. To obtain a single representation, we repeated the same
generalization test on the set of learnt transfer functions.

5.2. State-space representation of the VPP

Since all our analyses are most conveniently performed in the time-
domain, we realize a state-space representation of the dynamics of
the individual DERs. The PV and the BESS subsystems have states
𝑥𝑝𝑣, 𝑥𝑏𝑒𝑠𝑠 ∈ R2 respectively while the WT has state 𝑥𝑤𝑡 ∈ R3. The
onventional generator is modeled as a synchronous machine via the
wing equations as in [29] and has state 𝑥𝑔𝑒𝑛 ∈ R. Loads are modeled as
xternal disturbances 𝑑, and they enter the dynamics of the system only
ia the conventional generator as seen in Eq. (3d). The same equation
lso represents the cascade connection of the DERs and the CG. Based
n this representation, we model the constituents of the VPPs as linear
ime-invariant systems given by:

PV:
{

𝑥̇𝑝𝑣 = 𝐴𝑝𝑣𝑥𝑝𝑣 + 𝐵𝑝𝑣𝑢
𝑦𝑝𝑣 = 𝐶𝑝𝑣𝑥𝑝𝑣

(3a)

BESS:
{

𝑥̇𝑏𝑒𝑠𝑠 = 𝐴𝑏𝑒𝑠𝑠𝑥𝑏𝑒𝑠𝑠 + 𝐵𝑏𝑒𝑠𝑠𝑢
𝑦𝑏𝑒𝑠𝑠 = 𝐶𝑏𝑒𝑠𝑠𝑥𝑏𝑒𝑠𝑠

(3b)

WT:
{

𝑥̇𝑤𝑡 = 𝐴𝑤𝑡𝑥𝑤𝑡 + 𝐵𝑤𝑡𝑢
𝑦𝑤𝑡 = 𝐶𝑤𝑡𝑥𝑤𝑡

(3c)

Generator:
{

𝑥̇𝑔𝑒𝑛 = 𝑎𝑔𝑒𝑛𝑥𝑔𝑒𝑛 + 𝑏𝑔𝑒𝑛𝑦𝑝 + 𝑏𝑑𝑑
𝑦𝑔𝑒𝑛 = 𝑐𝑔𝑒𝑛𝑥𝑔𝑒𝑛

(3d)

lant output:
{

𝑦𝑝 = 𝑦𝑝𝑣 + 𝑦𝑏𝑒𝑠𝑠 + 𝑦𝑤𝑡. (3e)

xternal disturbances affecting the DERs could also be incorporated
nto our model by using additive vectors 𝑑𝑝𝑣, 𝑑𝑏𝑒𝑠𝑠, 𝑑𝑤𝑡 acting on the
ynamics (3a)–(3c), similar to (3d). Table 1 depicts the values of the
arameters we shall use for analysis in the following sections.
4

s

Fig. 3. Proposed control scheme: the standard droop with integral action augmented
with a first order resetting integrator and weight 𝑝𝑟 to ensure both steady-state and
transient performance.

5.3. Droop Reset Integral Controller (DRIC)

Our Droop Reset Integral Control (DRIC) system, depicted in Fig. 3,
is a combination of the standard droop controller with integral action
(PI), and a first-order reset element (FORE) which is a dynamical
system with a first-order transfer function that additionally resets the
integrator to zero whenever an algebraic relationship between its input
and output is satisfied. The mathematical model of the DRIC has states
𝑥𝑖 ∈ R for the integrator and 𝑥𝑟 ∈ R for the FORE. The dynamics of the
DRIC are described as follows:

If 2𝑒𝑥𝑟 ≥ 0 or 𝜏 ≤ 𝜌:
(

𝑥̇𝑖
𝑥̇𝑟

)

=
[

𝑎𝑖 0
0 𝑎𝑟

](

𝑥𝑖
𝑥𝑟

)

+
(

1
1

)

𝑒 (4a)

𝜏̇ = 1. (4b)

If 2𝑒𝑥𝑟 ≤ 0 and 𝜏 ≥ 𝜌:
(

𝑥+𝑖
𝑥+𝑟

)

