
2023 IEEE International Conference on Big Data (BigData)

979-8-3503-2445-7/23/$31.00 ©2023 IEEE 3965

Windfarm Forced Oscillation Detection Using
Hyperdimensional Computing

Shyam Yathirajam∗, Arash Peighambari∗, Ruben Roberts†, Hamed Nademi†,
Sreedevi Gutta∗, Justin Morris∗ and Ali Ahmadinia∗

∗California State University, San Marcos, CA 92096, USA, Computer Science and Information Systems Department
†California State University, San Marcos, CA 92096, USA, Physics Department
{yathi001,peigh001,rober331,hnademi,sgutta,justinmorris,aahmadinia}@csusm.edu

Abstract—Convolutional Neural Networks (CNNs) have been
explored to detect forced oscillations in windfarm systems in
the past. However, these CNNs require a significant amount of
data samples between inference queries and a significant amount
of computational power and time. This leads to systems that
have a large delay between a forced oscillation occurring and
detecting the forced oscillation. This paper presents a novel
approach applying Hyperdimensional Computing (HDC) as an
effective solution for the first time in forced oscillation detection
to overcome the problems of CNNs. HDC is able to reduce the
time to detect forced oscillations in two ways: First, by reducing
the time needed to collect data to create a new inference sample by
reducing the number of data points required. Second, by providing
a significantly smaller, more energy efficient, and faster model
for detection than current state-of-the-art. Our results show that
HDC, with an FPGA implementation, is able to achieve 55× faster
detection of forced oscillations in windfarms while achieving the
same accuracy as the best current CNN models using software
solutions.

I. INTRODUCTION

System Operators and utilities give higher priority to stan-
dardizing the connections and monitoring of Distributed Energy
Resources (DERs). In recent years, DERs such as solar and
wind power stations present havoc to the distribution portion
of the grid. The intermittent fluctuations of power coming
from the generation source creates power quality issues and
instability challenges [1], [2], which make the possibility of
system failures more frequent and causes expensive damage to
the power system infrastructure. To tackle this issue, optimizing
wind turbine performance is essential, and the analysis of
current wave data is crucial. Accurate identification of os-
cillatory signals within this data is challenging but vital, as
these signals indicate operational concerns. Swift classification
of these oscillations can enhance maintenance efficiency and
ensure uninterrupted clean energy generation. To address this
complexity, methodologies like 2-Dimensional Convolutional
Neural Networks (2D CNNs) and 1-Dimensional Convolutional
Neural Networks (1D CNNs) have been explored [3]. While
CNNs excel in capturing intricate time series patterns, 2D
CNNs involve image transformation, introducing complexity,
time delay, and cost. CNN architectures might not be optimal
for wind farm operations, necessitating a specialized approach
for classifying oscillatory signals within current wave data.
Other more efficient and light-weight machine learning algo-
rithms are more appropriate for this application in order to
reduce complexity, energy consumption, time delay, and cost.

While CNNs have established themselves as potent tools
for pattern recognition in various contexts, they come with
computational demands that may be at odds with the resource
constraints of IoT devices present in wind farms. In contrast,

Hyperdimensional Computing (HDC) is a light-weight algo-
rithm that works on Hypervectors (HVs) with dimensionality
in the 10, 000s [4]. HDC first transforms the data into HVs
through encoding yielding compact, yet information-rich, rep-
resentations of intricate time series current wave data. Then, all
subsequent operations in HDC are extremely efficient bitwise
operations rather than computationally burdensome floating
point operations seen in CNNs [5].

This paper introduces an innovative approach that builds
upon the foundational concept of HDC, offering a unique per-
spective to address the oscillatory signal classification challenge
in wind farm operations. To our knowledge, this is the first time
HDC is being used to detect forced oscillations. Our approach
with HDC reduces the total time to detect forced oscillations in
wind farms in two ways. First, we reduce the number of data
points required to create a new sample with a novel labeling
strategy. We introduce the idea of NGrams along with a new
aggressive labeling strategy and overlapping windows. Second,
by utilizing a more efficient model in HDC, we reduce the
computational time of the inference phase. Additionally, to
achieve the best performance, we implement our HDC model
in an FPGA architecture. A comparative analysis is undertaken,
pitting the HDC approach against established 2D and 1D CNN
techniques. Our results show that HDC, with an FPGA imple-
mentation, is able to achieve 55× faster detection of forced
oscillations in windfarms while achieving the same accuracy
as the best current CNN models using software solutions.