=
[

1 0
0 0

](

𝑥𝑖
𝑥𝑟

)

(5a)

𝜏+ = 0. (5b)

The control signal acting on the VPP is then defined as:

𝑢 =
[ (1 − 𝑝𝑟) ⋅ 𝑘𝑝

𝑇𝑖

𝑝𝑟 ⋅ 𝑘𝑝
𝑇𝑖

](

𝑥𝑖
𝑥𝑟

)

+ 𝑘𝑝𝑒. (6)

here 𝑇𝑖, 𝑘𝑝 > 0 are tunable gains, and 𝑝𝑟 ∈ [0, 1] is a tunable parameter
sed to weight the action of the FORE and the standard droop+integral
ontrol.
In the dynamics (4)–(5), the timer 𝜏 is used to preclude the pos-

ibility of an infinite number of consecutive resets in a compact time
nterval, i.e., the so-called Zeno behavior. This type of temporal regular-
zation is standard in the reset control literature, see for example [17].
he variable 𝑒, which usually models some form of tracking error, acts
s the input to the controller. Based on this, the flow condition is
atisfied when the input and the FORE state 𝑥𝑟 have the same signs
r when the timer has not yet crossed some threshold 𝜌. Similarly, the
ontroller exhibits the discrete-time dynamics (5) when the input 𝑒 and
he state 𝑥𝑟 have different signs and at least 𝜌 units of time have passed
ince the last jump. During jumps, the state of the standard integrator
s kept constant while the FORE state is reset to zero.
Finally, to illustrate the role of the parameter 𝑝𝑟 ∈ [0, 1] in (6), we

onsider the two extreme cases. When 𝑝𝑟 = 0, the DRIC degenerates
nto the standard droop controller with integral action realized by
he proportional gain 𝑘𝑝 and integral time constant 𝑇𝑖. On the other
and, when 𝑝𝑟 = 1 we realize a droop controller with resets. Both
f these cases have their individual shortcomings: the standard PI
ontroller suffers from fundamental phase limitations inherent to linear
ontrollers, while in the other case the absence of an integral action
ay lead to non-zero steady-state errors. Therefore, the term 𝑝𝑟 ∈ (0, 1)
llows us to combine both control actions into the control signal 𝑢.
astly, the negative terms 𝑎𝑖 and 𝑎𝑟 may be suitably tuned to achieve
avorable transient performance (by shaping the overshoot response,
ee Fig. 4) and to simplify the stability analysis.
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5.4. Heuristic for dynamic control allocation

In addition to the DRIC dynamics elucidated by Eqs. (4)–(6), it is
esirable in practical applications to include an additional mechanism
hat dynamically updates the reset ratio 𝑝𝑟 to further improve the
ransient performance of the system. One such mechanism, commonly
ited in the literature, uses the following update law for 𝑝𝑟 [30, Ch. 5]:

𝑝𝑟(𝑡) = 𝑝̄𝑟 − 𝑡𝐷
𝑑𝑒𝐹
𝑑𝑡

, (7)

where 𝑒𝐹 is the tracking error passed through a low-pass filter so
s to avoid the amplification of noise due to the derivative action.
ntuitively, the update law (7) uses the predictive nature of the deriva-
tive term to increase the reset ratio while the error variable 𝑒 is
far away from its steady-state value. The parameter 𝑡𝐷 is used to
tune how strongly (weakly) the reset mechanism acts on the transient
(steady-state) response.

6. Results and simulations

In this section, we show that the proposed controller interconnected
with the VPP achieves the stability property (2), and also improves
the transient performance by reducing the overshoot and the settling
time. We implement the control scheme in MATLAB/Simulink [31]
and performed EMT (Electromagnetic Transient) simulations with a
sampling time of 10−5 s.

6.1. Closed-loop model of the system

For the proposed controller, we can use the theoretical tools of [32]
to study the stability properties of the closed-loop system. In particu-
lar, using the interconnection condition 𝑒 = −𝑦, our reset controller
interconnected with the VPP model leads to the following closed-loop
dynamical system:

𝜏̇ = 1

𝑥̇ = 𝐴𝑥 + 𝐵𝑑𝑑

}

, if 𝑥⊤𝑀𝑥 ≥ 0 or 𝜏 ≤ 𝜌, (8a)

𝜏+ = 0

𝑥+ = 𝐴𝑟𝑥,

}

if 𝑥⊤𝑀𝑥 ≤ 0 and 𝜏 ≥ 𝜌, (8b)

𝑦 = 𝐶𝑥 (8c)

which has the form of (1). In particular, 𝑧 = (𝜏, 𝑥), where 𝑥 ∈ R10, and
𝑥 = (𝑥𝑝𝑣, 𝑥𝑏𝑒𝑠𝑠, 𝑥𝑤𝑡, 𝑥𝑔𝑒𝑛, 𝑥𝑖, 𝑥𝑟), where the matrix 𝐴 given by

𝐴 =
⎡

⎢

⎢

⎣

𝐴𝑝 𝐵𝑝
[

−𝐶𝑝
−𝐶𝑝

]

𝛬𝑟

⎤

⎥

⎥

⎦

.

This matrix captures the plant dynamics

𝐴𝑝 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐴𝑝𝑣 O2×2 O2×3 −𝑘𝑝𝐵𝑝𝑣𝑐𝑔𝑒𝑛
O2×2 𝐴𝑏𝑒𝑠𝑠 O2×3 −𝑘𝑝𝐵𝑏𝑒𝑠𝑠𝑐𝑔𝑒𝑛
O3×2 O3×2 𝐴𝑤𝑡 −𝑘𝑝𝐵𝑤𝑡𝑐𝑔𝑒𝑛

𝑏𝑔𝑒𝑛𝐶𝑝𝑣 𝑏𝑔𝑒𝑛𝐶𝑏𝑒𝑠𝑠 𝑏𝑔𝑒𝑛𝐶𝑤𝑡 𝑎𝑔𝑒𝑛

⎤

⎥

⎥

⎥

⎥

⎦

,

the input interconnection

𝐵𝑝 =

⎡

⎢

⎢

⎢

⎢

⎣

((1−𝑝𝑟)∕𝑇𝑖) ⋅ 𝑘𝑝𝐵𝑝𝑣 (𝑝𝑟∕𝑇𝑖) ⋅ 𝑘𝑝𝐵𝑝𝑣
((1−𝑝𝑟)∕𝑇𝑖) ⋅ 𝑘𝑝𝐵𝑏𝑒𝑠𝑠 (𝑝𝑟∕𝑇𝑖) ⋅ 𝑘𝑝𝐵𝑏𝑒𝑠𝑠
((1−𝑝𝑟)∕𝑇𝑖) ⋅ 𝑘𝑝𝐵𝑤𝑡 (𝑝𝑟∕𝑇𝑖) ⋅ 𝑘𝑝𝐵𝑤𝑡

0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

the output interconnection

𝐶𝑝 =
[

O7×1 −𝑐𝑔𝑒𝑛
]

,

and the continuous time dynamics of the DRIC in

𝛬𝑟 =
[

𝑎𝑖 0
]

.

5

0 𝑎𝑟
Fig. 4. Design imposed overshoot vs. settling time trade off on the plant 𝑃 (𝑠) =
(𝑠+1)∕𝑠(𝑠+0.2) via reset action from FORE.

Since the DRIC requires only the output of the conventional generator,
the output matrix 𝐶 takes the form

𝐶 =
[

𝐶𝑝 O1×2
]

.

For simplicity, we only consider disturbances acting on the conven-
tional generator. As a result, the disturbance-to-state matrix has the
form

𝐵𝑑 =
[

O7×1 1 O2×1
]⊤ .

During jumps, we reset the state of the FORE and keep constant the
remaining components of the state via the jump matrix

𝐴𝑟 =
[

𝐼9×9 O9×1
O1×9 O1×1

]

.

Lastly, the sign-indefinite matrix 𝑀 that describes the jump and flow
sets is given by

𝑀 =
[

O9×9 −𝐶⊤
𝑝

−𝐶𝑝 O1×1

]

.