II. BACKGROUND AND RELATED WORK

A. Current State-of-the-Art

Figure 1 is the detailed model of the entire power system
of interest based on wind turbine-generator type 3 is used to
produce 100MW (deploying a cluster of 10 wind turbines) for
the connected grid with operation voltage of 500kV. Each wind
turbine has a rating of 10MW, and an output voltage of 575V,
which steps up to 500kV using a grid transformer. The studied
wind farm is interconnected to two power networks using
different transmission line lengths (62 Miles and 242 Miles).
A simulated system implemented in MATLAB/Simulink envi-
ronment is used to create low-frequency oscillations and record
synthesized data. Figure 1 also shows an example of the types
of oscillations we are trying to detect in these systems. The blue
portion of the waveform shows normal operation, while the red
portion shows when an oscillation occurs. Additionally, at the
bottom of the graph, we show the two key components of the
time delay from the start of the oscillation, to the detection of
the oscillation. The two key parts of the delay are: 1) Gathering
the data necessary to perform inference on a new sample for
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Fig. 1. Configuration of the studied wind farm based on wind turbine-Type 3 connected to the utility grids to detect forced oscillations based on Machine
Learning schemes. Normal waveform is shown in blue and the forced oscillation is shown in red. The total time to detect the forced oscillation is depicted as:
total time = time for the next sample + computation to classify the sample.

the model and 2) The time it takes for the model to process
the inference sample. This is the case for all ML model-based
solutions for oscillation detection.

There have been multiple reported studies and solutions
to identify and detect forced oscillations that appeared in
both land-based and offshore wind farms [6]–[9]. In recent
years, several techniques have been proposed based on a field-
programmable gate array (FPGA), or CPU-based monitoring
systems to offer both low-frequency harmonics monitoring
functions and recording the required data for the post-event
evaluation [8], [9]. Data analytics based on time-series meth-
ods are introduced by the research community for anomaly
detection to expedite decision-making in numerous industrial
applications. For large-scale power systems, an efficient mon-
itoring and control scheme is crucial when the number of
required measurements and datasets is very large. In [10],
Deep Learning algorithms are examined to obtain information
about the working conditions of the conventional power grid
without downgrading computational performance. Despite the
superior performance shown by these techniques for traditional
power systems, the observed fast dynamics of renewable energy
generations and control system interactions demand different
performance monitoring strategies that are not fully explored in
real-time. It is understood that the state-of-the-art and existing
methodologies proposed for wind farms are relying on con-
verting field measurements to waveform images to determine
considerable overhead for corresponding electric variables in
real-time analysis and deployment at the edge device [11], [12].

2D CNN Approach:
In the context of wind farm oscillation detection, researchers

have explored the use of 2D Convolutional Neural Networks
(CNNs) [13]. This approach involves converting the time-series
data representing wind farm sensor measurements into 2D
image-like representations [14]. The raw wave data is converted
into images by applying a fixed sampling rate per second. This
transformation facilitates the creation of images with time as
one dimension and signal intensity as the other. These images
encapsulate the temporal patterns present within the raw data
and are used as input for the 2D CNN model. The 2D CNNs
are then applied to these waveform images to automatically
learn spatial and temporal features that are relevant for detecting

oscillations. However, these methods bring extra cost with the
extra pre-processing techniques. For example, to create a new
current image, the model needs to wait for 666 samples to be
generated. Therefore, increasing the delay between the oscil-
lation and detection with the requirement to gather more data.
Additionally, 2D CNN models are computationally expensive
and large models, once again increasing the total delay, but due
to the computational portion.

1D CNN Approach:
Another approach involves using 1D Convolutional Neural

Networks (CNNs) [15] directly on the time-series data. In this
case, the data is not converted into 2D images, but instead,
the 1D structure of the time-series is preserved, and 1D CNNs
can learn patterns and features from the sequential data. This
reduces the data gathering portion of the time delay. 1D CNNs
are also smaller and more efficient than 2D CNNs, which also
reduces the computational part of the delay. However, this
approach is less accurate than the 2D CNN model.