As shown in [26], in order to study the stability properties of systems of
the form (8), it suffices to verify a family of Linear Matrix Inequalities
(LMIs). The following proposition provides sufficient conditions for the
stability and robustness of system (8).

Proposition 1. If the following two linear matrix inequalities (LMIs) on
the variables 𝑃 = 𝑃⊤ > 0, 𝜏𝐹 , 𝜏𝑅 ≥ 0, 𝛾 > 0 are feasible:

⎡

⎢

⎢

⎣

𝐴⊤𝑃 + 𝑃𝐴 + 𝜏𝐹𝑀 𝑃𝐵𝑑 𝐶⊤

∗ −𝛾𝐼 0
∗ ∗ −𝛾𝐼

⎤

⎥

⎥

⎦

< 0, (9a)

𝐴⊤
𝑟 𝑃𝐴𝑟 − 𝑃 − 𝜏𝑅𝑀 ≤ 0, (9b)

then, there exists 𝜌∗ > 0 such that for any fixed 𝜌 ∈ (0, 𝜌∗), the reset control
system (6) interconnected with the plant is finite gain exponentially ISS from
𝑑 to x.

We will use conditions (9) to numerically test the stability properties
of the proposed DRIC controller interconnected with the VPP.

6.2. Stability results for DRIC

To study the stability properties of the DRIC, we first consider the
closed-loop system depicted in Fig. 1 consisting only of the PV and
the BESS DERs. To verify stability, the LMIs (9) were implemented

on the YALMIP optimization toolbox [33] using the parameter values
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supplied in Table 1 with the terms corresponding to the WT removed. In
addition, the values of the gains of the integrators were set to 𝑎𝑖 = −0.01
and 𝑎𝑟 = −100. MOSEK [34] reported that the LMIs were feasible
with the following values: 𝜏𝑅 = 0.0223 ≥ 0, 𝜏𝐹 = 2.196 ≥ 0 and
𝛾 = 114.19 > 0. The matrix 𝑃 was found to be symmetric and positive
definite.

Next, the WT was added to the VPP and the finite-gain exponential
stability of the resulting closed-loop system was checked using the LMI
conditions (9) and the parameters from Table 1. The solver returned
feasible solution whose values were: 𝜏𝑅 = 0.0212 ≥ 0, 𝜏𝐹 =

.1209 ≥ 0, 𝛾 = 105.07 > 0. The matrix 𝑃 was indeed symmetric and
ositive-definite.
The above results allow us to conclude that in both scenarios, the

roposed DRIC renders the closed-loop system exponentially stable and
SS with respect to the disturbance 𝑑. In particular, bound (2) holds
or the overall state 𝑥 of the system. Moreover, by well-posedness of
he hybrid model (1), we can also guarantee the existence of positive
argins of robustness with respect to arbitrarily small additive distur-
ances acting on all the states and dynamics of the system [18, Thm.
.21]. Such a robustness result is fundamental for practical applications
here measurement noise and external perturbations are unavoidable.

.3. Numerical comparison between droop, DIC and DRIC

The prime efficacy of DRIC is in reducing the overshoot response
enerated by more traditional controllers like droop and PI. In practice,
he ‘‘base’’ PI controller is usually first tuned using standard tools and
hen it is augmented with the proposed reset scheme. If the well-
uned PI controller does not have a suitable transient response, one
an deliberately detune it to achieve a faster response (at the cost of
ncreased overshoot) and then use the reset scheme to remove or reduce
he overshoot response [30]. Our first set of simulation results demon-
trate this scenario on the learned models. First, we implement the VPP
onsisting of PV, BESS, WT and CG both using the learned VSI dynamics
see Section 5.1) and the high-fidelity Simscape model referenced in
ection 4. Fig. 5 shows the response of the DRIC implemented on
earned VSI dynamics to a time-varying load profile. It can be seen that
pon the connection of a load, while the initial response of the DRIC
s similar to the DIC, there is a considerable reduction in overshoot in
he ensuing transient response. Indeed, there is a reduction of 0.35 Hz,
.15 Hz, and 0.35 Hz respectively in the three load disturbances shown.
oreover, the settling time has also been drastically reduced from 15 s
DIC) to 3 s (DRIC) for all three load disturbances. This illustrates that
he mere introduction of resets to a base linear controller is capable of
ignificantly improving transient performance.
Next, we consider the scenario where a well-tuned PI controller is