B. State-of-the-Art Challenges and How HDC Address Them

CNN Challenges:
While CNN-based methods offer powerful tools for pattern

recognition, they are not devoid of limitations. The majority of
these solutions are suffering from practical deployment in real-
world applications, considering the operational requirements
and data acquisition limitations of wind energy systems. The
main contribution of this study is to apply AI-based perfor-
mance monitoring techniques that have not been considered for
emerging wind power grids to establish a benchmark analysis of
datasets, providing a real-time assessment of any low-frequency
oscillations that appear in such systems. Our system provides
a more responsive real-time analysis in two main ways: 1)
Using a more light-weight and faster algorithm in HDC and 2)
Classifying real time series data from the measurement system
directly without converting the data into a 2D image. Our
method aims to reduce the delay from both portions: reducing
the number of samples needed by the model reduces the data
gathering portion of the delay, and using a more efficient model
than CNNs reduces the computational portion of the delay.

Improvements with HDC Approach:
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Building upon the foundation of CNN-based approaches
and cognizant of their limitations, this paper introduces a
novel approach rooted in HDC. This approach offers a unique
perspective on addressing the oscillatory signal classification
challenge within wind farm operations. HDC encoding directly
operates on raw time series data, without the need for im-
age conversion. The inherent characteristics of HDC enable
computational efficiency, catering to the constrained compute
environment of IoT devices while maintaining accuracy.

C. Hyperdimensional Computing Background

Encoding Data in Hyperspace.
At the core of our approach lies the transformation of

data into a higher-dimensional space through a well-defined
mathematical process [4], [16], [17]. This encoding process is
crucial for capturing the inherent characteristics of the data and
enabling effective analysis. For each sample, which represents
a sequence of N sequential values from the original one-
dimensional raw data, we utilize a dot product operation with
the corresponding base vector, denoted as ’B[i]’. This operation
quantifies the alignment of the sample with the specific base
vector, effectively representing its underlying attributes and
properties. To introduce variability and adaptability to the
encoding process, a random component denoted as ’R[i]’ is
incorporated. This random value is generated with a Gaussian
distribution, adding a dynamic aspect to the encoding [18].
The mathematical representation of this encoding process is
as follows:

H[i] = sign(cos(X · B[i] +R[i]) · sin(X · B[i] +R[i])) (1)

Here, ′X ′ signifies the sample, while B[i] and R[i] represent
the corresponding base vector and random value, respectively.
The dot product operation captures the alignment between the
sample and the base vector, while the sinusoidal functions
introduce variability and distinctive patterns into the encoded
representation. Finally, the sign function binarizes the encoded
vector.

This encoding process serves as a pivotal step in our explo-
ration of HDC, as it encapsulates the essence of transforming
real-world data into a higher-dimensional space that can be
harnessed for advanced analysis. Furthermore, the encoded
Hypervectors are quantized to binary values (−1, 1), and all
subsequent operations in HD space are performed on binary
values, improving the efficiency and performance of the algo-
rithm on embedded systems [19].

HDC Training:
To train the Class HVs, we simply accumulate all of the

encoded samples into one HV representing each class [5]. For
all training samples F j with label yj = ℓ, HDC produces and
accumulates encoded vectors H⃗j to create the class vector C⃗ℓ:

C⃗ℓ =
∑

j s.t. yj=ℓ

H⃗j

To boost the accuracy, the retraining epochs of HDC perform
inference on the training samples and update the classes by
adding the mispredicted vector H⃗ to the right class C⃗ℓ (again)
and subtracting it from the wrongly suggested C⃗ℓ′ .

C⃗ℓ = C⃗ℓ + H⃗ C⃗ℓ′ = C⃗ℓ′ − H⃗ (2)
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Fig. 2. HDC Flow representing the NGrams formation and their encoding to
high dimensional space and then class vectors formation and improvement with
retraining epochs.

After the retraining procedure, the Class HVs are quantized
again into binary values [20]. This improves the efficiency and
performance of the algorithm on embedded systems while not
impacting the accuracy of the model.

Inference:
The inference of HDC is accomplished by comparing the

encoded sample H⃗ with the class vectors and returning the
label with the highest score. As we are binarizing the vectors,
we use hamming distance to find out the similarity between
class vectors and data samples [21]. This allows for an efficient
implementation of HDC in hardware, as we only need to count
the number of mismatches between binary dimensions. This
can be achieved with an array of XOR gates. The equation for
this is shown below where ℓ⋆ is the output label, H⃗ is the query
hypervector, and C⃗ are the class hypervectors.