ugmented with the reset scheme. We also compare standard linear
ontrollers to our proposed scheme on the high-fidelity model. Fig. 6
ompares standard linear controllers used for frequency regulation such
s droop control and its integral variant (DIC) versus the proposed
RIC. As the inset shows, the droop controller suffers from non-zero
teady-state error, eventually building up to a significant 2.5 Hz by
he end of the run. This behavior is expected due to a lack of integral
ction. Clearly, subsequent load disturbances will result in instability as
he droop controller is unable to keep the frequency within acceptable
ounds. When augmented with integral action, the steady-state perfor-
ance improves by 2.5 Hz, successfully regulating the frequency to the
ominal 60 Hz well before the connection of subsequent loads. How-
ver, even a well-tuned DIC results in appreciable overshoot with the
eak overshoot, ignoring the initial disturbance response, being 0.2 Hz,
.1 Hz and just over 0.2 Hz respectively, for the three disturbances. In
tark contrast, the DRIC retains the steady-state performance of the DIC
with an error of 0.0 Hz) and improves the transient performance. Once
he initial disturbance is suppressed, the DRIC reduces overshoot by
.2 Hz, 0.1 Hz, and 0.2 Hz respectively in the three load connections.
6

oreover, the nadir (lowest point of frequency) is reduced by 0.05 Hz, t
Fig. 5. DIC controller vs. DRIC on learned VSI dynamics.

Fig. 6. Well-tuned standard linear controllers vs. DRIC on VPP consisting of DERs: PV
and BESS.

Fig. 7. Active power injection into CG from VPP consisting of PV and BESS in response
to a time-varying load profile.

0.1 Hz, and 0.25 Hz respectively. The DRIC also results in a reduction
f settling time by just over 1 s in the first load disturbance. In
his scenario, the variable reset heuristic was incorporated to further
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Fig. 8. DIC vs. DRIC on learnt VSI dynamics for VPPs consisting of 5 DERS (top) and
10 DERS (bottom).

improve the transient performance. This simulation shows that our
proposed controller can outperform classic linear controllers by sim-
ply incorporating a resetting action into the integrator. It can be
observed from the inset of Fig. 7 that the power injection obtained
when implementing the DRIC exhibits less oscillations compared to
the power injection obtained under a traditional DIC (droop + integral
controller) algorithm. Indeed, the power injection from the DIC suffers
from the classic oscillations induced by integral actions in proportional–
integral controllers. This behavior is aligned with the one observed in
the frequency response of the conventional generator in Fig. 6.

Fig. 8 shows a comparison of DIC vs. DRIC schemes for VPPs with a
varying number of DERs in the VPP. In the first scenario (top), the VPP
consists of three PV generators and two storage systems. It can be seen
that DRIC outperforms the DIC in terms of overshoot response. Indeed,
the reduction in overshoot is 0.4 Hz, 0.2 Hz, and 0.45 Hz respectively for
the three load disturbances. In addition, we also see an improvement
in settling time by 2 ss in the first load disturbance of 10MW. Of course,
the DRIC retains the zero steady-state error of the DIC. It can also be
seen that there is a reduction in the nadir with the most significant
one being 0.4 Hz in the 15MW load disturbance response. In the second
scenario (bottom), the VPP consists of 10 DERs, six of them being PV
and four of them BESS. A similar response to the previous scenario
is seen. However, this time, the overshoot generated by the DIC has
increased. Still, the DRIC further reduces said overshoot by 0.2 Hz,
0.1 Hz, and 0.2 Hz respectively for the three load disturbances. The
settling times remain relatively the same.

Next, we test the DRIC in the high-fidelity non-linear FlexPower
Model. Fig. 9 shows a comparison between the results obtained with
the proposed DRIC and the linear DIC (PI). In this case, after a initial
transient, the frequency settles at 60 Hz until a disturbance of 10 MW
is introduced at 10 s. The initial response matches that of the DIC
controller but the disturbance is attenuated more effectively by DRIC.
Moreover, DRIC achieves a steady-state condition at approximately 5 s
before its linear counterpart. A similar response is evident in the discon-
nection of the load at 40 s. These numerical results on the high-fidelity
model of the VPP showcase the potential improvements, in terms of
transient performance, that can be achieved in frequency control by
incorporating resetting actions. To the best of our knowledge, this is the
first work that validates such approaches, analytically and numerically,
for the frequency control of VPPs.

6.4. Tuning guidelines for the system operator

In this section, we provide some heuristic tuning rules for imple-
7

menting DRIC in practical applications without prior knowledge of the t
Fig. 9. Well-tuned DIC vs. DRIC on the high-fidelity model consisting of DERs: PV,
BESS, and WT.

system model. We assume that the base linear controller, droop with
integral action (DIC), in this case, has already been tuned via standard
PI tuning algorithms, e.g., [22]. That is, values for 𝑘𝑝 and 𝑇𝑖 are known.
ased on this, the following guidelines are in order:

(a) Since the overarching goal is to have strong reset action over
transients, and weak resets near steady-state, the parameter
𝑝̄𝑟 is typically tuned to have a small contribution when the
derivative of the filtered error has small magnitude, i.e., near
steady-state. A typical range for the nominal reset parameter
is 𝑝̄𝑟 ∈ [0.05, 0.25] with smaller values used when weaker reset
action is desired.

(b) The parameter 𝜌 affects how many jumps take place in a given
interval of time. Higher values of 𝜌 limit the number of possible
resets while offering little safeguard against Zeno behavior. In
the presence of a plant model, the value of 𝜌 can be selected so
as to satisfy the LMIs in Eq. (9). When no plant model is at hand,
typical values of the parameter are 𝜌 ∈ [0.1, 0.5]. This range was
found to allow a sufficient number of jumps for the reset action
to be effective, while avoiding Zeno behavior.

(c) The parameter 𝑡𝐷 affects the reset action influence when the
response is away from the steady-state. Large values of 𝑡𝐷 imply
a higher variability in the resetting action away from the steady-
state. Smaller values of 𝑡𝑑 are used when a uniform resetting
action is desired. As such the parameter 𝑡𝐷 may be picked from
a large range of [5, 200] depending on the application.

(d) As mentioned earlier, in applications where the improvement in
transient performance due to the resetting action is not substan-
tial, the base controller may be detuned to increase its speed
of response at the cost of increased overshoot. This overshoot
can then be curtailed by tuning the FORE parameter 𝑎𝑟. As is
evident from Fig. 4, large negative values of 𝑎𝑟 suppress all of
the overshoot at the cost of causing a delay in the settling time
while smaller values trade off overshoot for reducing the settling
time.

. Conclusions

We introduced a novel frequency control architecture for virtual
ower plants: Droop Reset Integral Control (DRIC). The proposed con-
roller is designed to improve the transient performance of the system
y reducing the overshoot and improving the settling time. To achieve
hese goals, the controller incorporates resetting integrators, which are
riggered by suitable algebraic conditions on the inputs and outputs of

he controller. While the area of reset control is fairly mature from the
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theoretical standpoint, its applications in power systems had remained
mostly unexplored. Yet, as shown in this paper, reset control is a
technology that can be an effective alternative to improve transient
performance in power systems that coordinate multiple DERs. More-
over, as also shown in this work, the stability properties of the system
can be studied in linearized models using LMIs that can be numerically
verified. Numerical validations were also performed on a high-fidelity
non-linear model of a VPP (the FlexPower Plant) developed by the
Sandia National Laboratories, as well as on models learned via model
approximation from data generated by the VPP. It was observed that
DRIC provides a substantial increase in transient performance.