ℓ⋆ = argmax
j∈C

Hamming(H⃗, C⃗j)

III. HDC FOR OSCILLATION DETECTION

As mentioned in Section II-A, CNNs are the current state-
of-the-art models for oscillation detection in power systems.
However, the conversion of time series data into images, as seen
in the 2D CNN methodology, introduces complexity. Paramount
to all of this, converting the raw time series data into the
frequency domain and then creating the images for the CNN to
process takes time. The time to detect the oscillations is critical
in this application. Furthermore, the computational demands of
CNNs, especially in resource-constrained environments, pose
challenges for real-time implementation on IoT devices within
wind farms. The intricate network architecture and compu-
tations involved can strain the capabilities of these devices,
potentially delaying critical decision-making processes. In this
work, we propose the use of HDC as an alternative and efficient
approach. We propose two ways for HDC to improve the time
delay of detecting the oscillations: 1) We introduce a new
method of generating sample data with the raw data requiring
significantly fewer data samples to create an inference sample
(seen in Figure 2), and 2) We demonstrate that HDC is just
as accurate as CNN based models at detecting the oscillations
while being orders of magnitude faster.

A. Data Generation Strategies

Before discussing the changes our method makes in creating
samples and labeling them, we will first cover how current
state-of-the-art works. In prior work, labeling a sample as
”oscillating” required that the entire data window exhibited
oscillatory behavior [3]. This approach further adds delay in
detecting the oscillation as the model needs to have a sample
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fully oscillating before it can effectively classify the sample.
Furthermore, for 2D CNNs, it is necessary to wait for a
sufficient number of data points in order to create an image
of the current waveform. This introduces even more delay. 1D
CNNs alleviated this by working on the raw data with each
new sample consisting of the next N data points, where N is
much smaller than the number of data points to create a new
image. We will call these NGrams. NGrams can be represented
as follows:

NGrami = [xi, xi+1, . . . , xi+N−1]

However, the downfall of 1D CNNs is that they are not as
accurate in classifying as a 2D CNN. Our work utilized these
NGrams as the basis for our samples, but introduces innovative
labeling strategies to further reduce the delay.

HD-50% Overlap
HD-75% Overlap

HD-85% Overlap
HD-Non-overlap

1D-CNN(85% overlap)
1D-CNN(85% overlap-Deferred labeling)
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Fig. 3. Impact of N-gram window size, aggressive labeling, and overlapping
windows on Recall

B. Aggressive Labeling Strategy

In our aggressive labeling strategy, each NGram undergoes
rigorous scrutiny to determine its label – oscillated or normal.
Specifically, we employ a stringent criterion: if any data point
within an NGram coincides with a known fault event, the
NGram is unambiguously labeled as oscillated. Conversely,
NGrams devoid of such critical events are labeled as normal.
This kind of aggressive labeling helps us identify the oscillatory
signals faster than state-of-the-art models by ensuring samples
are labeled as oscillating as early as possible. For example,
with an NGram of 70 and sample rate of 50µs, this labeling
strategy can reduce the time delay of gathering samples by
up to 2× if there is a portion of the sample that is part of an
oscillation. However, this strategy includes even small evidence
of an oscillation signal and labels it as an oscillatory data
point, introducing a challenging environment for subsequent
analysis. However, in Figure 3, we can see that even with this
aggressive labeling strategy, HDC is able to classify the samples
accurately. However, when we use this strategy with CNNs,
they are not able to maintain accuracy. For instance, Figure 3
shows that for the same Ngram size of 70, the 1D CNN loses

over 10% in recall rate when using the aggressive labeling
strategy compared to needing the entire sample oscillating
(Deferred Labeling). We further reduce the time delay of
detecting oscillations by introducing overlapping windows.

C. Window Overlap

We introduce the concept of overlap to further reduce the
time delay of detecting oscillations. Overlapping scenarios in
the context of NGrams refer to the way these windows overlap
in time. By shifting NGrams with controlled overlaps – such
as 50%, 75%, and 85% – our model requires fewer data points
to create a new sample. For overlapping scenarios with a given
overlap percentage α, the starting point of the next NGram is
determined by the overlap window size β = (1−α)×N . Thus,
the NGrams in the overlapping scenario can be expressed as:

NGrami = [xi, xi+1, . . . , xi+N−1]

NGrami+β = [xi+β , xi+β+1, . . . , xi+β+N−1]

In Figure 3, we show the impact of overlapping as well
as different NGram sizes. We have observed that overlapping
experiments were able to maintain a constant recall rate.
Moreover, our experiments have revealed a remarkable find-
ing: the use of overlapping scenarios with HDC significantly
brings up the choice to detect oscillations in a faster way.
This, in combination with aggressive labeling, allows a swifter
identification of operational concerns that are crucial in wind
farms. This enables the HDC model to achieve faster oscillation
detection without an impact on recall. Furthermore, we conduct
a comparative analysis with CNN-based methods as well. A
key advantage of HDC becomes apparent: while CNNs require
the necessity of labeling delay, HDC does not require this
delay. This factor significantly contributes to the effectiveness
of HDC in being able to detect oscillatory signals in a faster
way than CNNs. In summary, our comparative analysis suggests
that while 1D and 2D CNNs have demonstrated prowess in
capturing intricate patterns, HDC presents a viable alternative,
potentially offering a more focused and efficient solution for the
classification of oscillatory and normal signals in wind turbine
data. For example, our findings show that HDC with an NGram
size of 10 is able to maintain the same accuracy as state-of-the-
art CNNs, which require an NGram of 70 and deferred labeling.
Comparing HDC with 1D CNNs that require delayed labeling
and a minimum NGram size of 70, just by reducing the delay
of gathering data, HDC shows an improvement of up to 35× as
HDC only needs two new data points to create a new sample,
where the CNN needs to sample 70 new data points to create
a new sample.

Figure 3 demonstrates that HDC is successful in maintaining
a high and constant recall rate at different scenarios. Further-
more, due to the light-weight nature of HDC, the encoding
and processing steps used in HDC can be efficiently mapped
to the Field-Programmable Gate Arrays (FPGAs), a hardware
architecture that is commonly used in IoT devices. Using
different methodologies mentioned in the next subsections, we
are able to further reduce the delay of detecting oscillations by
speeding up HDC inference delay, or the second component
of the total delay. This makes HDC an efficient alternative
approach to be deployed in wind farms for oscillation detection.
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Fig. 4. FPGA implementation of the encoding and associative search block.
IV. EFFICIENT HARDWARE IMPLEMENTATION

HDC can be accelerated on different platforms such as Cen-
tral Processing Unit (CPU), Graphics Processing Unit(GPU),
Field-Programmable Gate Array(FPGA), or Application-
Specific Integrated Circuit(ASIC) [5], [22]–[24]. FPGA is one
of the best options as HDC computation involves bitwise
operations among long vector sizes [25]–[27]. For example,
during inference, we need to calculate hamming distance, which
simply counts the number of mismatching binary dimensions.
Additionally, unlike ASICs or Program In Memory (PIM) im-
plementations, FPGAs offer reprogramability and faster design
times [28], [29]. General strategies for optimizing the perfor-
mance of HDC are (i) using a pipeline and partial unrolling
on a low level (dimension level) to speed up each task and
(ii) using dataflow design on a high level (task level) to build
a stream processing architecture that lets different tasks run
concurrently. In the following, we explain the functionality of
HDC in encoding, inference phases, training, and retraining.

A. Encoding Implementation

As we explained in Section II, we use a non-linear encoding
to implement the encoding module. Due to the sequential and
predictable memory access patterns, this encoding approach can
be implemented efficiently on an FPGA. Figure 4a shows the
hardware implementation of the HDC encoding module. The
core part of the encoding process is the matrix multiplication
between the non-linear matrix and the sample to be encoded.
This matrix multiplication is unfolded and pipelined for an
efficient implementation. However, due to overlapping samples,
our design can also precompute the overlapping part of the
sample for the next input. This matrix multiplication and the
subsequent addition is implemented in Digital Signal Proces-
sors(DSPs). However, for a more efficient implementation, the
sin and cos applied at the end are implemented in Look Up
Tables(LUTs).

B. Inference Implementation

In the hardware implementation, we represent all {−1,+1}
values with {0, 1} respectively. This enables us to represent
each element of the hypervectors using a single bit. After the
retraining, the HDC model is a stable model that can be used
in the inference phase. The encoding module is integrated with
the similarity check module as the entire inference part. Each
test data point is first encoded to high-dimensional space using
the same encoding block explained in Section IV-A. Next, the
design checks the Hamming distance similarity of the data point
with all pre-stored class HVs, in order to find the class with
the highest similarity. This is done efficiently with an array

of XOR gates and a tree-based comparator. This design is also
unfolded and pipelined to improve performance during training
and retraining. However, the pipelined architecture is unable to
be fully utilized during inference due to the sequential nature
of the data.