Future research directions will focus on extending the proposed
scheme to equip each DER with its own individual DRIC block. This
distributed, asynchronous implementation could be suitable for large-
scale systems that incorporate a large number of DERs. In this case,
coordinating the resets of the controllers is imperative in order to
achieve a suitable transient performance. Such decentralized coordi-
nation techniques are the subject of ongoing research. Other future
research directions of interest include studying the performance of
the proposed controller in networked VPPs in a power system with
transmission lines, e.g., in an IEEE testing system. Additionally, the
development of adaptive self-tuning mechanisms for the parameters of
the controller is also an interesting future research direction.
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Appendix. Hybrid dynamical systems

We present here some essential mathematical notions on hybrid
dynamical systems of the form (1). Solutions to hybrid dynamical
systems of the form (1) evolve on hybrid time domains which are
pecial subsets of R≥0 × N.

efinition 1 (Hybrid Time Domain). A subset 𝐸 ⊂ R≥0 ×N is a compact
ybrid time domain if

=
𝐽−1
⋃

𝑗=0
([𝑡𝑗 , 𝑡𝑗+1, 𝑗])

or some finite sequence of times 0 = 𝑡0 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝐽 . It is a
ybrid time domain if for all (𝑇 , 𝐽 ) ∈ 𝐸, 𝐸 ∩ ([0, 𝑇 ] × {0, 1,… , 𝐽}) is a
ompact hybrid time domain.

efinition 2 (Hybrid Arc). A function 𝑧 ∶ 𝐸 → R𝑛 is a hybrid arc if 𝐸
s a hybrid time domain and if for each 𝑗 ∈ N, the function 𝑡 ↦ 𝑧(𝑡, 𝑗)
s locally absolutely continuous on the interval 𝐼 𝑗 ∶= {𝑡 ∶ (𝑡, 𝑗) ∈ 𝐸}.

A hybrid arc is a solution to a hybrid dynamical system (with inputs)
8

f it satisfies two key properties which we mention below.
efinition 3 (Solution of a Hybrid Dynamical System). A hybrid arc 𝑧 is
solution to the hybrid dynamical system (𝐶, 𝑓 ,𝐷, 𝑔) given by (1) if
(0, 0) ∈ 𝐶̄ ∪𝐷, and

(S1) for all 𝑗 ∈ N such that 𝐼 𝑗 has non-empty interior

𝑧(𝑡, 𝑗) ∈ 𝐶 for all 𝑡 ∈ 𝑖𝑛𝑡 𝐼 𝑗 ,

𝑧̇(𝑡, 𝑗) = 𝑓 (𝑧(𝑡, 𝑗), 𝑑(𝑡)) for all 𝑡 ∈ 𝐼 𝑗 ;

(S2) for all (𝑡, 𝑗) ∈ 𝑑𝑜𝑚 𝑧 such that (𝑡, 𝑗 + 1) ∈ 𝑑𝑜𝑚 𝑧,

𝑧(𝑡, 𝑗) ∈ 𝐷,

𝑧(𝑡, 𝑗 + 1) = 𝑔(𝑧(𝑡, 𝑗)).

Trajectories of hybrid systems often converge to sets rather than
quilibrium points (e.g., when periodic timers are part of the state 𝑧).
iven a vector 𝑧 ∈ R𝑛 and a compact set  ⊂ R𝑛, the distance of 𝑧 to 
s denoted |𝑧| and is defined by |𝑧| ∶= min𝑦∈|𝑧 − 𝑦|. To guarantee
ell-posedness, in this work we consider hybrid dynamical systems that
atisfy certain regularity properties.

efinition 4 (Hybrid Basic Conditions). The hybrid system (1) is said to
satisfy the Basic Conditions if:

• The sets 𝐶 and 𝐷 are closed subsets of R𝑛.
• The function 𝑓 ∶ R𝑛 × R𝑚 → R𝑛 is continuous.
• The function 𝑔 ∶ R𝑛 → R𝑛 is continuous.

For a complete treatment of general hybrid systems, their solutions
properties, stability notions and analysis tools, we refer the reader
to [18].
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