C. Training Implementation

The initial training and training blocks utilize the existing
encoding and inference blocks. For initial training, the samples
first need to be encoded by the encoder block, then they are
simply accumulated into Flip Flips storing the class HVs. Then,
during retraining, the sample is again re-encoded and sent to
the inference block. The inference block result then controls if
the sample is subtracted and added to the Flip Flops based on
if the sample was labeled correctly or not.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

We have implemented HDC training, retraining, and infer-
ence on both software and Hardware. For software, we used
Python. For the CPU architecture, we used an Intel(R) Xeon(R)
Gold 6144 CPU @ 3.50GHz with a total RAM of 64GB. For
GPU, we utilized NVIDIA Quadro P5000 which has 16GB
of VRAM. For FPGA, we have implemented our design in
Verilog. We verified the timing and functionality of the models
by synthesizing them using Xilinx Vivado Design Suite [30].
The synthesis code has been implemented on a Kintex-7 FPGA
KC705 Evaluation Kit.

We have evaluated the performance of our design and tested
it on 3 different datasets. All of these datasets are generated
from silulation data using MATLAB and Simulink. The 3
datasets have different characteristics listed below: Windfarm
Dataset-1 (sampled at 50µs with 1 oscillation included), Wind-
farm Dataset-2 (sampled at 10µs which includes no oscillation
data), and Windfarm Dataset-3 (sampled at 10µs that includes
3 oscillation waves in it). In this section, we present the results
of our method based on HDC and compare them with the 1D
and 2D CNN approaches. All datasets are split into train and
test sets. The train set is simulated for 15 seconds and the test
set is simulated for 6 seconds.

B. Multiple Oscillations and Faster Sampling
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Fig. 5. Performance of HDC on Dataset-2 with no oscillations included and
Dataset-3 with multiple oscillation included.

The results in Section III were based on dataset-1, which
is sampled at a rate of 50µs; this dataset contained a single
oscillation pattern. However, In real-world systems, samples
are drawn at a faster rate, around 10µs as well as containing
multiple oscillations. To address this, we evaluate HDC on two
additional datasets.

Dataset 2:
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Sampled at a rate of 10µs, this dataset presented a scenario
with no distinct oscillation patterns embedded within the data.
This dataset is used as a control for normal operation to ensure
our model does not identify any false positives as normal
operation and this is a much more common case compared
to oscillating.

Dataset 3:
Sampled at a rate of 10µs, this dataset presents a more com-

plex scenario with three distinct oscillation patterns embedded
within the data.

Figure 5 shows the accuracy of our HDC model with
different NGram sizes on the additional datasets. The results
on dataset 2 demonstrate that HDC with an NGram of 10 does
not indicate any false positives. This is critical to maintain
optimal performance of the system as any false positive would
unnecessarily halt the system. Our results also show that
HDC maintained performance on dataset 3, which has multiple
oscillations, achieving an accuracy rate of 97% across various
NGrams and only dropping after lower than 10 NGrams. This
underscores its ability to accurately identify oscillations even in
the presence of multiple occurrences. Furthermore, we can say
that our HDC model works and achieves the best performance
when the NGram is 10 and the overlap is 85%. Additionally,
we can see that HDC is able to accurately identify normal
operation with no false positives on dataset 2.

By demonstrating that the HDC model is able to accurately
identify oscillations with a dataset sampled at 10µs, HDC
demonstrates a further advantage in terms of time to detect
the oscillation. With a sample rate of 10µs vs 50µs, our model
sees data points at a rate 5× faster. This means that the HDC
model will not only generate a sample faster by requiring fewer
data points, but also, by collecting data points faster. This also
demonstrates that HDC can be deployed in real systems where
the sample rate is closer to 10µs.

C. HD Performance and Energy Efficiency

In the context of real-world applications, where efficiency,
speed, and energy consumption play pivotal roles, we assessed
our HDC methodology in diverse scenarios. These evaluations
were conducted on three platforms: a server (CPU), a Raspberry
Pi, and an FPGA implementation. The aim was to understand
the efficiency of our approach across a spectrum of computa-
tional environments.

Figure 6(A) indicates training time taken by HDC on differ-
ent hardware platforms that include the time taken for encoding
the windfarm data and also the time taken for 20 retraining
epochs. The results show that HDC performance on the FPGA
platform is boosted by 23,100× compared to a CPU server and
by 111,100× compared to a Raspberry Pi. Figure 6(B) indicates
the energy taken by HDC on different Hardware platforms
during the training and retraining process. The results show that
HDC performance on the FPGA platform is 138,800× more
energy efficient compared to a CPU server and by 117,200×
compared to a Raspberry Pi. Although FPGA is clearly a
superior hardware platform for HDC training, it is important to
note that training is one offline and only run once. Therefore, it
is still feasible to run HDC training on a CPU server as training
only takes approximately 2 hours on a CPU. However, training
takes approximately 2 days to run on a Raspberry Pi and is not
feasible.
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Fig. 6. (A) Representation of Encoding + Training Time per sample on different
Hardware (B) Representation of Encoding + Training Energy per sample on
different Hardware
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Fig. 7. (A) Representation of inference time per sample on different hardware
(B) Representation of inference energy per sample on different hardware.

In the context of windfarm data, it is also important to
observe the time HDC takes to detect an oscillation, which
plays an important role in determining the effectiveness of the
algorithm, and Figure 7(A) above showcases the inference time
of HDC on different hardware platforms. For the following
comparisons, we utilize an NGram of 10 and overlap of 85%.
Our results indicate that our HDC model on FPGA is, 83,300×
faster than the CPU server and 459,200× faster than Raspberry
Pi. However, it is important to note that the time to detect
oscillations does not only depend on the inference time, but
also the time to collect a full sample for inference.

When we consider the entire process to detect an oscillation,
utilizing an FPGA for acceleration is 111× faster than the CPU
server and 460× faster than Raspberry Pi. This is because a
large portion of the time for detection is waiting for the next
sample for inference. For example, HDC with an NGram of
10 and an overlapping scenario of 85% requires 2 data points
to create a new sample. This means that there is a delay of
20µs between each new sample. Another noteworthy aspect
about running HDC inference on CPUs and Raspberry Pis is
that inference time is longer than the time it takes to collect
the next sample. Therefore, these systems are not feasible for
deployment of the HDC model in a real system.

Figure 7(B) shows the energy consumption of the HDC
model on the different hardware platforms. The results indicate
that not only is FPGA faster at detection, but it is also
significantly more energy efficient. Our HDC model on FPGA
is, 25,300× more energy efficient compared to the CPU server
and by 456,700× compared to a Raspberry Pi. Therefore,
it is also not feasible to utilize CPUs or Raspberry Pis for
oscillation detection in terms of energy efficiency either. FPGAs
are notably faster at detection and also orders of magnitude
more energy efficient.
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TABLE I
HDC VS STATE-OF-THE-ART CNNS COMPARISON.

Model
Recall
Rate

Data Collection
Time

Inference
Time

Time to Detect
Oscillation

Inference
Energy

Training
Time

Training
Energy

Model
Size

2D CNN [3] 98% 33.3ms 20ms(CPU) 53.3ms(CPU) 3.1J(CPU) 1ms(CPU) 0.15J(CPU) 2.7MB
21ms(GPU) 54.3ms(GPU) 0.6ms(GPU)

1D CNN [3] 94% 110µ 2ms(CPU) 2.11ms(CPU) 0.29J(CPU) 0.8µs(CPU) 12mJ(CPU) 0.6MB
3ms(GPU) 3.11ms(GPU) 0.46µs(GPU)

HDC 97% 20µs 41ms(CPU) 41.02ms(CPU) 740mJ(CPU) 2.3ms(CPU) 41mJ(CPU) 3.3KB
0.22µs(FPGA) 20.22µs(FPGA) 0.65µJ(FPGA) 0.04µs(FPGA) 0.13µJ(FPGA)

D. Further improvements with Dimensionality Reduction
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Fig. 8. HDC NGram-10 and 85% Overlap Performance for Different Dimen-
sions.

Figure 8 shows the impact of model dimensionality on the
accuracy of the HDC model. The results indicate that, HDC is
able to maintain high accuracy through different dimensions.
Particularly, HDC was able to maintain a constant recall rate
with dimensionality as low as 4, 000. This is noteworthy as
our FPGA implementation scales by the dimensionality of the
HDC model. Therefore, by demonstrating that the HDC model
is able to maintain accuracy up to 4,000 dimensions, our FPGA
implementation with 4,000 lower dimensions is 2.5× faster and
more energy efficient compared to the full 10,000 dimensional
model.

E. Comparison with State of the Art
Table I compares the HDC model with 1D and 2D-CNNs in

terms of different performance metrics such as recall rate, time
that each model takes to detect oscillations, energy efficiency,
and model sizes. In this table, we report the metrics for
the best parameters for HDC and CNNs. The parameters for
HDC were explored in the Section V-C and Section V-D.
We found that HDC can achieve a balance of recall, energy
efficiency, and execution time when running on an FPGA, with
a dimensionality of 4, 000, an NGram of 10, and an overlap
percentage of 85%.

Table I also focuses on 1D CNN and 2D CNN where
1D CNN performance is recorded for 70 NGram with an
overlapping window of 85% whereas the 2D CNN performance
was obtained from the process where the time series data was
converted into images and then passed through a 2D CNN for
classification. From the table, we can clearly see that the 1D
CNN is the better model for deployment as it is able to detect
oscillations 25× faster than the 2D CNN, trains the model
1, 300× faster, has a 4.5× smaller model size, with the cost of
4% in recall rate.

For the CNN models we also included a comparison running
on CPU vs GPU. It is noteworthy that for inference, GPU

is actually worse for these models. This is because in the
oscillation detection application, only one sample is available
at a time. Therefore, the GPU resources are significantly
underutilized during the inference process and the overhead
of moving the data from CPU memory to GPU memory is
not overcome by the computational speedup. However, utilizing
GPU for training is approximately 2× faster. Therefore, for the
best comparison against out HDC model, we use the 1D CNN
running on a CPU for inference comparisons and the 1D CNN
running on GPU for training comparisons.

For 1D CNN, the best recall with smallest NGram and
highest overlap is with an NGram of 70 and overlap of 85%
as with less than 70 NGrams recall is significantly lower. For
an application like oscillation detection, recall is paramount to
all other metrics. This significantly impacts the total time to
detect and oscillation as the 1D CNN needs to wait for 5.5×
more samples to create a new NGram compared to HDC. Due
to this difference and the performance difference of computing
the inference phase, HDC is 55× faster at detecting oscillations
than the 1D CNN. Furthermore, the HDC model is trained 7.6×
faster than the 1D CNN model. In terms of energy efficiency,
the HDC model is 5 orders of magnitude more energy efficient
than the 1D CNN model during inference and 4 orders of
magnitude more energy efficient during training. The HDC
model is also 182× smaller than the 1D CNN model. HDC
achieves this while maintaining the same recall rate as 2D
CNNs, without the need for deferred labeling. Finally, HDC
is the only model, besides the significantly slower 2D CNN,
that is able to perform inference faster than the time it takes to
collect data for the next sample. Therefore, in terms of feasible
deployment, HDC is the only choice.

F. Future Work

The results presented in this paper are initial findings using
HDC for forced oscillations detection in benchmarked wind
farms. There are multiple ways we plan to extend this work.
For instance, in this work our models only detect oscillations
appear at the interconnection to the grid. In real wind energy
plants, there are many monitoring supervisory schemes used
in different locations. For example, a wind farm comprises of
multiple turbines generation units, each of which need to be
equipped for this type of oscillation. There are multiple aspects
to explore with more nodes. Such as how we showed with one
node to monitor, GPUs are underutilized for CNN architectures
and result in worse performance. However, with more data
available, the GPU can be better utilized. The same is true for
the HDC FPGA architecture. During inference, the pipeline is
not fully utilized. This is why training is approximately 5×
faster than inference as all of the training samples are available
and can fill up and fully utilize the pipelined architecture in
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the FPGA. With more nodes added during inference, more
samples are needed to be tested and the pipeline can be filled
properly, leading to more throughput. Additionally, with the
FPGA implementation of HDC, the data collection phase is
now the longer phase. We can further optimize the time to
detect by increasing the sampling rate further considering the
practical limitations. Furthermore, this work can be extended to
detect oscillations in other renewable energy systems besides
wind farms like solar farms. Finally, the datasets tested in this
paper are purely simulation data. We have plans to extend this
work to test on real world measurements as the data becomes
available.

VI. CONCLUSION

In this study, we tackled the crucial problem of detecting
oscillations in the power grid systems with a focus on high-
lighting the limitations of Deep Convolutional Neural Networks
and eliminating the pre-processing steps that are mandatory in
CNNs. This is the first work to utilize a more light-weight and
efficient model in HDC to improve upon the existing state-of-
the-art CNNs. Our approach with HDC reduces the total time
to detect forced oscillations in wind farms in two ways. First,
we reduce the number of data points required to create a new
sample, which in turn reduces the delay to detect an oscillation.
Second, by utilizing a more efficient model in HDC, we reduce
the computational time of the inference phase on the sample.
Additionally, to achieve the best performance, we implemented
our HDC model in an FPGA architecture. Our results show
that HDC, with an FPGA implementation, is able to achieve
55× faster detection of forced oscillations in windfarms while
achieving the same accuracy as the best current CNN models
using software solutions.
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